#version GLSL_VERSION /** * Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com) * Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com) * Copyright (C) 2013 Belen Masia (bmasia@unizar.es) * Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com) * Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es) * * Permission is hereby granted, free of charge, to any person obtaining a copy * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to * do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. As clarification, there * is no requirement that the copyright notice and permission be included in * binary distributions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /*============================================================================== VARS ==============================================================================*/ #var SMAA_PASS SMAA_RESOLVE #var SMAA_REPROJECTION 0 #var SMAA_PREDICATION 0 #var AA_METHOD AA_METHOD_SMAA_LOW /*============================================================================*/ #include #include #include uniform sampler2D u_color; #if SMAA_PASS == SMAA_RESOLVE uniform sampler2D u_color_prev; #endif #if SMAA_PASS == SMAA_NEIGHBORHOOD_BLENDING uniform sampler2D u_blend; #endif #if SMAA_REPROJECTION uniform sampler2D u_velocity_tex; #endif #if SMAA_PASS == SMAA_EDGE_DETECTION && SMAA_PREDICATION uniform sampler2D u_predication_tex; #endif #if SMAA_PASS == SMAA_BLENDING_WEIGHT_CALCULATION uniform sampler2D u_search_tex; uniform sampler2D u_area_tex; uniform vec4 u_subsample_indices; #endif uniform vec2 u_texel_size; /*============================================================================== SHADER INTERFACE ==============================================================================*/ GLSL_IN vec2 v_texcoord; #if SMAA_PASS == SMAA_NEIGHBORHOOD_BLENDING GLSL_IN vec4 v_offset; #else GLSL_IN vec4 v_offset_0; GLSL_IN vec4 v_offset_1; GLSL_IN vec4 v_offset_2; #endif #if SMAA_PASS == SMAA_BLENDING_WEIGHT_CALCULATION GLSL_IN vec2 v_pixcoord; #endif //------------------------------------------------------------------------------ GLSL_OUT vec4 GLSL_OUT_FRAG_COLOR; /*============================================================================*/ /** * _______ ___ ___ ___ ___ * / || \/ | / \ / \ * | (---- | \ / | / ^ \ / ^ \ * \ \ | |\/| | / /_\ \ / /_\ \ * ----) | | | | | / _____ \ / _____ \ * |_______/ |__| |__| /__/ \__\ /__/ \__\ * * E N H A N C E D * S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G * * http://www.iryoku.com/smaa/ * * Hi, welcome aboard! * * Here you'll find instructions to get the shader up and running as fast as * possible. * * IMPORTANTE NOTICE: when updating, remember to update both this file and the * precomputed textures! They may change from version to version. * * The shader has three passes, chained together as follows: * * |input|------------------· * v | * [ SMAA*EdgeDetection ] | * v | * |edges_tex| | * v | * [ SMAABlendingWeightCalculation ] | * v | * |blend_tex| | * v | * [ SMAANeighborhoodBlending ] <------· * v * |output| * * Note that each [pass] has its own vertex and pixel shader. Remember to use * oversized triangles instead of quads to avoid overshading along the * diagonal. * * You've three edge detection methods to choose from: luma, color or depth. * They represent different quality/performance and anti-aliasing/sharpness * tradeoffs, so our recommendation is for you to choose the one that best * suits your particular scenario: * * - Depth edge detection is usually the fastest but it may miss some edges. * * - Luma edge detection is usually more expensive than depth edge detection, * but catches visible edges that depth edge detection can miss. * * - Color edge detection is usually the most expensive one but catches * chroma-only edges. * * For quickstarters: just use luma edge detection. * * The general advice is to not rush the integration process and ensure each * step is done correctly (don't try to integrate SMAA T2x with predicated edge * detection from the start!). Ok then, let's go! * * 1. The first step is to create two RGBA temporal render targets for holding * |edges_tex| and |blend_tex|. * * In DX10 or DX11, you can use a RG render target for the edges texture. * In the case of NVIDIA GPUs, using RG render targets seems to actually be * slower. * * On the Xbox 360, you can use the same render target for resolving both * |edges_tex| and |blend_tex|, as they aren't needed simultaneously. * * 2. Both temporal render targets |edges_tex| and |blend_tex| must be cleared * each frame. Do not forget to clear the alpha channel! * * 3. The next step is loading the two supporting precalculated textures, * 'area_tex' and 'search_tex'. You'll find them in the 'Textures' folder as * C++ headers, and also as regular DDS files. They'll be needed for the * 'SMAABlendingWeightCalculation' pass. * * If you use the C++ headers, be sure to load them in the format specified * inside of them. * * You can also compress 'area_tex' and 'search_tex' using BC5 and BC4 * respectively, if you have that option in your content processor pipeline. * When compressing then, you get a non-perceptible quality decrease, and a * marginal performance increase. * * 4. All samplers must be set to linear filtering and clamp. * * After you get