| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 |
- //
- // SPDX-License-Identifier: BSD-3-Clause
- // Copyright Contributors to the OpenEXR Project.
- //
- //
- // Functions to solve linear, quadratic or cubic equations
- //
- // Note: It is possible that an equation has real solutions, but that
- // the solutions (or some intermediate result) are not representable.
- // In this case, either some of the solutions returned are invalid
- // (nan or infinity), or, if floating-point exceptions have been
- // enabled, an exception is thrown.
- //
- #ifndef INCLUDED_IMATHROOTS_H
- #define INCLUDED_IMATHROOTS_H
- #include "ImathMath.h"
- #include "ImathNamespace.h"
- #include <complex>
- /// @cond Doxygen_Suppress
- #ifdef __CUDACC__
- # include <thrust/complex.h>
- # define COMPLEX_NAMESPACE thrust
- #else
- # define COMPLEX_NAMESPACE std
- #endif
- /// @endcond
- IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
- ///
- /// Solve for x in the linear equation:
- ///
- /// a * x + b == 0
- ///
- /// @return 1 if the equation has a solution, 0 if there is no
- /// solution, and -1 if all real numbers are solutions.
- template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 int solveLinear (T a, T b, T& x);
- ///
- /// Solve for x in the quadratic equation:
- ///
- /// a * x*x + b * x + c == 0
- ///
- /// @return 2 if the equation has two solutions, 1 if the equation has
- /// a single solution, 0 if there is no solution, and -1 if all real
- /// numbers are solutions.
- template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 int solveQuadratic (T a, T b, T c, T x[2]);
- template <class T>
- ///
- /// Solve for x in the normalized cubic equation:
- ///
- /// x*x*x + r * x*x + s * x + t == 0
- ///
- /// The equation is solved using Cardano's Formula; even though only
- /// real solutions are produced, some intermediate results are complex
- /// (std::complex<T>).
- ///
- /// @return 0 if there is no solution, and -1 if all real
- /// numbers are solutions, otherwise return the number of solutions.
- IMATH_HOSTDEVICE IMATH_CONSTEXPR14 int solveNormalizedCubic (T r, T s, T t, T x[3]);
- ///
- /// Solve for x in the cubic equation:
- ///
- /// a * x*x*x + b * x*x + c * x + d == 0
- ///
- /// The equation is solved using Cardano's Formula; even though only
- /// real solutions are produced, some intermediate results are complex
- /// (std::complex<T>).
- ///
- /// @return 0 if there is no solution, and -1 if all real
- /// numbers are solutions, otherwise return the number of solutions.
- template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 int solveCubic (T a, T b, T c, T d, T x[3]);
- //---------------
- // Implementation
- //---------------
- template <class T>
- IMATH_CONSTEXPR14 int
- solveLinear (T a, T b, T& x)
- {
- if (a != 0)
- {
- x = -b / a;
- return 1;
- }
- else if (b != 0)
- {
- return 0;
- }
- else
- {
- return -1;
- }
- }
- template <class T>
- IMATH_CONSTEXPR14 int
- solveQuadratic (T a, T b, T c, T x[2])
- {
- if (a == 0)
- {
- return solveLinear (b, c, x[0]);
- }
- else
- {
- T D = b * b - 4 * a * c;
- if (D > 0)
- {
- T s = std::sqrt (D);
- T q = -(b + (b > 0 ? 1 : -1) * s) / T (2);
- x[0] = q / a;
- x[1] = c / q;
- return 2;
- }
- if (D == 0)
- {
- x[0] = -b / (2 * a);
- return 1;
- }
- else
- {
- return 0;
- }
- }
- }
- template <class T>
- IMATH_CONSTEXPR14 int
- solveNormalizedCubic (T r, T s, T t, T x[3])
- {
- T p = (3 * s - r * r) / 3;
- T q = 2 * r * r * r / 27 - r * s / 3 + t;
- T p3 = p / 3;
- T q2 = q / 2;
- T D = p3 * p3 * p3 + q2 * q2;
- if (D == 0 && p3 == 0)
- {
- x[0] = -r / 3;
- x[1] = -r / 3;
- x[2] = -r / 3;
- return 1;
- }
- if (D > 0)
- {
- auto real_root = [] (T a, T x) -> T {
- T sign = std::copysign(T(1), a);
- return sign * std::pow (sign * a, T (1) / x);
- };
- T u = real_root (-q / 2 + std::sqrt (D), 3);
- T v = -p / (T (3) * u);
- x[0] = u + v - r / 3;
- return 1;
- }
- namespace CN = COMPLEX_NAMESPACE;
- CN::complex<T> u = CN::pow (-q / 2 + CN::sqrt (CN::complex<T> (D)), T (1) / T (3));
- CN::complex<T> v = -p / (T (3) * u);
- const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits
- // for long double
- CN::complex<T> y0 (u + v);
- CN::complex<T> y1 (-(u + v) / T (2) + (u - v) / T (2) * CN::complex<T> (0, sqrt3));
- CN::complex<T> y2 (-(u + v) / T (2) - (u - v) / T (2) * CN::complex<T> (0, sqrt3));
- if (D == 0)
- {
- x[0] = y0.real() - r / 3;
- x[1] = y1.real() - r / 3;
- return 2;
- }
- else
- {
- x[0] = y0.real() - r / 3;
- x[1] = y1.real() - r / 3;
- x[2] = y2.real() - r / 3;
- return 3;
- }
- }
- template <class T>
- IMATH_CONSTEXPR14 int
- solveCubic (T a, T b, T c, T d, T x[3])
- {
- if (a == 0)
- {
- return solveQuadratic (b, c, d, x);
- }
- else
- {
- return solveNormalizedCubic (b / a, c / a, d / a, x);
- }
- }
- IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
- #endif // INCLUDED_IMATHROOTS_H
|