12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912229132291422915229162291722918229192292022921229222292322924229252292622927229282292922930229312293222933229342293522936229372293822939229402294122942229432294422945229462294722948229492295022951229522295322954229552295622957229582295922960229612296222963229642296522966229672296822969229702297122972229732297422975229762297722978229792298022981229822298322984229852298622987229882298922990229912299222993229942299522996229972299822999230002300123002230032300423005230062300723008230092301023011230122301323014230152301623017230182301923020230212302223023230242302523026230272302823029230302303123032230332303423035230362303723038230392304023041230422304323044230452304623047230482304923050230512305223053230542305523056230572305823059230602306123062230632306423065230662306723068230692307023071230722307323074230752307623077230782307923080230812308223083230842308523086230872308823089230902309123092230932309423095230962309723098230992310023101231022310323104231052310623107231082310923110231112311223113231142311523116231172311823119231202312123122231232312423125231262312723128231292313023131231322313323134231352313623137231382313923140231412314223143231442314523146231472314823149231502315123152231532315423155231562315723158231592316023161231622316323164231652316623167231682316923170231712317223173231742317523176231772317823179231802318123182231832318423185231862318723188231892319023191231922319323194231952319623197231982319923200232012320223203232042320523206232072320823209232102321123212232132321423215232162321723218232192322023221232222322323224232252322623227232282322923230232312323223233232342323523236232372323823239232402324123242232432324423245232462324723248232492325023251232522325323254232552325623257232582325923260232612326223263232642326523266232672326823269232702327123272232732327423275232762327723278232792328023281232822328323284232852328623287232882328923290232912329223293232942329523296232972329823299233002330123302233032330423305233062330723308233092331023311233122331323314233152331623317233182331923320233212332223323233242332523326233272332823329233302333123332233332333423335233362333723338233392334023341233422334323344233452334623347233482334923350233512335223353233542335523356233572335823359233602336123362233632336423365233662336723368233692337023371233722337323374233752337623377233782337923380233812338223383233842338523386233872338823389233902339123392233932339423395233962339723398233992340023401234022340323404234052340623407234082340923410234112341223413234142341523416234172341823419234202342123422234232342423425234262342723428234292343023431234322343323434234352343623437234382343923440234412344223443234442344523446234472344823449234502345123452234532345423455234562345723458234592346023461234622346323464234652346623467234682346923470234712347223473234742347523476234772347823479234802348123482234832348423485234862348723488234892349023491234922349323494234952349623497234982349923500235012350223503235042350523506235072350823509235102351123512235132351423515235162351723518235192352023521235222352323524235252352623527235282352923530235312353223533235342353523536235372353823539235402354123542235432354423545235462354723548235492355023551235522355323554235552355623557235582355923560235612356223563235642356523566235672356823569235702357123572235732357423575235762357723578235792358023581235822358323584235852358623587235882358923590235912359223593235942359523596235972359823599236002360123602236032360423605236062360723608236092361023611236122361323614236152361623617236182361923620236212362223623236242362523626236272362823629236302363123632236332363423635236362363723638236392364023641236422364323644236452364623647236482364923650236512365223653236542365523656236572365823659236602366123662236632366423665236662366723668236692367023671236722367323674236752367623677236782367923680236812368223683236842368523686236872368823689236902369123692236932369423695236962369723698236992370023701237022370323704237052370623707237082370923710237112371223713237142371523716237172371823719237202372123722237232372423725237262372723728237292373023731237322373323734237352373623737237382373923740237412374223743237442374523746237472374823749237502375123752237532375423755237562375723758237592376023761237622376323764237652376623767237682376923770237712377223773237742377523776237772377823779237802378123782237832378423785237862378723788237892379023791237922379323794237952379623797237982379923800238012380223803238042380523806238072380823809238102381123812238132381423815238162381723818238192382023821238222382323824238252382623827238282382923830238312383223833238342383523836238372383823839238402384123842238432384423845238462384723848238492385023851238522385323854238552385623857238582385923860238612386223863238642386523866238672386823869238702387123872238732387423875238762387723878238792388023881238822388323884238852388623887238882388923890238912389223893238942389523896238972389823899239002390123902239032390423905239062390723908239092391023911239122391323914239152391623917239182391923920239212392223923239242392523926239272392823929239302393123932239332393423935239362393723938239392394023941239422394323944239452394623947239482394923950239512395223953239542395523956239572395823959239602396123962239632396423965239662396723968239692397023971239722397323974239752397623977239782397923980239812398223983239842398523986239872398823989239902399123992239932399423995239962399723998239992400024001240022400324004240052400624007240082400924010240112401224013240142401524016240172401824019240202402124022240232402424025240262402724028240292403024031240322403324034240352403624037240382403924040240412404224043240442404524046240472404824049240502405124052240532405424055240562405724058240592406024061240622406324064240652406624067240682406924070240712407224073240742407524076240772407824079240802408124082240832408424085240862408724088240892409024091240922409324094240952409624097240982409924100241012410224103241042410524106241072410824109241102411124112241132411424115241162411724118241192412024121241222412324124241252412624127241282412924130241312413224133241342413524136241372413824139241402414124142241432414424145241462414724148241492415024151241522415324154241552415624157241582415924160241612416224163241642416524166241672416824169241702417124172241732417424175241762417724178241792418024181241822418324184241852418624187241882418924190241912419224193241942419524196241972419824199242002420124202242032420424205242062420724208242092421024211242122421324214242152421624217242182421924220242212422224223242242422524226242272422824229242302423124232242332423424235242362423724238242392424024241242422424324244242452424624247242482424924250242512425224253242542425524256242572425824259242602426124262242632426424265242662426724268242692427024271242722427324274242752427624277242782427924280242812428224283242842428524286242872428824289242902429124292242932429424295242962429724298242992430024301243022430324304243052430624307243082430924310243112431224313243142431524316243172431824319243202432124322243232432424325243262432724328243292433024331243322433324334243352433624337243382433924340243412434224343243442434524346243472434824349243502435124352243532435424355243562435724358243592436024361243622436324364243652436624367243682436924370243712437224373243742437524376243772437824379243802438124382243832438424385243862438724388243892439024391243922439324394243952439624397243982439924400244012440224403244042440524406244072440824409244102441124412244132441424415244162441724418244192442024421244222442324424244252442624427244282442924430244312443224433244342443524436244372443824439244402444124442244432444424445244462444724448244492445024451244522445324454244552445624457244582445924460244612446224463244642446524466244672446824469244702447124472244732447424475244762447724478244792448024481244822448324484244852448624487244882448924490244912449224493244942449524496244972449824499245002450124502245032450424505245062450724508245092451024511245122451324514245152451624517245182451924520245212452224523245242452524526245272452824529245302453124532245332453424535245362453724538245392454024541245422454324544245452454624547245482454924550245512455224553245542455524556245572455824559245602456124562245632456424565245662456724568245692457024571245722457324574245752457624577245782457924580245812458224583245842458524586245872458824589245902459124592245932459424595245962459724598245992460024601246022460324604246052460624607246082460924610246112461224613246142461524616246172461824619246202462124622246232462424625246262462724628246292463024631246322463324634246352463624637246382463924640246412464224643246442464524646246472464824649246502465124652246532465424655246562465724658246592466024661246622466324664246652466624667246682466924670246712467224673246742467524676246772467824679246802468124682246832468424685246862468724688246892469024691246922469324694246952469624697246982469924700247012470224703247042470524706247072470824709247102471124712247132471424715247162471724718247192472024721247222472324724247252472624727247282472924730247312473224733247342473524736247372473824739247402474124742247432474424745247462474724748247492475024751247522475324754247552475624757247582475924760247612476224763247642476524766247672476824769247702477124772247732477424775247762477724778247792478024781247822478324784247852478624787247882478924790247912479224793247942479524796247972479824799248002480124802248032480424805248062480724808248092481024811248122481324814248152481624817248182481924820248212482224823248242482524826248272482824829248302483124832248332483424835248362483724838248392484024841248422484324844248452484624847248482484924850248512485224853248542485524856248572485824859248602486124862248632486424865248662486724868248692487024871248722487324874248752487624877248782487924880248812488224883248842488524886248872488824889248902489124892248932489424895248962489724898248992490024901249022490324904249052490624907249082490924910249112491224913249142491524916249172491824919249202492124922249232492424925249262492724928249292493024931249322493324934249352493624937249382493924940249412494224943249442494524946249472494824949249502495124952249532495424955249562495724958249592496024961249622496324964249652496624967249682496924970249712497224973249742497524976249772497824979249802498124982249832498424985249862498724988249892499024991249922499324994249952499624997249982499925000250012500225003250042500525006250072500825009250102501125012250132501425015250162501725018250192502025021250222502325024250252502625027250282502925030250312503225033250342503525036250372503825039250402504125042250432504425045250462504725048250492505025051250522505325054250552505625057250582505925060250612506225063250642506525066250672506825069250702507125072250732507425075250762507725078250792508025081250822508325084250852508625087250882508925090250912509225093250942509525096250972509825099251002510125102251032510425105251062510725108251092511025111251122511325114251152511625117251182511925120251212512225123251242512525126251272512825129251302513125132251332513425135251362513725138251392514025141251422514325144251452514625147251482514925150251512515225153251542515525156251572515825159251602516125162251632516425165251662516725168251692517025171251722517325174251752517625177251782517925180251812518225183251842518525186251872518825189251902519125192251932519425195251962519725198251992520025201252022520325204252052520625207252082520925210252112521225213252142521525216252172521825219252202522125222252232522425225252262522725228252292523025231252322523325234252352523625237252382523925240252412524225243252442524525246252472524825249252502525125252252532525425255252562525725258252592526025261252622526325264252652526625267252682526925270252712527225273252742527525276252772527825279252802528125282252832528425285252862528725288252892529025291252922529325294252952529625297252982529925300253012530225303253042530525306253072530825309253102531125312253132531425315253162531725318253192532025321253222532325324253252532625327253282532925330253312533225333253342533525336253372533825339253402534125342253432534425345253462534725348253492535025351253522535325354253552535625357253582535925360253612536225363253642536525366253672536825369253702537125372253732537425375253762537725378253792538025381253822538325384253852538625387253882538925390253912539225393253942539525396253972539825399254002540125402254032540425405254062540725408254092541025411254122541325414254152541625417254182541925420254212542225423254242542525426254272542825429254302543125432254332543425435254362543725438254392544025441254422544325444254452544625447254482544925450254512545225453254542545525456254572545825459254602546125462254632546425465254662546725468254692547025471254722547325474254752547625477254782547925480254812548225483254842548525486254872548825489254902549125492254932549425495254962549725498254992550025501255022550325504255052550625507255082550925510255112551225513255142551525516255172551825519255202552125522255232552425525255262552725528255292553025531255322553325534255352553625537255382553925540255412554225543255442554525546255472554825549255502555125552255532555425555255562555725558255592556025561255622556325564255652556625567255682556925570255712557225573255742557525576255772557825579255802558125582255832558425585255862558725588255892559025591255922559325594255952559625597255982559925600256012560225603256042560525606256072560825609256102561125612256132561425615256162561725618256192562025621256222562325624256252562625627256282562925630256312563225633256342563525636256372563825639256402564125642256432564425645256462564725648256492565025651256522565325654256552565625657256582565925660256612566225663256642566525666256672566825669256702567125672256732567425675256762567725678256792568025681256822568325684256852568625687256882568925690256912569225693256942569525696256972569825699257002570125702257032570425705257062570725708257092571025711257122571325714257152571625717257182571925720257212572225723257242572525726257272572825729257302573125732257332573425735257362573725738257392574025741257422574325744257452574625747257482574925750257512575225753257542575525756257572575825759257602576125762257632576425765257662576725768257692577025771257722577325774257752577625777257782577925780257812578225783257842578525786257872578825789257902579125792257932579425795257962579725798257992580025801258022580325804258052580625807258082580925810258112581225813258142581525816258172581825819258202582125822258232582425825258262582725828258292583025831258322583325834258352583625837258382583925840258412584225843258442584525846258472584825849258502585125852258532585425855258562585725858258592586025861258622586325864258652586625867258682586925870258712587225873258742587525876258772587825879258802588125882258832588425885258862588725888258892589025891258922589325894258952589625897258982589925900259012590225903259042590525906259072590825909259102591125912259132591425915259162591725918259192592025921259222592325924259252592625927259282592925930259312593225933259342593525936259372593825939259402594125942259432594425945259462594725948259492595025951259522595325954259552595625957259582595925960259612596225963259642596525966259672596825969259702597125972259732597425975259762597725978259792598025981259822598325984259852598625987259882598925990259912599225993259942599525996259972599825999260002600126002260032600426005260062600726008260092601026011260122601326014260152601626017260182601926020260212602226023260242602526026260272602826029260302603126032260332603426035260362603726038260392604026041260422604326044260452604626047260482604926050260512605226053260542605526056260572605826059260602606126062260632606426065260662606726068260692607026071260722607326074260752607626077260782607926080260812608226083260842608526086260872608826089260902609126092260932609426095260962609726098260992610026101261022610326104261052610626107261082610926110261112611226113261142611526116261172611826119261202612126122261232612426125261262612726128261292613026131261322613326134261352613626137261382613926140261412614226143261442614526146261472614826149261502615126152261532615426155261562615726158261592616026161261622616326164261652616626167261682616926170261712617226173261742617526176261772617826179261802618126182261832618426185261862618726188261892619026191261922619326194261952619626197261982619926200262012620226203262042620526206262072620826209262102621126212262132621426215262162621726218262192622026221262222622326224262252622626227262282622926230262312623226233262342623526236262372623826239262402624126242262432624426245262462624726248262492625026251262522625326254262552625626257262582625926260262612626226263262642626526266262672626826269262702627126272262732627426275262762627726278262792628026281262822628326284262852628626287262882628926290262912629226293262942629526296262972629826299263002630126302263032630426305263062630726308263092631026311263122631326314263152631626317263182631926320263212632226323263242632526326263272632826329263302633126332263332633426335263362633726338263392634026341263422634326344263452634626347263482634926350263512635226353263542635526356263572635826359263602636126362263632636426365263662636726368263692637026371263722637326374263752637626377263782637926380263812638226383263842638526386263872638826389263902639126392263932639426395263962639726398263992640026401264022640326404264052640626407264082640926410264112641226413264142641526416264172641826419264202642126422264232642426425264262642726428264292643026