123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311 |
- #version GLSL_VERSION
- /**
- * Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com)
- * Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com)
- * Copyright (C) 2013 Belen Masia (bmasia@unizar.es)
- * Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com)
- * Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es)
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * this software and associated documentation files (the "Software"), to deal in
- * the Software without restriction, including without limitation the rights to
- * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
- * of the Software, and to permit persons to whom the Software is furnished to
- * do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software. As clarification, there
- * is no requirement that the copyright notice and permission be included in
- * binary distributions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- /*==============================================================================
- VARS
- ==============================================================================*/
- #var SMAA_PASS SMAA_RESOLVE
- #var SMAA_REPROJECTION 0
- #var SMAA_PREDICATION 0
- #var AA_METHOD AA_METHOD_SMAA_LOW
- /*============================================================================*/
- #include <precision_statement.glslf>
- #include <std.glsl>
- #include <pack.glslf>
- uniform sampler2D u_color;
- #if SMAA_PASS == SMAA_RESOLVE
- uniform sampler2D u_color_prev;
- #endif
- #if SMAA_PASS == SMAA_NEIGHBORHOOD_BLENDING
- uniform sampler2D u_blend;
- #endif
- #if SMAA_REPROJECTION
- uniform sampler2D u_velocity_tex;
- #endif
- #if SMAA_PASS == SMAA_EDGE_DETECTION && SMAA_PREDICATION
- uniform sampler2D u_predication_tex;
- #endif
- #if SMAA_PASS == SMAA_BLENDING_WEIGHT_CALCULATION
- uniform sampler2D u_search_tex;
- uniform sampler2D u_area_tex;
- uniform vec4 u_subsample_indices;
- #endif
- uniform vec2 u_texel_size;
- /*==============================================================================
- SHADER INTERFACE
- ==============================================================================*/
- GLSL_IN vec2 v_texcoord;
- #if SMAA_PASS == SMAA_NEIGHBORHOOD_BLENDING
- GLSL_IN vec4 v_offset;
- #else
- GLSL_IN vec4 v_offset_0;
- GLSL_IN vec4 v_offset_1;
- GLSL_IN vec4 v_offset_2;
- #endif
- #if SMAA_PASS == SMAA_BLENDING_WEIGHT_CALCULATION
- GLSL_IN vec2 v_pixcoord;
- #endif
- //------------------------------------------------------------------------------
- GLSL_OUT vec4 GLSL_OUT_FRAG_COLOR;
- /*============================================================================*/
- /**
- * _______ ___ ___ ___ ___
- * / || \/ | / \ / \
- * | (---- | \ / | / ^ \ / ^ \
- * \ \ | |\/| | / /_\ \ / /_\ \
- * ----) | | | | | / _____ \ / _____ \
- * |_______/ |__| |__| /__/ \__\ /__/ \__\
- *
- * E N H A N C E D
- * S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G
- *
- * http://www.iryoku.com/smaa/
- *
- * Hi, welcome aboard!
- *
- * Here you'll find instructions to get the shader up and running as fast as
- * possible.
- *
- * IMPORTANTE NOTICE: when updating, remember to update both this file and the
- * precomputed textures! They may change from version to version.
- *
- * The shader has three passes, chained together as follows:
- *
- * |input|------------------·
- * v |
- * [ SMAA*EdgeDetection ] |
- * v |
- * |edges_tex| |
- * v |
- * [ SMAABlendingWeightCalculation ] |
- * v |
- * |blend_tex| |
- * v |
- * [ SMAANeighborhoodBlending ] <------·
- * v
- * |output|
- *
- * Note that each [pass] has its own vertex and pixel shader. Remember to use
- * oversized triangles instead of quads to avoid overshading along the
- * diagonal.
- *
- * You've three edge detection methods to choose from: luma, color or depth.
- * They represent different quality/performance and anti-aliasing/sharpness
- * tradeoffs, so our recommendation is for you to choose the one that best
- * suits your particular scenario:
- *
- * - Depth edge detection is usually the fastest but it may miss some edges.
- *
- * - Luma edge detection is usually more expensive than depth edge detection,
- * but catches visible edges that depth edge detection can miss.
- *
- * - Color edge detection is usually the most expensive one but catches
- * chroma-only edges.
- *
- * For quickstarters: just use luma edge detection.
- *
- * The general advice is to not rush the integration process and ensure each
- * step is done correctly (don't try to integrate SMAA T2x with predicated edge
- * detection from the start!). Ok then, let's go!
- *
- * 1. The first step is to create two RGBA temporal render targets for holding
- * |edges_tex| and |blend_tex|.
- *
- * In DX10 or DX11, you can use a RG render target for the edges texture.
- * In the case of NVIDIA GPUs, using RG render targets seems to actually be
- * slower.
- *
- * On the Xbox 360, you can use the same render target for resolving both
- * |edges_tex| and |blend_tex|, as they aren't needed simultaneously.
- *
- * 2. Both temporal render targets |edges_tex| and |blend_tex| must be cleared
- * each frame. Do not forget to clear the alpha channel!
- *
- * 3. The next step is loading the two supporting precalculated textures,
- * 'area_tex' and 'search_tex'. You'll find them in the 'Textures' folder as
- * C++ headers, and also as regular DDS files. They'll be needed for the
- * 'SMAABlendingWeightCalculation' pass.
- *
- * If you use the C++ headers, be sure to load them in the format specified
- * inside of them.
- *
- * You can also compress 'area_tex' and 'search_tex' using BC5 and BC4
- * respectively, if you have that option in your content processor pipeline.
- * When compressing then, you get a non-perceptible quality decrease, and a
- * marginal performance increase.
- *
- * 4. All samplers must be set to linear filtering and clamp.
- *
- * After you get the technique working, remember that 64-bit inputs have
- * half-rate linear filtering on GCN.
- *
- * If SMAA is applied to 64-bit color buffers, switching to point filtering
- * when accesing them will increase the performance. Search for
- * 'SMAASamplePoint' to see which textures may benefit from point
- * filtering, and where (which is basically the color input in the edge
- * detection and resolve passes).
- *
- * 5. All texture reads and buffer writes must be non-sRGB, with the exception
- * of the input read and the output write in
- * 'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in
- * this last pass are not possible, the technique will work anyway, but
- * will perform antialiasing in gamma space.
- *
- * IMPORTANT: for best results the input read for the color/luma edge
- * detection should *NOT* be sRGB.
