// Constants #define FRESNEL_MAXIMUM_ON_ROUGH 0.25 // ______________________________________________________________________ // // BRDF LOOKUP // ______________________________________________________________________ #ifdef MS_BRDF_ENERGY_CONSERVATION // http://www.jcgt.org/published/0008/01/03/ // http://advances.realtimerendering.com/s2018/Siggraph%202018%20HDRP%20talk_with%20notes.pdf vec3 getEnergyConservationFactor(const vec3 specularEnvironmentR0, vec2 environmentBrdf) { return 1.0 + specularEnvironmentR0 * (1.0 / environmentBrdf.y - 1.0); } #endif #ifdef ENVIRONMENTBRDF vec2 getBRDFLookup(float NdotV, float perceptualRoughness, sampler2D brdfSampler) { // Indexed on cos(theta) and roughness vec2 UV = vec2(NdotV, perceptualRoughness); // We can find the scale and offset to apply to the specular value. vec2 brdfLookup = texture2D(brdfSampler, UV).xy; return brdfLookup; } vec3 getReflectanceFromBRDFLookup(const vec3 specularEnvironmentR0, vec2 environmentBrdf) { #ifdef BRDF_V_HEIGHT_CORRELATED vec3 reflectance = mix(environmentBrdf.xxx, environmentBrdf.yyy, specularEnvironmentR0); #else vec3 reflectance = specularEnvironmentR0 * environmentBrdf.x + environmentBrdf.y; #endif return reflectance; } #endif #if !defined(ENVIRONMENTBRDF) || defined(REFLECTIONMAP_SKYBOX) || defined(ALPHAFRESNEL) vec3 getReflectanceFromAnalyticalBRDFLookup_Jones(float VdotN, vec3 reflectance0, vec3 reflectance90, float smoothness) { // Schlick fresnel approximation, extended with basic smoothness term so that rough surfaces do not approach reflectance90 at grazing angle float weight = mix(FRESNEL_MAXIMUM_ON_ROUGH, 1.0, smoothness); return reflectance0 + weight * (reflectance90 - reflectance0) * pow5(saturate(1.0 - VdotN)); } #endif #if defined(SHEEN) && defined(REFLECTION) /** * Special thanks to @romainguy for all the support :-) * Analytical approximation of the pre-filtered DFG terms for the cloth shading * model. This approximation is based on the Estevez & Kulla distribution term * ("Charlie" sheen) and the Neubelt visibility term. See brdf.fs for more * details. */ vec2 getCharlieSheenAnalyticalBRDFLookup_RomainGuy(float NoV, float roughness) { const vec3 c0 = vec3(0.95, 1250.0, 0.0095); const vec4 c1 = vec4(0.04, 0.2, 0.3, 0.2); float a = 1.0 - NoV; float b = 1.0 - roughness; float n = pow(c1.x + a, 64.0); float e = b - c0.x; float g = exp2(-(e * e) * c0.y); float f = b + c1.y; float a2 = a * a; float a3 = a2 * a; float c = n * g + c1.z * (a + c1.w) * roughness + f * f * a3 * a3 * a2; float r = min(c, 18.0); return vec2(r, r * c0.z); } vec3 getSheenReflectanceFromBRDFLookup(const vec3 reflectance0, float NdotV, float sheenAlphaG) { vec2 environmentSheenBrdf = getCharlieSheenAnalyticalBRDFLookup_RomainGuy(NdotV, sheenAlphaG); vec3 reflectance = reflectance0 * environmentSheenBrdf.x + environmentSheenBrdf.y; return reflectance; } #endif // ______________________________________________________________________ // // Schlick/Fresnel // ______________________________________________________________________ // Schlick's approximation for R0 (Fresnel Reflectance Values) // Keep for references // vec3 getR0fromAirToSurfaceIOR(vec3 ior1) { // return getR0fromIOR(ior1, vec3(1.0)); // } // vec3 getR0fromIOR(vec3 ior1, vec3 ior2) { // vec3 t = (ior1 - ior2) / (ior1 + ior2); // return t * t; // } // vec3 getIORfromAirToSurfaceR0(vec3 f0) { // vec3 s = sqrt(f0); // return (1.0 + s) / (1.0 - s); // } // f0 Remapping due to layers // vec3 