431264322643326434264352643626437264382643926440264412644226443264442644526446264472644826449264502645126452264532645426455264562645726458264592646026461264622646326464264652646626467264682646926470264712647226473264742647526476264772647826479264802648126482264832648426485264862648726488264892649026491264922649326494264952649626497264982649926500265012650226503265042650526506265072650826509265102651126512265132651426515265162651726518265192652026521265222652326524265252652626527265282652926530265312653226533265342653526536265372653826539265402654126542265432654426545265462654726548265492655026551265522655326554265552655626557265582655926560265612656226563265642656526566265672656826569265702657126572265732657426575265762657726578265792658026581265822658326584265852658626587265882658926590265912659226593265942659526596265972659826599266002660126602266032660426605266062660726608266092661026611266122661326614266152661626617266182661926620266212662226623266242662526626266272662826629266302663126632266332663426635266362663726638266392664026641266422664326644266452664626647266482664926650266512665226653266542665526656266572665826659266602666126662266632666426665266662666726668266692667026671266722667326674266752667626677266782667926680266812668226683266842668526686266872668826689266902669126692266932669426695266962669726698266992670026701267022670326704267052670626707267082670926710267112671226713267142671526716267172671826719267202672126722267232672426725267262672726728267292673026731267322673326734267352673626737267382673926740267412674226743267442674526746267472674826749267502675126752267532675426755267562675726758267592676026761267622676326764267652676626767267682676926770267712677226773267742677526776267772677826779267802678126782267832678426785267862678726788267892679026791267922679326794267952679626797267982679926800268012680226803268042680526806268072680826809268102681126812268132681426815268162681726818268192682026821268222682326824268252682626827268282682926830268312683226833268342683526836268372683826839268402684126842268432684426845268462684726848268492685026851268522685326854268552685626857268582685926860268612686226863268642686526866268672686826869268702687126872268732687426875268762687726878268792688026881268822688326884268852688626887268882688926890268912689226893268942689526896268972689826899269002690126902269032690426905269062690726908269092691026911269122691326914269152691626917269182691926920269212692226923269242692526926269272692826929269302693126932269332693426935269362693726938269392694026941269422694326944269452694626947269482694926950269512695226953269542695526956269572695826959269602696126962269632696426965269662696726968269692697026971269722697326974269752697626977269782697926980269812698226983269842698526986269872698826989269902699126992269932699426995269962699726998269992700027001270022700327004270052700627007270082700927010270112701227013270142701527016270172701827019270202702127022270232702427025270262702727028270292703027031270322703327034270352703627037270382703927040270412704227043270442704527046270472704827049270502705127052270532705427055270562705727058270592706027061270622706327064270652706627067270682706927070270712707227073270742707527076270772707827079270802708127082270832708427085270862708727088270892709027091270922709327094270952709627097270982709927100271012710227103271042710527106271072710827109271102711127112271132711427115271162711727118271192712027121271222712327124271252712627127271282712927130271312713227133271342713527136271372713827139271402714127142271432714427145271462714727148271492715027151271522715327154271552715627157271582715927160271612716227163271642716527166271672716827169271702717127172271732717427175271762717727178271792718027181271822718327184271852718627187271882718927190271912719227193271942719527196271972719827199272002720127202272032720427205272062720727208272092721027211272122721327214272152721627217272182721927220272212722227223272242722527226272272722827229272302723127232272332723427235272362723727238272392724027241272422724327244272452724627247272482724927250272512725227253272542725527256272572725827259272602726127262272632726427265272662726727268272692727027271272722727327274272752727627277272782727927280272812728227283272842728527286272872728827289272902729127292272932729427295272962729727298272992730027301273022730327304273052730627307273082730927310273112731227313273142731527316273172731827319273202732127322273232732427325273262732727328273292733027331273322733327334273352733627337273382733927340273412734227343273442734527346273472734827349273502735127352273532735427355273562735727358273592736027361273622736327364273652736627367273682736927370273712737227373273742737527376273772737827379273802738127382273832738427385273862738727388273892739027391273922739327394273952739627397273982739927400274012740227403274042740527406274072740827409274102741127412274132741427415274162741727418274192742027421274222742327424274252742627427274282742927430274312743227433274342743527436274372743827439274402744127442274432744427445274462744727448274492745027451274522745327454274552745627457274582745927460274612746227463274642746527466274672746827469274702747127472274732747427475274762747727478274792748027481274822748327484274852748627487274882748927490274912749227493274942749527496274972749827499275002750127502275032750427505275062750727508275092751027511275122751327514275152751627517275182751927520275212752227523275242752527526275272752827529275302753127532275332753427535275362753727538275392754027541275422754327544275452754627547275482754927550275512755227553275542755527556275572755827559275602756127562275632756427565275662756727568275692757027571275722757327574275752757627577275782757927580275812758227583275842758527586275872758827589275902759127592275932759427595275962759727598275992760027601276022760327604276052760627607276082760927610276112761227613276142761527616276172761827619276202762127622276232762427625276262762727628276292763027631276322763327634276352763627637276382763927640276412764227643276442764527646276472764827649276502765127652276532765427655276562765727658276592766027661276622766327664276652766627667276682766927670276712767227673276742767527676276772767827679276802768127682276832768427685276862768727688276892769027691276922769327694276952769627697276982769927700277012770227703277042770527706277072770827709277102771127712277132771427715277162771727718277192772027721277222772327724277252772627727277282772927730277312773227733277342773527736277372773827739277402774127742277432774427745277462774727748277492775027751277522775327754277552775627757277582775927760277612776227763277642776527766277672776827769277702777127772277732777427775277762777727778277792778027781277822778327784277852778627787277882778927790277912779227793277942779527796277972779827799278002780127802278032780427805278062780727808278092781027811278122781327814278152781627817278182781927820278212782227823278242782527826278272782827829278302783127832278332783427835278362783727838278392784027841278422784327844278452784627847278482784927850278512785227853278542785527856278572785827859278602786127862278632786427865278662786727868278692787027871278722787327874278752787627877278782787927880278812788227883278842788527886278872788827889278902789127892278932789427895278962789727898278992790027901279022790327904279052790627907279082790927910279112791227913279142791527916279172791827919279202792127922279232792427925279262792727928279292793027931279322793327934279352793627937279382793927940279412794227943279442794527946279472794827949279502795127952279532795427955279562795727958279592796027961279622796327964279652796627967279682796927970279712797227973279742797527976279772797827979279802798127982279832798427985279862798727988279892799027991279922799327994279952799627997279982799928000280012800228003280042800528006280072800828009280102801128012280132801428015280162801728018280192802028021280222802328024280252802628027280282802928030280312803228033280342803528036280372803828039280402804128042280432804428045280462804728048280492805028051280522805328054280552805628057280582805928060280612806228063280642806528066280672806828069280702807128072280732807428075280762807728078280792808028081280822808328084280852808628087280882808928090280912809228093280942809528096280972809828099281002810128102281032810428105281062810728108281092811028111281122811328114281152811628117281182811928120281212812228123281242812528126281272812828129281302813128132281332813428135281362813728138281392814028141281422814328144281452814628147281482814928150281512815228153281542815528156281572815828159281602816128162281632816428165281662816728168281692817028171281722817328174281752817628177281782817928180281812818228183281842818528186281872818828189281902819128192281932819428195281962819728198281992820028201282022820328204282052820628207282082820928210282112821228213282142821528216282172821828219282202822128222282232822428225282262822728228282292823028231282322823328234282352823628237282382823928240282412824228243282442824528246282472824828249282502825128252282532825428255282562825728258282592826028261282622826328264282652826628267282682826928270282712827228273282742827528276282772827828279282802828128282282832828428285282862828728288282892829028291282922829328294282952829628297282982829928300283012830228303283042830528306283072830828309283102831128312283132831428315283162831728318283192832028321283222832328324283252832628327283282832928330283312833228333283342833528336283372833828339283402834128342283432834428345283462834728348283492835028351283522835328354283552835628357283582835928360283612836228363283642836528366283672836828369283702837128372283732837428375283762837728378283792838028381283822838328384283852838628387283882838928390283912839228393283942839528396283972839828399284002840128402284032840428405284062840728408284092841028411284122841328414284152841628417284182841928420284212842228423284242842528426284272842828429284302843128432284332843428435284362843728438284392844028441284422844328444284452844628447284482844928450284512845228453284542845528456284572845828459284602846128462284632846428465284662846728468284692847028471284722847328474284752847628477284782847928480284812848228483284842848528486284872848828489284902849128492284932849428495284962849728498284992850028501285022850328504285052850628507285082850928510285112851228513285142851528516285172851828519285202852128522285232852428525285262852728528285292853028531285322853328534285352853628537285382853928540285412854228543285442854528546285472854828549285502855128552285532855428555285562855728558285592856028561285622856328564285652856628567285682856928570285712857228573285742857528576285772857828579285802858128582285832858428585285862858728588285892859028591285922859328594285952859628597285982859928600286012860228603286042860528606286072860828609286102861128612286132861428615286162861728618286192862028621286222862328624286252862628627286282862928630286312863228633286342863528636286372863828639286402864128642286432864428645286462864728648286492865028651286522865328654286552865628657286582865928660286612866228663286642866528666286672866828669286702867128672286732867428675286762867728678286792868028681286822868328684286852868628687286882868928690286912869228693286942869528696286972869828699287002870128702287032870428705287062870728708287092871028711287122871328714287152871628717287182871928720287212872228723287242872528726287272872828729287302873128732287332873428735287362873728738287392874028741287422874328744287452874628747287482874928750287512875228753287542875528756287572875828759287602876128762287632876428765287662876728768287692877028771287722877328774287752877628777287782877928780287812878228783287842878528786287872878828789287902879128792287932879428795287962879728798287992880028801288022880328804288052880628807288082880928810288112881228813288142881528816288172881828819288202882128822288232882428825288262882728828288292883028831288322883328834288352883628837288382883928840288412884228843288442884528846288472884828849288502885128852288532885428855288562885728858288592886028861288622886328864288652886628867288682886928870288712887228873288742887528876288772887828879288802888128882288832888428885288862888728888288892889028891288922889328894288952889628897288982889928900289012890228903289042890528906289072890828909289102891128912289132891428915289162891728918289192892028921289222892328924289252892628927289282892928930289312893228933289342893528936289372893828939289402894128942289432894428945289462894728948289492895028951289522895328954289552895628957289582895928960289612896228963289642896528966289672896828969289702897128972289732897428975289762897728978289792898028981289822898328984289852898628987289882898928990289912899228993289942899528996289972899828999290002900129002290032900429005290062900729008290092901029011290122901329014290152901629017290182901929020290212902229023290242902529026290272902829029290302903129032290332903429035290362903729038290392904029041290422904329044290452904629047290482904929050290512905229053290542905529056290572905829059290602906129062290632906429065290662906729068290692907029071290722907329074290752907629077290782907929080290812908229083290842908529086290872908829089290902909129092290932909429095290962909729098290992910029101291022910329104291052910629107291082910929110291112911229113291142911529116291172911829119291202912129122291232912429125291262912729128291292913029131291322913329134291352913629137291382913929140291412914229143291442914529146291472914829149291502915129152291532915429155291562915729158291592916029161291622916329164291652916629167291682916929170291712917229173291742917529176291772917829179291802918129182291832918429185291862918729188291892919029191291922919329194291952919629197291982919929200292012920229203292042920529206292072920829209292102921129212292132921429215292162921729218292192922029221292222922329224292252922629227292282922929230292312923229233292342923529236292372923829239292402924129242292432924429245292462924729248292492925029251292522925329254292552925629257292582925929260292612926229263292642926529266292672926829269292702927129272292732927429275292762927729278292792928029281292822928329284292852928629287292882928929290292912929229293292942929529296292972929829299293002930129302293032930429305293062930729308293092931029311293122931329314293152931629317293182931929320293212932229323293242932529326293272932829329293302933129332293332933429335293362933729338293392934029341293422934329344293452934629347293482934929350293512935229353293542935529356293572935829359293602936129362293632936429365293662936729368293692937029371293722937329374293752937629377293782937929380293812938229383293842938529386293872938829389293902939129392293932939429395293962939729398293992940029401294022940329404294052940629407294082940929410294112941229413294142941529416294172941829419294202942129422294232942429425294262942729428294292943029431294322943329434294352943629437294382943929440294412944229443294442944529446294472944829449294502945129452294532945429455294562945729458294592946029461294622946329464294652946629467294682946929470294712947229473294742947529476294772947829479294802948129482294832948429485294862948729488294892949029491294922949329494294952949629497294982949929500295012950229503295042950529506295072950829509295102951129512295132951429515295162951729518295192952029521295222952329524295252952629527295282952929530295312953229533295342953529536295372953829539295402954129542295432954429545295462954729548295492955029551295522955329554295552955629557295582955929560295612956229563295642956529566295672956829569295702957129572295732957429575295762957729578295792958029581295822958329584295852958629587295882958929590295912959229593295942959529596295972959829599296002960129602296032960429605296062960729608296092961029611296122961329614296152961629617296182961929620296212962229623296242962529626296272962829629296302963129632296332963429635296362963729638296392964029641296422964329644296452964629647296482964929650296512965229653296542965529656296572965829659296602966129662296632966429665296662966729668296692967029671296722967329674296752967629677296782967929680296812968229683296842968529686296872968829689296902969129692296932969429695296962969729698296992970029701297022970329704297052970629707297082970929710297112971229713297142971529716297172971829719297202972129722297232972429725297262972729728297292973029731297322973329734297352973629737297382973929740297412974229743297442974529746297472974829749297502975129752297532975429755297562975729758297592976029761297622976329764297652976629767297682976929770297712977229773297742977529776297772977829779297802978129782297832978429785297862978729788297892979029791297922979329794297952979629797297982979929800298012980229803298042980529806298072980829809298102981129812298132981429815298162981729818298192982029821298222982329824298252982629827298282982929830298312983229833298342983529836298372983829839298402984129842298432984429845298462984729848298492985029851298522985329854298552985629857298582985929860298612986229863298642986529866298672986829869298702987129872298732987429875298762987729878298792988029881298822988329884298852988629887298882988929890298912989229893298942989529896298972989829899299002990129902299032990429905299062990729908299092991029911299122991329914299152991629917299182991929920299212992229923299242992529926299272992829929299302993129932299332993429935299362993729938299392994029941299422994329944299452994629947299482994929950299512995229953299542995529956299572995829959299602