- *
- * 6. Before including SMAA.h you'll have to setup the render target metrics,
- * the target and any optional configuration defines. Optionally you can
- * use a preset.
- *
- * You have the following targets available:
- * SMAA_HLSL_3
- * SMAA_HLSL_4
- * SMAA_HLSL_4_1
- * SMAA_GLSL_3 *
- * SMAA_GLSL_4 *
- *
- * * (See SMAA_INCLUDE_VS and SMAA_INCLUDE_PS below).
- *
- * And four presets:
- * SMAA_PRESET_LOW (%60 of the quality)
- * SMAA_PRESET_MEDIUM (%80 of the quality)
- * SMAA_PRESET_HIGH (%95 of the quality)
- * SMAA_PRESET_ULTRA (%99 of the quality)
- *
- * For example:
- * #define SMAA_RT_METRICS float4(1.0 / 1280.0, 1.0 / 720.0, 1280.0, 720.0)
- * #define SMAA_HLSL_4
- * #define SMAA_PRESET_HIGH
- * #include "SMAA.h"
- *
- * Note that SMAA_RT_METRICS doesn't need to be a macro, it can be a
- * uniform variable. The code is designed to minimize the impact of not
- * using a constant value, but it is still better to hardcode it.
- *
- * Depending on how you encoded 'area_tex' and 'search_tex', you may have to
- * add (and customize) the following defines before including SMAA.h:
- * #define SMAA_AREATEX_SELECT(sample) sample.rg
- * #define SMAA_SEARCHTEX_SELECT(sample) sample.r
- *
- * If your engine is already using porting macros, you can define
- * SMAA_CUSTOM_SL, and define the porting functions by yourself.
- *
- * 7. Then, you'll have to setup the passes as indicated in the scheme above.
- * You can take a look into SMAA.fx, to see how we did it for our demo.
- * Checkout the function wrappers, you may want to copy-paste them!
- *
- * 8. It's recommended to validate the produced |edges_tex| and |blend_tex|.
- * You can use a screenshot from your engine to compare the |edges_tex|
- * and |blend_tex| produced inside of the engine with the results obtained
- * with the reference demo.
- *
- * 9. After you get the last pass to work, it's time to optimize. You'll have
- * to initialize a stencil buffer in the first pass (discard is already in
- * the code), then mask execution by using it the second pass. The last
- * pass should be executed in all pixels.
- *
- *
- * After this point you can choose to enable predicated thresholding,
- * temporal supersampling and motion blur integration:
- *
- * a) If you want to use predicated thresholding, take a look into
- * SMAA_PREDICATION; you'll need to pass an extra texture in the edge
- * detection pass.
- *
- * b) If you want to enable temporal supersampling (SMAA T2x):
- *
- * 1. The first step is to render using subpixel jitters. I won't go into
- * detail, but it's as simple as moving each vertex position in the
- * vertex shader, you can check how we do it in our DX10 demo.
- *
- * 2. Then, you must setup the temporal resolve. You may want to take a look
- * into SMAAResolve for resolving 2x modes. After you get it working, you'll
- * probably see ghosting everywhere. But fear not, you can enable the
- * CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro.
- * Check out SMAA_DECODE_VELOCITY if your velocity buffer is encoded.
- *
- * 3. The next step is to apply SMAA to each subpixel jittered frame, just as
- * done for 1x.
- *
- * 4. At this point you should already have something usable, but for best
- * results the proper area textures must be set depending on current jitter.
- * For this, the parameter 'subsample_indices' of
- * 'blending_weight_calculation' must be set as follows, for our T2x
- * mode:
- *
- * @SUBSAMPLE_INDICES
- *
- * | S# | Camera Jitter | subsample_indices |
- * +----+------------------+---------------------+
- * | 0 | ( 0.25, -0.25) | float4(1, 1, 1, 0) |
- * | 1 | (-0.25, 0.25) | float4(2, 2, 2, 0) |
- *
- * These jitter positions assume a bottom-to-top y axis. S# stands for the
- * sample number.
- *
- * More information about temporal supersampling here:
- * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
- *
- * c) If you want to enable spatial multisampling (SMAA S2x):
- *
- * 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be
- * created with:
- * - DX10: see below (*)
- * - DX10.1: D3D10_STANDARD_MULTISAMPLE_PATTERN or
- * - DX11: D3D11_STANDARD_MULTISAMPLE_PATTERN
- *
- * This allows to ensure that the subsample order matches the table in
- * @SUBSAMPLE_INDICES.
- *
- * (*) In the case of DX10, we refer the reader to:
- * - SMAA::detectMSAAOrder and
- * - SMAA::msaaReorder
- *
- * These functions allow to match the standard multisample patterns by
- * detecting the subsample order for a specific GPU, and reordering
- * them appropriately.
- *
- * 2. A shader must be run to output each subsample into a separate buffer
- * (DX10 is required). You can use SMAASeparate for this purpose, or just do
- * it in an existing pass (for example, in the tone mapping pass, which has
- * the advantage of feeding tone mapped subsamples to SMAA, which will yield
- * better results).
- *
- * 3. The full SMAA 1x pipeline must be run for each separated buffer, storing
- * the results in the final buffer. The second run should alpha blend with
- * the existing final buffer using a blending factor of 0.5.
- * 'subsample_indices' must be adjusted as in the SMAA T2x case (see point
- * b).
- *
- * d) If you want to enable temporal supersampling on top of SMAA S2x
- * (which actually is SMAA 4x):
- *
- * 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is
- * to calculate SMAA S2x for current frame. In this case, 'subsample_indices'
- * must be set as follows:
- *
- * | F# | S# | Camera Jitter | Net Jitter | subsample_indices |
- * +----+----+--------------------+-------------------+----------------------+
- * | 0 | 0 | ( 0.125, 0.125) | ( 0.375, -0.125) | float4(5, 3, 1, 3) |
- * | 0 | 1 | ( 0.125, 0.125) | (-0.125, 0.375) | float4(4, 6, 2, 3) |
- * +----+----+--------------------+-------------------+----------------------+
- * | 1 | 2 | (-0.125, -0.125) | ( 0.125, -0.375) | float4(3, 5, 1, 4) |
- * | 1 | 3 | (-0.125, -0.125) | (-0.375, 0.125) | float4(6, 4, 2, 4) |
- *
- * These jitter positions assume a bottom-to-top y axis. F# stands for the
- * frame number. S# stands for the sample number.
- *
- * 2. After calculating SMAA S2x for current frame (with the new subsample
- * indices), previous frame must be reprojected as in SMAA T2x mode (see
- * point b).
