123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 |
- #ifndef SKIN_GLSLV
- #define SKIN_GLSLV
- // #import u_frame_factor u_quatsb u_quatsa u_transb u_transa a_influence
- // #import u_arm_rel_trans u_arm_rel_quat
- /*==============================================================================
- VARS
- ==============================================================================*/
- #var DISABLE_TANGENT_SKINNING 0
- #var SKINNED 0
- #var FRAMES_BLENDING 0
- /*============================================================================*/
- #if SKINNED
- #include <math.glslv>
- #define SKIN_SLERP 0
- # if SKIN_SLERP
- /*
- * Ported from gl-matrix
- */
- vec4 quat4_slerp(in vec4 quat, in vec4 quat2, in float slerp)
- {
- float cosHalfTheta = quat[0] * quat2[0] + quat[1] * quat2[1] +
- quat[2] * quat2[2] + quat[3] * quat2[3];
- if (cosHalfTheta < 0.0) {
- quat2 *= -1.0;
- cosHalfTheta = -cosHalfTheta;
- }
- if (abs(cosHalfTheta) >= 1.0)
- return quat;
- float halfTheta = acos(cosHalfTheta);
- float sinHalfTheta = sqrt(1.0 - cosHalfTheta * cosHalfTheta);
- if (abs(sinHalfTheta) < 0.001)
- return vec4(quat * 0.5 + quat2 * 0.5);
- float ratioA = sin((1.0 - slerp) * halfTheta) / sinHalfTheta;
- float ratioB = sin(slerp * halfTheta) / sinHalfTheta;
- return quat * ratioA + quat2 * ratioB;
- }
- /*
- vec4 quat4_normalize(vec4 quat) {
- vec4 dest;
- float x = quat[0], y = quat[1], z = quat[2], w = quat[3];
- float len = sqrt(x * x + y * y + z * z + w * w);
- if (len == 0.0) {
- dest[0] = 0.0;
- dest[1] = 0.0;
- dest[2] = 0.0;
- dest[3] = 0.0;
- return dest;
- }
- len = 1.0 / len;
- dest[0] = x * len;
- dest[1] = y * len;
- dest[2] = z * len;
- dest[3] = w * len;
- return dest;
- }
- */
- /*
- vec4 quat4_slerp(in vec4 quat, in vec4 quat2, in float slerp) {
- // v0 and v1 should be unit length or else
- // something broken will happen.
- // Compute the cosine of the angle between the two vectors.
- float quat_dot = quat.x*quat2.x + quat.y*quat2.y + quat.z*quat2.z + quat.w*quat2.w;
- quat = quat4_normalize(quat);
- quat2 = quat4_normalize(quat2);
- if (quat_dot < -0.0) {
- quat2 *= -1.0;
- quat_dot *= -1.0;
- }
- const float DOT_THRESHOLD = 0.9995;
- if (quat_dot > DOT_THRESHOLD) {
- // If the inputs are too close for comfort, linearly interpolate
- // and normalize the result.
- vec4 result = quat + slerp*(quat2 - quat);
- quat4_normalize(result);
- return result;
- }
- clamp(quat_dot, -1.0, 1.0); // Robustness: Stay within domain of acos()
- float theta_0 = acos(quat_dot); // theta_0 = angle between input vectors
- float theta = theta_0*slerp; // theta = angle between quat and result
- vec4 v2 = quat2 - quat*quat_dot;
- quat4_normalize(v2); // { quat, v2 } is now an orthonormal basis
- return quat*cos(theta) + v2*sin(theta);
- }
- */
- # endif // SKIN_SLERP
- # if FRAMES_BLENDING
- vec3 skin_point(in vec3 position,
- in vec4 quatb,
- in vec4 quata,
- in vec4 tranb,
- in vec4 trana,
- in float frame_factor)
- {
- vec3 pos_armobj_space = tsr_transform(u_arm_rel_trans, u_arm_rel_quat, position);
- # if SKIN_SLERP
- vec4 quat = quat4_slerp(quatb, quata, frame_factor);
- vec4 tran = mix(tranb, trana, frame_factor);
- vec3 pos_rot = qrot(quat, pos_armobj_space);
- vec3 pos_tran_rot = pos_rot * tran.w + tran.xyz;
- # else
- vec3 pos_rot_before = qrot(quatb, pos_armobj_space);
- vec3 pos_rot_after = qrot(quata, pos_armobj_space);
- // uniform scale in w, translation in xyz
- vec3 pos_tran_rot_before = pos_rot_before * tranb.w + tranb.xyz;
- vec3 pos_tran_rot_after = pos_rot_after * trana.w + trana.xyz;
- // blending performed AFTER quat transforms
- // to avoid distortions on sharp angles (knees, elbows etc)
- vec3 pos_tran_rot = mix(pos_tran_rot_before, pos_tran_rot_after,
- frame_factor);
- # endif
- return tsr_transform_inv(u_arm_rel_trans, u_arm_rel_quat, pos_tran_rot);
- }
- vec3 skin_vector(in vec3 vector,
- in vec4 quatb,
- in vec4 quata,
- in float frame_factor)
- {
- vec3 vec_armobj_space = tsr_transform_dir(u_arm_rel_trans, u_arm_rel_quat, vector);
- # if SKIN_SLERP
- vec4 quat = quat4_slerp(quatb, quata, frame_factor);
- vec3 vector_rot = qrot(quat, vec_armobj_space);
- # else