996129962299632996429965299662996729968299692997029971299722997329974299752997629977299782997929980299812998229983299842998529986299872998829989299902999129992299932999429995299962999729998299993000030001300023000330004300053000630007300083000930010300113001230013300143001530016300173001830019300203002130022300233002430025300263002730028300293003030031300323003330034300353003630037300383003930040300413004230043300443004530046300473004830049300503005130052300533005430055300563005730058300593006030061300623006330064300653006630067300683006930070300713007230073300743007530076300773007830079300803008130082300833008430085300863008730088300893009030091300923009330094300953009630097300983009930100301013010230103301043010530106301073010830109301103011130112301133011430115301163011730118301193012030121301223012330124301253012630127301283012930130301313013230133301343013530136301373013830139301403014130142301433014430145301463014730148301493015030151301523015330154301553015630157301583015930160301613016230163301643016530166301673016830169301703017130172301733017430175301763017730178301793018030181301823018330184301853018630187301883018930190301913019230193301943019530196301973019830199302003020130202302033020430205302063020730208302093021030211302123021330214302153021630217302183021930220302213022230223302243022530226302273022830229302303023130232302333023430235302363023730238302393024030241302423024330244302453024630247302483024930250302513025230253302543025530256302573025830259302603026130262302633026430265302663026730268302693027030271302723027330274302753027630277302783027930280302813028230283302843028530286302873028830289302903029130292302933029430295302963029730298302993030030301303023030330304303053030630307303083030930310303113031230313303143031530316303173031830319303203032130322303233032430325303263032730328303293033030331303323033330334303353033630337303383033930340303413034230343303443034530346303473034830349303503035130352303533035430355303563035730358303593036030361303623036330364303653036630367303683036930370303713037230373303743037530376303773037830379303803038130382303833038430385303863038730388303893039030391303923039330394303953039630397303983039930400304013040230403304043040530406304073040830409304103041130412304133041430415304163041730418304193042030421304223042330424304253042630427304283042930430304313043230433304343043530436304373043830439304403044130442304433044430445304463044730448304493045030451304523045330454304553045630457304583045930460304613046230463304643046530466304673046830469304703047130472304733047430475304763047730478304793048030481304823048330484304853048630487304883048930490304913049230493304943049530496304973049830499305003050130502305033050430505305063050730508305093051030511305123051330514305153051630517305183051930520305213052230523305243052530526305273052830529305303053130532305333053430535305363053730538305393054030541305423054330544305453054630547305483054930550305513055230553305543055530556305573055830559305603056130562305633056430565305663056730568305693057030571305723057330574305753057630577305783057930580305813058230583305843058530586305873058830589305903059130592305933059430595305963059730598305993060030601306023060330604306053060630607306083060930610306113061230613306143061530616306173061830619306203062130622306233062430625306263062730628306293063030631306323063330634306353063630637306383063930640306413064230643306443064530646306473064830649306503065130652306533065430655306563065730658306593066030661306623066330664306653066630667306683066930670306713067230673306743067530676306773067830679306803068130682306833068430685306863068730688306893069030691306923069330694306953069630697306983069930700307013070230703307043070530706307073070830709307103071130712307133071430715307163071730718307193072030721307223072330724307253072630727307283072930730307313073230733307343073530736307373073830739307403074130742307433074430745307463074730748307493075030751307523075330754307553075630757307583075930760307613076230763307643076530766307673076830769307703077130772307733077430775307763077730778307793078030781307823078330784307853078630787307883078930790307913079230793307943079530796307973079830799308003080130802308033080430805308063080730808308093081030811308123081330814308153081630817308183081930820308213082230823308243082530826308273082830829308303083130832308333083430835308363083730838308393084030841308423084330844308453084630847308483084930850308513085230853308543085530856308573085830859308603086130862308633086430865308663086730868308693087030871308723087330874308753087630877308783087930880308813088230883308843088530886308873088830889308903089130892308933089430895308963089730898308993090030901309023090330904309053090630907309083090930910309113091230913309143091530916309173091830919309203092130922309233092430925309263092730928309293093030931309323093330934309353093630937309383093930940309413094230943309443094530946309473094830949309503095130952309533095430955309563095730958309593096030961309623096330964309653096630967309683096930970309713097230973309743097530976309773097830979309803098130982309833098430985309863098730988309893099030991309923099330994309953099630997309983099931000310013100231003310043100531006310073100831009310103101131012310133101431015310163101731018310193102031021310223102331024310253102631027310283102931030310313103231033310343103531036310373103831039310403104131042310433104431045310463104731048310493105031051310523105331054310553105631057310583105931060310613106231063310643106531066310673106831069310703107131072310733107431075310763107731078310793108031081310823108331084310853108631087310883108931090310913109231093310943109531096310973109831099311003110131102311033110431105311063110731108311093111031111311123111331114311153111631117311183111931120311213112231123311243112531126311273112831129311303113131132311333113431135311363113731138311393114031141311423114331144311453114631147311483114931150311513115231153311543115531156311573115831159311603116131162311633116431165311663116731168311693117031171311723117331174311753117631177311783117931180311813118231183311843118531186311873118831189311903119131192311933119431195311963119731198311993120031201312023120331204312053120631207312083120931210312113121231213312143121531216312173121831219312203122131222312233122431225312263122731228312293123031231312323123331234312353123631237312383123931240312413124231243312443124531246312473124831249312503125131252312533125431255312563125731258312593126031261312623126331264312653126631267312683126931270312713127231273312743127531276312773127831279312803128131282312833128431285312863128731288312893129031291312923129331294312953129631297312983129931300313013130231303313043130531306313073130831309313103131131312313133131431315313163131731318313193132031321313223132331324313253132631327313283132931330313313133231333313343133531336313373133831339313403134131342313433134431345313463134731348313493135031351313523135331354313553135631357313583135931360313613136231363313643136531366313673136831369313703137131372313733137431375313763137731378313793138031381313823138331384313853138631387313883138931390313913139231393313943139531396313973139831399314003140131402314033140431405314063140731408314093141031411314123141331414314153141631417314183141931420314213142231423314243142531426314273142831429314303143131432314333143431435314363143731438314393144031441314423144331444314453144631447314483144931450314513145231453314543145531456314573145831459314603146131462314633146431465314663146731468314693147031471314723147331474314753147631477314783147931480314813148231483314843148531486314873148831489314903149131492314933149431495314963149731498314993150031501315023150331504315053150631507315083150931510315113151231513315143151531516315173151831519315203152131522315233152431525315263152731528315293153031531315323153331534315353153631537315383153931540315413154231543315443154531546315473154831549315503155131552315533155431555315563155731558315593156031561315623156331564315653156631567315683156931570315713157231573315743157531576315773157831579315803158131582315833158431585315863158731588315893159031591315923159331594315953159631597315983159931600316013160231603316043160531606316073160831609316103161131612316133161431615316163161731618316193162031621316223162331624316253162631627316283162931630316313163231633316343163531636316373163831639316403164131642316433164431645316463164731648316493165031651316523165331654316553165631657316583165931660316613166231663316643166531666316673166831669316703167131672316733167431675316763167731678316793168031681316823168331684316853168631687316883168931690316913169231693316943169531696316973169831699317003170131702317033170431705317063170731708317093171031711317123171331714317153171631717317183171931720317213172231723317243172531726317273172831729317303173131732317333173431735317363173731738317393174031741317423174331744317453174631747317483174931750317513175231753317543175531756317573175831759317603176131762317633176431765317663176731768317693177031771317723177331774317753177631777317783177931780317813178231783317843178531786317873178831789317903179131792317933179431795317963179731798317993180031801318023180331804318053180631807318083180931810318113181231813318143181531816318173181831819318203182131822318233182431825318263182731828318293183031831318323183331834318353183631837318383183931840318413184231843318443184531846318473184831849318503185131852318533185431855318563185731858318593186031861318623186331864318653186631867318683186931870318713187231873318743187531876318773187831879318803188131882318833188431885318863188731888318893189031891318923189331894318953189631897318983189931900319013190231903319043190531906319073190831909319103191131912319133191431915319163191731918319193192031921319223192331924319253192631927319283192931930319313193231933319343193531936319373193831939319403194131942319433194431945319463194731948319493195031951319523195331954319553195631957319583195931960319613196231963319643196531966319673196831969319703197131972319733197431975319763197731978319793198031981319823198331984319853198631987319883198931990319913199231993319943199531996319973199831999320003200132002320033200432005320063200732008320093201032011320123201332014320153201632017320183201932020320213202232023320243202532026320273202832029320303203132032320333203432035320363203732038320393204032041320423204332044320453204632047320483204932050320513205232053320543205532056320573205832059320603206132062320633206432065320663206732068320693207032071320723207332074320753207632077320783207932080320813208232083320843208532086320873208832089320903209132092320933209432095320963209732098320993210032101321023210332104321053210632107321083210932110321113211232113321143211532116321173211832119321203212132122321233212432125321263212732128321293213032131321323213332134321353213632137321383213932140321413214232143321443214532146321473214832149321503215132152321533215432155321563215732158321593216032161321623216332164321653216632167321683216932170321713217232173321743217532176321773217832179321803218132182321833218432185321863218732188321893219032191321923219332194321953219632197321983219932200322013220232203322043220532206322073220832209322103221132212322133221432215322163221732218322193222032221322223222332224322253222632227322283222932230322313223232233322343223532236322373223832239322403224132242322433224432245322463224732248322493225032251322523225332254322553225632257322583225932260322613226232263322643226532266322673226832269322703227132272322733227432275322763227732278322793228032281322823228332284322853228632287322883228932290322913229232293322943229532296322973229832299323003230132302323033230432305323063230732308323093231032311323123231332314323153231632317323183231932320323213232232323323243232532326323273232832329323303233132332323333233432335323363233732338323393234032341323423234332344323453234632347323483234932350323513235232353323543235532356323573235832359323603236132362323633236432365323663236732368323693237032371323723237332374323753237632377323783237932380323813238232383323843238532386323873238832389323903239132392323933239432395323963239732398323993240032401324023240332404324053240632407324083240932410324113241232413324143241532416324173241832419324203242132422324233242432425324263242732428324293243032431324323243332434324353243632437324383243932440324413244232443324443244532446324473244832449324503245132452324533245432455324563245732458324593246032461324623246332464324653246632467324683246932470324713247232473324743247532476324773247832479324803248132482324833248432485324863248732488324893249032491324923249332494324953249632497324983249932500325013250232503325043250532506325073250832509325103251132512325133251432515325163251732518325193252032521325223252332524325253252632527325283252932530325313253232533325343253532536325373253832539325403254132542325433254432545325463254732548325493255032551325523255332554325553255632557325583255932560325613256232563325643256532566325673256832569325703257132572325733257432575325763257732578325793258032581325823258332584325853258632587325883258932590325913259232593325943259532596325973259832599326003260132602326033260432605326063260732608326093261032611326123261332614326153261632617326183261932620326213262232623326243262532626326273262832629326303263132632326333263432635326363263732638326393264032641326423264332644326453264632647326483264932650326513265232653326543265532656326573265832659326603266132662326633266432665326663266732668326693267032671326723267332674326753267632677326783267932680326813268232683326843268532686326873268832689326903269132692326933269432695326963269732698326993270032701327023270332704327053270632707327083270932710327113271232713327143271532716327173271832719327203272132722327233272432725327263272732728327293273032731327323273332734327353273632737327383273932740327413274232743327443274532746327473274832749327503275132752327533275432755327563275732758327593276032761327623276332764327653276632767327683276932770327713277232773327743277532776327773277832779327803278132782327833278432785327863278732788327893279032791327923279332794327953279632797327983279932800328013280232803328043280532806328073280832809328103281132812328133281432815328163281732818328193282032821328223282332824328253282632827328283282932830328313283232833328343283532836328373283832839328403284132842328433284432845328463284732848328493285032851328523285332854328553285632857328583285932860328613286232863328643286532866328673286832869328703287132872328733287432875328763287732878328793288032881328823288332884328853288632887328883288932890328913289232893328943289532896328973289832899329003290132902329033290432905329063290732908329093291032911329123291332914329153291632917329183291932920329213292232923329243292532926329273292832929329303293132932329333293432935329363293732938329393294032941329423294332944329453294632947329483294932950329513295232953329543295532956329573295832959329603296132962329633296432965329663296732968329693297032971329723297332974329753297632977329783297932980329813298232983329843298532986329873298832989329903299132992329933299432995329963299732998329993300033001330023300333004330053300633007330083300933010330113301233013330143301533016330173301833019330203302133022330233302433025330263302733028330293303033031330323303333034330353303633037330383303933040330413304233043330443304533046330473304833049330503305133052330533305433055330563305733058330593306033061330623306333064330653306633067330683306933070330713307233073330743307533076330773307833079330803308133082330833308433085330863308733088330893309033091330923309333094330953309633097330983309933100331013310233103331043310533106331073310833109331103311133112331133311433115331163311733118331193312033121331223312333124331253312633127331283312933130331313313233133331343313533136331373313833139331403314133142331433314433145331463314733148331493315033151331523315333154331553315633157331583315933160331613316233163331643316533166331673316833169331703317133172331733317433175331763317733178331793318033181331823318333184331853318633187331883318933190331913319233193331943319533196331973319833199332003320133202332033320433205332063320733208332093321033211332123321333214332153321633217332183321933220332213322233223332243322533226332273322833229332303323133232332333323433235332363323733238332393324033241332423324333244332453324633247332483324933250332513325233253332543325533256332573325833259332603326133262332633326433265332663326733268332693327033271332723327333274332753327633277332783327933280332813328233283332843328533286332873328833289332903329133292332933329433295332963329733298332993330033301333023330333304333053330633307333083330933310333113331233313333143331533316333173331833319333203332133322333233332433325333263332733328333293333033331333323333333334333353333633337333383333933340333413334233343333443334533346333473334833349333503335133352333533335433355333563335733358333593336033361333623336333364333653336633367333683336933370333713337233373333743337533376333773337833379333803338133382333833338433385333863338733388333893339033391333923339333394333953339633397333983339933400334013340233403334043340533406334073340833409334103341133412334133341433415334163341733418334193342033421334223342333424334253342633427334283342933430334313343233433334343343533436334373343833439334403344133442334433344433445334463344733448334493345033451334523345333454334553345633457334583345933460334613346233463334643346533466334673346833469334703347133472334733347433475334763347733478334793348033481334823348333484334853348633487334883348933490