- *
- * e) If motion blur is used, you may want to do the edge detection pass
- * together with motion blur. This has two advantages:
- *
- * 1. Pixels under heavy motion can be omitted from the edge detection process.
- * For these pixels we can just store "no edge", as motion blur will take
- * care of them.
- * 2. The center pixel tap is reused.
- *
- * Note that in this case depth testing should be used instead of stenciling,
- * as we have to write all the pixels in the motion blur pass.
- *
- * That's it!
- */
- //-----------------------------------------------------------------------------
- // SMAA Presets
- # if AA_METHOD == AA_METHOD_SMAA_LOW
- #define SMAA_THRESHOLD 0.15
- #define SMAA_DISABLE_DIAG_DETECTION 1
- #define SMAA_DISABLE_CORNER_DETECTION 1
- # elif AA_METHOD == AA_METHOD_SMAA_MEDIUM
- #define SMAA_THRESHOLD 0.1
- #define SMAA_DISABLE_DIAG_DETECTION 1
- #define SMAA_DISABLE_CORNER_DETECTION 1
- # elif AA_METHOD == AA_METHOD_SMAA_HIGH
- #define SMAA_THRESHOLD 0.1
- #define SMAA_DISABLE_DIAG_DETECTION 0
- #define SMAA_MAX_SEARCH_STEPS_DIAG 8
- #define SMAA_CORNER_ROUNDING 25
- # elif AA_METHOD == AA_METHOD_SMAA_ULTRA
- #define SMAA_THRESHOLD 0.05
- #define SMAA_DISABLE_DIAG_DETECTION 0
- #define SMAA_MAX_SEARCH_STEPS_DIAG 16
- #define SMAA_CORNER_ROUNDING 25
- #endif
- //-----------------------------------------------------------------------------
- // Configurable Defines
- /**
- * SMAA_THRESHOLD specifies the threshold or sensitivity to edges.
- * Lowering this value you will be able to detect more edges at the expense of
- * performance.
- *
- * Range: [0, 0.5]
- * 0.1 is a reasonable value, and allows to catch most visible edges.
- * 0.05 is a rather overkill value, that allows to catch 'em all.
- *
- * If temporal supersampling is used, 0.2 could be a reasonable value, as low
- * contrast edges are properly filtered by just 2x.
- */
- #ifndef SMAA_THRESHOLD
- #define SMAA_THRESHOLD 0.1
- #endif
- /**
- * SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection.
- *
- * Range: depends on the depth range of the scene.
- */
- #ifndef SMAA_DEPTH_THRESHOLD
- #define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD)
- #endif
- /**
- * SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the
- * diagonal pattern searches, at each side of the pixel. In this case we jump
- * one pixel at time, instead of two.
- *
- * Range: [0, 20]
- *
- * On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16
- * steps), but it can have a significant impact on older machines.
- *
- * Define SMAA_DISABLE_DIAG_DETECTION to disable diagonal processing.
- */
- #ifndef SMAA_MAX_SEARCH_STEPS_DIAG
- #define SMAA_MAX_SEARCH_STEPS_DIAG 8
- #endif
- /**
- * SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded.
- *
- * Range: [0, 100]
- *
- * Define SMAA_DISABLE_CORNER_DETECTION to disable corner processing.
- */
- #ifndef SMAA_CORNER_ROUNDING
- #define SMAA_CORNER_ROUNDING 25
- #endif
- /**
- * If there is an neighbor edge that has SMAA_LOCAL_CONTRAST_FACTOR times
- * bigger contrast than current edge, current edge will be discarded.
- *
- * This allows to eliminate spurious crossing edges, and is based on the fact
- * that, if there is too much contrast in a direction, that will hide
- * perceptually contrast in the other neighbors.
- */
- #ifndef SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR
- #define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0
- #endif
- /**
- * Predicated thresholding allows to better preserve texture details and to
- * improve performance, by decreasing the number of detected edges using an
- * additional buffer like the light accumulation buffer, object ids or even the
- * depth buffer (the depth buffer usage may be limited to indoor or short range
- * scenes).
- *
- * It locally decreases the luma or color threshold if an edge is found in an
- * additional buffer (so the global threshold can be higher).
- *
- * This method was developed by Playstation EDGE MLAA team, and used in
- * Killzone 3, by using the light accumulation buffer. More information here:
- * http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx
- */
- #ifndef SMAA_PREDICATION
- #define SMAA_PREDICATION 0
- #endif
- /**
- * Threshold to be used in the additional predication buffer.
- *
- * Range: depends on the input, so you'll have to find the magic number that
- * works for you.
- */
- #ifndef SMAA_PREDICATION_THRESHOLD
- #define SMAA_PREDICATION_THRESHOLD 0.01
- #endif
- /**
- * How much to scale the global threshold used for luma or color edge
- * detection when using predication.
- *
- * Range: [1, 5]
- */
- #ifndef SMAA_PREDICATION_SCALE
- #define SMAA_PREDICATION_SCALE 2.0
- #endif
- /**
- * How much to locally decrease the threshold.
- *
- * Range: [0, 1]
- */
- #ifndef SMAA_PREDICATION_STRENGTH
- #define SMAA_PREDICATION_STRENGTH 0.4
- #endif
- /**
- * Temporal reprojection allows to remove ghosting artifacts when using
- * temporal supersampling. We use the CryEngine 3 method which also introduces
- * velocity weighting. This feature is of extreme importance for totally
- * removing ghosting. More information here:
- * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
- *
- * Note that you'll need to setup a velocity buffer for enabling reprojection.
- * For static geometry, saving the previous depth buffer is a viable
- * alternative.
- */
- #ifndef SMAA_REPROJECTION
- #define SMAA_REPROJECTION 0
- #endif
- /**
- * SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows to
- * remove ghosting trails behind the moving object, which are not removed by
- * just using reprojection. Using low values will exhibit ghosting, while using
- * high values will disable temporal supersampling under motion.
- *
- * Behind the scenes, velocity weighting removes temporal supersampling when
- * the velocity of the subsamples differs (meaning they are different objects).
- *
- * Range: [0, 80]
- */
- #ifndef SMAA_REPROJECTION_WEIGHT_SCALE
- #define SMAA_REPROJECTION_WEIGHT_SCALE 30.0
- #endif
- /**
- * SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the
- * horizontal/vertical pattern searches, at each side of the pixel.
