pbrBRDFFunctions.fx 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323
  1. // Constants
  2. #define FRESNEL_MAXIMUM_ON_ROUGH 0.25
  3. // ______________________________________________________________________
  4. //
  5. // BRDF LOOKUP
  6. // ______________________________________________________________________
  7. #ifdef MS_BRDF_ENERGY_CONSERVATION
  8. // http://www.jcgt.org/published/0008/01/03/
  9. // http://advances.realtimerendering.com/s2018/Siggraph%202018%20HDRP%20talk_with%20notes.pdf
  10. vec3 getEnergyConservationFactor(const vec3 specularEnvironmentR0, const vec3 environmentBrdf) {
  11. return 1.0 + specularEnvironmentR0 * (1.0 / environmentBrdf.y - 1.0);
  12. }
  13. #endif
  14. #ifdef ENVIRONMENTBRDF
  15. vec3 getBRDFLookup(float NdotV, float perceptualRoughness) {
  16. // Indexed on cos(theta) and roughness
  17. vec2 UV = vec2(NdotV, perceptualRoughness);
  18. // We can find the scale and offset to apply to the specular value.
  19. vec4 brdfLookup = texture2D(environmentBrdfSampler, UV);
  20. #ifdef ENVIRONMENTBRDF_RGBD
  21. brdfLookup.rgb = fromRGBD(brdfLookup.rgba);
  22. #endif
  23. return brdfLookup.rgb;
  24. }
  25. vec3 getReflectanceFromBRDFLookup(const vec3 specularEnvironmentR0, const vec3 environmentBrdf) {
  26. #ifdef BRDF_V_HEIGHT_CORRELATED
  27. vec3 reflectance = mix(environmentBrdf.xxx, environmentBrdf.yyy, specularEnvironmentR0);
  28. #else
  29. vec3 reflectance = specularEnvironmentR0 * environmentBrdf.x + environmentBrdf.y;
  30. #endif
  31. return reflectance;
  32. }
  33. #endif
  34. #if defined(SHEEN) && defined(SHEEN_SOFTER)
  35. // Approximation of (integral on hemisphere)[f_sheen*cos(theta)*dtheta*dphi]
  36. float getBRDFLookupCharlieSheen(float NdotV, float perceptualRoughness)
  37. {
  38. float c = 1.0 - NdotV;
  39. float c3 = c*c*c;
  40. return 0.65584461 * c3 + 1.0 / (4.16526551 + exp(-7.97291361*perceptualRoughness+6.33516894));
  41. }
  42. #endif
  43. #if !defined(ENVIRONMENTBRDF) || defined(REFLECTIONMAP_SKYBOX) || defined(ALPHAFRESNEL)
  44. vec3 getReflectanceFromAnalyticalBRDFLookup_Jones(float VdotN, vec3 reflectance0, vec3 reflectance90, float smoothness)
  45. {
  46. // Schlick fresnel approximation, extended with basic smoothness term so that rough surfaces do not approach reflectance90 at grazing angle
  47. float weight = mix(FRESNEL_MAXIMUM_ON_ROUGH, 1.0, smoothness);
  48. return reflectance0 + weight * (reflectance90 - reflectance0) * pow5(saturate(1.0 - VdotN));
  49. }
  50. #endif
  51. #if defined(SHEEN) && defined(REFLECTION)
  52. /**
  53. * The sheen BRDF not containing F can be easily stored in the blue channel of the BRDF texture.