334913349233493334943349533496334973349833499335003350133502335033350433505335063350733508335093351033511335123351333514335153351633517335183351933520335213352233523335243352533526335273352833529335303353133532335333353433535335363353733538335393354033541335423354333544335453354633547335483354933550335513355233553335543355533556335573355833559335603356133562335633356433565335663356733568335693357033571335723357333574335753357633577335783357933580335813358233583335843358533586335873358833589335903359133592335933359433595335963359733598335993360033601336023360333604336053360633607336083360933610336113361233613336143361533616336173361833619336203362133622336233362433625336263362733628336293363033631336323363333634336353363633637336383363933640336413364233643336443364533646336473364833649336503365133652336533365433655336563365733658336593366033661336623366333664336653366633667336683366933670336713367233673336743367533676336773367833679336803368133682336833368433685336863368733688336893369033691336923369333694336953369633697336983369933700337013370233703337043370533706337073370833709337103371133712337133371433715337163371733718337193372033721337223372333724337253372633727337283372933730337313373233733337343373533736337373373833739337403374133742337433374433745337463374733748337493375033751337523375333754337553375633757337583375933760337613376233763337643376533766337673376833769337703377133772337733377433775337763377733778337793378033781337823378333784337853378633787337883378933790337913379233793337943379533796337973379833799338003380133802338033380433805338063380733808338093381033811338123381333814338153381633817338183381933820338213382233823338243382533826338273382833829338303383133832338333383433835338363383733838338393384033841338423384333844338453384633847338483384933850338513385233853338543385533856338573385833859338603386133862338633386433865338663386733868338693387033871338723387333874338753387633877338783387933880338813388233883338843388533886338873388833889338903389133892338933389433895338963389733898338993390033901339023390333904339053390633907339083390933910339113391233913339143391533916339173391833919339203392133922339233392433925339263392733928339293393033931339323393333934339353393633937339383393933940339413394233943339443394533946339473394833949339503395133952339533395433955339563395733958339593396033961339623396333964339653396633967339683396933970339713397233973339743397533976339773397833979339803398133982339833398433985339863398733988339893399033991339923399333994339953399633997339983399934000340013400234003340043400534006340073400834009340103401134012340133401434015340163401734018340193402034021340223402334024340253402634027340283402934030340313403234033340343403534036340373403834039340403404134042340433404434045340463404734048340493405034051340523405334054340553405634057340583405934060340613406234063340643406534066340673406834069340703407134072340733407434075340763407734078340793408034081340823408334084340853408634087340883408934090340913409234093340943409534096340973409834099341003410134102341033410434105341063410734108341093411034111341123411334114341153411634117341183411934120341213412234123341243412534126341273412834129341303413134132341333413434135341363413734138341393414034141341423414334144341453414634147341483414934150341513415234153341543415534156341573415834159341603416134162341633416434165341663416734168341693417034171341723417334174341753417634177341783417934180341813418234183341843418534186341873418834189341903419134192341933419434195341963419734198341993420034201342023420334204342053420634207342083420934210342113421234213342143421534216342173421834219342203422134222342233422434225342263422734228342293423034231342323423334234342353423634237342383423934240342413424234243342443424534246342473424834249342503425134252342533425434255342563425734258342593426034261342623426334264342653426634267342683426934270342713427234273342743427534276342773427834279342803428134282342833428434285342863428734288342893429034291342923429334294342953429634297342983429934300343013430234303343043430534306343073430834309343103431134312343133431434315343163431734318343193432034321343223432334324343253432634327343283432934330343313433234333343343433534336343373433834339343403434134342343433434434345343463434734348343493435034351343523435334354343553435634357343583435934360343613436234363343643436534366343673436834369343703437134372343733437434375343763437734378343793438034381343823438334384343853438634387343883438934390343913439234393343943439534396343973439834399344003440134402344033440434405344063440734408344093441034411344123441334414344153441634417344183441934420344213442234423344243442534426344273442834429344303443134432344333443434435344363443734438344393444034441344423444334444344453444634447344483444934450344513445234453344543445534456344573445834459344603446134462344633446434465344663446734468344693447034471344723447334474344753447634477344783447934480344813448234483344843448534486344873448834489344903449134492344933449434495344963449734498344993450034501345023450334504345053450634507345083450934510345113451234513345143451534516345173451834519345203452134522345233452434525345263452734528345293453034531345323453334534345353453634537345383453934540345413454234543345443454534546345473454834549345503455134552345533455434555345563455734558345593456034561345623456334564345653456634567345683456934570345713457234573345743457534576345773457834579345803458134582345833458434585345863458734588345893459034591345923459334594345953459634597345983459934600346013460234603346043460534606346073460834609346103461134612346133461434615346163461734618346193462034621346223462334624346253462634627346283462934630346313463234633346343463534636346373463834639346403464134642346433464434645346463464734648346493465034651346523465334654346553465634657346583465934660346613466234663346643466534666346673466834669346703467134672346733467434675346763467734678346793468034681346823468334684346853468634687346883468934690346913469234693346943469534696346973469834699347003470134702347033470434705347063470734708347093471034711347123471334714347153471634717347183471934720347213472234723347243472534726347273472834729347303473134732347333473434735347363473734738347393474034741347423474334744347453474634747347483474934750347513475234753347543475534756347573475834759347603476134762347633476434765347663476734768347693477034771347723477334774347753477634777347783477934780347813478234783347843478534786347873478834789347903479134792347933479434795347963479734798347993480034801348023480334804348053480634807348083480934810348113481234813348143481534816348173481834819348203482134822348233482434825348263482734828348293483034831348323483334834348353483634837348383483934840348413484234843348443484534846348473484834849348503485134852348533485434855348563485734858348593486034861348623486334864348653486634867348683486934870348713487234873348743487534876348773487834879348803488134882348833488434885348863488734888348893489034891348923489334894348953489634897348983489934900349013490234903349043490534906349073490834909349103491134912349133491434915349163491734918349193492034921349223492334924349253492634927349283492934930349313493234933349343493534936349373493834939349403494134942349433494434945349463494734948349493495034951349523495334954349553495634957349583495934960349613496234963349643496534966349673496834969349703497134972349733497434975349763497734978349793498034981349823498334984349853498634987349883498934990349913499234993349943499534996349973499834999350003500135002350033500435005350063500735008350093501035011350123501335014350153501635017350183501935020350213502235023350243502535026350273502835029350303503135032350333503435035350363503735038350393504035041350423504335044350453504635047350483504935050350513505235053350543505535056350573505835059350603506135062350633506435065350663506735068350693507035071350723507335074350753507635077350783507935080350813508235083350843508535086350873508835089350903509135092350933509435095350963509735098350993510035101351023510335104351053510635107351083510935110351113511235113351143511535116351173511835119351203512135122351233512435125351263512735128351293513035131351323513335134351353513635137351383513935140351413514235143351443514535146351473514835149351503515135152351533515435155351563515735158351593516035161351623516335164351653516635167351683516935170351713517235173351743517535176351773517835179351803518135182351833518435185351863518735188351893519035191351923519335194351953519635197351983519935200352013520235203352043520535206352073520835209352103521135212352133521435215352163521735218352193522035221352223522335224352253522635227352283522935230352313523235233352343523535236352373523835239352403524135242352433524435245352463524735248352493525035251352523525335254352553525635257352583525935260352613526235263352643526535266352673526835269352703527135272352733527435275352763527735278352793528035281352823528335284352853528635287352883528935290352913529235293352943529535296352973529835299353003530135302353033530435305353063530735308353093531035311353123531335314353153531635317353183531935320353213532235323353243532535326353273532835329353303533135332353333533435335353363533735338353393534035341353423534335344353453534635347353483534935350353513535235353353543535535356353573535835359353603536135362353633536435365353663536735368353693537035371353723537335374353753537635377353783537935380353813538235383353843538535386353873538835389353903539135392353933539435395353963539735398353993540035401354023540335404354053540635407354083540935410354113541235413354143541535416354173541835419354203542135422354233542435425354263542735428354293543035431354323543335434354353543635437354383543935440354413544235443354443544535446354473544835449354503545135452354533545435455354563545735458354593546035461354623546335464354653546635467354683546935470354713547235473354743547535476354773547835479354803548135482354833548435485354863548735488354893549035491354923549335494354953549635497354983549935500355013550235503355043550535506355073550835509355103551135512355133551435515355163551735518355193552035521355223552335524355253552635527355283552935530355313553235533355343553535536355373553835539355403554135542355433554435545355463554735548355493555035551355523555335554355553555635557355583555935560355613556235563355643556535566355673556835569355703557135572355733557435575355763557735578355793558035581355823558335584355853558635587355883558935590355913559235593355943559535596355973559835599356003560135602356033560435605356063560735608356093561035611356123561335614356153561635617356183561935620356213562235623356243562535626356273562835629356303563135632356333563435635356363563735638356393564035641356423564335644356453564635647356483564935650356513565235653356543565535656356573565835659356603566135662356633566435665356663566735668356693567035671356723567335674356753567635677356783567935680356813568235683356843568535686356873568835689356903569135692356933569435695356963569735698356993570035701357023570335704357053570635707357083570935710357113571235713357143571535716357173571835719357203572135722357233572435725357263572735728357293573035731357323573335734357353573635737357383573935740357413574235743357443574535746357473574835749357503575135752357533575435755357563575735758357593576035761357623576335764357653576635767357683576935770357713577235773357743577535776357773577835779357803578135782357833578435785357863578735788357893579035791357923579335794357953579635797357983579935800358013580235803358043580535806358073580835809358103581135812358133581435815358163581735818358193582035821358223582335824358253582635827358283582935830358313583235833358343583535836358373583835839358403584135842358433584435845358463584735848358493585035851358523585335854358553585635857358583585935860358613586235863358643586535866358673586835869358703587135872358733587435875358763587735878358793588035881358823588335884358853588635887358883588935890358913589235893358943589535896358973589835899359003590135902359033590435905359063590735908359093591035911359123591335914359153591635917359183591935920359213592235923359243592535926359273592835929359303593135932359333593435935359363593735938359393594035941359423594335944359453594635947359483594935950359513595235953359543595535956359573595835959359603596135962359633596435965359663596735968359693597035971359723597335974359753597635977359783597935980359813598235983359843598535986359873598835989359903599135992359933599435995359963599735998359993600036001360023600336004360053600636007360083600936010360113601236013360143601536016360173601836019360203602136022360233602436025360263602736028360293603036031360323603336034360353603636037360383603936040360413604236043360443604536046360473604836049360503605136052360533605436055360563605736058360593606036061360623606336064360653606636067360683606936070360713607236073360743607536076360773607836079360803608136082360833608436085360863608736088360893609036091360923609336094360953609636097360983609936100361013610236103361043610536106361073610836109361103611136112361133611436115361163611736118361193612036121361223612336124361253612636127361283612936130361313613236133361343613536136361373613836139361403614136142361433614436145361463614736148361493615036151361523615336154361553615636157361583615936160361613616236163361643616536166361673616836169361703617136172361733617436175361763617736178361793618036181361823618336184361853618636187361883618936190361913619236193361943619536196361973619836199362003620136202362033620436205362063620736208362093621036211362123621336214362153621636217362183621936220362213622236223362243622536226362273622836229362303623136232362333623436235362363623736238362393624036241362423624336244362453624636247362483624936250362513625236253362543625536256362573625836259362603626136262362633626436265362663626736268362693627036271362723627336274362753627636277362783627936280362813628236283362843628536286362873628836289362903629136292362933629436295362963629736298362993630036301363023630336304363053630636307363083630936310363113631236313363143631536316363173631836319363203632136322363233632436325363263632736328363293633036331363323633336334363353633636337363383633936340363413634236343363443634536346363473634836349363503635136352363533635436355363563635736358363593636036361363623636336364363653636636367363683636936370363713637236373363743637536376363773637836379363803638136382363833638436385363863638736388363893639036391363923639336394363953639636397363983639936400364013640236403364043640536406364073640836409364103641136412364133641436415364163641736418364193642036421364223642336424364253642636427364283642936430364313643236433364343643536436364373643836439364403644136442364433644436445364463644736448364493645036451364523645336454364553645636457364583645936460364613646236463364643646536466364673646836469364703647136472364733647436475364763647736478364793648036481364823648336484364853648636487364883648936490364913649236493364943649536496364973649836499365003650136502365033650436505365063650736508365093651036511365123651336514365153651636517365183651936520365213652236523365243652536526365273652836529365303653136532365333653436535365363653736538365393654036541365423654336544365453654636547365483654936550365513655236553365543655536556365573655836559365603656136562365633656436565365663656736568365693657036571365723657336574365753657636577365783657936580365813658236583365843658536586365873658836589365903659136592365933659436595365963659736598365993660036601366023660336604366053660636607366083660936610366113661236613366143661536616366173661836619366203662136622366233662436625366263662736628366293663036631366323663336634366353663636637366383663936640366413664236643366443664536646366473664836649366503665136652366533665436655366563665736658366593666036661366623666336664366653666636667366683666936670366713667236673366743667536676366773667836679366803668136682366833668436685366863668736688366893669036691366923669336694366953669636697366983669936700367013670236703367043670536706367073670836709367103671136712367133671436715367163671736718367193672036721367223672336724367253672636727367283672936730367313673236733367343673536736367373673836739367403674136742367433674436745367463674736748367493675036751367523675336754367553675636757367583675936760367613676236763367643676536766367673676836769367703677136772367733677436775367763677736778367793678036781367823678336784367853678636787367883678936790367913679236793367943679536796367973679836799368003680136802368033680436805368063680736808368093681036811368123681336814368153681636817368183681936820368213682236823368243682536826368273682836829368303683136832368333683436835368363683736838368393684036841368423684336844368453684636847368483684936850368513685236853368543685536856368573685836859368603686136862368633686436865368663686736868368693687036871368723687336874368753687636877368783687936880368813688236883368843688536886368873688836889368903689136892368933689436895368963689736898368993690036901369023690336904369053690636907369083690936910369113691236913369143691536916369173691836919369203692136922369233692436925369263692736928369293693036931369323693336934369353693636937369383693936940369413694236943369443694536946369473694836949369503695136952369533695436955369563695736958369593696036961369623696336964369653696636967369683696936970369713697236973369743697536976369773697836979369803698136982369833698436985369863698736988369893699036991369923699336994369953699636997369983699937000370013700237003370043700537006370073700837009370103701137012370133701437015370163701737018370193