the technique working, remember that 64-bit inputs have * half-rate linear filtering on GCN. * * If SMAA is applied to 64-bit color buffers, switching to point filtering * when accesing them will increase the performance. Search for * 'SMAASamplePoint' to see which textures may benefit from point * filtering, and where (which is basically the color input in the edge * detection and resolve passes). * * 5. All texture reads and buffer writes must be non-sRGB, with the exception * of the input read and the output write in * 'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in * this last pass are not possible, the technique will work anyway, but * will perform antialiasing in gamma space. * * IMPORTANT: for best results the input read for the color/luma edge * detection should *NOT* be sRGB. * * 6. Before including SMAA.h you'll have to setup the render target metrics, * the target and any optional configuration defines. Optionally you can * use a preset. * * You have the following targets available: * SMAA_HLSL_3 * SMAA_HLSL_4 * SMAA_HLSL_4_1 * SMAA_GLSL_3 * * SMAA_GLSL_4 * * * * (See SMAA_INCLUDE_VS and SMAA_INCLUDE_PS below). * * And four presets: * SMAA_PRESET_LOW (%60 of the quality) * SMAA_PRESET_MEDIUM (%80 of the quality) * SMAA_PRESET_HIGH (%95 of the quality) * SMAA_PRESET_ULTRA (%99 of the quality) * * For example: * #define SMAA_RT_METRICS float4(1.0 / 1280.0, 1.0 / 720.0, 1280.0, 720.0) * #define SMAA_HLSL_4 * #define SMAA_PRESET_HIGH * #include "SMAA.h" * * Note that SMAA_RT_METRICS doesn't need to be a macro, it can be a * uniform variable. The code is designed to minimize the impact of not * using a constant value, but it is still better to hardcode it. * * Depending on how you encoded 'area_tex' and 'search_tex', you may have to * add (and customize) the following defines before including SMAA.h: * #define SMAA_AREATEX_SELECT(sample) sample.rg * #define SMAA_SEARCHTEX_SELECT(sample) sample.r * * If your engine is already using porting macros, you can define * SMAA_CUSTOM_SL, and define the porting functions by yourself. * * 7. Then, you'll have to setup the passes as indicated in the scheme above. * You can take a look into SMAA.fx, to see how we did it for our demo. * Checkout the function wrappers, you may want to copy-paste them! * * 8. It's recommended to validate the produced |edges_tex| and |blend_tex|. * You can use a screenshot from your engine to compare the |edges_tex| * and |blend_tex| produced inside of the engine with the results obtained * with the reference demo. * * 9. After you get the last pass to work, it's time to optimize. You'll have * to initialize a stencil buffer in the first pass (discard is already in * the code), then mask execution by using it the second pass. The last * pass should be executed in all pixels. * * * After this point you can choose to enable predicated thresholding, * temporal supersampling and motion blur integration: * * a) If you want to use predicated thresholding, take a look into * SMAA_PREDICATION; you'll need to pass an extra texture in the edge * detection pass. * * b) If you want to enable temporal supersampling (SMAA T2x): * * 1. The first step is to render using subpixel jitters. I won't go into * detail, but it's as simple as moving each vertex position in the * vertex shader, you can check how we do it in our DX10 demo. * * 2. Then, you must setup the temporal resolve. You may want to take a look * into SMAAResolve for resolving 2x modes. After you get it working, you'll * probably see ghosting everywhere. But fear not, you can enable the * CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro. * Check out SMAA_DECODE_VELOCITY if your velocity buffer is encoded. * * 3. The next step is to apply SMAA to each subpixel jittered frame, just as * done for 1x. * * 4. At this point you should already have something usable, but for best * results the proper area textures must be set depending on current jitter. * For this, the parameter 'subsample_indices' of * 'blending_weight_calculation' must be set as follows, for our T2x * mode: * * @SUBSAMPLE_INDICES * * | S# | Camera Jitter | subsample_indices | * +----+------------------+---------------------+ * | 0 | ( 0.25, -0.25) | float4(1, 1, 1, 0) | * | 1 | (-0.25, 0.25) | float4(2, 2, 2, 0) | * * These jitter positions assume a bottom-to-top y axis. S# stands for the * sample number. * * More information about temporal supersampling here: * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf * * c) If you want to enable spatial multisampling (SMAA S2x): * * 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be * created with: * - DX10: see below (*) * - DX10.1: D3D10_STANDARD_MULTISAMPLE_PATTERN or * - DX11: D3D11_STANDARD_MULTISAMPLE_PATTERN * * This allows to ensure that the subsample order matches the table in * @SUBSAMPLE_INDICES. * * (*) In the case of DX10, we refer the reader to: * - SMAA::detectMSAAOrder and * - SMAA::msaaReorder * * These functions allow to match the standard multisample patterns by * detecting the subsample order for a specific GPU, and reordering * them appropriately. * * 2. A shader must be run to output each subsample into a separate buffer * (DX10 is required). You can use SMAASeparate for this purpose, or just do * it in an existing pass (for