- *
- * In number of pixels, it's actually the double. So the maximum line length
- * perfectly handled by, for example 16, is 64 (by perfectly, we meant that
- * longer lines won't look as good, but still antialiased).
- *
- * Range: [0, 112]
- */
- #ifndef SMAA_MAX_SEARCH_STEPS
- #define SMAA_MAX_SEARCH_STEPS 16
- #endif
- //-----------------------------------------------------------------------------
- // Non-Configurable Defines
- #define SMAA_AREATEX_MAX_DISTANCE 16
- #define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
- #define SMAA_AREATEX_PIXEL_SIZE (1.0 / vec2(160.0, 560.0))
- #define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0)
- #define SMAA_SEARCHTEX_SIZE vec2(66.0, 33.0)
- #define SMAA_SEARCHTEX_PACKED_SIZE vec2(64.0, 16.0)
- #define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0)
- #if SMAA_PASS == SMAA_EDGE_DETECTION
- /**
- * Gathers current pixel, and the top-left neighbors.
- */
- vec3 smaa_gather_neighbours(vec2 texcoord,
- sampler2D tex) {
- float p = GLSL_TEXTURE(tex, texcoord).r;
- float p_left = GLSL_TEXTURE(tex, v_offset_0.xy).r;
- float p_top = GLSL_TEXTURE(tex, v_offset_0.zw).r;
- return vec3(p, p_left, p_top);
- }
- #endif
- #if SMAA_PASS == SMAA_EDGE_DETECTION
- /**
- * Adjusts the threshold by means of predication.
- */
- vec2 smaa_calculate_predicated_threshold(vec2 texcoord,
- sampler2D predication_tex) {
- vec3 neighbours = smaa_gather_neighbours(texcoord, predication_tex);
- vec2 delta = abs(neighbours.xx - neighbours.yz);
- vec2 edges = step(SMAA_PREDICATION_THRESHOLD, delta);
- return SMAA_PREDICATION_SCALE * SMAA_THRESHOLD * (1.0 - SMAA_PREDICATION_STRENGTH * edges);
- }
- #endif
- /**
- * Conditional move:
- */
- void smaa_movc(bvec2 cond, inout vec2 variable, vec2 value) {
- if (cond.x) variable.x = value.x;
- if (cond.y) variable.y = value.y;
- }
- void smaa_movc(bvec4 cond, inout vec4 variable, vec4 value) {
- smaa_movc(cond.xy, variable.xy, value.xy);
- smaa_movc(cond.zw, variable.zw, value.zw);
- }
- vec2 round_val(vec2 x) {
- return sign(x) * floor(abs(x) + .5);
- }
- vec4 round_val(vec4 x) {
- return sign(x) * floor(abs(x) + .5);
- }
- //-----------------------------------------------------------------------------
- // Edge Detection Pixel Shaders (First Pass)
- /**
- * Luma Edge Detection
- *
- * IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and
- * thus 'color_tex' should be a non-sRGB texture.
- */
- #if SMAA_PASS == SMAA_EDGE_DETECTION
- vec2 smaa_luma_edge_detection(vec2 texcoord,
- sampler2D color_tex
- #if SMAA_PREDICATION
- , sampler2D predication_tex
- #endif
- ) {
- // Calculate the threshold:
- #if SMAA_PREDICATION
- vec2 threshold = smaa_calculate_predicated_threshold(texcoord, predication_tex);
- #else
- vec2 threshold = vec2(SMAA_THRESHOLD, SMAA_THRESHOLD);
- #endif
- // Calculate lumas:
- vec3 weights = vec3(0.2126, 0.7152, 0.0722);
- float L = dot(GLSL_TEXTURE(color_tex, texcoord).rgb, weights);
- float L_left = dot(GLSL_TEXTURE(color_tex, v_offset_0.xy).rgb, weights);
- float Ltop = dot(GLSL_TEXTURE(color_tex, v_offset_0.zw).rgb, weights);
- // We do the usual threshold:
- vec4 delta;
- delta.xy = abs(L - vec2(L_left, Ltop));
- vec2 edges = step(threshold, delta.xy);
- // Then discard if there is no edge:
- if (dot(edges, vec2(1.0, 1.0)) == 0.0)
- discard;
- // Calculate right and bottom deltas:
- float L_right = dot(GLSL_TEXTURE(color_tex, v_offset_1.xy).rgb, weights);
- float L_bottom = dot(GLSL_TEXTURE(color_tex, v_offset_1.zw).rgb, weights);
- delta.zw = abs(L - vec2(L_right, L_bottom));
- // Calculate the maximum delta in the direct neighborhood:
- vec2 max_delta = max(delta.xy, delta.zw);
- // Calculate left-left and top-top deltas:
- float L_leftleft = dot(GLSL_TEXTURE(color_tex, v_offset_2.xy).rgb, weights);
- float L_toptop = dot(GLSL_TEXTURE(color_tex, v_offset_2.zw).rgb, weights);
- delta.zw = abs(vec2(L_left, Ltop) - vec2(L_leftleft, L_toptop));
- // Calculate the final maximum delta:
- max_delta = max(max_delta.xy, delta.zw);
- float final_delta = max(max_delta.x, max_delta.y);
- // Local contrast adaptation:
- edges.xy *= step(final_delta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy);
- return edges;
- }
- /**
- * Color Edge Detection
- *
- * IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and
- * thus 'color_tex' should be a non-sRGB texture.