702037021370223702337024370253702637027370283702937030370313703237033370343703537036370373703837039370403704137042370433704437045370463704737048370493705037051370523705337054370553705637057370583705937060370613706237063370643706537066370673706837069370703707137072370733707437075370763707737078370793708037081370823708337084370853708637087370883708937090370913709237093370943709537096370973709837099371003710137102371033710437105371063710737108371093711037111371123711337114371153711637117371183711937120371213712237123371243712537126371273712837129371303713137132371333713437135371363713737138371393714037141371423714337144371453714637147371483714937150371513715237153371543715537156371573715837159371603716137162371633716437165371663716737168371693717037171371723717337174371753717637177371783717937180371813718237183371843718537186371873718837189371903719137192371933719437195371963719737198371993720037201372023720337204372053720637207372083720937210372113721237213372143721537216372173721837219372203722137222372233722437225372263722737228372293723037231372323723337234372353723637237372383723937240372413724237243372443724537246372473724837249372503725137252372533725437255372563725737258372593726037261372623726337264372653726637267372683726937270372713727237273372743727537276372773727837279372803728137282372833728437285372863728737288372893729037291372923729337294372953729637297372983729937300373013730237303373043730537306373073730837309373103731137312373133731437315373163731737318373193732037321373223732337324373253732637327373283732937330373313733237333373343733537336373373733837339373403734137342373433734437345373463734737348373493735037351373523735337354373553735637357373583735937360373613736237363373643736537366373673736837369373703737137372373733737437375373763737737378373793738037381373823738337384373853738637387373883738937390373913739237393373943739537396373973739837399374003740137402374033740437405374063740737408374093741037411374123741337414374153741637417374183741937420374213742237423374243742537426374273742837429374303743137432374333743437435374363743737438374393744037441374423744337444374453744637447374483744937450374513745237453374543745537456374573745837459374603746137462374633746437465374663746737468374693747037471374723747337474374753747637477374783747937480374813748237483374843748537486374873748837489374903749137492374933749437495374963749737498374993750037501375023750337504375053750637507375083750937510375113751237513375143751537516375173751837519375203752137522375233752437525375263752737528375293753037531375323753337534375353753637537375383753937540375413754237543375443754537546375473754837549375503755137552375533755437555375563755737558375593756037561375623756337564375653756637567375683756937570375713757237573375743757537576375773757837579375803758137582375833758437585375863758737588375893759037591375923759337594375953759637597375983759937600376013760237603376043760537606376073760837609376103761137612376133761437615376163761737618376193762037621376223762337624376253762637627376283762937630376313763237633376343763537636376373763837639376403764137642376433764437645376463764737648376493765037651376523765337654376553765637657376583765937660376613766237663376643766537666376673766837669376703767137672376733767437675376763767737678376793768037681376823768337684376853768637687376883768937690376913769237693376943769537696376973769837699377003770137702377033770437705377063770737708377093771037711377123771337714377153771637717377183771937720377213772237723377243772537726377273772837729377303773137732377333773437735377363773737738377393774037741377423774337744377453774637747377483774937750377513775237753377543775537756377573775837759377603776137762377633776437765377663776737768377693777037771377723777337774377753777637777377783777937780377813778237783377843778537786377873778837789377903779137792377933779437795377963779737798377993780037801378023780337804378053780637807378083780937810378113781237813378143781537816378173781837819378203782137822378233782437825378263782737828378293783037831378323783337834378353783637837378383783937840378413784237843378443784537846378473784837849378503785137852378533785437855378563785737858378593786037861378623786337864378653786637867378683786937870378713787237873378743787537876378773787837879378803788137882378833788437885378863788737888378893789037891378923789337894378953789637897378983789937900379013790237903379043790537906379073790837909379103791137912379133791437915379163791737918379193792037921379223792337924379253792637927379283792937930379313793237933379343793537936379373793837939379403794137942379433794437945379463794737948379493795037951379523795337954379553795637957379583795937960379613796237963379643796537966379673796837969379703797137972379733797437975379763797737978379793798037981379823798337984379853798637987379883798937990379913799237993379943799537996379973799837999380003800138002380033800438005380063800738008380093801038011380123801338014380153801638017380183801938020380213802238023380243802538026380273802838029380303803138032380333803438035380363803738038380393804038041380423804338044380453804638047380483804938050380513805238053380543805538056380573805838059380603806138062380633806438065380663806738068380693807038071380723807338074380753807638077380783807938080380813808238083380843808538086380873808838089380903809138092380933809438095380963809738098380993810038101381023810338104381053810638107381083810938110381113811238113381143811538116381173811838119381203812138122381233812438125381263812738128381293813038131381323813338134381353813638137381383813938140381413814238143381443814538146381473814838149381503815138152381533815438155381563815738158381593816038161381623816338164381653816638167381683816938170381713817238173381743817538176381773817838179381803818138182381833818438185381863818738188381893819038191381923819338194381953819638197381983819938200382013820238203382043820538206382073820838209382103821138212382133821438215382163821738218382193822038221382223822338224382253822638227382283822938230382313823238233382343823538236382373823838239382403824138242382433824438245382463824738248382493825038251382523825338254382553825638257382583825938260382613826238263382643826538266382673826838269382703827138272382733827438275382763827738278382793828038281382823828338284382853828638287382883828938290382913829238293382943829538296382973829838299383003830138302383033830438305383063830738308383093831038311383123831338314383153831638317383183831938320383213832238323383243832538326383273832838329383303833138332383333833438335383363833738338383393834038341383423834338344383453834638347383483834938350383513835238353383543835538356383573835838359383603836138362383633836438365383663836738368383693837038371383723837338374383753837638377383783837938380383813838238383383843838538386383873838838389383903839138392383933839438395383963839738398383993840038401384023840338404384053840638407384083840938410384113841238413384143841538416384173841838419384203842138422384233842438425384263842738428384293843038431384323843338434384353843638437384383843938440384413844238443384443844538446384473844838449384503845138452384533845438455384563845738458384593846038461384623846338464384653846638467384683846938470384713847238473384743847538476384773847838479384803848138482384833848438485384863848738488384893849038491384923849338494384953849638497384983849938500385013850238503385043850538506385073850838509385103851138512385133851438515385163851738518385193852038521385223852338524385253852638527385283852938530385313853238533385343853538536385373853838539385403854138542385433854438545385463854738548385493855038551385523855338554385553855638557385583855938560385613856238563385643856538566385673856838569385703857138572385733857438575385763857738578385793858038581385823858338584385853858638587385883858938590385913859238593385943859538596385973859838599386003860138602386033860438605386063860738608386093861038611386123861338614386153861638617386183861938620386213862238623386243862538626386273862838629386303863138632386333863438635386363863738638386393864038641386423864338644386453864638647386483864938650386513865238653386543865538656386573865838659386603866138662386633866438665386663866738668386693867038671386723867338674386753867638677386783867938680386813868238683386843868538686386873868838689386903869138692386933869438695386963869738698386993870038701387023870338704387053870638707387083870938710387113871238713387143871538716387173871838719387203872138722387233872438725387263872738728387293873038731387323873338734387353873638737387383873938740387413874238743387443874538746387473874838749387503875138752387533875438755387563875738758387593876038761387623876338764387653876638767387683876938770387713877238773387743877538776387773877838779387803878138782387833878438785387863878738788387893879038791387923879338794387953879638797387983879938800388013880238803388043880538806388073880838809388103881138812388133881438815388163881738818388193882038821388223882338824388253882638827388283882938830388313883238833388343883538836388373883838839388403884138842388433884438845388463884738848388493885038851388523885338854388553885638857388583885938860388613886238863388643886538866388673886838869388703887138872388733887438875388763887738878388793888038881388823888338884388853888638887388883888938890388913889238893388943889538896388973889838899389003890138902389033890438905389063890738908389093891038911389123891338914389153891638917389183891938920389213892238923389243892538926389273892838929389303893138932389333893438935389363893738938389393894038941389423894338944389453894638947389483894938950389513895238953389543895538956389573895838959389603896138962389633896438965389663896738968389693897038971389723897338974389753897638977389783897938980389813898238983389843898538986389873898838989389903899138992389933899438995389963899738998389993900039001390023900339004390053900639007390083900939010390113901239013390143901539016390173901839019390203902139022390233902439025390263902739028390293903039031390323903339034390353903639037390383903939040390413904239043390443904539046390473904839049390503905139052390533905439055390563905739058390593906039061390623906339064390653906639067390683906939070390713907239073390743907539076390773907839079390803908139082390833908439085390863908739088390893909039091390923909339094390953909639097390983909939100391013910239103391043910539106391073910839109391103911139112391133911439115391163911739118391193912039121391223912339124391253912639127391283912939130391313913239133391343913539136391373913839139391403914139142391433914439145391463914739148391493915039151391523915339154391553915639157391583915939160391613916239163391643916539166391673916839169391703917139172391733917439175391763917739178391793918039181391823918339184391853918639187391883918939190391913919239193391943919539196391973919839199392003920139202392033920439205392063920739208392093921039211392123921339214392153921639217392183921939220392213922239223392243922539226392273922839229392303923139232392333923439235392363923739238392393924039241392423924339244392453924639247392483924939250392513925239253392543925539256392573925839259392603926139262392633926439265392663926739268392693927039271392723927339274392753927639277392783927939280392813928239283392843928539286392873928839289392903929139292392933929439295392963929739298392993930039301393023930339304393053930639307393083930939310393113931239313393143931539316393173931839319393203932139322393233932439325393263932739328393293933039331393323933339334393353933639337393383933939340393413934239343393443934539346393473934839349393503935139352393533935439355393563935739358393593936039361393623936339364393653936639367393683936939370393713937239373393743937539376393773937839379393803938139382393833938439385393863938739388393893939039391393923939339394393953939639397393983939939400394013940239403394043940539406394073940839409394103941139412394133941439415394163941739418394193942039421394223942339424394253942639427394283942939430394313943239433394343943539436394373943839439394403944139442394433944439445394463944739448394493945039451394523945339454394553945639457394583945939460394613946239463394643946539466394673946839469394703947139472394733947439475394763947739478394793948039481394823948339484394853948639487394883948939490394913949239493394943949539496394973949839499395003950139502395033950439505395063950739508395093951039511395123951339514395153951639517395183951939520395213952239523395243952539526395273952839529395303953139532395333953439535395363953739538395393954039541395423954339544395453954639547395483954939550395513955239553395543955539556395573955839559395603956139562395633956439565395663956739568395693957039571395723957339574395753957639577395783957939580395813958239583395843958539586395873958839589395903959139592395933959439595395963959739598395993960039601396023960339604396053960639607396083960939610396113961239613396143961539616396173961839619396203962139622396233962439625396263962739628396293963039631396323963339634396353963639637396383963939640396413964239643396443964539646396473964839649396503965139652396533965439655396563965739658396593966039661396623966339664396653966639667396683966939670396713967239673396743967539676396773967839679396803968139682396833968439685396863968739688396893969039691396923969339694396953969639697396983969939700397013970239703397043970539706397073970839709397103971139712397133971439715397163971739718397193972039721397223972339724397253972639727397283972939730397313973239733397343973539736397373973839739397403974139742397433974439745397463974739748397493975039751397523975339754397553975639757397583975939760397613976239763397643976539766397673976839769397703977139772397733977439775397763977739778397793978039781397823978339784397853978639787397883978939790397913979239793397943979539796397973979839799398003980139802398033980439805398063980739808398093981039811398123981339814398153981639817398183981939820398213982239823398243982539826398273982839829398303983139832398333983439835398363983739838398393984039841398423984339844398453984639847398483984939850398513985239853398543985539856398573985839859398603986139862398633986439865398663986739868398693987039871398723987339874398753987639877398783987939880398813988239883398843988539886398873988839889398903989139892398933989439895398963989739898398993990039901399023990339904399053990639907399083990939910399113991239913399143991539916399173991839919399203992139922399233992439925399263992739928399293993039931399323993339934399353993639937399383993939940399413994239943399443994539946399473994839949399503995139952399533995439955399563995739958399593996039961399623996339964399653996639967399683996939970399713997239973399743997539976399773997839979399803998139982399833998439985399863998739988399893999039991399923999339994399953999639997399983999940000400014000240003400044000540006400074000840009400104001140012400134001440015400164001740018400194002040021400224002340024400254002640027400284002940030400314003240033400344003540036400374003840039400404004140042400434004440045400464004740048400494005040051400524005340054400554005640057400584005940060400614006240063400644006540066400674006840069400704007140072400734007440075400764007740078400794008040081400824008340084400854008640087400884008940090400914009240093400944009540096400974009840099401004010140102401034010440105401064010740108401094011040111401124011340114401154011640117401184011940120401214012240123401244012540126401274012840129401304013140132401334013440135401364013740138401394014040141401424014340144401454014640147401484014940150401514015240153401544015540156401574015840159401604016140162401634016440165401664016740168401694017040171401724017340174401754017640177401784017940180401814018240183401844018540186401874018840189401904019140192401934019440195401964019740198401994020040201402024020340204402054020640207402084020940210402114021240213402144021540216402174021840219402204022140222402234022440225402264022740228402294023040231402324023340234402354023640237402384023940240402414024240243402444024540246402474024840249402504025140252402534025440255402564025740258402594026040261402624026340264402654026640267402684026940270402714027240273402744027540276402774027840279402804028140282402834028440285402864028740288402894029040291402924029340294402954029640297402984029940300403014030240303403044030540306403074030840309403104031140312403134031440315403164031740318403194032040321403224032340324403254032640327403284032940330403314033240333403344033540336403374033840339403404034140342403434034440345403464034740348403494035040351403524035340354403554035640357403584035940360403614036240363403644036540366403674036840369403704037140372403734037440375403764037740378403794038040381403824038340384403854038640387403884038940390403914039240393403944039540396403974039840399404004040140402404034040440405404064040740408404094041040411404124041340414404154041640417404184041940420404214042240423404244042540426404274042840429404304043140432404334043440435404364043740438404394044040441404424044340444404454044640447404484044940450404514045240453404544045540456404574045840459404604046140462404634046440465404664046740468404694047040471404724047340474404754047640477404784047940480404814048240483404844048540486404874048840489404904049140492404934049440495404964049740498404994050040501405024050340504405054050640507405084050940510405114051240513405144051540516405174051840519405204052140522405234052440525405264052740528405294053040531405324053340534405354053640537405384053940540405414054240543405444054540546405474054840549