123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 |
- #ifndef PROCEDURAL_GLSLF
- #define PROCEDURAL_GLSLF
- vec4 mod289(vec4 x) {
- return x - floor(x * (_1_0 / 289.0)) * 289.0;
- }
- vec3 mod289(vec3 x) {
- return x - floor(x * (_1_0 / 289.0)) * 289.0;
- }
- vec2 mod289(vec2 x) {
- return x - floor(x * (_1_0 / 289.0)) * 289.0;
- }
- vec4 mod7(vec4 x) {
- return x - floor(x * (_1_0 / 7.0)) * 7.0;
- }
- // Permutation polynomial: (34x^2 + 5x) mod 289
- vec4 permute(vec4 x) {
- return mod289((34.0 * x + 5.0) * x);
- }
- // Cellular noise ("Worley noise") in 2D in GLSL.
- // Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
- // This code is released under the conditions of the MIT license.
- // See LICENSE file for details.
- // Cellular noise, returning F1 and F2 in a vec2.
- // Speeded up by using 2x2 search window instead of 3x3,
- // at the expense of some strong pattern artifacts.
- // F2 is often wrong and has sharp discontinuities.
- // If you need a smooth F2, use the slower 3x3 version.
- // F1 is sometimes wrong, too, but OK for most purposes.
- #define K 0.142857142857 // 1/7
- #define K2 0.0714285714285 // K/2
- #define JITTER 0.7 // JITTER 1.0 makes F1 wrong more often
- vec2 cellular2x2(vec2 P) {
- vec2 Pi = mod289(floor(P));
- vec2 Pf = fract(P);
- vec4 Pfx = Pf.x + vec4(-0.5, -1.5, -0.5, -1.5);
- vec4 Pfy = Pf.y + vec4(-0.5, -0.5, -1.5, -1.5);
- vec4 p = permute(Pi.x + vec4(_0_0, _1_0,
- _0_0, _1_0));
- p = permute(p + Pi.y + vec4(_0_0, _0_0,
- _1_0, _1_0));
- vec4 ox = mod7(p)*K+K2;
- vec4 oy = mod7(floor(p*K))*K+K2;
- vec4 dx = Pfx + JITTER*ox;
- vec4 dy = Pfy + JITTER*oy;
- vec4 d = dx * dx + dy * dy; // d11, d12, d21 and d22, squared
- // Sort out the two smallest distances
- #if 1
- // Cheat and pick only F1
- d.xy = min(d.xy, d.zw);
- d.x = min(d.x, d.y);
- return d.xx; // F1 duplicated, F2 not computed
- #else
- // Do it right and find both F1 and F2
- d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap if smaller
- d.xz = (d.x < d.z) ? d.xz : d.zx;
- d.xw = (d.x < d.w) ? d.xw : d.wx;
- d.y = min(d.y, d.z);
- d.y = min(d.y, d.w);
- return sqrt(d.xy);
- #endif
- }
- //Special Voronoi noise for caustics with aberration
- vec3 cellular2x2_caust(vec2 P, float aber) {
- vec2 Pi = mod289(floor(P));
- vec2 Pf = fract(P);
- vec4 Pfx = Pf.x + vec4(-0.5, -1.5, -0.5, -1.5);
- vec4 Pfy = Pf.y + vec4(-0.5, -0.5, -1.5, -1.5);
- vec4 p = permute(Pi.x + vec4(_0_0, _1_0,
- _0_0, _1_0));
- p = permute(p + Pi.y + vec4(_0_0, _0_0,
- _1_0, _1_0));
- vec4 ox = mod7(p) * K + K2;
- vec4 oy = mod7(floor(p * K)) * K + K2;
- vec4 dx = Pfx + JITTER * ox;
- vec4 dy = Pfy + JITTER * oy;
- vec4 d1 = dx * dx + dy * dy; // d11, d12, d21 and d22, squared
- dx += aber;
- dy += aber;
- vec4 d2 = dx * dx + dy * dy; // d11, d12, d21 and d22, squared
- dx += aber;
- dy += aber;
- vec4 d3 = dx * dx + dy * dy; // d11, d12, d21 and d22, squared
- // Sort out the two smallest distances
- // Cheat and pick only F1
- d1.xy = min(d1.xy, d1.zw);
- d1.x = min(d1.x, d1.y);
- d2.xy = min(d2.xy, d2.zw);
- d2.x = min(d2.x, d2.y);
- d3.xy = min(d3.xy, d3.zw);
- d3.x = min(d3.x, d3.y);
- return vec3(d1.x, d2.x, d3.x); // F1 duplicated, F2 not computed
- }
- //
- // Description : Array and textureless GLSL 2D simplex noise function.
- // Author : Ian McEwan, Ashima Arts.
- // Maintainer : ijm
- // Lastmod : 20110822 (ijm)
- // License : Copyright (C) 2011 Ashima Arts. All rights reserved.
- // Distributed under the MIT License. See LICENSE file.
- // https://github.com/ashima/webgl-noise
- //
- vec3 permute3(vec3 x) {
- return mod289(((x*34.0)+_1_0)*x);
- }
- float snoise(vec2 v)
- {
- const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0
- 0.366025403784439, // 0.5*(sqrt(3.0)-1.0)
- -0.577350269189626, // -1.0 + 2.0 * C.x
- 0.024390243902439); // 1.0 / 41.0
- // First corner
- vec2 i = floor(v + dot(v, C.yy) );
- vec2 x0 = v - i + dot(i, C.xx);
- // Other corners
- vec2 i1;
- //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
- //i1.y = 1.0 - i1.x;
- i1 = (x0.x > x0.y) ? vec2(_1_0, _0_0)
- : vec2(_0_0, _1_0);
- // x0 = x0 - 0.0 + 0.0 * C.xx ;
- // x1 = x0 - i1 + 1.0 * C.xx ;
- // x2 = x0 - 1.0 + 2.0 * C.xx ;
- vec4 x12 = x0.xyxy + C.xxzz;
- x12.xy -= i1;
- // Permutations
- i = mod289(i); // Avoid truncation effects in permutation
- vec3 p = permute3( permute3( i.y + vec3(_0_0, i1.y,
- _1_0 ))
- + i.x + vec3(_0_0, i1.x, _1_0 ));
- vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)),
- _0_0);
- m = m*m ;
- m = m*m ;
- // Gradients: 41 points uniformly over a line, mapped onto a diamond.
- // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
- vec3 x = 2.0 * fract(p * C.www) - _1_0;
- vec3 h = abs(x) - 0.5;
- vec3 ox = floor(x + 0.5);
- vec3 a0 = x - ox;
- // Normalise gradients implicitly by scaling m
- // Approximation of: m *= inversesqrt( a0*a0 + h*h );
- m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h );
- // Compute final noise value at P
- vec3 g;
- g.x = a0.x * x0.x + h.x * x0.y;
- g.yz = a0.yz * x12.xz + h.yz * x12.yw;
- return 130.0 * dot(m, g);
- }
- // generating noise/pattern texture for dithering
- vec2 generate_dithering_tex(vec2 coord) {
- float d1 = dot(coord, vec2(12.9898, 78.233));
- float d2 = dot(coord, vec2(12.9898, 78.233) * 2.0);
- float noiseX = fract(sin(d1) * 43758.5453) * 2.0 - _1_0;
- float noiseY = fract(sin(d2) * 43758.5453) * 2.0 - _1_0;
- return vec2(noiseX, noiseY);
- }
- #endif
|