- */
- /*
- vec2 color_edge_detection(vec2 texcoord,
- sampler2D color_tex
- #if SMAA_PREDICATION
- , sampler2D predication_tex
- #endif
- ) {
- // Calculate the threshold:
- #if SMAA_PREDICATION
- vec2 threshold = smaa_calculate_predicated_threshold(texcoord, predication_tex);
- #else
- vec2 threshold = vec2(SMAA_THRESHOLD, SMAA_THRESHOLD);
- #endif
- // Calculate color deltas:
- vec4 delta;
- vec3 C = GLSL_TEXTURE(color_tex, texcoord).rgb;
- vec3 Cleft = GLSL_TEXTURE(color_tex, v_offset_0.xy).rgb;
- vec3 t = abs(C - Cleft);
- delta.x = max(max(t.r, t.g), t.b);
- vec3 Ctop = GLSL_TEXTURE(color_tex, v_offset_0.zw).rgb;
- t = abs(C - Ctop);
- delta.y = max(max(t.r, t.g), t.b);
- // We do the usual threshold:
- vec2 edges = step(threshold, delta.xy);
- // Then discard if there is no edge:
- if (dot(edges, vec2(1.0, 1.0)) == 0.0)
- discard;
- // Calculate right and bottom deltas:
- vec3 Cright = GLSL_TEXTURE(color_tex, v_offset_1.xy).rgb;
- t = abs(C - Cright);
- delta.z = max(max(t.r, t.g), t.b);
- vec3 Cbottom = GLSL_TEXTURE(color_tex, v_offset_1.zw).rgb;
- t = abs(C - Cbottom);
- delta.w = max(max(t.r, t.g), t.b);
- // Calculate the maximum delta in the direct neighborhood:
- vec2 max_delta = max(delta.xy, delta.zw);
- // Calculate left-left and top-top deltas:
- vec3 Cleftleft = GLSL_TEXTURE(color_tex, v_offset_2.xy).rgb;
- t = abs(C - Cleftleft);
- delta.z = max(max(t.r, t.g), t.b);
- vec3 Ctoptop = GLSL_TEXTURE(color_tex, v_offset_2.zw).rgb;
- t = abs(C - Ctoptop);
- delta.w = max(max(t.r, t.g), t.b);
- // Calculate the final maximum delta:
- max_delta = max(max_delta.xy, delta.zw);
- float final_delta = max(max_delta.x, max_delta.y);
- // Local contrast adaptation:
- edges.xy *= step(final_delta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy);
- return edges;
- }
- */
- /**
- * Depth Edge Detection
- */
- /*
- vec2 depth_edge_detection(vec2 texcoord,
- sampler2D depth_tex) {
- vec3 neighbours = smaa_gather_neighbours(texcoord, depth_tex);
- vec2 delta = abs(neighbours.xx - vec2(neighbours.y, neighbours.z));
- vec2 edges = step(SMAA_DEPTH_THRESHOLD, delta);
- if (dot(edges, vec2(1.0, 1.0)) == 0.0)
- discard;
- return edges;
- }
- */
- #endif
- //-----------------------------------------------------------------------------
- // Diagonal Search Functions
- #if !SMAA_DISABLE_DIAG_DETECTION
- /**
- * Allows to decode two binary values from a bilinear-filtered access.
- */
- vec2 decode_diag_biliner_access(vec2 e) {
- // Bilinear access for fetching 'e' have a 0.25 offset, and we are
- // interested in the R and G edges:
- //
- // +---G---+-------+
- // | x o R x |
- // +-------+-------+
- //
- // Then, if one of these edge is enabled:
- // Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0
- // Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0
- //
- // This function will unpack the values (mad + mul + round):
- // wolframalpha.com: round_val(x * abs(5 * x - 5 * 0.75)) plot 0 to 1
- e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75);
- return round_val(e);
- }
- vec4 decode_diag_biliner_access(vec4 e) {
- e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75);
- return round_val(e);
- }
- /**
- * These functions allows to perform diagonal pattern searches.
- */
- vec2 search_diag1(sampler2D edges_tex, vec2 texcoord, vec2 dir, out vec2 e) {
- vec4 coord = vec4(texcoord, -1.0, 1.0);
- vec3 t = vec3(u_texel_size, 1.0);
- for (int i = 0; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) {
- if (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) {
- coord.xyz += t * vec3(dir, 1.0);
- e = GLSL_TEXTURE(edges_tex, coord.xy, 0.0).rg;
- coord.w = dot(e, vec2(0.5, 0.5));
- }
- }
- return coord.zw;
- }
- vec2 search_diag2(sampler2D edges_tex, vec2 texcoord, vec2 dir, out vec2 e) {
- vec4 coord = vec4(texcoord, -1.0, 1.0);
- coord.x += 0.25 * u_texel_size.x; // See @SearchDiag2Optimization
- vec3 t = vec3(u_texel_size, 1.0);
- for (int i = 0; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) {
- if (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) {
- coord.xyz = t * vec3(dir, 1.0) + coord.xyz;
- // @SearchDiag2Optimization
- // Fetch both edges at once using bilinear filtering:
- e = GLSL_TEXTURE(edges_tex, coord.xy, 0.0).rg;
- e = decode_diag_biliner_access(e);
- // Non-optimized version:
- // e.g = GLSL_TEXTURE(edges_tex, coord.xy, 0.0).g;
- // e.r = GLSL_TEXTURE(edges_tex, coord.xy + vec2(1, 0), 0.0).r;
- coord.w = dot(e, vec2(0.5, 0.5));
- }
- }
- return coord.zw;
- }
- /**
- * Similar to smaa_area, this calculates the area corresponding to a certain
- * diagonal distance and crossing edges 'e'.
- */
- vec2 smaa_area_diag(sampler2D area_tex, vec2 dist, vec2 e, float offset) {
- vec2 texcoord = vec2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG) * e + dist;
- // We do a scale and bias for mapping to texel space:
- texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + 0.5 * SMAA_AREATEX_PIXEL_SIZE;
- // Diagonal areas are on the second half of the texture:
- texcoord.x += 0.5;
- // Move to proper place, according to the subpixel offset:
- texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
- // Do it!
- return GLSL_TEXTURE(area_tex, texcoord, 0.0).rg;
- }
- /**
- * This searches for diagonal patterns and returns the corresponding weights.