  54. * The blue channel contains DCharlie * VAshikhmin * NdotL as a lokkup table
  55. */
  56. vec3 getSheenReflectanceFromBRDFLookup(const vec3 reflectance0, const vec3 environmentBrdf) {
  57. vec3 sheenEnvironmentReflectance = reflectance0 * environmentBrdf.b;
  58. return sheenEnvironmentReflectance;
  59. }
  60. #endif
  61. // ______________________________________________________________________
  62. //
  63. // Schlick/Fresnel
  64. // ______________________________________________________________________
  65. // Schlick's approximation for R0 (Fresnel Reflectance Values)
  66. // Keep for references
  67. // vec3 getR0fromAirToSurfaceIOR(vec3 ior1) {
  68. // return getR0fromIOR(ior1, vec3(1.0));
  69. // }
  70. // vec3 getR0fromIOR(vec3 ior1, vec3 ior2) {
  71. // vec3 t = (ior1 - ior2) / (ior1 + ior2);
  72. // return t * t;
  73. // }
  74. // vec3 getIORfromAirToSurfaceR0(vec3 f0) {
  75. // vec3 s = sqrt(f0);
  76. // return (1.0 + s) / (1.0 - s);
  77. // }
  78. // f0 Remapping due to layers
  79. // vec3 getR0RemappedForClearCoat(vec3 f0, vec3 clearCoatF0) {
  80. // vec3 iorBase = getIORfromAirToSurfaceR0(f0);
  81. // vec3 clearCoatIor = getIORfromAirToSurfaceR0(clearCoatF0);
  82. // return getR0fromIOR(iorBase, clearCoatIor);
  83. // }
  84. vec3 fresnelSchlickGGX(float VdotH, vec3 reflectance0, vec3 reflectance90)
  85. {
  86. return reflectance0 + (reflectance90 - reflectance0) * pow5(1.0 - VdotH);
  87. }
  88. float fresnelSchlickGGX(float VdotH, float reflectance0, float reflectance90)
  89. {
  90. return reflectance0 + (reflectance90 - reflectance0) * pow5(1.0 - VdotH);
  91. }
  92. #ifdef CLEARCOAT
  93. // Knowing ior clear coat is fix for the material
  94. // Solving iorbase = 1 + sqrt(fo) / (1 - sqrt(fo)) and f0base = square((iorbase - iorclearcoat) / (iorbase + iorclearcoat))
  95. // provide f0base = square(A + B * sqrt(fo)) / (B + A * sqrt(fo))
  96. // where A = 1 - iorclearcoat
  97. // and B = 1 + iorclearcoat
  98. vec3 getR0RemappedForClearCoat(vec3 f0) {
  99. #ifdef CLEARCOAT_DEFAULTIOR
  100. #ifdef MOBILE
  101. return saturate(f0 * (f0 * 0.526868 + 0.529324) - 0.0482256);
  102. #else
  103. return saturate(f0 * (f0 * (0.941892 - 0.263008 * f0) + 0.346479) - 0.0285998);
  104. #endif
  105. #else
  106. vec3 s = sqrt(f0);
  107. vec3 t = (vClearCoatRefractionParams.z + vClearCoatRefractionParams.w * s) / (vClearCoatRefractionParams.w + vClearCoatRefractionParams.z * s);
  108. return t * t;
  109. #endif
  110. }
  111. #endif
  112. // ______________________________________________________________________
  113. //
  114. // Distribution
  115. // ______________________________________________________________________
  116. // Trowbridge-Reitz (GGX)
  117. // Generalised Trowbridge-Reitz with gamma power=2.0
  118. float normalDistributionFunction_TrowbridgeReitzGGX(float NdotH, float alphaG)
  119. {
  120. // Note: alphaG is average slope (gradient) of the normals in slope-space.
  121. // It is also the (trigonometric) tangent of the median distribution value, i.e. 50% of normals have
  122. // a tangent (gradient) closer to the macrosurface than this slope.
