import { require_core } from "./chunk-6Y2MJOYY.js"; import { __commonJS, init_define_APP_INFO } from "./chunk-XY75H3MP.js"; // node_modules/crypto-js/sha1.js var require_sha1 = __commonJS({ "node_modules/crypto-js/sha1.js"(exports, module) { init_define_APP_INFO(); (function(root, factory) { if (typeof exports === "object") { module.exports = exports = factory(require_core()); } else if (typeof define === "function" && define.amd) { define(["./core"], factory); } else { factory(root.CryptoJS); } })(exports, function(CryptoJS) { (function() { var C = CryptoJS; var C_lib = C.lib; var WordArray = C_lib.WordArray; var Hasher = C_lib.Hasher; var C_algo = C.algo; var W = []; var SHA1 = C_algo.SHA1 = Hasher.extend({ _doReset: function() { this._hash = new WordArray.init([ 1732584193, 4023233417, 2562383102, 271733878, 3285377520 ]); }, _doProcessBlock: function(M, offset) { var H = this._hash.words; var a = H[0]; var b = H[1]; var c = H[2]; var d = H[3]; var e = H[4]; for (var i = 0; i < 80; i++) { if (i < 16) { W[i] = M[offset + i] | 0; } else { var n = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16]; W[i] = n << 1 | n >>> 31; } var t = (a << 5 | a >>> 27) + e + W[i]; if (i < 20) { t += (b & c | ~b & d) + 1518500249; } else if (i < 40) { t += (b ^ c ^ d) + 1859775393; } else if (i < 60) { t += (b & c | b & d | c & d) - 1894007588; } else { t += (b ^ c ^ d) - 899497514; } e = d; d = c; c = b << 30 | b >>> 2; b = a; a = t; } H[0] = H[0] + a | 0; H[1] = H[1] + b | 0; H[2] = H[2] + c | 0; H[3] = H[3] + d | 0; H[4] = H[4] + e | 0; }, _doFinalize: function() { var data = this._data; var dataWords = data.words; var nBitsTotal = this._nDataBytes * 8; var nBitsLeft = data.sigBytes * 8; dataWords[nBitsLeft >>> 5] |= 128 << 24 - nBitsLeft % 32; dataWords[(nBitsLeft + 64 >>> 9 << 4) + 14] = Math.floor(nBitsTotal / 4294967296); dataWords[(nBitsLeft + 64 >>> 9 << 4) + 15] = nBitsTotal; data.sigBytes = dataWords.length * 4; this._process(); return this._hash; }, clone: function() { var clone = Hasher.clone.call(this); clone._hash = this._hash.clone(); return clone; } }); C.SHA1 = Hasher._createHelper(SHA1); C.HmacSHA1 = Hasher._createHmacHelper(SHA1); })(); return CryptoJS.SHA1; }); } }); // node_modules/crypto-js/hmac.js var require_hmac = __commonJS({ "node_modules/crypto-js/hmac.js"(exports, module) { init_define_APP_INFO(); (function(root, factory) { if (typeof exports === "object") { module.exports = exports = factory(require_core()); } else if (typeof define === "function" && define.amd) { define(["./core"], factory); } else { factory(root.CryptoJS); } })(exports, function(CryptoJS) { (function() { var C = CryptoJS; var C_lib = C.lib; var Base = C_lib.Base; var C_enc = C.enc; var Utf8 = C_enc.Utf8; var C_algo = C.algo; var HMAC = C_algo.HMAC = Base.extend({ init: function(hasher, key) { hasher = this._hasher = new hasher.init(); if (typeof key == "string") { key = Utf8.parse(key); } var hasherBlockSize = hasher.blockSize; var hasherBlockSizeBytes = hasherBlockSize * 4; if (key.sigBytes > hasherBlockSizeBytes) { key = hasher.finalize(key); } key.clamp(); var oKey = this._oKey = key.clone(); var iKey = this._iKey = key.clone(); var oKeyWords = oKey.words; var iKeyWords = iKey.words; for (var i = 0; i < hasherBlockSize; i++) { oKeyWords[i] ^= 1549556828; iKeyWords[i] ^= 909522486; } oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes; this.reset(); }, reset: function() { var hasher = this._hasher; hasher.reset(); hasher.update(this._iKey); }, update: function(messageUpdate) { this._hasher.update(messageUpdate); return this; }, finalize: function(messageUpdate) { var hasher = this._hasher; var innerHash = hasher.finalize(messageUpdate); hasher.reset(); var hmac = hasher.finalize(this._oKey.clone().concat(innerHash)); return hmac; } }); })(); }); } }); // node_modules/crypto-js/evpkdf.js var require_evpkdf = __commonJS({ "node_modules/crypto-js/evpkdf.js"(exports, module) { init_define_APP_INFO(); (function(root, factory, undef) { if (typeof exports === "object") { module.exports = exports = factory(require_core(), require_sha1(), require_hmac()); } else if (typeof define === "function" && define.amd) { define(["./core", "./sha1", "./hmac"], factory); } else { factory(root.CryptoJS); } })(exports, function(CryptoJS) { (function() { var C = CryptoJS; var C_lib = C.lib; var Base = C_lib.Base; var WordArray = C_lib.WordArray; var C_algo = C.algo; var MD5 = C_algo.MD5; var EvpKDF = C_algo.EvpKDF = Base.extend({ cfg: Base.extend({ keySize: 128 / 32, hasher: MD5, iterations: 1 }), init: function(cfg) { this.cfg = this.cfg.extend(cfg); }, compute: function(password, salt) { var block; var cfg = this.cfg; var hasher = cfg.hasher.create(); var derivedKey = WordArray.create(); var derivedKeyWords = derivedKey.words; var keySize = cfg.keySize; var iterations = cfg.iterations; while (derivedKeyWords.length < keySize) { if (block) { hasher.update(block); } block = hasher.update(password).finalize(salt); hasher.reset(); for (var i = 1; i < iterations; i++) { block = hasher.finalize(block); hasher.reset(); } derivedKey.concat(block); } derivedKey.sigBytes = keySize * 4; return derivedKey; } }); C.EvpKDF = function(password, salt, cfg) { return EvpKDF.create(cfg).compute(password, salt); }; })(); return CryptoJS.EvpKDF; }); } }); // node_modules/crypto-js/cipher-core.js var require_cipher_core = __commonJS({ "node_modules/crypto-js/cipher-core.js"(exports, module) { init_define_APP_INFO(); (function(root, factory, undef) { if (typeof exports === "object") { module.exports = exports = factory(require_core(), require_evpkdf()); } else if (typeof define === "function" && define.amd) { define(["./core", "./evpkdf"], factory); } else { factory(root.CryptoJS); } })(exports, function(CryptoJS) { CryptoJS.lib.Cipher || function(undefined) { var C = CryptoJS; var C_lib = C.lib; var Base = C_lib.Base; var WordArray = C_lib.WordArray; var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm; var C_enc = C.enc; var Utf8 = C_enc.Utf8; var Base64 = C_enc.Base64; var C_algo = C.algo; var EvpKDF = C_algo.EvpKDF; var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({ cfg: Base.extend(), createEncryptor: function(key, cfg) { return this.create(this._ENC_XFORM_MODE, key, cfg); }, createDecryptor: function(key, cfg) { return this.create(this._DEC_XFORM_MODE, key, cfg); }, init: function(xformMode, key, cfg) { this.cfg = this.cfg.extend(cfg); this._xformMode = xformMode; this._key = key; this.reset(); }, reset: function() { BufferedBlockAlgorithm.reset.call(this); this._doReset(); }, process: function(dataUpdate) { this._append(dataUpdate); return this._process(); }, finalize: function(dataUpdate) { if (dataUpdate) { this._append(dataUpdate); } var finalProcessedData = this._doFinalize(); return finalProcessedData; }, keySize: 128 / 32, ivSize: 128 / 32, _ENC_XFORM_MODE: 1, _DEC_XFORM_MODE: 2, _createHelper: function() { function selectCipherStrategy(key) { if (typeof key == "string") { return PasswordBasedCipher; } else { return SerializableCipher; } } return function(cipher) { return { encrypt: function(message, key, cfg) { return selectCipherStrategy(key).encrypt(cipher, message, key, cfg); }, decrypt: function(ciphertext, key, cfg) { return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg); } }; }; }() }); var StreamCipher = C_lib.StreamCipher = Cipher.extend({ _doFinalize: function() { var finalProcessedBlocks = this._process(true); return finalProcessedBlocks; }, blockSize: 1 }); var C_mode = C.mode = {}; var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({ createEncryptor: function(cipher, iv) { return this.Encryptor.create(cipher, iv); }, createDecryptor: function(cipher, iv) { return this.Decryptor.create(cipher, iv); }, init: function(cipher, iv) { this._cipher = cipher; this._iv = iv; } }); var CBC = C_mode.CBC = function() { var CBC2 = BlockCipherMode.extend(); CBC2.Encryptor = CBC2.extend({ processBlock: function(words, offset) { var cipher = this._cipher; var blockSize = cipher.blockSize; xorBlock.call(this, words, offset, blockSize); cipher.encryptBlock(words, offset); this._prevBlock = words.slice(offset, offset + blockSize); } }); CBC2.Decryptor = CBC2.extend({ processBlock: function(words, offset) { var cipher = this._cipher; var blockSize = cipher.blockSize; var thisBlock = words.slice(offset, offset + blockSize); cipher.decryptBlock(words, offset); xorBlock.call(this, words, offset, blockSize); this._prevBlock = thisBlock; } }); function xorBlock(words, offset, blockSize) { var block; var iv = this._iv; if (iv) { block = iv; this._iv = undefined; } else { block = this._prevBlock; } for (var i = 0; i < blockSize; i++) { words[offset + i] ^= block[i]; } } return CBC2; }(); var C_pad = C.pad = {}; var Pkcs7 = C_pad.Pkcs7 = { pad: function(data, blockSize) { var blockSizeBytes = blockSize * 4; var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes; var