example, in the tone mapping pass, which has * the advantage of feeding tone mapped subsamples to SMAA, which will yield * better results). * * 3. The full SMAA 1x pipeline must be run for each separated buffer, storing * the results in the final buffer. The second run should alpha blend with * the existing final buffer using a blending factor of 0.5. * 'subsample_indices' must be adjusted as in the SMAA T2x case (see point * b). * * d) If you want to enable temporal supersampling on top of SMAA S2x * (which actually is SMAA 4x): * * 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is * to calculate SMAA S2x for current frame. In this case, 'subsample_indices' * must be set as follows: * * | F# | S# | Camera Jitter | Net Jitter | subsample_indices | * +----+----+--------------------+-------------------+----------------------+ * | 0 | 0 | ( 0.125, 0.125) | ( 0.375, -0.125) | float4(5, 3, 1, 3) | * | 0 | 1 | ( 0.125, 0.125) | (-0.125, 0.375) | float4(4, 6, 2, 3) | * +----+----+--------------------+-------------------+----------------------+ * | 1 | 2 | (-0.125, -0.125) | ( 0.125, -0.375) | float4(3, 5, 1, 4) | * | 1 | 3 | (-0.125, -0.125) | (-0.375, 0.125) | float4(6, 4, 2, 4) | * * These jitter positions assume a bottom-to-top y axis. F# stands for the * frame number. S# stands for the sample number. * * 2. After calculating SMAA S2x for current frame (with the new subsample * indices), previous frame must be reprojected as in SMAA T2x mode (see * point b). * * e) If motion blur is used, you may want to do the edge detection pass * together with motion blur. This has two advantages: * * 1. Pixels under heavy motion can be omitted from the edge detection process. * For these pixels we can just store "no edge", as motion blur will take * care of them. * 2. The center pixel tap is reused. * * Note that in this case depth testing should be used instead of stenciling, * as we have to write all the pixels in the motion blur pass. * * That's it! */ //----------------------------------------------------------------------------- // SMAA Presets # if AA_METHOD == AA_METHOD_SMAA_LOW #define SMAA_THRESHOLD 0.15 #define SMAA_DISABLE_DIAG_DETECTION 1 #define SMAA_DISABLE_CORNER_DETECTION 1 # elif AA_METHOD == AA_METHOD_SMAA_MEDIUM #define SMAA_THRESHOLD 0.1 #define SMAA_DISABLE_DIAG_DETECTION 1 #define SMAA_DISABLE_CORNER_DETECTION 1 # elif AA_METHOD == AA_METHOD_SMAA_HIGH #define SMAA_THRESHOLD 0.1 #define SMAA_DISABLE_DIAG_DETECTION 0 #define SMAA_MAX_SEARCH_STEPS_DIAG 8 #define SMAA_CORNER_ROUNDING 25 # elif AA_METHOD == AA_METHOD_SMAA_ULTRA #define SMAA_THRESHOLD 0.05 #define SMAA_DISABLE_DIAG_DETECTION 0 #define SMAA_MAX_SEARCH_STEPS_DIAG 16 #define SMAA_CORNER_ROUNDING 25 #endif //----------------------------------------------------------------------------- // Configurable Defines /** * SMAA_THRESHOLD specifies the threshold or sensitivity to edges. * Lowering this value you will be able to detect more edges at the expense of * performance. * * Range: [0, 0.5] * 0.1 is a reasonable value, and allows to catch most visible edges. * 0.05 is a rather overkill value, that allows to catch 'em all. * * If temporal supersampling is used, 0.2 could be a reasonable value, as low * contrast edges are properly filtered by just 2x. */ #ifndef SMAA_THRESHOLD #define SMAA_THRESHOLD 0.1 #endif /** * SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection. * * Range: depends on the depth range of the scene. */ #ifndef SMAA_DEPTH_THRESHOLD #define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD) #endif /** * SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the * diagonal pattern searches, at each side of the pixel. In this case we jump * one pixel at time, instead of two. * * Range: [0, 20] * * On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16 * steps), but it can have a significant impact on older machines. * * Define SMAA_DISABLE_DIAG_DETECTION to disable diagonal processing. */ #ifndef SMAA_MAX_SEARCH_STEPS_DIAG #define SMAA_MAX_SEARCH_STEPS_DIAG 8 #endif /** * SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded. * * Range: [0, 100] * * Define SMAA_DISABLE_CORNER_DETECTION to disable corner processing. */ #ifndef SMAA_CORNER_ROUNDING #define SMAA_CORNER_ROUNDING 25 #endif /** * If there is an neighbor edge that has SMAA_LOCAL_CONTRAST_FACTOR times * bigger contrast than current edge, current edge will be discarded. * * This allows to eliminate spurious crossing edges, and is based on the fact * that, if there is too much contrast in a direction, that will hide * perceptually contrast in the other neighbors. */ #ifndef SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR #define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0 #endif /** * Predicated thresholding allows to better preserve texture details and to * improve performance, by decreasing the number of detected edges using an * additional buffer like the light accumulation buffer, object ids or even the * depth buffer (the depth buffer usage may be limited to indoor or short range * scenes). * * It locally decreases the luma or color threshold if an edge is found in an * additional buffer (so the global threshold can be higher). * * This method was developed by Playstation EDGE MLAA team, and used in * Killzone 3, by using the light