  123. float a2 = square(alphaG);
  124. float d = NdotH * NdotH * (a2 - 1.0) + 1.0;
  125. return a2 / (PI * d * d);
  126. }
  127. #ifdef SHEEN
  128. // http://www.aconty.com/pdf/s2017_pbs_imageworks_sheen.pdf
  129. // https://knarkowicz.wordpress.com/2018/01/04/cloth-shading/
  130. float normalDistributionFunction_CharlieSheen(float NdotH, float alphaG)
  131. {
  132. float invR = 1. / alphaG;
  133. float cos2h = NdotH * NdotH;
  134. float sin2h = 1. - cos2h;
  135. return (2. + invR) * pow(sin2h, invR * .5) / (2. * PI);
  136. }
  137. #endif
  138. #ifdef ANISOTROPIC
  139. // GGX Distribution Anisotropic
  140. // https://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf Addenda
  141. float normalDistributionFunction_BurleyGGX_Anisotropic(float NdotH, float TdotH, float BdotH, const vec2 alphaTB) {
  142. float a2 = alphaTB.x * alphaTB.y;
  143. vec3 v = vec3(alphaTB.y * TdotH, alphaTB.x * BdotH, a2 * NdotH);
  144. float v2 = dot(v, v);
  145. float w2 = a2 / v2;
  146. return a2 * w2 * w2 * RECIPROCAL_PI;
  147. }
  148. #endif
  149. // ______________________________________________________________________
  150. //
  151. // Visibility/Geometry
  152. // ______________________________________________________________________
  153. #ifdef BRDF_V_HEIGHT_CORRELATED
  154. // GGX Mask/Shadowing Isotropic
  155. // Heitz http://jcgt.org/published/0003/02/03/paper.pdf
  156. // https://twvideo01.ubm-us.net/o1/vault/gdc2017/Presentations/Hammon_Earl_PBR_Diffuse_Lighting.pdf
  157. float smithVisibility_GGXCorrelated(float NdotL, float NdotV, float alphaG) {
  158. #ifdef MOBILE
  159. // Appply simplification as all squared root terms are below 1 and squared
  160. float GGXV = NdotL * (NdotV * (1.0 - alphaG) + alphaG);
  161. float GGXL = NdotV * (NdotL * (1.0 - alphaG) + alphaG);
  162. return 0.5 / (GGXV + GGXL);
  163. #else
  164. float a2 = alphaG * alphaG;
  165. float GGXV = NdotL * sqrt(NdotV * (NdotV - a2 * NdotV) + a2);
  166. float GGXL = NdotV * sqrt(NdotL * (NdotL - a2 * NdotL) + a2);
  167. return 0.5 / (GGXV + GGXL);
  168. #endif
  169. }
  170. #else
  171. // From Microfacet Models for Refraction through Rough Surfaces, Walter et al. 2007
  172. // Keep for references
  173. // float smithVisibilityG1_TrowbridgeReitzGGX(float dot, float alphaG)
  174. // {
  175. // float tanSquared = (1.0 - dot * dot) / (dot * dot);
  176. // return 2.0 / (1.0 + sqrt(1.0 + alphaG * alphaG * tanSquared));
  177. // }
  178. // float smithVisibility_TrowbridgeReitzGGX_Walter(float NdotL, float NdotV, float alphaG)
  179. // {
  180. // float visibility = smithVisibilityG1_TrowbridgeReitzGGX(NdotL, alphaG) * smithVisibilityG1_TrowbridgeReitzGGX(NdotV, alphaG);
  181. // visibility /= (4.0 * NdotL * NdotV); // Cook Torance Denominator integrated in visibility to avoid issues when visibility function changes.
  182. // return visibility;
  183. // }
  184. // From smithVisibilityG1_TrowbridgeReitzGGX * dot / dot to cancel the cook
  185. // torrance denominator :-)
  186. float smithVisibilityG1_TrowbridgeReitzGGXFast(float dot, float alphaG)
  187. {
  188. #ifdef MOBILE
  189. // Appply simplification as all squared root terms are below 1 and squared
  190. return 1.0 / (dot + alphaG + (1.0 - alphaG) * dot ));
  191. #else
  192. float alphaSquared = alphaG * alphaG;
  193. return 1.0 / (dot + sqrt(alphaSquared + (1.0 - alphaSquared) * dot * dot));
  194. #endif
  195. }
  196. float smithVisibility_TrowbridgeReitzGGXFast(float NdotL, float NdotV, float alphaG)
  197. {
  198. float visibility = smithVisibilityG1_TrowbridgeReitzGGXFast(NdotL, alphaG) * smithVisibilityG1_TrowbridgeReitzGGXFast(NdotV, alphaG);
  199. // No Cook Torance Denominator as it is canceled out in the previous form
  200. return visibility;
  201. }
  202. #endif
  203. #ifdef ANISOTROPIC
  204. // GGX Mask/Shadowing Anisotropic
  205. // Heitz http://jcgt.org/published/0003/02/03/paper.pdf
  206. float smithVisibility_GGXCorrelated_Anisotropic(float NdotL, float NdotV, float TdotV, float BdotV, float TdotL, float BdotL, const vec2 alphaTB) {
  207. float lambdaV = NdotL * length(vec3(alphaTB.x * TdotV, alphaTB.y * BdotV, NdotV));
  208. float lambdaL = NdotV * length(vec3(alphaTB.x * TdotL, alphaTB.y * BdotL, NdotL));
  209. float v = 0.5 / (lambdaV + lambdaL);
  210. return v;
  211. }
  212. #endif
  213. #ifdef CLEARCOAT
  214. float visibility_Kelemen(float VdotH) {
  215. // Simplified form integration the cook torrance denminator.