405504055140552405534055440555405564055740558405594056040561405624056340564405654056640567405684056940570405714057240573405744057540576405774057840579405804058140582405834058440585405864058740588405894059040591405924059340594405954059640597405984059940600406014060240603406044060540606406074060840609406104061140612406134061440615406164061740618406194062040621406224062340624406254062640627406284062940630406314063240633406344063540636406374063840639406404064140642406434064440645406464064740648406494065040651406524065340654406554065640657406584065940660406614066240663406644066540666406674066840669406704067140672406734067440675406764067740678406794068040681406824068340684406854068640687406884068940690406914069240693406944069540696406974069840699407004070140702407034070440705407064070740708407094071040711407124071340714407154071640717407184071940720407214072240723407244072540726407274072840729407304073140732407334073440735407364073740738407394074040741407424074340744407454074640747407484074940750407514075240753407544075540756407574075840759407604076140762407634076440765407664076740768407694077040771407724077340774407754077640777407784077940780407814078240783407844078540786407874078840789407904079140792407934079440795407964079740798407994080040801408024080340804408054080640807408084080940810408114081240813408144081540816408174081840819408204082140822408234082440825408264082740828408294083040831408324083340834408354083640837408384083940840408414084240843408444084540846408474084840849408504085140852408534085440855408564085740858408594086040861408624086340864408654086640867408684086940870408714087240873408744087540876408774087840879408804088140882408834088440885408864088740888408894089040891408924089340894408954089640897408984089940900409014090240903409044090540906409074090840909409104091140912409134091440915409164091740918409194092040921409224092340924409254092640927409284092940930409314093240933409344093540936409374093840939409404094140942409434094440945409464094740948409494095040951409524095340954409554095640957409584095940960409614096240963409644096540966409674096840969409704097140972409734097440975409764097740978409794098040981409824098340984409854098640987409884098940990409914099240993409944099540996409974099840999410004100141002410034100441005410064100741008410094101041011410124101341014410154101641017410184101941020410214102241023410244102541026410274102841029410304103141032410334103441035410364103741038410394104041041410424104341044410454104641047410484104941050410514105241053410544105541056410574105841059410604106141062410634106441065410664106741068410694107041071410724107341074410754107641077410784107941080410814108241083410844108541086410874108841089410904109141092410934109441095410964109741098410994110041101411024110341104411054110641107411084110941110411114111241113411144111541116411174111841119411204112141122411234112441125411264112741128411294113041131411324113341134411354113641137411384113941140411414114241143411444114541146411474114841149411504115141152411534115441155411564115741158411594116041161411624116341164411654116641167411684116941170411714117241173411744117541176411774117841179411804118141182411834118441185411864118741188411894119041191411924119341194411954119641197411984119941200412014120241203412044120541206412074120841209412104121141212412134121441215412164121741218412194122041221412224122341224412254122641227412284122941230412314123241233412344123541236412374123841239412404124141242412434124441245412464124741248412494125041251412524125341254412554125641257412584125941260412614126241263412644126541266412674126841269412704127141272412734127441275412764127741278412794128041281412824128341284412854128641287412884128941290412914129241293412944129541296412974129841299413004130141302413034130441305413064130741308413094131041311413124131341314413154131641317413184131941320413214132241323413244132541326413274132841329413304133141332413334133441335413364133741338413394134041341413424134341344413454134641347413484134941350413514135241353413544135541356413574135841359413604136141362413634136441365413664136741368413694137041371413724137341374413754137641377413784137941380413814138241383413844138541386413874138841389413904139141392413934139441395413964139741398413994140041401414024140341404414054140641407414084140941410414114141241413414144141541416414174141841419414204142141422414234142441425414264142741428414294143041431414324143341434414354143641437414384143941440414414144241443414444144541446414474144841449414504145141452414534145441455414564145741458414594146041461414624146341464414654146641467414684146941470414714147241473414744147541476414774147841479414804148141482414834148441485414864148741488414894149041491414924149341494414954149641497414984149941500415014150241503415044150541506415074150841509415104151141512415134151441515415164151741518415194152041521415224152341524415254152641527415284152941530415314153241533415344153541536415374153841539415404154141542415434154441545415464154741548415494155041551415524155341554415554155641557415584155941560415614156241563415644156541566415674156841569415704157141572415734157441575415764157741578415794158041581415824158341584415854158641587415884158941590415914159241593415944159541596415974159841599416004160141602416034160441605416064160741608416094161041611416124161341614416154161641617416184161941620416214162241623416244162541626416274162841629416304163141632416334163441635416364163741638416394164041641416424164341644416454164641647416484164941650416514165241653416544165541656416574165841659416604166141662416634166441665416664166741668416694167041671416724167341674416754167641677416784167941680416814168241683416844168541686416874168841689416904169141692416934169441695416964169741698416994170041701417024170341704417054170641707417084170941710417114171241713417144171541716417174171841719417204172141722417234172441725417264172741728417294173041731417324173341734417354173641737417384173941740417414174241743417444174541746417474174841749417504175141752417534175441755417564175741758417594176041761417624176341764417654176641767417684176941770417714177241773417744177541776417774177841779417804178141782417834178441785417864178741788417894179041791417924179341794417954179641797417984179941800418014180241803418044180541806418074180841809418104181141812418134181441815418164181741818418194182041821418224182341824418254182641827418284182941830418314183241833418344183541836418374183841839418404184141842418434184441845418464184741848418494185041851418524185341854418554185641857418584185941860418614186241863418644186541866418674186841869418704187141872418734187441875418764187741878418794188041881418824188341884418854188641887418884188941890418914189241893418944189541896418974189841899419004190141902419034190441905419064190741908419094191041911419124191341914419154191641917419184191941920419214192241923419244192541926419274192841929419304193141932419334193441935419364193741938419394194041941419424194341944419454194641947419484194941950419514195241953419544195541956419574195841959419604196141962419634196441965419664196741968419694197041971419724197341974419754197641977419784197941980419814198241983419844198541986419874198841989419904199141992419934199441995419964199741998419994200042001420024200342004420054200642007420084200942010420114201242013420144201542016420174201842019420204202142022420234202442025420264202742028420294203042031420324203342034420354203642037420384203942040420414204242043420444204542046420474204842049420504205142052420534205442055420564205742058420594206042061420624206342064420654206642067420684206942070420714207242073420744207542076420774207842079420804208142082420834208442085420864208742088420894209042091420924209342094420954209642097420984209942100421014210242103421044210542106421074210842109421104211142112421134211442115421164211742118421194212042121421224212342124421254212642127421284212942130421314213242133421344213542136421374213842139421404214142142421434214442145421464214742148421494215042151421524215342154421554215642157421584215942160421614216242163421644216542166421674216842169421704217142172421734217442175421764217742178421794218042181421824218342184421854218642187421884218942190421914219242193421944219542196421974219842199422004220142202422034220442205422064220742208422094221042211422124221342214422154221642217422184221942220422214222242223422244222542226422274222842229422304223142232422334223442235422364223742238422394224042241422424224342244422454224642247422484224942250422514225242253422544225542256422574225842259422604226142262422634226442265422664226742268422694227042271422724227342274422754227642277422784227942280422814228242283422844228542286422874228842289422904229142292422934229442295422964229742298422994230042301423024230342304423054230642307423084230942310423114231242313423144231542316423174231842319423204232142322423234232442325423264232742328423294233042331423324233342334423354233642337423384233942340423414234242343423444234542346423474234842349423504235142352423534235442355423564235742358423594236042361423624236342364423654236642367423684236942370423714237242373423744237542376423774237842379423804238142382423834238442385423864238742388423894239042391423924239342394423954239642397423984239942400424014240242403424044240542406424074240842409424104241142412424134241442415424164241742418424194242042421424224242342424424254242642427424284242942430424314243242433424344243542436424374243842439424404244142442424434244442445424464244742448424494245042451424524245342454424554245642457424584245942460424614246242463424644246542466424674246842469424704247142472424734247442475424764247742478424794248042481424824248342484424854248642487424884248942490424914249242493424944249542496424974249842499425004250142502425034250442505425064250742508425094251042511425124251342514425154251642517425184251942520425214252242523425244252542526425274252842529425304253142532425334253442535425364253742538425394254042541425424254342544425454254642547425484254942550425514255242553425544255542556425574255842559425604256142562425634256442565425664256742568425694257042571425724257342574425754257642577425784257942580425814258242583425844258542586425874258842589425904259142592425934259442595425964259742598425994260042601426024260342604426054260642607426084260942610426114261242613426144261542616426174261842619426204262142622426234262442625426264262742628426294263042631426324263342634426354263642637426384263942640426414264242643426444264542646426474264842649426504265142652426534265442655426564265742658426594266042661426624266342664426654266642667426684266942670426714267242673426744267542676426774267842679426804268142682426834268442685426864268742688426894269042691426924269342694426954269642697426984269942700427014270242703427044270542706427074270842709427104271142712427134271442715427164271742718427194272042721427224272342724427254272642727427284272942730427314273242733427344273542736427374273842739427404274142742427434274442745427464274742748427494275042751427524275342754427554275642757427584275942760427614276242763427644276542766427674276842769427704277142772427734277442775427764277742778427794278042781427824278342784427854278642787427884278942790427914279242793427944279542796427974279842799428004280142802428034280442805428064280742808428094281042811428124281342814428154281642817428184281942820428214282242823428244282542826428274282842829428304283142832428334283442835428364283742838428394284042841428424284342844428454284642847428484284942850428514285242853428544285542856428574285842859428604286142862428634286442865428664286742868428694287042871428724287342874428754287642877428784287942880428814288242883428844288542886428874288842889428904289142892428934289442895428964289742898428994290042901429024290342904429054290642907429084290942910429114291242913429144291542916429174291842919429204292142922429234292442925429264292742928429294293042931429324293342934429354293642937429384293942940429414294242943429444294542946429474294842949429504295142952429534295442955429564295742958429594296042961429624296342964429654296642967429684296942970429714297242973429744297542976429774297842979429804298142982429834298442985429864298742988429894299042991429924299342994429954299642997429984299943000430014300243003430044300543006430074300843009430104301143012430134301443015430164301743018430194302043021430224302343024430254302643027430284302943030430314303243033430344303543036430374303843039430404304143042430434304443045430464304743048430494305043051430524305343054430554305643057430584305943060430614306243063430644306543066430674306843069430704307143072430734307443075430764307743078430794308043081430824308343084430854308643087430884308943090430914309243093430944309543096430974309843099431004310143102431034310443105431064310743108431094311043111431124311343114431154311643117431184311943120431214312243123431244312543126431274312843129431304313143132431334313443135431364313743138431394314043141431424314343144431454314643147431484314943150431514315243153431544315543156431574315843159431604316143162431634316443165431664316743168431694317043171431724317343174431754317643177431784317943180431814318243183431844318543186431874318843189431904319143192431934319443195431964319743198431994320043201432024320343204432054320643207432084320943210432114321243213432144321543216432174321843219432204322143222432234322443225432264322743228432294323043231432324323343234432354323643237432384323943240432414324243243432444324543246432474324843249432504325143252432534325443255432564325743258432594326043261432624326343264432654326643267432684326943270432714327243273432744327543276432774327843279432804328143282432834328443285432864328743288432894329043291432924329343294432954329643297432984329943300433014330243303433044330543306433074330843309433104331143312433134331443315433164331743318433194332043321433224332343324433254332643327433284332943330433314333243333433344333543336433374333843339433404334143342433434334443345433464334743348433494335043351433524335343354433554335643357433584335943360433614336243363433644336543366433674336843369433704337143372433734337443375433764337743378433794338043381433824338343384433854338643387433884338943390433914339243393433944339543396433974339843399434004340143402434034340443405434064340743408434094341043411434124341343414434154341643417434184341943420434214342243423434244342543426434274342843429434304343143432434334343443435434364343743438434394344043441434424344343444434454344643447434484344943450434514345243453434544345543456434574345843459434604346143462434634346443465434664346743468434694347043471434724347343474434754347643477434784347943480434814348243483434844348543486434874348843489434904349143492434934349443495434964349743498434994350043501435024350343504435054350643507435084350943510435114351243513435144351543516435174351843519435204352143522435234352443525435264352743528435294353043531435324353343534435354353643537435384353943540435414354243543435444354543546435474354843549435504355143552435534355443555435564355743558435594356043561435624356343564435654356643567435684356943570435714357243573435744357543576435774357843579435804358143582435834358443585435864358743588435894359043591435924359343594435954359643597435984359943600436014360243603436044360543606436074360843609436104361143612436134361443615436164361743618436194362043621436224362343624436254362643627436284362943630436314363243633436344363543636436374363843639436404364143642436434364443645436464364743648436494365043651436524365343654436554365643657436584365943660436614366243663436644366543666436674366843669436704367143672436734367443675436764367743678436794368043681436824368343684436854368643687436884368943690436914369243693436944369543696436974369843699437004370143702437034370443705437064370743708437094371043711437124371343714437154371643717437184371943720437214372243723437244372543726437274372843729437304373143732437334373443735437364373743738437394374043741437424374343744437454374643747437484374943750437514375243753437544375543756437574375843759437604376143762437634376443765437664376743768437694377043771437724377343774437754377643777437784377943780437814378243783437844378543786437874378843789437904379143792437934379443795437964379743798437994380043801438024380343804438054380643807438084380943810438114381243813438144381543816438174381843819438204382143822438234382443825438264382743828438294383043831438324383343834438354383643837438384383943840438414384243843438444384543846438474384843849438504385143852438534385443855438564385743858438594386043861438624386343864438654386643867438684386943870438714387243873438744387543876438774387843879438804388143882438834388443885438864388743888 |
- var DracoDecoderModule = (function() {
- var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined
- if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename
- return function(DracoDecoderModule) {
- DracoDecoderModule = DracoDecoderModule || {}
- var Module = typeof DracoDecoderModule !== 'undefined' ? DracoDecoderModule : {}
- var isRuntimeInitialized = false
- var isModuleParsed = false
- Module['onRuntimeInitialized'] = function() {
- isRuntimeInitialized = true
- if (isModuleParsed) {
- if (typeof Module['onModuleLoaded'] === 'function') {
- Module['onModuleLoaded'](Module)
- }
- }
- }
- Module['onModuleParsed'] = function() {
- isModuleParsed = true
- if (isRuntimeInitialized) {
- if (typeof Module['onModuleLoaded'] === 'function') {
- Module['onModuleLoaded'](Module)
- }
- }
- }
- function isVersionSupported(versionString) {
- if (typeof versionString !== 'string') return false
- const version = versionString.split('.')