- vec3 vector_rot_before = qrot(quatb, vec_armobj_space);
- vec3 vector_rot_after = qrot(quata, vec_armobj_space);
- vec3 vector_rot = mix(vector_rot_before, vector_rot_after, frame_factor);
- # endif
- return tsr_transform_inv_dir(u_arm_rel_trans, u_arm_rel_quat, vector_rot);
- }
- # else // FRAMES_BLENDING
- vec3 skin_point(in vec3 position, in vec4 quatb, in vec4 tranb)
- {
- vec3 pos_armobj_space = tsr_transform(u_arm_rel_trans, u_arm_rel_quat, position);
- vec3 pos_rot = qrot(quatb, pos_armobj_space);
- // uniform scale in w, translation in xyz
- vec3 pos_tran_rot = pos_rot * tranb.w + tranb.xyz;
- return tsr_transform_inv(u_arm_rel_trans, u_arm_rel_quat, pos_tran_rot);
- }
- vec3 skin_vector(in vec3 vector, in vec4 quatb)
- {
- vec3 vec_armobj_space = tsr_transform_dir(u_arm_rel_trans, u_arm_rel_quat, vector);
- vec3 vector_rot = qrot(quatb, vec_armobj_space);
- return tsr_transform_inv_dir(u_arm_rel_trans, u_arm_rel_quat, vector_rot);
- }
- # endif // FRAMES_BLENDING
- void skin(inout vec3 position, inout vec3 tangent, inout vec3 binormal, inout vec3 normal)
- {
- # if FRAMES_BLENDING
- float ff = u_frame_factor;
- # endif
- // bone index is an integer part and weight is a fractional part
- if (a_influence.y > 0.0) { // sorted in descending order so no need to check others
- vec3 spos = vec3(0.0, 0.0, 0.0);
- vec3 stng = vec3(0.0, 0.0, 0.0);
- vec3 sbnr = vec3(0.0, 0.0, 0.0);
- vec3 snrm = vec3(0.0, 0.0, 0.0);
- // NOTE: Copy attributes to prevent bugs on some Qualcomm GPUs
- vec4 influece = a_influence;
- for (int i = 0; i < 4; i++) {
- int ind = int(influece[i]);
- float wght = fract(influece[i]);
- # if FRAMES_BLENDING
- // NOTE: skin_point loop glitches on some mobiles
- // spos += wght * skin_point(position, u_quatsb[ind], u_quatsa[ind],
- // u_transb[ind], u_transa[ind], ff);
- stng += wght * skin_vector(tangent, u_quatsb[ind], u_quatsa[ind], ff);
- sbnr += wght * skin_vector(binormal, u_quatsb[ind], u_quatsa[ind], ff);
- snrm += wght * skin_vector(normal, u_quatsb[ind], u_quatsa[ind], ff);
- # else
- spos += wght * skin_point(position, u_quatsb[ind], u_transb[ind]);
- snrm += wght * skin_vector(normal, u_quatsb[ind]);
- # if !DISABLE_TANGENT_SKINNING
- stng += wght * skin_vector(tangent, u_quatsb[ind]);
- sbnr += wght * skin_vector(binormal, u_quatsb[ind]);
- # endif
- # endif
- }
- // NOTE: hack for Yotaphone 2 (Adreno 330, Android 5.0)
- // preventing flickering
- # if FRAMES_BLENDING
- int ind = int(influece[0]);
- float wght = fract(influece[0]);
- spos += wght * skin_point(position, u_quatsb[ind], u_quatsa[ind],
- u_transb[ind], u_transa[ind], ff);
- ind = int(influece[1]);
- wght = fract(influece[1]);
- spos += wght * skin_point(position, u_quatsb[ind], u_quatsa[ind],
- u_transb[ind], u_transa[ind], ff);
- ind = int(influece[2]);
- wght = fract(influece[2]);
- spos += wght * skin_point(position, u_quatsb[ind], u_quatsa[ind],
- u_transb[ind], u_transa[ind], ff);
- ind = int(influece[3]);
- wght = fract(influece[3]);
- spos += wght * skin_point(position, u_quatsb[ind], u_quatsa[ind],
- u_transb[ind], u_transa[ind], ff);
- # endif
- position = spos;
- normal = snrm;
- # if !DISABLE_TANGENT_SKINNING
- tangent = stng;
- binormal = sbnr;
- # endif
- }
- if (!(a_influence.y > 0.0)) { // sorted in descending order so no need to check others
- // if only one bone then weight is 1.0
- int index = int(a_influence[0] - 1.0); // subtract 1.0 weight
- if (index > -1) { // distinguish from default zero values
- # if FRAMES_BLENDING
- position = skin_point(position, u_quatsb[index], u_quatsa[index],
- u_transb[index], u_transa[index], ff);
- tangent = skin_vector(tangent, u_quatsb[index], u_quatsa[index], ff);
- binormal = skin_vector(binormal, u_quatsb[index], u_quatsa[index], ff);
- normal = skin_vector(normal, u_quatsb[index], u_quatsa[index], ff);
- # else
- position = skin_point(position, u_quatsb[index], u_transb[index]);
- normal = skin_vector(normal, u_quatsb[index]);
- # if !DISABLE_TANGENT_SKINNING
- tangent = skin_vector(tangent, u_quatsb[index]);
- binormal = skin_vector(binormal, u_quatsb[index]);
- # endif
- # endif
- }
- }
- }
- #endif // SKINNED
- #endif
|