#ifndef PROCEDURAL_GLSLF #define PROCEDURAL_GLSLF vec4 mod289(vec4 x) { return x - floor(x * (_1_0 / 289.0)) * 289.0; } vec3 mod289(vec3 x) { return x - floor(x * (_1_0 / 289.0)) * 289.0; } vec2 mod289(vec2 x) { return x - floor(x * (_1_0 / 289.0)) * 289.0; } vec4 mod7(vec4 x) { return x - floor(x * (_1_0 / 7.0)) * 7.0; } // Permutation polynomial: (34x^2 + 5x) mod 289 vec4 permute(vec4 x) { return mod289((34.0 * x + 5.0) * x); } // Cellular noise ("Worley noise") in 2D in GLSL. // Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved. // This code is released under the conditions of the MIT license. // See LICENSE file for details. // Cellular noise, returning F1 and F2 in a vec2. // Speeded up by using 2x2 search window instead of 3x3, // at the expense of some strong pattern artifacts. // F2 is often wrong and has sharp discontinuities. // If you need a smooth F2, use the slower 3x3 version. // F1 is sometimes wrong, too, but OK for most purposes. #define K 0.142857142857 // 1/7 #define K2 0.0714285714285 // K/2 #define JITTER 0.7 // JITTER 1.0 makes F1 wrong more often vec2 cellular2x2(vec2 P) { vec2 Pi = mod289(floor(P)); vec2 Pf = fract(P); vec4 Pfx = Pf.x + vec4(-0.5, -1.5, -0.5, -1.5); vec4 Pfy = Pf.y + vec4(-0.5, -0.5, -1.5, -1.5); vec4 p = permute(Pi.x + vec4(_0_0, _1_0, _0_0, _1_0)); p = permute(p + Pi.y + vec4(_0_0, _0_0, _1_0, _1_0)); vec4 ox = mod7(p)*K+K2; vec4 oy = mod7(floor(p*K))*K+K2; vec4 dx = Pfx + JITTER*ox; vec4 dy = Pfy + JITTER*oy; vec4 d = dx * dx + dy * dy; // d11, d12, d21 and d22, squared // Sort out the two smallest distances #if 1 // Cheat and pick only F1 d.xy = min(d.xy, d.zw); d.x = min(d.x, d.y); return d.xx; // F1 duplicated, F2 not computed #else // Do it right and find both F1 and F2 d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap if smaller d.xz = (d.x < d.z) ? d.xz : d.zx; d.xw = (d.x < d.w) ? d.xw : d.wx; d.y = min(d.y, d.z); d.y = min(d.y, d.w); return sqrt(d.xy); #endif } //Special Voronoi noise for caustics with aberration vec3 cellular2x2_caust(vec2 P, float aber) { vec2 Pi = mod289(floor(P)); vec2 Pf = fract(P); vec4 Pfx = Pf.x + vec4(-0.5, -1.5, -0.5, -1.5); vec4 Pfy = Pf.y + vec4(-0.5, -0.5, -1.5, -1.5); vec4 p = permute(Pi.x + vec4(_0_0, _1_0, _0_0, _1_0)); p = permute(p + Pi.y + vec4(_0_0, _0_0, _1_0, _1_0)); vec4 ox = mod7(p) * K + K2; vec4 oy = mod7(floor(p * K)) * K + K2; vec4 dx = Pfx + JITTER * ox; vec4 dy = Pfy + JITTER * oy; vec4 d1 = dx * dx + dy * dy; // d11, d12, d21 and d22, squared dx += aber; dy += aber; vec4 d2 = dx * dx + dy * dy; // d11, d12, d21 and d22, squared dx += aber; dy += aber; vec4 d3 = dx * dx + dy * dy; // d11, d12, d21 and d22, squared // Sort out the two smallest distances // Cheat and pick only F1 d1.xy = min(d1.xy, d1.zw); d1.x = min(d1.x, d1.y); d2.xy = min(d2.xy, d2.zw); d2.x = min(d2.x, d2.y); d3.xy = min(d3.xy, d3.zw); d3.x = min(d3.x, d3.y); return vec3(d1.x, d2.x, d3.x); // F1 duplicated, F2 not computed } // // Description : Array and textureless GLSL 2D simplex noise function. // Author : Ian McEwan, Ashima Arts. // Maintainer : ijm // Lastmod : 20110822 (ijm) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // vec3 permute3(vec3 x) { return mod289(((x*34.0)+_1_0)*x); } float snoise(vec2 v) { const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0 0.366025403784439, // 0.5*(sqrt(3.0)-1.0) -0.577350269189626, // -1.0 + 2.0 * C.x 0.024390243902439); // 1.0 / 41.0 // First corner vec2 i = floor(v + dot(v, C.yy) ); vec2 x0 = v - i + dot(i, C.xx); // Other corners vec2 i1; //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 //i1.y = 1.0 - i1.x; i1 = (x0.x > x0.y) ? vec2(_1_0, _0_0) : vec2(_0_0, _1_0); // x0 = x0 - 0.0 + 0.0 * C.xx ; // x1 = x0 - i1 + 1.0 * C.xx ; // x2 = x0 - 1.0 + 2.0 * C.xx ; vec4 x12 = x0.xyxy + C.xxzz; x12.xy -= i1; // Permutations i = mod289(i); // Avoid truncation effects in permutation vec3 p = permute3( permute3( i.y + vec3(_0_0, i1.y, _1_0 )) + i.x + vec3(_0_0, i1.x, _1_0 )); vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), _0_0); m = m*m ; m = m*m ; // Gradients: 41 points uniformly over a line, mapped onto a diamond. // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) vec3 x = 2.0 * fract(p * C.www) - _1_0; vec3 h = abs(x) - 0.5; vec3 ox = floor(x + 0.5); vec3 a0 = x - ox; // Normalise gradients implicitly by scaling m // Approximation of: m *= inversesqrt( a0*a0 + h*h ); m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h ); // Compute final noise value at P vec3 g; g.x = a0.x * x0.x + h.x * x0.y; g.yz = a0.yz * x12.xz + h.yz * x12.yw; return 130.0 * dot(m, g); } // generating noise/pattern texture for dithering vec2 generate_dithering_tex(vec2 coord) { float d1 = dot(coord, vec2(12.9898, 78.233)); float d2 = dot(coord, vec2(12.9898, 78.233) * 2.0); float noiseX = fract(sin(d1) * 43758.5453) * 2.0 - _1_0; float noiseY = fract(sin(d2) * 43758.5453) * 2.0 - _1_0; return vec2(noiseX, noiseY); } #endif