- if (version.length < 2 || version.length > 3) return false
- if (version[0] == 1 && version[1] >= 0 && version[1] <= 3) return true
- if (version[0] != 0 || version[1] > 10) return false
- return true
- }
- Module['isVersionSupported'] = isVersionSupported
- var moduleOverrides = {}
- var key
- for (key in Module) {
- if (Module.hasOwnProperty(key)) {
- moduleOverrides[key] = Module[key]
- }
- }
- var arguments_ = []
- var thisProgram = './this.program'
- var quit_ = function(status, toThrow) {
- throw toThrow
- }
- var ENVIRONMENT_IS_WEB = false
- var ENVIRONMENT_IS_WORKER = false
- var ENVIRONMENT_IS_NODE = false
- var ENVIRONMENT_HAS_NODE = false
- var ENVIRONMENT_IS_SHELL = false
- ENVIRONMENT_IS_WEB = typeof window === 'object'
- ENVIRONMENT_IS_WORKER = typeof importScripts === 'function'
- ENVIRONMENT_HAS_NODE = typeof process === 'object' && typeof process.versions === 'object' && typeof process.versions.node === 'string'
- ENVIRONMENT_IS_NODE = ENVIRONMENT_HAS_NODE && !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_WORKER
- ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER
- var scriptDirectory = ''
- function locateFile(path) {
- if (Module['locateFile']) {
- return Module['locateFile'](path, scriptDirectory)
- }
- return scriptDirectory + path
- }
- var read_, readAsync, readBinary, setWindowTitle
- var nodeFS
- var nodePath
- if (ENVIRONMENT_IS_NODE) {
- scriptDirectory = __dirname + '/'
- read_ = function shell_read(filename, binary) {
- var ret = tryParseAsDataURI(filename)
- if (ret) {
- return binary ? ret : ret.toString()
- }
- if (!nodeFS) nodeFS = require('fs')
- if (!nodePath) nodePath = require('path')
- filename = nodePath['normalize'](filename)
- return nodeFS['readFileSync'](filename, binary ? null : 'utf8')
- }
- readBinary = function readBinary(filename) {
- var ret = read_(filename, true)
- if (!ret.buffer) {
- ret = new Uint8Array(ret)
- }
- assert(ret.buffer)
- return ret
- }
- if (process['argv'].length > 1) {
- thisProgram = process['argv'][1].replace(/\\/g, '/')
- }
- arguments_ = process['argv'].slice(2)
- process['on']('uncaughtException', function(ex) {
- if (!(ex instanceof ExitStatus)) {
- throw ex
- }
- })
- process['on']('unhandledRejection', abort)
- quit_ = function(status) {
- process['exit'](status)
- }
- Module['inspect'] = function() {
- return '[Emscripten Module object]'
- }
- } else if (ENVIRONMENT_IS_SHELL) {
- if (typeof read != 'undefined') {
- read_ = function shell_read(f) {
- var data = tryParseAsDataURI(f)
- if (data) {
- return intArrayToString(data)
- }
- return read(f)
- }
- }
- readBinary = function readBinary(f) {
- var data
- data = tryParseAsDataURI(f)
- if (data) {
- return data
- }
- if (typeof readbuffer === 'function') {
- return new Uint8Array(readbuffer(f))
- }
- data = read(f, 'binary')
- assert(typeof data === 'object')
- return data
- }
- if (typeof scriptArgs != 'undefined') {
- arguments_ = scriptArgs
- } else if (typeof arguments != 'undefined') {
- arguments_ = arguments
- }
- if (typeof quit === 'function') {
- quit_ = function(status) {
- quit(status)
- }
- }
- if (typeof print !== 'undefined') {
- if (typeof console === 'undefined') console = {}
- console.log = print
- console.warn = console.error = typeof printErr !== 'undefined' ? printErr : print
- }
- } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {
- if (ENVIRONMENT_IS_WORKER) {
- scriptDirectory = self.location.href
- } else if (document.currentScript) {
- scriptDirectory = document.currentScript.src
- }
- if (_scriptDir) {
- scriptDirectory = _scriptDir
- }
- if (scriptDirectory.indexOf('blob:') !== 0) {
- scriptDirectory = scriptDirectory.substr(0, scriptDirectory.lastIndexOf('/') + 1)
- } else {
- scriptDirectory = ''
- }
- {
- read_ = function shell_read(url) {
- try {
- var xhr = new XMLHttpRequest()
- xhr.open('GET', url, false)
- xhr.send(null)
- return xhr.responseText
- } catch (err) {
- var data = tryParseAsDataURI(url)
- if (data) {
- return intArrayToString(data)
- }
- throw err
- }
- }
- if (ENVIRONMENT_IS_WORKER) {
- readBinary = function readBinary(url) {
- try {
- var xhr = new XMLHttpRequest()
- xhr.open('GET', url, false)
- xhr.responseType = 'arraybuffer'
- xhr.send(null)
- return new Uint8Array(xhr.response)
- } catch (err) {
- var data = tryParseAsDataURI(url)
- if (data) {
- return data
- }
- throw err
- }
- }
- }
- readAsync = function readAsync(url, onload, onerror) {
- var xhr = new XMLHttpRequest()
- xhr.open('GET', url, true)
- xhr.responseType = 'arraybuffer'
- xhr.onload = function xhr_onload() {
- if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) {
- onload(xhr.response)
- return
- }
- var data = tryParseAsDataURI(url)
- if (data) {
- onload(data.buffer)
- return
- }
- onerror()
- }
- xhr.onerror = onerror
- xhr.send(null)
- }
- }
- setWindowTitle = function(title) {
- document.title = title
- }
- } else {
- }
- var out = Module['print'] || console.log.bind(console)
- var err = Module['printErr'] || console.warn.bind(console)
- for (key in moduleOverrides) {
- if (moduleOverrides.hasOwnProperty(key)) {
- Module[key] = moduleOverrides[key]
- }
- }
- moduleOverrides = null
- if (Module['arguments']) arguments_ = Module['arguments']
- if (Module['thisProgram']) thisProgram = Module['thisProgram']
- if (Module['quit']) quit_ = Module['quit']
- var STACK_ALIGN = 16
- function dynamicAlloc(size) {
- var ret = HEAP32[DYNAMICTOP_PTR >> 2]
- var end = (ret + size + 15) & -16
- if (end > _emscripten_get_heap_size()) {
- abort()
- }
- HEAP32[DYNAMICTOP_PTR >> 2] = end
- return ret
- }
- function getNativeTypeSize(type) {
- switch (type) {
- case 'i1':
- case 'i8':
- return 1
- case 'i16':
- return 2
- case 'i32':
- return 4
- case 'i64':
- return 8
- case 'float':
- return 4
- case 'double':
- return 8
- default: {
- if (type[type.length - 1] === '*') {
- return 4
- } else if (type[0] === 'i') {
- var bits = parseInt(type.substr(1))
- assert(bits % 8 === 0, 'getNativeTypeSize invalid bits ' + bits + ', type ' + type)
- return bits / 8
- } else {
- return 0
- }
- }
- }
- }
- function warnOnce(text) {
- if (!warnOnce.shown) warnOnce.shown = {}
- if (!warnOnce.shown[text]) {
- warnOnce.shown[text] = 1
- err(text)
- }
- }
- function convertJsFunctionToWasm(func, sig) {
- return func
- }
- function addFunctionWasm(func, sig) {
- var table = wasmTable
- var ret = table.length
- try {
- table.grow(1)
- } catch (err) {
- if (!err instanceof RangeError) {
- throw err
- }
- throw 'Unable to grow wasm table. Use a higher value for RESERVED_FUNCTION_POINTERS or set ALLOW_TABLE_GROWTH.'
- }
- try {
- table.set(ret, func)
- } catch (err) {
- if (!err instanceof TypeError) {
- throw err
- }
- assert(typeof sig !== 'undefined', 'Missing signature argument to addFunction')
- var wrapped = convertJsFunctionToWasm(func, sig)
- table.set(ret, wrapped)
- }
- return ret
- }
- function removeFunctionWasm(index) {}
- var funcWrappers = {}
- function dynCall(sig, ptr, args) {
- if (args && args.length) {
- return Module['dynCall_' + sig].apply(null, [ptr].concat(args))
- } else {
- return Module['dynCall_' + sig].call(null, ptr)
- }
- }
- var tempRet0 = 0
- var setTempRet0 = function(value) {
- tempRet0 = value
- }
- var getTempRet0 = function() {
- return tempRet0
- }
- var wasmBinary
- if (Module['wasmBinary']) wasmBinary = Module['wasmBinary']
- var noExitRuntime
- if (Module['noExitRuntime']) noExitRuntime = Module['noExitRuntime']
- var WebAssembly = {
- Memory: function(opts) {
- return {
- buffer: new ArrayBuffer(opts['initial'] * 65536),
- grow: function(amount) {
- var ret = __growWasmMemory(amount)
- return ret
- }
- }
- },
- Table: function(opts) {
- var ret = new Array(opts['initial'])
- ret.grow = function(by) {
- if (ret.length >= 293 + 0) {
- abort('Unable to grow wasm table. Use a higher value for RESERVED_FUNCTION_POINTERS or set ALLOW_TABLE_GROWTH.')
- }
- ret.push(null)
- }
- ret.set = function(i, func) {
- ret[i] = func
- }
- ret.get = function(i) {
- return ret[i]
- }
- return ret
- },
- Module: function(binary) {
- return {}
- },
- Instance: function(module, info) {
- var decodeBase64 =
- typeof atob === 'function'
- ? atob
- : function(input) {
- var keyStr = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
- var output = ''
- var chr1, chr2, chr3
- var enc1, enc2, enc3, enc4
- var i = 0
- input = input.replace(/[^A-Za-z0-9\+\/\=]/g, '')
- do {
- enc1 = keyStr.indexOf(input.charAt(i++))
- enc2 = keyStr.indexOf(input.charAt(i++))
- enc3 = keyStr.indexOf(input.charAt(i++))
- enc4 = keyStr.indexOf(input.charAt(i++))
- chr1 = (enc1 << 2) | (enc2 >> 4)
- chr2 = ((enc2 & 15) << 4) | (enc3 >> 2)
- chr3 = ((enc3 & 3) << 6) | enc4
- output = output + String.fromCharCode(chr1)
- if (enc3 !== 64) {
- output = output + String.fromCharCode(chr2)
- }
- if (enc4 !== 64) {
- output = output + String.fromCharCode(chr3)
- }
- } while (i < input.length)
- return output
- }
- function intArrayFromBase64(s) {
- if (typeof ENVIRONMENT_IS_NODE === 'boolean' && ENVIRONMENT_IS_NODE) {
- var buf
- try {
- buf = Buffer.from(s, 'base64')
- } catch (_) {
- buf = new Buffer(s, 'base64')
- }
- return new Uint8Array(buf.buffer, buf.byteOffset, buf.byteLength)
- }
- try {
- var decoded = decodeBase64(s)
- var bytes = new Uint8Array(decoded.length)
- for (var i = 0; i < decoded.length; ++i) {
- bytes[i] = decoded.charCodeAt(i)
- }
- return bytes
- } catch (_) {
- throw new Error('Converting base64 string to bytes failed.')