  216. // Expanded is nl * nv / vh2 which factor with 1 / (4 * nl * nv)
  217. // giving 1 / (4 * vh2))
  218. return 0.25 / (VdotH * VdotH);
  219. }
  220. #endif
  221. #ifdef SHEEN
  222. // https://knarkowicz.wordpress.com/2018/01/04/cloth-shading/
  223. // https://blog.selfshadow.com/publications/s2017-shading-course/imageworks/s2017_pbs_imageworks_sheen.pdf
  224. // http://www.cs.utah.edu/~premoze/dbrdf/dBRDF.pdf
  225. float visibility_Ashikhmin(float NdotL, float NdotV)
  226. {
  227. return 1. / (4. * (NdotL + NdotV - NdotL * NdotV));
  228. }
  229. #ifdef SHEEN_SOFTER
  230. // http://www.aconty.com/pdf/s2017_pbs_imageworks_sheen.pdf
  231. float l(float x, float alphaG)
  232. {
  233. float oneMinusAlphaSq = (1.0 - alphaG) * (1.0 - alphaG);
  234. float a = mix(21.5473, 25.3245, oneMinusAlphaSq);
  235. float b = mix(3.82987, 3.32435, oneMinusAlphaSq);
  236. float c = mix(0.19823, 0.16801, oneMinusAlphaSq);
  237. float d = mix(-1.97760, -1.27393, oneMinusAlphaSq);
  238. float e = mix(-4.32054, -4.85967, oneMinusAlphaSq);
  239. return a / (1.0 + b * pow(x, c)) + d * x + e;
  240. }
  241. float lambdaSheen(float cosTheta, float alphaG)
  242. {
  243. return abs(cosTheta) < 0.5 ? exp(l(cosTheta, alphaG)) : exp(2.0 * l(0.5, alphaG) - l(1.0 - cosTheta, alphaG));
  244. }
  245. float visibility_CharlieSheen(float NdotL, float NdotV, float alphaG)
  246. {
  247. float G = 1.0 / (1.0 + lambdaSheen(NdotV, alphaG) + lambdaSheen(NdotL, alphaG));
  248. return G / (4.0 * NdotV * NdotL);
  249. }
  250. #endif
  251. #endif
  252. // ______________________________________________________________________
  253. //
  254. // DiffuseBRDF
  255. // ______________________________________________________________________
  256. // Disney diffuse term
  257. // https://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf
  258. // Page 14
  259. float diffuseBRDF_Burley(float NdotL, float NdotV, float VdotH, float roughness) {
  260. // Diffuse fresnel falloff as per Disney principled BRDF, and in the spirit of
  261. // of general coupled diffuse/specular models e.g. Ashikhmin Shirley.
  262. float diffuseFresnelNV = pow5(saturateEps(1.0 - NdotL));
  263. float diffuseFresnelNL = pow5(saturateEps(1.0 - NdotV));
  264. float diffuseFresnel90 = 0.5 + 2.0 * VdotH * VdotH * roughness;
  265. float fresnel =
  266. (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNL) *
  267. (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNV);
  268. return fresnel / PI;
  269. }
  270. #ifdef SS_TRANSLUCENCY
  271. // Pixar diffusion profile
  272. // http://graphics.pixar.com/library/ApproxBSSRDF/paper.pdf
  273. vec3 transmittanceBRDF_Burley(const vec3 tintColor, const vec3 diffusionDistance, float thickness) {
  274. vec3 S = 1. / maxEps(diffusionDistance);
  275. vec3 temp = exp((-0.333333333 * thickness) * S);
  276. return tintColor.rgb * 0.25 * (temp * temp * temp + 3.0 * temp);
  277. }
  278. // Extends the dark area to prevent seams
  279. // Keep it energy conserving by using McCauley solution: https://blog.selfshadow.com/2011/12/31/righting-wrap-part-1/
  280. float computeWrappedDiffuseNdotL(float NdotL, float w) {
  281. float t = 1.0 + w;
  282. float invt2 = 1.0 / square(t);
  283. return saturate((NdotL + w) * invt2);
  284. }
  285. #endif