- */
- vec2 smaa_calculate_diag_weights(sampler2D edges_tex, sampler2D area_tex,
- vec2 texcoord, vec2 e, vec4 subsample_indices) {
- vec2 weights = vec2(0.0, 0.0);
- // Search for the line ends:
- vec4 d;
- vec2 end;
- if (e.r > 0.0) {
- d.xz = search_diag1(edges_tex, texcoord, vec2(-1.0, 1.0), end);
- d.x += float(end.y > 0.9);
- } else
- d.xz = vec2(0.0, 0.0);
- d.yw = search_diag1(edges_tex, texcoord, vec2(1.0, -1.0), end);
- if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
- // Fetch the crossing edges:
- vec4 coords = vec4(-d.x + 0.25, d.x, d.y, -d.y - 0.25) * u_texel_size.xyxy + texcoord.xyxy;
- vec4 c;
- c.xy = GLSL_TEXTURE(edges_tex, coords.xy + u_texel_size * vec2(-1, 0), 0.0).rg;
- c.zw = GLSL_TEXTURE(edges_tex, coords.zw + u_texel_size * vec2( 1, 0), 0.0).rg;
- c.yxwz = decode_diag_biliner_access(c.xyzw);
- // Merge crossing edges at each side into a single value:
- vec2 cc = vec2(2.0, 2.0) * c.xz + c.yw;
- // Remove the crossing edge if we didn't found the end of the line:
- smaa_movc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0));
- // Fetch the areas for this line:
- weights += smaa_area_diag(area_tex, d.xy, cc, subsample_indices.z);
- }
- // Search for the line ends:
- d.xz = search_diag2(edges_tex, texcoord, vec2(-1, -1), end);
- if (GLSL_TEXTURE(edges_tex, texcoord + u_texel_size * vec2(1, 0), 0.0).r > 0.0) {
- d.yw = search_diag2(edges_tex, texcoord, vec2(1, 1), end);
- d.y += float(end.y > 0.9);
- } else
- d.yw = vec2(0.0, 0.0);
- if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
- // Fetch the crossing edges:
- vec4 coords = vec4(-d.x, -d.x, d.y, d.y) * u_texel_size.xyxy + texcoord.xyxy;
- vec4 c;
- c.x = GLSL_TEXTURE(edges_tex, coords.xy + u_texel_size * vec2(-1, 0), 0.0).g;
- c.y = GLSL_TEXTURE(edges_tex, coords.xy + u_texel_size * vec2( 0, -1), 0.0).r;
- c.zw = GLSL_TEXTURE(edges_tex, coords.zw + u_texel_size * vec2( 1, 0), 0.0).gr;
- vec2 cc = vec2(2.0, 2.0) * c.xz + c.yw;
- // Remove the crossing edge if we didn't found the end of the line:
- smaa_movc(bvec2(step(0.9, d.zw)), cc, vec2(0, 0));
- // Fetch the areas for this line:
- weights += smaa_area_diag(area_tex, d.xy, cc, subsample_indices.w).gr;
- }
- return weights;
- }
- #endif
- //-----------------------------------------------------------------------------
- // Horizontal/Vertical Search Functions
- /**
- * This allows to determine how much length should we add in the last step
- * of the searches. It takes the bilinearly interpolated edge (see
- * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and
- * crossing edges are active.
- */
- float search_length(sampler2D search_tex, vec2 e, float offset) {
- // The texture is flipped vertically, with left and right cases taking half
- // of the space horizontally:
- vec2 scale = SMAA_SEARCHTEX_SIZE * vec2(0.5, -1.0);
- vec2 bias = SMAA_SEARCHTEX_SIZE * vec2(offset, 1.0);
- // Scale and bias to access texel centers:
- scale += vec2(-1.0, 1.0);
- bias += vec2( 0.5, -0.5);
- // Convert from pixel coordinates to texcoords:
- // (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped)
- scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE;
- bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE;
- // Lookup the search texture:
- return GLSL_TEXTURE(search_tex, scale * e + bias, 0.0).r;
- }
- /**
- * Horizontal/vertical search functions for the 2nd pass.
- */
- float search_x_left(sampler2D edges_tex, sampler2D search_tex, vec2 texcoord,
- float end) {
- /**
- * @PSEUDO_GATHER4
- * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
- * sample between edge, thus fetching four edges in a row.
- * Sampling with different offsets in each direction allows to disambiguate
- * which edges are active from the four fetched ones.
- */
- vec2 e = vec2(0.0, 1.0);
- for (int i = 0; i < SMAA_MAX_SEARCH_STEPS; i++) {
- if (texcoord.x > end &&
- e.g > 0.8281 && // Is there some edge not activated?
- e.r == 0.0) { // Or is there a crossing edge that breaks the line?
- e = GLSL_TEXTURE(edges_tex, texcoord, 0.0).rg;
- texcoord = -vec2(2.0, 0.0) * u_texel_size + texcoord;
- }
- }
- float offset = -(255.0 / 127.0) * search_length(search_tex, e, 0.0) + 3.25;
- return u_texel_size.x * offset + texcoord.x;
- }
- float search_x_right(sampler2D edges_tex, sampler2D search_tex, vec2 texcoord,
- float end) {
- vec2 e = vec2(0.0, 1.0);
- for (int i = 0; i < SMAA_MAX_SEARCH_STEPS; i++) {
- if (texcoord.x < end &&
- e.g > 0.8281 && // Is there some edge not activated?
- e.r == 0.0) { // Or is there a crossing edge that breaks the line?
- e = GLSL_TEXTURE(edges_tex, texcoord, 0.0).rg;
- texcoord = vec2(2.0, 0.0) * u_texel_size + texcoord;
- }
- }
- float offset = -(255.0 / 127.0) * search_length(search_tex, e, 0.5) + 3.25;
- return -u_texel_size.x * offset + texcoord.x;
- }
- float search_y_up(sampler2D edges_tex, sampler2D search_tex, vec2 texcoord,
- float end) {
- vec2 e = vec2(1.0, 0.0);
- for (int i = 0; i < SMAA_MAX_SEARCH_STEPS; i++) {
- if (texcoord.y > end &&
- e.r > 0.8281 && // Is there some edge not activated?
- e.g == 0.0) { // Or is there a crossing edge that breaks the line?
- e = GLSL_TEXTURE(edges_tex, texcoord, 0.0).rg;
- texcoord = -vec2(0.0, 2.0) * u_texel_size + texcoord;
- }
- }
- float offset = -(255.0 / 127.0) * search_length(search_tex, e.gr, 0.0) + 3.25;
- return u_texel_size.y * offset + texcoord.y;
- }
- float search_y_down(sampler2D edges_tex, sampler2D search_tex, vec2 texcoord,
- float end) {
- vec2 e = vec2(1.0, 0.0);
- for (int i = 0; i < SMAA_MAX_SEARCH_STEPS; i++) {
- if (texcoord.y < end &&
- e.r > 0.8281 && // Is there some edge not activated?
- e.g == 0.0) { // Or is there a crossing edge that breaks the line?
- e = GLSL_TEXTURE(edges_tex, texcoord, 0.0).rg;
- texcoord = vec2(0.0, 2.0) * u_texel_size + texcoord;
- }
- }
- float offset = -(255.0 / 127.0) * search_length(search_tex, e.gr, 0.5) + 3.25;
- return -u_texel_size.y * offset + texcoord.y;
- }
- /**
- * Ok, we have the distance and both crossing edges. So, what are the areas
- * at each side of current edge?
