| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- //
- // SPDX-License-Identifier: BSD-3-Clause
- // Copyright Contributors to the OpenEXR Project.
- //
- //---------------------------------------------------------------------------
- //
- // halfFunction<T> -- a class for fast evaluation
- // of half --> T functions
- //
- // The constructor for a halfFunction object,
- //
- // halfFunction (function,
- // domainMin, domainMax,
- // defaultValue,
- // posInfValue, negInfValue,
- // nanValue);
- //
- // evaluates the function for all finite half values in the interval
- // [domainMin, domainMax], and stores the results in a lookup table.
- // For finite half values that are not in [domainMin, domainMax], the
- // constructor stores defaultValue in the table. For positive infinity,
- // negative infinity and NANs, posInfValue, negInfValue and nanValue
- // are stored in the table.
- //
- // The tabulated function can then be evaluated quickly for arbitrary
- // half values by calling the the halfFunction object's operator()
- // method.
- //
- // Example:
- //
- // #include <math.h>
- // #include <halfFunction.h>
- //
- // halfFunction<half> hsin (sin);
- //
- // halfFunction<half> hsqrt (sqrt, // function
- // 0, HALF_MAX, // domain
- // half::qNan(), // sqrt(x) for x < 0
- // half::posInf(), // sqrt(+inf)
- // half::qNan(), // sqrt(-inf)
- // half::qNan()); // sqrt(nan)
- //
- // half x = hsin (1);
- // half y = hsqrt (3.5);
- //
- //---------------------------------------------------------------------------
- #ifndef _HALF_FUNCTION_H_
- #define _HALF_FUNCTION_H_
- /// @cond Doxygen_Suppress
- #include "half.h"
- #include "ImathConfig.h"
- #ifndef IMATH_HAVE_LARGE_STACK
- # include <string.h> // need this for memset
- #else
- #endif
- #include <float.h>
- template <class T> class halfFunction
- {
- public:
- //------------
- // Constructor
- //------------
- template <class Function>
- halfFunction (Function f,
- half domainMin = -HALF_MAX,
- half domainMax = HALF_MAX,
- T defaultValue = 0,
- T posInfValue = 0,
- T negInfValue = 0,
- T nanValue = 0);
- #ifndef IMATH_HAVE_LARGE_STACK
- ~halfFunction() { delete[] _lut; }
- halfFunction (const halfFunction&) = delete;
- halfFunction& operator= (const halfFunction&) = delete;
- halfFunction (halfFunction&&) = delete;
- halfFunction& operator= (halfFunction&&) = delete;
- #endif
- //-----------
- // Evaluation
- //-----------
- T operator() (half x) const;
- private:
- #ifdef IMATH_HAVE_LARGE_STACK
- T _lut[1 << 16];
- #else
- T* _lut;
- #endif
- };
- //---------------
- // Implementation
- //---------------
- template <class T>
- template <class Function>
- halfFunction<T>::halfFunction (Function f,
- half domainMin,
- half domainMax,
- T defaultValue,
- T posInfValue,
- T negInfValue,
- T nanValue)
- {
- #ifndef IMATH_HAVE_LARGE_STACK
- _lut = new T[1 << 16];
- #endif
- for (int i = 0; i < (1 << 16); i++)
- {
- half x;
- x.setBits (i);
- if (x.isNan())
- _lut[i] = nanValue;
- else if (x.isInfinity())
- _lut[i] = x.isNegative() ? negInfValue : posInfValue;
- else if (x < domainMin || x > domainMax)
- _lut[i] = defaultValue;
- else
- _lut[i] = f (x);
- }
- }
- template <class T>
- inline T
- halfFunction<T>::operator() (half x) const
- {
- return _lut[x.bits()];
- }
- /// @endcond
- #endif
|