getR0RemappedForClearCoat(vec3 f0, vec3 clearCoatF0) { // vec3 iorBase = getIORfromAirToSurfaceR0(f0); // vec3 clearCoatIor = getIORfromAirToSurfaceR0(clearCoatF0); // return getR0fromIOR(iorBase, clearCoatIor); // } vec3 fresnelSchlickGGX(float VdotH, vec3 reflectance0, vec3 reflectance90) { return reflectance0 + (reflectance90 - reflectance0) * pow5(1.0 - VdotH); } float fresnelSchlickGGX(float VdotH, float reflectance0, float reflectance90) { return reflectance0 + (reflectance90 - reflectance0) * pow5(1.0 - VdotH); } #ifdef CLEARCOAT // Knowing ior clear coat is fix for the material // Solving iorbase = 1 + sqrt(fo) / (1 - sqrt(fo)) and f0base = square((iorbase - iorclearcoat) / (iorbase - iorclearcoat)) // provide f0base = square(A + B * sqrt(fo)) / (B + A * sqrt(fo)) // where A = 1 - iorclearcoat // and B = 1 + iorclearcoat vec3 getR0RemappedForClearCoat(vec3 f0) { #ifdef CLEARCOAT_DEFAULTIOR #ifdef MOBILE return saturate(f0 * (f0 * 0.526868 + 0.529324) - 0.0482256); #else return saturate(f0 * (f0 * (0.941892 - 0.263008 * f0) + 0.346479) - 0.0285998); #endif #else vec3 s = sqrt(f0); vec3 t = (vClearCoatRefractionParams.z + vClearCoatRefractionParams.w * s) / (vClearCoatRefractionParams.w + vClearCoatRefractionParams.z * s); return t * t; #endif } #endif // ______________________________________________________________________ // // Distribution // ______________________________________________________________________ // Trowbridge-Reitz (GGX) // Generalised Trowbridge-Reitz with gamma power=2.0 float normalDistributionFunction_TrowbridgeReitzGGX(float NdotH, float alphaG) { // Note: alphaG is average slope (gradient) of the normals in slope-space. // It is also the (trigonometric) tangent of the median distribution value, i.e. 50% of normals have // a tangent (gradient) closer to the macrosurface than this slope. float a2 = square(alphaG); float d = NdotH * NdotH * (a2 - 1.0) + 1.0; return a2 / (PI * d * d); } #ifdef SHEEN // https://knarkowicz.wordpress.com/2018/01/04/cloth-shading/ float normalDistributionFunction_CharlieSheen(float NdotH, float alphaG) { float invR = 1. / alphaG; float cos2h = NdotH * NdotH; float sin2h = 1. - cos2h; return (2. + invR) * pow(sin2h, invR * .5) / (2. * PI); } #endif #ifdef ANISOTROPIC // GGX Distribution Anisotropic // https://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf Addenda float normalDistributionFunction_BurleyGGX_Anisotropic(float NdotH, float TdotH, float BdotH, const vec2 alphaTB) { float a2 = alphaTB.x * alphaTB.y; vec3 v = vec3(alphaTB.y * TdotH, alphaTB.x * BdotH, a2 * NdotH); float v2 = dot(v, v); float w2 = a2 / v2; return a2 * w2 * w2 * RECIPROCAL_PI; } #endif // ______________________________________________________________________ // // Visibility/Geometry // ______________________________________________________________________ #ifdef BRDF_V_HEIGHT_CORRELATED // GGX Mask/Shadowing Isotropic // Heitz http://jcgt.org/published/0003/02/03/paper.pdf // https://twvideo01.ubm-us.net/o1/vault/gdc2017/Presentations/Hammon_Earl_PBR_Diffuse_Lighting.pdf float smithVisibility_GGXCorrelated(float NdotL, float NdotV, float alphaG) { #ifdef MOBILE // Appply simplification as all squared root terms are below 1 and squared float GGXV = NdotL * (NdotV * (1.0 - alphaG) + alphaG); float GGXL = NdotV * (NdotL * (1.0 - alphaG) + alphaG); return 0.5 / (GGXV + GGXL); #else float a2 = alphaG * alphaG; float GGXV = NdotL * sqrt(NdotV * (NdotV - a2 * NdotV) + a2); float GGXL = NdotV * sqrt(NdotL * (NdotL - a2 * NdotL) + a2); return 0.5 / (GGXV + GGXL); #endif } #else // From Microfacet Models for Refraction through Rough Surfaces, Walter et al. 2007 // Keep for references // float smithVisibilityG1_TrowbridgeReitzGGX(float dot, float alphaG) // { // float tanSquared = (1.0 - dot * dot) / (dot * dot); // return 2.0 / (1.0 + sqrt(1.0 + alphaG * alphaG * tanSquared)); // } // float smithVisibility_TrowbridgeReitzGGX_Walter(float NdotL, float NdotV, float alphaG) // { // float visibility = smithVisibilityG1_TrowbridgeReitzGGX(NdotL, alphaG) * smithVisibilityG1_TrowbridgeReitzGGX(NdotV, alphaG); // visibility /= (4.0 * NdotL * NdotV); // Cook Torance Denominator integrated in visibility to avoid issues when visibility function changes. // return visibility; // } // From smithVisibilityG1_TrowbridgeReitzGGX * dot / dot to cancel the cook // torrance denominator :-) float smithVisibilityG1_TrowbridgeReitzGGXFast(float dot, float alphaG) { #ifdef MOBILE // Appply simplification as all squared root terms are below 1 and squared return 1.0 / (dot + alphaG + (1.0 - alphaG) * dot )); #else float alphaSquared = alphaG * alphaG; return 1.0 / (dot + sqrt(alphaSquared + (1.0 - alphaSquared) * dot * dot)); #endif } float smithVisibility_TrowbridgeReitzGGXFast(float NdotL, float NdotV, float alphaG) { float visibility = smithVisibilityG1_TrowbridgeReitzGGXFast(NdotL, alphaG) * smithVisibilityG1_TrowbridgeReitzGGXFast(NdotV, alphaG); // No Cook Torance Denominator as it is canceled out in the previous form return visibility; } #endif #ifdef ANISOTROPIC // GGX Mask/Shadowing Anisotropic // Heitz http://jcgt.org/published/0003/02/03/paper.pdf float smithVisibility_GGXCorrelated_Anisotropic(float NdotL, float NdotV, float TdotV, float BdotV, float TdotL, float BdotL, const vec2 alphaTB) { float lambdaV = NdotL * length(vec3(alphaTB.x * TdotV, alphaTB.y * BdotV, NdotV)); float lambdaL = NdotV * length(vec3(alphaTB.x * TdotL, alphaTB.y * BdotL, NdotL)); float v = 0.5 / (lambdaV + lambdaL); return v; } #endif #ifdef CLEARCOAT float visibility_Kelemen(float VdotH) { // Simplified form integration the cook torrance denminator. // Expanded is nl * nv / vh2 which factor with 1 / (4 * nl * nv) // giving 1 / (4 * vh2)) return 0.25 / (VdotH * VdotH); } #endif #ifdef SHEEN // https://knarkowicz.wordpress.com/2018/01/04/cloth-shading/ // https://blog.selfshadow.com/publications/s2017-shading-course/imageworks/s2017_pbs_imageworks_sheen.pdf // http://www.cs.utah.edu/~premoze/dbrdf/dBRDF.pdf float visibility_Ashikhmin(float NdotL, float NdotV) { return 1. / (4. * (NdotL + NdotV - NdotL * NdotV)); } #endif // ______________________________________________________________________ // // DiffuseBRDF // ______________________________________________________________________ // Disney diffuse term // https://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf // Page 14 float diffuseBRDF_Burley(float NdotL, float NdotV, float VdotH, float roughness) { // Diffuse fresnel falloff as per Disney principled BRDF, and in the spirit of // of general coupled diffuse/specular models e.g. Ashikhmin Shirley. float diffuseFresnelNV = pow5(saturateEps(1.0 - NdotL)); float diffuseFresnelNL = pow5(saturateEps(1.0 - NdotV)); float diffuseFresnel90 = 0.5 + 2.0 * VdotH * VdotH * roughness; float fresnel = (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNL) * (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNV); return fresnel / PI; }