paddingWord = nPaddingBytes << 24 | nPaddingBytes << 16 | nPaddingBytes << 8 | nPaddingBytes; var paddingWords = []; for (var i = 0; i < nPaddingBytes; i += 4) { paddingWords.push(paddingWord); } var padding = WordArray.create(paddingWords, nPaddingBytes); data.concat(padding); }, unpad: function(data) { var nPaddingBytes = data.words[data.sigBytes - 1 >>> 2] & 255; data.sigBytes -= nPaddingBytes; } }; var BlockCipher = C_lib.BlockCipher = Cipher.extend({ cfg: Cipher.cfg.extend({ mode: CBC, padding: Pkcs7 }), reset: function() { var modeCreator; Cipher.reset.call(this); var cfg = this.cfg; var iv = cfg.iv; var mode = cfg.mode; if (this._xformMode == this._ENC_XFORM_MODE) { modeCreator = mode.createEncryptor; } else { modeCreator = mode.createDecryptor; this._minBufferSize = 1; } if (this._mode && this._mode.__creator == modeCreator) { this._mode.init(this, iv && iv.words); } else { this._mode = modeCreator.call(mode, this, iv && iv.words); this._mode.__creator = modeCreator; } }, _doProcessBlock: function(words, offset) { this._mode.processBlock(words, offset); }, _doFinalize: function() { var finalProcessedBlocks; var padding = this.cfg.padding; if (this._xformMode == this._ENC_XFORM_MODE) { padding.pad(this._data, this.blockSize); finalProcessedBlocks = this._process(true); } else { finalProcessedBlocks = this._process(true); padding.unpad(finalProcessedBlocks); } return finalProcessedBlocks; }, blockSize: 128 / 32 }); var CipherParams = C_lib.CipherParams = Base.extend({ init: function(cipherParams) { this.mixIn(cipherParams); }, toString: function(formatter) { return (formatter || this.formatter).stringify(this); } }); var C_format = C.format = {}; var OpenSSLFormatter = C_format.OpenSSL = { stringify: function(cipherParams) { var wordArray; var ciphertext = cipherParams.ciphertext; var salt = cipherParams.salt; if (salt) { wordArray = WordArray.create([1398893684, 1701076831]).concat(salt).concat(ciphertext); } else { wordArray = ciphertext; } return wordArray.toString(Base64); }, parse: function(openSSLStr) { var salt; var ciphertext = Base64.parse(openSSLStr); var ciphertextWords = ciphertext.words; if (ciphertextWords[0] == 1398893684 && ciphertextWords[1] == 1701076831) { salt = WordArray.create(ciphertextWords.slice(2, 4)); ciphertextWords.splice(0, 4); ciphertext.sigBytes -= 16; } return CipherParams.create({ ciphertext, salt }); } }; var SerializableCipher = C_lib.SerializableCipher = Base.extend({ cfg: Base.extend({ format: OpenSSLFormatter }), encrypt: function(cipher, message, key, cfg) { cfg = this.cfg.extend(cfg); var encryptor = cipher.createEncryptor(key, cfg); var ciphertext = encryptor.finalize(message); var cipherCfg = encryptor.cfg; return CipherParams.create({ ciphertext, key, iv: cipherCfg.iv, algorithm: cipher, mode: cipherCfg.mode, padding: cipherCfg.padding, blockSize: cipher.blockSize, formatter: cfg.format }); }, decrypt: function(cipher, ciphertext, key, cfg) { cfg = this.cfg.extend(cfg); ciphertext = this._parse(ciphertext, cfg.format); var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext); return plaintext; }, _parse: function(ciphertext, format) { if (typeof ciphertext == "string") { return format.parse(ciphertext, this); } else { return ciphertext; } } }); var C_kdf = C.kdf = {}; var OpenSSLKdf = C_kdf.OpenSSL = { execute: function(password, keySize, ivSize, salt) { if (!salt) { salt = WordArray.random(64 / 8); } var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt); var iv = WordArray.create(key.words.slice(keySize), ivSize * 4); key.sigBytes = keySize * 4; return CipherParams.create({ key, iv, salt }); } }; var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({ cfg: SerializableCipher.cfg.extend({ kdf: OpenSSLKdf }), encrypt: function(cipher, message, password, cfg) { cfg = this.cfg.extend(cfg); var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize); cfg.iv = derivedParams.iv; var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg); ciphertext.mixIn(derivedParams); return ciphertext; }, decrypt: function(cipher, ciphertext, password, cfg) { cfg = this.cfg.extend(cfg); ciphertext = this._parse(ciphertext, cfg.format); var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt); cfg.iv = derivedParams.iv; var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg); return plaintext; } }); }(); }); } }); export { require_evpkdf, require_cipher_core }; //# sourceMappingURL=chunk-3SG7NCIC.js.map