- */
- vec2 smaa_area(sampler2D area_tex, vec2 dist, float e1, float e2, float offset) {
- // Rounding prevents precision errors of bilinear filtering:
- vec2 texcoord = vec2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE)
- * round_val(4.0 * vec2(e1, e2)) + dist;
-
- // We do a scale and bias for mapping to texel space:
- texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + 0.5 * SMAA_AREATEX_PIXEL_SIZE;
- // Move to proper place, according to the subpixel offset:
- texcoord.y = SMAA_AREATEX_SUBTEX_SIZE * offset + texcoord.y;
- // Do it!
- return GLSL_TEXTURE(area_tex, texcoord, 0.0).rg;
- }
- //-----------------------------------------------------------------------------
- // Corner Detection Functions
- void detect_horizontal_corner_pattern(sampler2D edges_tex, inout vec2 weights,
- vec4 texcoord, vec2 d) {
- # if !SMAA_DISABLE_CORNER_DETECTION
- vec2 leftRight = step(d.xy, d.yx);
- vec2 flooring = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
- flooring /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line.
- vec2 factor = vec2(1.0, 1.0);
- factor.x -= flooring.x * GLSL_TEXTURE(edges_tex, texcoord.xy + u_texel_size * vec2(0, 1), 0.0).r;
- factor.x -= flooring.y * GLSL_TEXTURE(edges_tex, texcoord.zw + u_texel_size * vec2(1, 1), 0.0).r;
- factor.y -= flooring.x * GLSL_TEXTURE(edges_tex, texcoord.xy + u_texel_size * vec2(0, -2), 0.0).r;
- factor.y -= flooring.y * GLSL_TEXTURE(edges_tex, texcoord.zw + u_texel_size * vec2(1, -2), 0.0).r;
- weights *= clamp(factor, 0.0, 1.0);
- # endif
- }
- void detect_vertical_corner_pattern(sampler2D edges_tex, inout vec2 weights,
- vec4 texcoord, vec2 d) {
- # if !SMAA_DISABLE_CORNER_DETECTION
- vec2 leftRight = step(d.xy, d.yx);
- vec2 flooring = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
- flooring /= leftRight.x + leftRight.y;
- vec2 factor = vec2(1.0, 1.0);
- factor.x -= flooring.x * GLSL_TEXTURE(edges_tex, texcoord.xy + u_texel_size * vec2( 1, 0), 0.0).g;
- factor.x -= flooring.y * GLSL_TEXTURE(edges_tex, texcoord.zw + u_texel_size * vec2( 1, 1), 0.0).g;
- factor.y -= flooring.x * GLSL_TEXTURE(edges_tex, texcoord.xy + u_texel_size * vec2(-2, 0), 0.0).g;
- factor.y -= flooring.y * GLSL_TEXTURE(edges_tex, texcoord.zw + u_texel_size * vec2(-2, 1), 0.0).g;
- weights *= clamp(factor, 0.0, 1.0);
- # endif
- }
- //-----------------------------------------------------------------------------
- // Blending Weight Calculation Pixel Shader (Second Pass)
- #if SMAA_PASS == SMAA_BLENDING_WEIGHT_CALCULATION
- vec4 blending_weight_calculation(vec2 texcoord,
- vec2 pixcoord,
- sampler2D edges_tex,
- sampler2D area_tex,
- sampler2D search_tex,
- vec4 subsample_indices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES.
- vec4 weights = vec4(0.0, 0.0, 0.0, 0.0);
- vec2 e = GLSL_TEXTURE(edges_tex, texcoord).rg;
- if (e.g > 0.0) { // Edge at north
- # if !SMAA_DISABLE_DIAG_DETECTION
- // Diagonals have both north and west edges, so searching for them in
- // one of the boundaries is enough.
- weights.rg = smaa_calculate_diag_weights(edges_tex, area_tex, texcoord,
- e, subsample_indices);
- // We give priority to diagonals, so if we find a diagonal we skip
- // horizontal/vertical processing.
- if (weights.r == -weights.g) { // weights.r + weights.g == 0.0
- # endif
- vec2 d;
- // Find the distance to the left:
- vec3 coords;
- coords.x = search_x_left(edges_tex, search_tex, v_offset_0.xy, v_offset_2.x);
- coords.y = v_offset_1.y; // v_offset_1.y = texcoord.y - 0.25 * u_texel_size.y (@CROSSING_OFFSET)
- d.x = coords.x;
- // Now fetch the left crossing edges, two at a time using bilinear
- // filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
- // discern what value each edge has:
- float e1 = GLSL_TEXTURE(edges_tex, coords.xy, 0.0).r;
- // Find the distance to the right:
- coords.z = search_x_right(edges_tex, search_tex, v_offset_0.zw, v_offset_2.y);
- d.y = coords.z;
- // We want the distances to be in pixel units (doing this here allow to
- // better interleave arithmetic and memory accesses):
- d = abs(round_val(d / u_texel_size.xx - pixcoord.xx));
- // smaa_area below needs a sqrt, as the areas texture is compressed
- // quadratically:
- vec2 sqrt_d = sqrt(d);
- // Fetch the right crossing edges:
- float e2 = GLSL_TEXTURE(edges_tex, coords.zy + u_texel_size * vec2(1, 0), 0.0).r;
- // Ok, we know how this pattern looks like, now it is time for getting
- // the actual area:
- weights.rg = smaa_area(area_tex, sqrt_d, e1, e2, subsample_indices.y);
- // Fix corners:
- coords.y = texcoord.y;
- detect_horizontal_corner_pattern(edges_tex, weights.rg, coords.xyzy, d);
- # if !SMAA_DISABLE_DIAG_DETECTION
- } else
- e.r = 0.0; // Skip vertical processing.