accumulation buffer. More information here: * http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx */ #ifndef SMAA_PREDICATION #define SMAA_PREDICATION 0 #endif /** * Threshold to be used in the additional predication buffer. * * Range: depends on the input, so you'll have to find the magic number that * works for you. */ #ifndef SMAA_PREDICATION_THRESHOLD #define SMAA_PREDICATION_THRESHOLD 0.01 #endif /** * How much to scale the global threshold used for luma or color edge * detection when using predication. * * Range: [1, 5] */ #ifndef SMAA_PREDICATION_SCALE #define SMAA_PREDICATION_SCALE 2.0 #endif /** * How much to locally decrease the threshold. * * Range: [0, 1] */ #ifndef SMAA_PREDICATION_STRENGTH #define SMAA_PREDICATION_STRENGTH 0.4 #endif /** * Temporal reprojection allows to remove ghosting artifacts when using * temporal supersampling. We use the CryEngine 3 method which also introduces * velocity weighting. This feature is of extreme importance for totally * removing ghosting. More information here: * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf * * Note that you'll need to setup a velocity buffer for enabling reprojection. * For static geometry, saving the previous depth buffer is a viable * alternative. */ #ifndef SMAA_REPROJECTION #define SMAA_REPROJECTION 0 #endif /** * SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows to * remove ghosting trails behind the moving object, which are not removed by * just using reprojection. Using low values will exhibit ghosting, while using * high values will disable temporal supersampling under motion. * * Behind the scenes, velocity weighting removes temporal supersampling when * the velocity of the subsamples differs (meaning they are different objects). * * Range: [0, 80] */ #ifndef SMAA_REPROJECTION_WEIGHT_SCALE #define SMAA_REPROJECTION_WEIGHT_SCALE 30.0 #endif /** * SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the * horizontal/vertical pattern searches, at each side of the pixel. * * In number of pixels, it's actually the double. So the maximum line length * perfectly handled by, for example 16, is 64 (by perfectly, we meant that * longer lines won't look as good, but still antialiased). * * Range: [0, 112] */ #ifndef SMAA_MAX_SEARCH_STEPS #define SMAA_MAX_SEARCH_STEPS 16 #endif //----------------------------------------------------------------------------- // Non-Configurable Defines #define SMAA_AREATEX_MAX_DISTANCE 16 #define SMAA_AREATEX_MAX_DISTANCE_DIAG 20 #define SMAA_AREATEX_PIXEL_SIZE (1.0 / vec2(160.0, 560.0)) #define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0) #define SMAA_SEARCHTEX_SIZE vec2(66.0, 33.0) #define SMAA_SEARCHTEX_PACKED_SIZE vec2(64.0, 16.0) #define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0) #if SMAA_PASS == SMAA_EDGE_DETECTION /** * Gathers current pixel, and the top-left neighbors. */ vec3 smaa_gather_neighbours(vec2 texcoord, sampler2D tex) { float p = GLSL_TEXTURE(tex, texcoord).r; float p_left = GLSL_TEXTURE(tex, v_offset_0.xy).r; float p_top = GLSL_TEXTURE(tex, v_offset_0.zw).r; return vec3(p, p_left, p_top); } #endif #if SMAA_PASS == SMAA_EDGE_DETECTION /** * Adjusts the threshold by means of predication. */ vec2 smaa_calculate_predicated_threshold(vec2 texcoord, sampler2D predication_tex) { vec3 neighbours = smaa_gather_neighbours(texcoord, predication_tex); vec2 delta = abs(neighbours.xx - neighbours.yz); vec2 edges = step(SMAA_PREDICATION_THRESHOLD, delta); return SMAA_PREDICATION_SCALE * SMAA_THRESHOLD * (1.0 - SMAA_PREDICATION_STRENGTH * edges); } #endif /** * Conditional move: */ void smaa_movc(bvec2 cond, inout vec2 variable, vec2 value) { if (cond.x) variable.x = value.x; if (cond.y) variable.y = value.y; } void smaa_movc(bvec4 cond, inout vec4 variable, vec4 value) { smaa_movc(cond.xy, variable.xy, value.xy); smaa_movc(cond.zw, variable.zw, value.zw); } vec2 round_val(vec2 x) { return sign(x) * floor(abs(x) + .5); } vec4 round_val(vec4 x) { return sign(x) * floor(abs(x) + .5); } //----------------------------------------------------------------------------- // Edge Detection Pixel Shaders (First Pass) /** * Luma Edge Detection * * IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and * thus 'color_tex' should be a non-sRGB texture. */ #if SMAA_PASS == SMAA_EDGE_DETECTION vec2 smaa_luma_edge_detection(vec2 texcoord, sampler2D color_tex #if SMAA_PREDICATION , sampler2D predication_tex #endif ) { // Calculate the threshold: #if SMAA_PREDICATION vec2 threshold = smaa_calculate_predicated_threshold(texcoord, predication_tex); #else vec2 threshold = vec2(SMAA_THRESHOLD, SMAA_THRESHOLD); #endif // Calculate lumas: vec3 weights = vec3(0.2126, 0.7152, 0.0722); float L = dot(GLSL_TEXTURE(color_tex, texcoord).rgb, weights); float L_left = dot(GLSL_TEXTURE(color_tex, v_offset_0.xy).rgb, weights); float Ltop = dot(GLSL_TEXTURE(color_tex, v_offset_0.zw).rgb, weights); // We do the usual threshold: vec4 delta; delta.xy = abs(L - vec2(L_left, Ltop)); vec2 edges = step(threshold, delta.xy); // Then discard if there is no edge: if (dot(edges, vec2(1.0, 1.0)) == 0.0) discard; // Calculate right and bottom deltas: float L_right = dot(GLSL_TEXTURE(color_tex, v_offset_1.xy).rgb, weights); float L_bottom = dot(GLSL_TEXTURE(color_tex, v_offset_1.zw).rgb, weights); delta.zw = abs(L - vec2(L_right, L_bottom)); // Calculate the maximum delta in the direct neighborhood: vec2 max_delta = max(delta.xy, delta.zw); // Calculate left-left and top-top deltas: float L_leftleft = dot(GLSL_TEXTURE(color_tex, v_offset_2.xy).rgb, weights); float L_toptop = dot(GLSL_TEXTURE(color_tex, v_offset_2.zw).rgb, weights); delta.zw = abs(vec2(L_left, Ltop) - vec2(L_leftleft, L_toptop)); // Calculate the final maximum delta: max_delta = max(max_delta.xy, delta.zw); float final_delta = max(max_delta.x, max_delta.y); // Local contrast adaptation: edges.xy *= step(final_delta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy); return edges; } /** * Color Edge Detection * * IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and * thus 'color_tex' should be a non-sRGB texture. */ /* vec2 color_edge_detection(vec2 texcoord, sampler2D color_tex #if SMAA_PREDICATION , sampler2D predication_tex #endif ) { // Calculate the threshold: #if SMAA_PREDICATION vec2 threshold = smaa_calculate_predicated_threshold(texcoord, predication_tex); #else vec2 threshold = vec2(SMAA_THRESHOLD, SMAA_THRESHOLD); #endif // Calculate color deltas: vec4 delta; vec3 C = GLSL_TEXTURE(color_tex, texcoord).rgb; vec3 Cleft = GLSL_TEXTURE(color_tex, v_offset_0.xy).rgb; vec3 t = abs(C - Cleft); delta.x = max(max(t.r, t.g), t.b); vec3 Ctop = GLSL_TEXTURE(color_tex, v_offset_0.zw).rgb; t = abs(C - Ctop); delta.y = max(max(t.r, t.g), t.b); // We do the usual threshold: vec2 edges = step(threshold, delta.xy); // Then discard if there is no edge: if (dot(edges, vec2(1.0, 1.0)) == 0.0) discard; // Calculate right and bottom deltas: vec3 Cright = GLSL_TEXTURE(color_tex, v_offset_1.xy).rgb; t = abs(C - Cright); delta.z = max(max(t.r, t.g), t.b); vec3 Cbottom = GLSL_TEXTURE(color_tex, v_offset_1.zw).rgb; t = abs(C - Cbottom); delta.w = max(max(t.r, t.g), t.b); // Calculate the maximum delta in the direct neighborhood: vec2 max_delta = max(delta.xy, delta.zw); // Calculate left-left and top-top deltas: vec3 Cleftleft = GLSL_TEXTURE(color_tex, v_offset_2.xy).rgb; t = abs(C - Cleftleft); delta.z = max(max(t.r, t.g), t.b); vec3 Ctoptop = GLSL_TEXTURE(color_tex, v_offset_2.zw).rgb; t = abs(C - Ctoptop); delta.w = max(max(t.r, t.g), t.b); // Calculate the final maximum delta: max_delta = max(max_delta.xy, delta.zw); float final_delta = max(max_delta.x, max_delta.y); // Local contrast adaptation: edges.xy *= step(final_delta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy); return edges; } */ /** * Depth Edge Detection */ /* vec2 depth_edge_detection(vec2 texcoord, sampler2D depth_tex) { vec3 neighbours = smaa_gather_neighbours(texcoord, depth_tex); vec2 delta = abs(neighbours.xx - vec2(neighbours.y, neighbours.z)); vec2 edges = step(SMAA_DEPTH_THRESHOLD, delta); if (dot(edges, vec2(1.0, 1.0)) == 0.0) discard; return edges; } */ #endif //----------------------------------------------------------------------------- // Diagonal Search Functions #if !SMAA_DISABLE_DIAG_DETECTION /** * Allows to decode two binary values from a bilinear-filtered access. */ vec2 decode_diag_biliner_access(vec2 e) { // Bilinear access for fetching 'e' have a 0.25 offset, and we are // interested in the R and G edges: // // +---G---+-------+ // | x o R x | // +-------+-------+ // // Then, if one of these edge is enabled: // Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0 // Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0 // // This function will unpack the values (mad + mul + round): // wolframalpha.com: round_val(x * abs(5 * x - 5 * 0.75)) plot 0 to 1 e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75); return round_val(e); } vec4 decode_diag_biliner_access(vec4 e) { e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75); return round_val(e); } /** * These functions allows to perform diagonal pattern searches. */ vec2 search_diag1(sampler2D edges_tex, vec2 texcoord, vec2 dir, out vec2 e) { vec4 coord = vec4(texcoord, -1.0, 1.0); vec3 t = vec3(u_texel_size, 1.0); for (int i = 0; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) { if (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { coord.xyz += t * vec3(dir, 1.0); e = GLSL_TEXTURE(edges_tex, coord.xy, 0.0).rg; coord.w = dot(e, vec2(0.5, 0.5)); } } return coord.zw; } vec2 search_diag2(sampler2D edges_tex, vec2 texcoord, vec2 dir, out vec2 e) { vec4 coord = vec4(texcoord, -1.0, 1.0); coord.x += 0.25 * u_texel_size.x; // See @SearchDiag2Optimization vec3 t = vec3(u_texel_size, 1.0); for (int i = 0; i < SMAA_MAX_SEARCH_STEPS_DIAG; i++) { if (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { coord.xyz = t * vec3(dir, 1.0) + coord.xyz; // @SearchDiag2Optimization // Fetch both edges at once using bilinear filtering: e = GLSL_TEXTURE(edges_tex, coord.xy, 0.0).rg; e = decode_diag_biliner_access(e); // Non-optimized version: // e.g = GLSL_TEXTURE(edges_tex, coord.xy, 0.0).g; // e.r = GLSL_TEXTURE(edges_tex, coord.xy + vec2(1, 0), 0.0).r; coord.w = dot(e, vec2(0.5, 0.5)); } } return coord.zw; } /** * Similar to smaa_area, this calculates the area corresponding to a certain * diagonal distance and crossing edges 'e'. */ vec2 smaa_area_diag(sampler2D area_tex, vec2 dist, vec2 e, float offset) { vec2 texcoord = vec2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG) * e + dist; // We do