| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- //
- // SPDX-License-Identifier: BSD-3-Clause
- // Copyright Contributors to the OpenEXR Project.
- //
- //
- // Algorithms applied to or in conjunction with Imath::Line class
- //
- #ifndef INCLUDED_IMATHLINEALGO_H
- #define INCLUDED_IMATHLINEALGO_H
- #include "ImathFun.h"
- #include "ImathLine.h"
- #include "ImathNamespace.h"
- #include "ImathVecAlgo.h"
- IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
- ///
- /// Compute point1 and point2 such that point1 is on line1, point2
- /// is on line2 and the distance between point1 and point2 is minimal.
- ///
- /// This function returns true if point1 and point2 can be computed,
- /// or false if line1 and line2 are parallel or nearly parallel.
- /// This function assumes that line1.dir and line2.dir are normalized.
- ///
- template <class T>
- IMATH_CONSTEXPR14 bool
- closestPoints (const Line3<T>& line1, const Line3<T>& line2, Vec3<T>& point1, Vec3<T>& point2) IMATH_NOEXCEPT
- {
- Vec3<T> w = line1.pos - line2.pos;
- T d1w = line1.dir ^ w;
- T d2w = line2.dir ^ w;
- T d1d2 = line1.dir ^ line2.dir;
- T n1 = d1d2 * d2w - d1w;
- T n2 = d2w - d1d2 * d1w;
- T d = 1 - d1d2 * d1d2;
- T absD = abs (d);
- if ((absD > 1) || (abs (n1) < std::numeric_limits<T>::max() * absD && abs (n2) < std::numeric_limits<T>::max() * absD))
- {
- point1 = line1 (n1 / d);
- point2 = line2 (n2 / d);
- return true;
- }
- else
- {
- return false;
- }
- }
- ///
- /// Given a line and a triangle (v0, v1, v2), the intersect() function
- /// finds the intersection of the line and the plane that contains the
- /// triangle.
- ///
- /// If the intersection point cannot be computed, either because the
- /// line and the triangle's plane are nearly parallel or because the
- /// triangle's area is very small, intersect() returns false.
- ///
- /// If the intersection point is outside the triangle, intersect
- /// returns false.
- ///
- /// If the intersection point, pt, is inside the triangle, intersect()
- /// computes a front-facing flag and the barycentric coordinates of
- /// the intersection point, and returns true.
- ///
- /// The front-facing flag is true if the dot product of the triangle's
- /// normal, (v2-v1)%(v1-v0), and the line's direction is negative.
- ///
- /// The barycentric coordinates have the following property:
- ///
- /// pt = v0 * barycentric.x + v1 * barycentric.y + v2 * barycentric.z
- ///
- template <class T>
- IMATH_CONSTEXPR14 bool
- intersect (const Line3<T>& line,
- const Vec3<T>& v0,
- const Vec3<T>& v1,
- const Vec3<T>& v2,
- Vec3<T>& pt,
- Vec3<T>& barycentric,
- bool& front) IMATH_NOEXCEPT
- {
- Vec3<T> edge0 = v1 - v0;
- Vec3<T> edge1 = v2 - v1;
- Vec3<T> normal = edge1 % edge0;
- T l = normal.length();
- if (l != 0)
- normal /= l;
- else
- return false; // zero-area triangle
- //
- // d is the distance of line.pos from the plane that contains the triangle.
- // The intersection point is at line.pos + (d/nd) * line.dir.
- //
- T d = normal ^ (v0 - line.pos);
- T nd = normal ^ line.dir;
- if (abs (nd) > 1 || abs (d) < std::numeric_limits<T>::max() * abs (nd))
- pt = line (d / nd);
- else
- return false; // line and plane are nearly parallel
- //
- // Compute the barycentric coordinates of the intersection point.
- // The intersection is inside the triangle if all three barycentric
- // coordinates are between zero and one.
- //
- {
- Vec3<T> en = edge0.normalized();
- Vec3<T> a = pt - v0;
- Vec3<T> b = v2 - v0;
- Vec3<T> c = (a - en * (en ^ a));
- Vec3<T> d = (b - en * (en ^ b));
- T e = c ^ d;
- T f = d ^ d;
- if (e >= 0 && e <= f)
- barycentric.z = e / f;
- else
- return false; // outside
- }
- {
- Vec3<T> en = edge1.normalized();
- Vec3<T> a = pt - v1;
- Vec3<T> b = v0 - v1;
- Vec3<T> c = (a - en * (en ^ a));
- Vec3<T> d = (b - en * (en ^ b));
- T e = c ^ d;
- T f = d ^ d;
- if (e >= 0 && e <= f)
- barycentric.x = e / f;
- else
- return false; // outside
- }
- barycentric.y = 1 - barycentric.x - barycentric.z;
- if (barycentric.y < 0)
- return false; // outside
- front = ((line.dir ^ normal) < 0);
- return true;
- }
- ///
- /// Return the vertex that is closest to the given line. The returned
- /// point is either v0, v1, or v2.
- ///
- template <class T>
- IMATH_CONSTEXPR14 Vec3<T>
- closestVertex (const Vec3<T>& v0, const Vec3<T>& v1, const Vec3<T>& v2, const Line3<T>& l) IMATH_NOEXCEPT
- {
- Vec3<T> nearest = v0;
- T neardot = (v0 - l.closestPointTo (v0)).length2();
- T tmp = (v1 - l.closestPointTo (v1)).length2();
- if (tmp < neardot)
- {
- neardot = tmp;
- nearest = v1;
- }
- tmp = (v2 - l.closestPointTo (v2)).length2();
- if (tmp < neardot)
- {
- neardot = tmp;
- nearest = v2;
- }
- return nearest;
- }
- ///
- /// Rotate the point p around the line l by the given angle.
- ///
- template <class T>
- IMATH_CONSTEXPR14 Vec3<T>
- rotatePoint (const Vec3<T> p, Line3<T> l, T angle) IMATH_NOEXCEPT
- {
- //
- // Form a coordinate frame with <x,y,a>. The rotation is the in xy
- // plane.
- //
- Vec3<T> q = l.closestPointTo (p);
- Vec3<T> x = p - q;
- T radius = x.length();
- x.normalize();
- Vec3<T> y = (x % l.dir).normalize();
- T cosangle = std::cos (angle);
- T sinangle = std::sin (angle);
- Vec3<T> r = q + x * radius * cosangle + y * radius * sinangle;
- return r;
- }
- IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
- #endif // INCLUDED_IMATHLINEALGO_H
|