- # endif
- }
- if (e.r > 0.0) { // Edge at west
- vec2 d;
- // Find the distance to the top:
- vec3 coords;
- coords.y = search_y_up(edges_tex, search_tex, v_offset_1.xy, v_offset_2.z);
- coords.x = v_offset_0.x; // v_offset_1.x = texcoord.x - 0.25 * u_texel_size.x;
- d.x = coords.y;
- // Fetch the top crossing edges:
- float e1 = GLSL_TEXTURE(edges_tex, coords.xy, 0.0).g;
- // Find the distance to the bottom:
- coords.z = search_y_down(edges_tex, search_tex, v_offset_1.zw, v_offset_2.w);
- d.y = coords.z;
- // We want the distances to be in pixel units:
- d = abs(round_val(d / u_texel_size.yy - pixcoord.yy));
- // smaa_area below needs a sqrt, as the areas texture is compressed
- // quadratically:
- vec2 sqrt_d = sqrt(d);
- // Fetch the bottom crossing edges:
- float e2 = GLSL_TEXTURE(edges_tex, coords.xz + u_texel_size * vec2(0, 1), 0.0).g;
- // Get the area for this direction:
- weights.ba = smaa_area(area_tex, sqrt_d, e1, e2, subsample_indices.x);
- // Fix corners:
- coords.x = texcoord.x;
- detect_vertical_corner_pattern(edges_tex, weights.ba, coords.xyxz, d);
- }
- return weights;
- }
- #endif
- //-----------------------------------------------------------------------------
- // Neighborhood Blending Pixel Shader (Third Pass)
- #if SMAA_PASS == SMAA_NEIGHBORHOOD_BLENDING
- vec4 neighborhood_blending(vec2 texcoord,
- sampler2D color_tex,
- sampler2D blend_tex
- #if SMAA_REPROJECTION
- , sampler2D velocity_tex
- #endif
- ) {
- // Fetch the blending weights for current pixel:
- vec4 a;
- a.x = GLSL_TEXTURE(blend_tex, v_offset.xy).a; // Right
- a.y = GLSL_TEXTURE(blend_tex, v_offset.zw).g; // Top
- a.wz = GLSL_TEXTURE(blend_tex, texcoord).xz; // Bottom / Left
- // Is there any blending weight with a value greater than 0.0?
- if (dot(a, vec4(1.0, 1.0, 1.0, 1.0)) < 1e-5) {
- vec4 color = GLSL_TEXTURE(color_tex, texcoord, 0.0);
- # if SMAA_REPROJECTION
- vec4 vel_tex = GLSL_TEXTURE(velocity_tex, v_texcoord);
- vec2 velocity = 2.0 * unpack_vec2(vel_tex) - 1.0;
- // Pack velocity into the alpha channel:
- color.a = sqrt(2.0 * length(velocity));
- # endif
- return color;
- } else {
- bool h = max(a.x, a.z) > max(a.y, a.w); // max(horizontal) > max(vertical)
- // Calculate the blending offsets:
- vec4 blending_offset = vec4(0.0, a.y, 0.0, a.w);
- vec2 blending_weight = a.yw;
- smaa_movc(bvec4(h, h, h, h), blending_offset, vec4(a.x, 0.0, a.z, 0.0));
- smaa_movc(bvec2(h, h), blending_weight, a.xz);
- blending_weight /= dot(blending_weight, vec2(1.0, 1.0));
- // Calculate the texture coordinates:
- vec4 blending_coord = blending_offset * vec4(u_texel_size, - u_texel_size) + texcoord.xyxy;
- // We exploit bilinear filtering to mix current pixel with the chosen
- // neighbor:
- vec4 color = blending_weight.x * GLSL_TEXTURE(color_tex, blending_coord.xy, 0.0);
- color += blending_weight.y * GLSL_TEXTURE(color_tex, blending_coord.zw, 0.0);
- # if SMAA_REPROJECTION
- // Antialias velocity for proper reprojection in a later stage:
- vec4 vel_tex = GLSL_TEXTURE(velocity_tex, blending_coord.xy);
- vec2 velocity_add = 2.0 * unpack_vec2(vel_tex) - 1.0;
- vec2 velocity = blending_weight.x * velocity_add;
- vel_tex = GLSL_TEXTURE(velocity_tex, blending_coord.zw);
- velocity_add = 2.0 * unpack_vec2(vel_tex) - 1.0;
- velocity += blending_weight.y * velocity_add;
- // Pack velocity into the alpha channel:
- color.a = sqrt(2.0 * length(velocity));
- # endif
- return color;
- }
- }
- #endif
- //-----------------------------------------------------------------------------
- // Temporal Resolve Pixel Shader (Optional Pass)
- #if SMAA_PASS == SMAA_RESOLVE
- vec4 resolve(vec2 texcoord,
- sampler2D current_color_tex,
- sampler2D previous_color_tex
- #if SMAA_REPROJECTION
- , sampler2D velocity_tex
- #endif
- ) {
- # if SMAA_REPROJECTION
- vec4 vel_tex = GLSL_TEXTURE(velocity_tex, v_texcoord);
- vec2 velocity;
- velocity = 2.0 * unpack_vec2(vel_tex) - 1.0;
- // Fetch current pixel:
- vec4 current = GLSL_TEXTURE(current_color_tex, texcoord);
- // Reproject current coordinates and fetch previous pixel:
- vec4 previous = GLSL_TEXTURE(previous_color_tex, texcoord - velocity);
- // Attenuate the previous pixel if the velocity is different:
- float delta = abs(current.a * current.a - previous.a * previous.a) / 2.0;
- float weight = 0.5 * clamp(1.0 - sqrt(delta) * SMAA_REPROJECTION_WEIGHT_SCALE, 0.0, 1.0);
- // Blend the pixels according to the calculated weight:
- vec4 color = mix(current, previous, weight);
- color.a = 1.0;
- return color;
- # else
- // Just blend the pixels:
- vec4 current = GLSL_TEXTURE(current_color_tex, texcoord);
- vec4 previous = GLSL_TEXTURE(previous_color_tex, texcoord);
- return mix(current, previous, 0.5);
- # endif
- }
- #endif
- void main(void) {
- #if SMAA_PASS == SMAA_EDGE_DETECTION
- vec4 color = vec4(smaa_luma_edge_detection(v_texcoord, u_color
- #if SMAA_PREDICATION
- , u_predication_tex
- #endif
- ), 0.0, 0.0);
- #elif SMAA_PASS == SMAA_BLENDING_WEIGHT_CALCULATION
- vec4 color = blending_weight_calculation(v_texcoord, v_pixcoord,
- u_color, u_area_tex,
- u_search_tex, u_subsample_indices);
- #elif SMAA_PASS == SMAA_NEIGHBORHOOD_BLENDING
- vec4 color = neighborhood_blending(v_texcoord, u_color, u_blend
- #if SMAA_REPROJECTION
- , u_velocity_tex
- #endif
- );
- #elif SMAA_PASS == SMAA_RESOLVE
- vec4 color = vec4(resolve(v_texcoord, u_color, u_color_prev
- #if SMAA_REPROJECTION
- , u_velocity_tex
- #endif
- ));
- #else
- vec4 color = GLSL_TEXTURE(u_color, v_texcoord);
- #endif
-
- GLSL_OUT_FRAG_COLOR = color;
- }
|