a scale and bias for mapping to texel space: texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + 0.5 * SMAA_AREATEX_PIXEL_SIZE; // Diagonal areas are on the second half of the texture: texcoord.x += 0.5; // Move to proper place, according to the subpixel offset: texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset; // Do it! return GLSL_TEXTURE(area_tex, texcoord, 0.0).rg; } /** * This searches for diagonal patterns and returns the corresponding weights. */ vec2 smaa_calculate_diag_weights(sampler2D edges_tex, sampler2D area_tex, vec2 texcoord, vec2 e, vec4 subsample_indices) { vec2 weights = vec2(0.0, 0.0); // Search for the line ends: vec4 d; vec2 end; if (e.r > 0.0) { d.xz = search_diag1(edges_tex, texcoord, vec2(-1.0, 1.0), end); d.x += float(end.y > 0.9); } else d.xz = vec2(0.0, 0.0); d.yw = search_diag1(edges_tex, texcoord, vec2(1.0, -1.0), end); if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 // Fetch the crossing edges: vec4 coords = vec4(-d.x + 0.25, d.x, d.y, -d.y - 0.25) * u_texel_size.xyxy + texcoord.xyxy; vec4 c; c.xy = GLSL_TEXTURE(edges_tex, coords.xy + u_texel_size * vec2(-1, 0), 0.0).rg; c.zw = GLSL_TEXTURE(edges_tex, coords.zw + u_texel_size * vec2( 1, 0), 0.0).rg; c.yxwz = decode_diag_biliner_access(c.xyzw); // Merge crossing edges at each side into a single value: vec2 cc = vec2(2.0, 2.0) * c.xz + c.yw; // Remove the crossing edge if we didn't found the end of the line: smaa_movc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0)); // Fetch the areas for this line: weights += smaa_area_diag(area_tex, d.xy, cc, subsample_indices.z); } // Search for the line ends: d.xz = search_diag2(edges_tex, texcoord, vec2(-1, -1), end); if (GLSL_TEXTURE(edges_tex, texcoord + u_texel_size * vec2(1, 0), 0.0).r > 0.0) { d.yw = search_diag2(edges_tex, texcoord, vec2(1, 1), end); d.y += float(end.y > 0.9); } else d.yw = vec2(0.0, 0.0); if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 // Fetch the crossing edges: vec4 coords = vec4(-d.x, -d.x, d.y, d.y) * u_texel_size.xyxy + texcoord.xyxy; vec4 c; c.x = GLSL_TEXTURE(edges_tex, coords.xy + u_texel_size * vec2(-1, 0), 0.0).g; c.y = GLSL_TEXTURE(edges_tex, coords.xy + u_texel_size * vec2( 0, -1), 0.0).r; c.zw = GLSL_TEXTURE(edges_tex, coords.zw + u_texel_size * vec2( 1, 0), 0.0).gr; vec2 cc = vec2(2.0, 2.0) * c.xz + c.yw; // Remove the crossing edge if we didn't found the end of the line: smaa_movc(bvec2(step(0.9, d.zw)), cc, vec2(0, 0)); // Fetch the areas for this line: weights += smaa_area_diag(area_tex, d.xy, cc, subsample_indices.w).gr; } return weights; } #endif //----------------------------------------------------------------------------- // Horizontal/Vertical Search Functions /** * This allows to determine how much length should we add in the last step * of the searches. It takes the bilinearly interpolated edge (see * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and * crossing edges are active. */ float search_length(sampler2D search_tex, vec2 e, float offset) { // The texture is flipped vertically, with left and right cases taking half // of the space horizontally: vec2 scale = SMAA_SEARCHTEX_SIZE * vec2(0.5, -1.0); vec2 bias = SMAA_SEARCHTEX_SIZE * vec2(offset, 1.0); // Scale and bias to access texel centers: scale += vec2(-1.0, 1.0); bias += vec2( 0.5, -0.5); // Convert from pixel coordinates to texcoords: // (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped) scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; // Lookup the search texture: return GLSL_TEXTURE(search_tex, scale * e + bias, 0.0).r; } /** * Horizontal/vertical search functions for the 2nd pass. */ float search_x_left(sampler2D edges_tex, sampler2D search_tex, vec2 texcoord, float end) { /** * @PSEUDO_GATHER4 * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to * sample between edge, thus fetching four edges in a row. * Sampling with different offsets in each direction allows to disambiguate * which edges are active from the four fetched ones. */ vec2 e = vec2(0.0, 1.0); for (int i = 0; i < SMAA_MAX_SEARCH_STEPS; i++) { if (texcoord.x > end && e.g > 0.8281 && // Is there some edge not activated? e.r == 0.0) { // Or is there a crossing edge that breaks the line? e = GLSL_TEXTURE(edges_tex, texcoord, 0.0).rg; texcoord = -vec2(2.0, 0.0) * u_texel_size + texcoord; } } float offset = -(255.0 / 127.0) * search_length(search_tex, e, 0.0) + 3.25; return u_texel_size.x * offset + texcoord.x; } float search_x_right(sampler2D edges_tex, sampler2D search_tex, vec2 texcoord, float end) { vec2 e = vec2(0.0, 1.0); for (int i = 0; i < SMAA_MAX_SEARCH_STEPS; i++) { if (texcoord.x < end && e.g > 0.8281 && // Is there some edge not activated? e.r == 0.0) { // Or is there a crossing edge that breaks the line? e = GLSL_TEXTURE(edges_tex, texcoord, 0.0).rg; texcoord = vec2(2.0, 0.0) * u_texel_size + texcoord; } } float offset = -(255.0 / 127.0) * search_length(search_tex, e, 0.5) + 3.25; return -u_texel_size.x * offset + texcoord.x; } float search_y_up(sampler2D edges_tex, sampler2D search_tex, vec2 texcoord, float end) { vec2 e = vec2(1.0, 0.0); for (int i = 0; i < SMAA_MAX_SEARCH_STEPS; i++) { if (texcoord.y > end && e.r > 0.8281 && // Is there some edge not activated? e.g == 0.0) { // Or is there a crossing edge that breaks the line? e = GLSL_TEXTURE(edges_tex, texcoord, 0.0).rg; texcoord = -vec2(0.0, 2.0) * u_texel_size + texcoord; } } float offset = -(255.0 / 127.0) * search_length(search_tex, e.gr, 0.0) + 3.25; return u_texel_size.y * offset + texcoord.y; } float search_y_down(sampler2D edges_tex, sampler2D search_tex, vec2 texcoord, float end) { vec2 e = vec2(1.0, 0.0); for (int i = 0; i < SMAA_MAX_SEARCH_STEPS; i++) { if (texcoord.y < end && e.r > 0.8281 && // Is there some edge not activated? e.g == 0.0) { // Or is there a crossing edge that breaks the line? e = GLSL_TEXTURE(edges_tex, texcoord, 0.0).rg; texcoord = vec2(0.0, 2.0) * u_texel_size + texcoord; } } float offset = -(255.0 / 127.0) * search_length(search_tex, e.gr, 0.5) + 3.25; return -u_texel_size.y * offset + texcoord.y; } /** * Ok, we have the distance and both crossing edges. So, what are the areas * at each side of current edge? */ vec2 smaa_area(sampler2D area_tex, vec2 dist, float e1, float e2, float offset) { // Rounding prevents precision errors of bilinear filtering: vec2 texcoord = vec2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE) * round_val(4.0 * vec2(e1, e2)) + dist; // We do a scale and bias for mapping to texel space: texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + 0.5 * SMAA_AREATEX_PIXEL_SIZE; // Move to proper place, according to the subpixel offset: texcoord.y = SMAA_AREATEX_SUBTEX_SIZE * offset + texcoord.y; // Do it! return GLSL_TEXTURE(area_tex, texcoord, 0.0).rg; } //----------------------------------------------------------------------------- // Corner Detection Functions void detect_horizontal_corner_pattern(sampler2D edges_tex, inout vec2 weights, vec4 texcoord, vec2 d) { # if !SMAA_DISABLE_CORNER_DETECTION vec2 leftRight = step(d.xy, d.yx); vec2 flooring = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; flooring /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line. vec2 factor = vec2(1.0, 1.0); factor.x -= flooring.x * GLSL_TEXTURE(edges_tex, texcoord.xy + u_texel_size * vec2(0, 1), 0.0).r; factor.x -= flooring.y * GLSL_TEXTURE(edges_tex, texcoord.zw + u_texel_size * vec2(1, 1), 0.0).r; factor.y -= flooring.x * GLSL_TEXTURE(edges_tex, texcoord.xy + u_texel_size * vec2(0, -2), 0.0).r; factor.y -= flooring.y * GLSL_TEXTURE(edges_tex, texcoord.zw + u_texel_size * vec2(1, -2), 0.0).r; weights *= clamp(factor, 0.0, 1.0); # endif } void detect_vertical_corner_pattern(sampler2D edges_tex, inout vec2 weights, vec4 texcoord, vec2 d) { # if !SMAA_DISABLE_CORNER_DETECTION vec2 leftRight = step(d.xy, d.yx); vec2 flooring = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; flooring /= leftRight.x + leftRight.y; vec2 factor = vec2(1.0, 1.0); factor.x -= flooring.x * GLSL_TEXTURE(edges_tex, texcoord.xy + u_texel_size * vec2( 1, 0), 0.0).g; factor.x -= flooring.y * GLSL_TEXTURE(edges_tex, texcoord.zw + u_texel_size * vec2( 1, 1), 0.0).g; factor.y -= flooring.x * GLSL_TEXTURE(edges_tex, texcoord.xy + u_texel_size * vec2(-2, 0), 0.0).g; factor.y -= flooring.y * GLSL_TEXTURE(edges_tex, texcoord.zw + u_texel_size * vec2(-2, 1), 0.0).g; weights *= clamp(factor, 0.0, 1.0); # endif } //----------------------------------------------------------------------------- // Blending Weight Calculation Pixel Shader (Second Pass) #if SMAA_PASS == SMAA_BLENDING_WEIGHT_CALCULATION vec4 blending_weight_calculation(vec2 texcoord, vec2 pixcoord, sampler2D edges_tex, sampler2D area_tex, sampler2D search_tex, vec4 subsample_indices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES. vec4 weights = vec4(0.0, 0.0, 0.0, 0.0); vec2 e = GLSL_TEXTURE(edges_tex, texcoord).rg; if (e.g > 0.0) { // Edge at north # if !SMAA_DISABLE_DIAG_DETECTION // Diagonals have both north and west edges, so searching for them in // one of the boundaries is enough. weights.rg = smaa_calculate_diag_weights(edges_tex, area_tex, texcoord, e, subsample_indices); // We give priority to diagonals, so if we find a diagonal we skip // horizontal/vertical processing. if (weights.r == -weights.g) { // weights.r + weights.g == 0.0 # endif vec2 d; // Find the distance to the left: vec3 coords; coords.x = search_x_left(edges_tex, search_tex, v_offset_0.xy, v_offset_2.x); coords.y = v_offset_1.y; // v_offset_1.y = texcoord.y - 0.25 * u_texel_size.y (@CROSSING_OFFSET) d.x = coords.x; // Now fetch the left crossing edges, two at a time using bilinear // filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to // discern what value each edge has: float e1 = GLSL_TEXTURE(edges_tex, coords.xy, 0.0).r; // Find the distance to the right: coords.z = search_x_right(edges_tex, search_tex, v_offset_0.zw, v_offset_2.y); d.y = coords.z; // We want the distances to be in pixel units (doing this here allow to // better interleave arithmetic and memory accesses): d = abs(round_val(d / u_texel_size.xx - pixcoord.xx)); // smaa_area below needs a sqrt, as the areas texture is compressed // quadratically: vec2 sqrt_d = sqrt(d); // Fetch the right crossing edges: float e2 = GLSL_TEXTURE(edges_tex, coords.zy + u_texel_size * vec2(1, 0), 0.0).r; // Ok, we know how this pattern looks like, now it is time for getting // the actual area: weights.rg = smaa_area(area_tex, sqrt_d, e1, e2, subsample_indices.y); // Fix corners: coords.y = texcoord.y; detect_horizontal_corner_pattern(edges_tex, weights.rg, coords.xyzy, d); # if !SMAA_DISABLE_DIAG_DETECTION } else e.r = 0.0; // Skip vertical processing. # endif } if (e.r > 0.0) { // Edge at west vec2 d; // Find the distance to the top: vec3 coords; coords.y = search_y_up(edges_tex, search_tex, v_offset_1.xy, v_offset_2.z); coords.x = v_offset_0.x; // v_offset_1.x = texcoord.x - 0.25 * u_texel_size.x; d.x = coords.y; // Fetch the top crossing edges: float e1 = GLSL_TEXTURE(edges_tex, coords.xy, 0.0).g; // Find the distance to the bottom: coords.z = search_y_down(edges_tex, search_tex, v_offset_1.zw, v_offset_2.w); d.y = coords.z; // We want the distances to be in pixel units: d = abs(round_val(d / u_texel_size.yy - pixcoord.yy)); // smaa_area below needs a sqrt, as the areas texture is compressed // quadratically: vec2 sqrt_d = sqrt(d); // Fetch the bottom crossing edges: float e2 = GLSL_TEXTURE(edges_tex, coords.xz + u_texel_size * vec2(0, 1), 0.0).g; // Get the area for this direction: weights.ba = smaa_area(area_tex, sqrt_d, e1, e2, subsample_indices.x); // Fix corners: coords.x = texcoord.x; detect_vertical_corner_pattern(edges_tex, weights.ba, coords.xyxz, d); } return weights; } #endif //----------------------------------------------------------------------------- // Neighborhood Blending Pixel Shader (Third Pass) #if SMAA_PASS == SMAA_NEIGHBORHOOD_BLENDING vec4 neighborhood_blending(vec2 texcoord, sampler2D color_tex, sampler2D blend_tex #if SMAA_REPROJECTION , sampler2D velocity_tex #endif ) { // Fetch the blending weights for current pixel: vec4 a; a.x = GLSL_TEXTURE(blend_tex, v_offset.xy).a; // Right a.y = GLSL_TEXTURE(blend_tex, v_offset.zw).g; // Top a.wz = GLSL_TEXTURE(blend_tex, texcoord).xz; // Bottom / Left // Is there any blending weight with a value greater than 0.0? if (dot(a, vec4(1.0, 1.0, 1.0, 1.0)) < 1e-5) { vec4 color = GLSL_TEXTURE(color_tex, texcoord, 0.0); # if SMAA_REPROJECTION vec4 vel_tex = GLSL_TEXTURE(velocity_tex, v_texcoord); vec2 velocity = 2.0 * unpack_vec2(vel_tex) - 1.0; // Pack velocity into the alpha channel: color.a = sqrt(2.0 * length(velocity)); # endif return color; } else { bool h = max(a.x, a.z) > max(a.y, a.w); // max(horizontal) > max(vertical) // Calculate the blending offsets: vec4 blending_offset = vec4(0.0, a.y, 0.0, a.w); vec2 blending_weight = a.yw; smaa_movc(bvec4(h, h, h, h), blending_offset, vec4(a.x, 0.0, a.z, 0.0)); smaa_movc(bvec2(h, h), blending_weight, a.xz); blending_weight /= dot(blending_weight, vec2(1.0, 1.0)); // Calculate the texture coordinates: vec4 blending_coord = blending_offset * vec4(u_texel_size, - u_texel_size) + texcoord.xyxy; // We exploit bilinear filtering to mix current pixel with the chosen // neighbor: vec4 color = blending_weight.x * GLSL_TEXTURE(color_tex, blending_coord.xy, 0.0); color += blending_weight.y * GLSL_TEXTURE(color_tex, blending_coord.zw, 0.0); # if SMAA_REPROJECTION // Antialias velocity for proper reprojection in a later stage: vec4 vel_tex = GLSL_TEXTURE(velocity_tex, blending_coord.xy); vec2 velocity_add = 2.0 * unpack_vec2(vel_tex) - 1.0; vec2 velocity = blending_weight.x * velocity_add; vel_tex = GLSL_TEXTURE(velocity_tex, blending_coord.zw); velocity_add = 2.0 * unpack_vec2(vel_tex) - 1.0; velocity += blending_weight.y * velocity_add; // Pack velocity into the alpha channel: color.a = sqrt(2.0 * length(velocity)); # endif return color; } } #endif //----------------------------------------------------------------------------- // Temporal Resolve Pixel Shader (Optional Pass) #if SMAA_PASS == SMAA_RESOLVE vec4 resolve(vec2 texcoord, sampler2D current_color_tex, sampler2D previous_color_tex #if SMAA_REPROJECTION , sampler2D velocity_tex #endif ) { # if SMAA_REPROJECTION vec4 vel_tex = GLSL_TEXTURE(velocity_tex, v_texcoord); vec2 velocity; velocity = 2.0 * unpack_vec2(vel_tex) - 1.0; // Fetch current pixel: vec4 current = GLSL_TEXTURE(current_color_tex, texcoord); // Reproject current coordinates and fetch previous pixel: vec4 previous = GLSL_TEXTURE(previous_color_tex, texcoord - velocity); // Attenuate the previous pixel if the velocity is different: float delta = abs(current.a * current.a - previous.a * previous.a) / 2.0; float weight = 0.5 * clamp(1.0 - sqrt(delta) * SMAA_REPROJECTION_WEIGHT_SCALE, 0.0, 1.0); // Blend the pixels according to the calculated weight: vec4 color = mix(current, previous, weight); color.a = 1.0; return color; # else // Just blend the pixels: vec4 current = GLSL_TEXTURE(current_color_tex, texcoord); vec4 previous = GLSL_TEXTURE(previous_color_tex, texcoord); return mix(current, previous, 0.5); # endif } #endif void main(void) { #if SMAA_PASS == SMAA_EDGE_DETECTION vec4 color = vec4(smaa_luma_edge_detection(v_texcoord, u_color #if SMAA_PREDICATION , u_predication_tex #endif ), 0.0, 0.0); #elif SMAA_PASS == SMAA_BLENDING_WEIGHT_CALCULATION vec4 color = blending_weight_calculation(v_texcoord, v_pixcoord, u_color, u_area_tex, u_search_tex, u_subsample_indices); #elif SMAA_PASS == SMAA_NEIGHBORHOOD_BLENDING vec4 color = neighborhood_blending(v_texcoord, u_color, u_blend #if SMAA_REPROJECTION , u_velocity_tex #endif ); #elif SMAA_PASS == SMAA_RESOLVE vec4 color = vec4(resolve(v_texcoord, u_color, u_color_prev #if SMAA_REPROJECTION , u_velocity_tex #endif )); #else vec4 color = GLSL_TEXTURE(u_color, v_texcoord); #endif GLSL_OUT_FRAG_COLOR = color; }