- }
- }
- var atob = decodeBase64
- var exports = // EMSCRIPTEN_START_ASM
- (function a(/** @suppress {uselessCode} */ asmLibraryArg, wasmMemory, wasmTable) {
- var scratchBuffer = new ArrayBuffer(8)
- var b = new Int32Array(scratchBuffer)
- var c = new Float32Array(scratchBuffer)
- var d = new Float64Array(scratchBuffer)
- function e(index) {
- return b[index]
- }
- function f(index, value) {
- b[index] = value
- }
- function g() {
- return d[0]
- }
- function h(value) {
- d[0] = value
- }
- function i(low, high) {
- b[0] = low
- b[1] = high
- }
- function j(global, env, buffer) {
- var k = env.memory
- var l = wasmTable
- var m = new global.Int8Array(buffer)
- var n = new global.Int16Array(buffer)
- var o = new global.Int32Array(buffer)
- var p = new global.Uint8Array(buffer)
- var q = new global.Uint16Array(buffer)
- var r = new global.Uint32Array(buffer)
- var s = new global.Float32Array(buffer)
- var t = new global.Float64Array(buffer)
- var u = global.Math.imul
- var v = global.Math.fround
- var w = global.Math.abs
- var x = global.Math.clz32
- var y = global.Math.min
- var z = global.Math.max
- var A = global.Math.floor
- var B = global.Math.ceil
- var C = global.Math.sqrt
- var D = env.abort
- var E = global.NaN
- var F = global.Infinity
- var G = env.__cxa_allocate_exception
- var H = env.__cxa_throw
- var I = env.fd_write
- var J = env.fd_close
- var K = env.environ_sizes_get
- var L = env.environ_get
- var M = env.abort
- var N = env.emscripten_resize_heap
- var O = env.emscripten_memcpy_big
- var P = env.setTempRet0
- var Q = env.fd_seek
- var R = 5256544
- var S = 13656
- var T = 0
- // EMSCRIPTEN_START_FUNCS
- function ca() {
- ok()
- }
- function da(a, b) {
- var c = 0,
- d = 0,
- e = 0,
- f = 0
- c = (R - 16) | 0
- R = c
- o[(c + 8) >> 2] = 0
- o[c >> 2] = 0
- o[(c + 4) >> 2] = 0
- d = _j(b)
- if (d >>> 0 < 4294967280) {
- a: {
- b: {
- if (d >>> 0 >= 11) {
- f = (d + 16) & -16
- e = Hk(f)
- o[(c + 8) >> 2] = f | -2147483648
- o[c >> 2] = e
- o[(c + 4) >> 2] = d
- break b
- }
- m[(c + 11) | 0] = d
- e = c
- if (!d) {
- break a
- }
- }
- wl(e, b, d)
- }
- m[(d + e) | 0] = 0
- a = ea(a, c)
- if (m[(c + 11) | 0] <= -1) {
- ul(o[c >> 2])
- }
- R = (c + 16) | 0
- return (a | 0) != 0
- }
- Kk()
- D()
- }
- function ea(a, b) {
- var g = 0,
- h = 0,
- i = 0,
- j = 0,
- k = 0,
- l = 0,
- m = 0,
- n = 0
- a = o[(a + 4) >> 2]
- if (a) {
- h = p[(b + 11) | 0]
- i = (h << 24) >> 24 < 0
- h = i ? o[(b + 4) >> 2] : h
- l = i ? o[b >> 2] : b
- while (1) {
- b = (a + 16) | 0
- g = p[(a + 27) | 0]
- i = (g << 24) >> 24 < 0
- j = i ? o[(a + 20) >> 2] : g
- m = j >>> 0 < h >>> 0
- a: {
- b: {
- c: {
- d: {
- e: {
- f: {
- g = m ? j : h
- if (g) {
- k = i ? o[b >> 2] : b
- n = Zj(l, k, g)
- if (n) {
- break f
- }
- }
- if (h >>> 0 < j >>> 0) {
- break a
- }
- if (!g) {
- break d
- }
- k = i ? o[b >> 2] : b
- break e
- }
- if ((n | 0) <= -1) {
- break a
- }
- }
- b = Zj(k, l, g)
- if (b) {
- break c
- }
- }
- if (m) {
- break b
- }
- return 1
- }
- if ((b | 0) <= -1) {
- break b
- }
- return 1
- }
- a = (a + 4) | 0
- }
- a = o[a >> 2]
- if (a) {
- continue
- }
- break
- }
- }
- return 0
- }
- function fa(a, b) {
- var p = 0,
- q = 0,
- r = 0,
- s = 0
- p = (R - 16) | 0
- R = p
- o[(p + 12) >> 2] = 0
- o[(p + 8) >> 2] = 0
- o[p >> 2] = 0
- o[(p + 4) >> 2] = 0
- q = _j(b)
- if (q >>> 0 < 4294967280) {
- a: {
- b: {
- if (q >>> 0 >= 11) {
- s = (q + 16) & -16
- r = Hk(s)
- o[(p + 8) >> 2] = s | -2147483648
- o[p >> 2] = r
- o[(p + 4) >> 2] = q
- break b
- }
- m[(p + 11) | 0] = q
- r = p
- if (!q) {
- break a
- }
- }
- wl(r, b, q)
- }
- m[(q + r) | 0] = 0
- jj(a, p, (p + 12) | 0)
- a = o[(p + 12) >> 2]
- if (m[(p + 11) | 0] <= -1) {
- ul(o[p >> 2])
- }
- R = (p + 16) | 0
- return a
- }
- Kk()
- D()
- }
- function ga(a, b, t) {
- var u = 0,
- v = 0,
- w = 0,
- x = 0
- u = (R - 32) | 0
- R = u
- o[(u + 24) >> 2] = 0
- o[(u + 16) >> 2] = 0
- o[(u + 20) >> 2] = 0
- v = _j(b)
- if (v >>> 0 < 4294967280) {
- a: {
- b: {
- if (v >>> 0 >= 11) {
- x = (v + 16) & -16
- w = Hk(x)
- o[(u + 24) >> 2] = x | -2147483648
- o[(u + 16) >> 2] = w
- o[(u + 20) >> 2] = v
- break b
- }
- m[(u + 27) | 0] = v
- w = (u + 16) | 0
- if (!v) {
- break a
- }
- }
- wl(w, b, v)
- }
- m[(v + w) | 0] = 0
- o[(u + 8) >> 2] = 0
- o[u >> 2] = 0
- o[(u + 4) >> 2] = 0
- kj(a, (u + 16) | 0, u)
- a = o[t >> 2]
- if (a) {
- o[(t + 4) >> 2] = a
- ul(a)
- o[(t + 8) >> 2] = 0
- o[t >> 2] = 0
- o[(t + 4) >> 2] = 0
- }
- o[t >> 2] = o[u >> 2]
- o[(t + 4) >> 2] = o[(u + 4) >> 2]
- o[(t + 8) >> 2] = o[(u + 8) >> 2]
- if (m[(u + 27) | 0] <= -1) {
- ul(o[(u + 16) >> 2])
- }
- R = (u + 32) | 0
- return
- }
- Kk()
- D()
- }
- function ha(a, b) {
- var y = 0,
- z = 0,
- A = 0,
- B = 0,
- C = 0
- y = (R - 32) | 0
- R = y
- o[(y + 24) >> 2] = 0
- o[(y + 28) >> 2] = 0
- o[(y + 16) >> 2] = 0
- o[(y + 8) >> 2] = 0
- o[(y + 12) >> 2] = 0
- z = _j(b)
- if (z >>> 0 < 4294967280) {
- a: {
- b: {
- if (z >>> 0 >= 11) {
- B = (z + 16) & -16
- A = Hk(B)
- o[(y + 16) >> 2] = B | -2147483648
- o[(y + 8) >> 2] = A
- o[(y + 12) >> 2] = z
- break b
- }
- m[(y + 19) | 0] = z
- A = (y + 8) | 0
- if (!z) {
- break a
- }
- }
- wl(A, b, z)
- }
- m[(z + A) | 0] = 0
- lj(a, (y + 8) | 0, (y + 24) | 0)
- C = t[(y + 24) >> 3]
- if (m[(y + 19) | 0] <= -1) {
- ul(o[(y + 8) >> 2])
- }
- R = (y + 32) | 0
- return C
- }
- Kk()
- D()
- }
- function ia(a, b, t) {
- var E = 0,
- F = 0,
- G = 0,
- H = 0
- E = (R - 16) | 0
- R = E
- o[(E + 8) >> 2] = 0
- o[E >> 2] = 0
- o[(E + 4) >> 2] = 0
- F = _j(t)
- if (F >>> 0 < 4294967280) {
- a: {
- b: {
- if (F >>> 0 >= 11) {
- H = (F + 16) & -16
- G = Hk(H)
- o[(E + 8) >> 2] = H | -2147483648
- o[E >> 2] = G
- o[(E + 4) >> 2] = F
- break b
- }
- m[(E + 11) | 0] = F
- G = E
- if (!F) {
- break a
- }
- }
- wl(G, t, F)
- }
- m[(F + G) | 0] = 0
- a = (a + 16) | 0
- t = 0
- c: {
- if (!mj(b, E, a)) {
- break c
- }
- t = o[a >> 2]
- if (m[(a + 11) | 0] <= -1) {
- break c
- }
- t = a
- }
- if (m[(E + 11) | 0] <= -1) {
- ul(o[E >> 2])
- }
- R = (E + 16) | 0
- return t
- }
- Kk()
- D()
- }
- function ja(a, b, t) {
- var D = 0,
- I = 0,
- J = 0,
- K = 0
- a: {
- if (o[(a + 12) >> 2] == (b | 0)) {
- break a
- }
- D = o[a >> 2]
- J = (a + 4) | 0
- I = o[J >> 2]
- if ((D | 0) != (I | 0)) {
- while (1) {
- K = (I + -12) | 0
- if (m[(I + -1) | 0] <= -1) {
- ul(o[K >> 2])
- }
- I = K
- if ((I | 0) != (D | 0)) {
- continue
- }
- break
- }
- }
- o[(a + 12) >> 2] = b
- o[J >> 2] = D
- I = o[b >> 2]
- J = (b + 4) | 0
- if ((I | 0) == (J | 0)) {
- break a
- }
- K = (a + 8) | 0
- while (1) {
- b = (I + 16) | 0
- b: {
- if (o[K >> 2] != (D | 0)) {
- Mk(D, b)
- b = (a + 4) | 0
- o[b >> 2] = o[b >> 2] + 12
- break b
- }
- ka(a, b)
- }
- D = o[(I + 4) >> 2]
- c: {
- if (!D) {
- b = o[(I + 8) >> 2]
- if (o[b >> 2] == (I | 0)) {
- break c
- }
- I = (I + 8) | 0
- while (1) {
- D = o[I >> 2]
- I = (D + 8) | 0
- b = o[(D + 8) >> 2]
- if ((D | 0) != o[b >> 2]) {
- continue
- }
- break
- }
- break c
- }
- while (1) {
- b = D
- D = o[D >> 2]
- if (D) {
- continue
- }
- break
- }
- }
- if ((b | 0) == (J | 0)) {
- break a
- }
- D = o[(a + 4) >> 2]
- I = b
- continue
- }
- }
- D = 0
- d: {
- if ((t | 0) < 0) {
- break d
- }
- b = o[(a + 4) >> 2]
- a = o[a >> 2]
- if ((((b - a) | 0) / 12) >>> 0 <= t >>> 0) {
- break d
- }
- D = (a + u(t, 12)) | 0
- if (m[(D + 11) | 0] > -1) {
- break d
- }
- D = o[D >> 2]
- }
- return D
- }
- function ka(a, b) {
- var t = 0,
- L = 0,
- M = 0,
- N = 0,
- O = 0
- a: {
- b: {
- c: {
- M = o[a >> 2]
- O = (((o[(a + 4) >> 2] - M) | 0) / 12) | 0
- t = (O + 1) | 0
- if (t >>> 0 < 357913942) {
- M = (((o[(a + 8) >> 2] - M) | 0) / 12) | 0
- N = M << 1
- t = M >>> 0 < 178956970 ? (N >>> 0 < t >>> 0 ? t : N) : 357913941
- L = 0
- d: {
- if (!t) {
- break d
- }
- if (t >>> 0 >= 357913942) {
- break c
- }
- L = Hk(u(t, 12))
- }
- M = (L + u(t, 12)) | 0
- b = Mk((L + u(O, 12)) | 0, b)
- O = (b + 12) | 0
- t = o[(a + 4) >> 2]
- L = o[a >> 2]
- if ((t | 0) == (L | 0)) {
- break b
- }
- while (1) {
- t = (t + -12) | 0
- N = o[(t + 4) >> 2]
- b = (b + -12) | 0
- o[b >> 2] = o[t >> 2]
- o[(b + 4) >> 2] = N
- N = (t + 8) | 0
- o[(b + 8) >> 2] = o[N >> 2]
- o[t >> 2] = 0
- o[(t + 4) >> 2] = 0
- o[N >> 2] = 0
- if ((t | 0) != (L | 0)) {
- continue
- }
- break
- }
- L = o[(a + 4) >> 2]
- t = o[a >> 2]
- break a
- }
- Yk()
- D()
- }
- _a(1040)
- D()
- }
- t = L
- }
- o[a >> 2] = b
- o[(a + 8) >> 2] = M
- o[(a + 4) >> 2] = O
- if ((t | 0) != (L | 0)) {
- while (1) {
- a = (L + -12) | 0
- if (m[(L + -1) | 0] <= -1) {
- ul(o[a >> 2])
- }
- L = a
- if ((a | 0) != (t | 0)) {
- continue
- }
- break
- }
- }
- if (t) {
- ul(t)
- }
- }
- function la(a) {
- var b = 0
- ui(a)
- b = (a + 16) | 0
- o[b >> 2] = 0
- o[(b + 4) >> 2] = 0
- o[(a + 24) >> 2] = 0
- o[(a + 28) >> 2] = 0
- o[(a + 12) >> 2] = b
- o[(a + 32) >> 2] = 0
- o[(a + 36) >> 2] = 0
- return a
- }
- function ma(a) {
- var P = 0
- P = (R - 32) | 0
- R = P
- Rf((P + 8) | 0, a)
- a = o[(P + 24) >> 2]
- if (m[(P + 23) | 0] <= -1) {
- ul(o[(P + 12) >> 2])
- }
- R = (P + 32) | 0
- return a
- }
- function na(a) {
- var Q = 0
- Q = (R - 16) | 0
- R = Q
- Tf(Q)
- o[(a + 24) >> 2] = o[Q >> 2]
- Ok((a + 28) | 0, Q | 4)
- a = (a + 24) | 0
- if (m[(Q + 15) | 0] <= -1) {
- ul(o[(Q + 4) >> 2])
- }
- R = (Q + 16) | 0
- return a
- }
- function oa(a, S, T) {
- var U = 0
- U = (R - 16) | 0
- R = U
- Sf(U, a, S, T)
- o[(a + 24) >> 2] = o[U >> 2]
- Ok((a + 28) | 0, U | 4)
- a = (a + 24) | 0
- if (m[(U + 15) | 0] <= -1) {
- ul(o[(U + 4) >> 2])
- }
- R = (U + 16) | 0
- return a
- }
- function pa(a, S) {
- var T = 0,
- V = 0,
- W = 0,
- X = 0
- T = (R - 32) | 0
- R = T
- o[(T + 24) >> 2] = 0
- o[(T + 16) >> 2] = 0
- o[(T + 20) >> 2] = 0
- V = _j(S)
- if (V >>> 0 < 4294967280) {
- a: {
- b: {
- if (V >>> 0 >= 11) {
- X = (V + 16) & -16
- W = Hk(X)
- o[(T + 24) >> 2] = X | -2147483648
- o[(T + 16) >> 2] = W
- o[(T + 20) >> 2] = V
- break b
- }
- m[(T + 27) | 0] = V
- W = (T + 16) | 0
- if (!V) {
- break a
- }
- }
- wl(W, S, V)
- }
- m[(V + W) | 0] = 0
- o[(T + 8) >> 2] = 67108864
- o[T >> 2] = 0
- o[(T + 4) >> 2] = 0
- m[(T + 4) | 0] = 0
- o[T >> 2] = 1701667182
- V = o[(a + 4) >> 2]
- S = -1
- c: {
- if (!V) {
- break c
- }
- V = dj(V, T, (T + 16) | 0)
- S = -1
- if (!V) {
- break c
- }
- S = uj(a, o[(V + 24) >> 2])
- }
- if (m[(T + 11) | 0] <= -1) {
- ul(o[T >> 2])
- }
- if (m[(T + 27) | 0] <= -1) {
- ul(o[(T + 16) >> 2])
- }
- R = (T + 32) | 0
- return S
- }
- Kk()
- D()
- }
- function qa(a, S, Y) {
- var Z = 0,
- _ = 0,
- $ = 0,
- aa = 0
- Z = (R - 32) | 0
- R = Z
- o[(Z + 24) >> 2] = 0
- o[(Z + 16) >> 2] = 0
- o[(Z + 20) >> 2] = 0
- a: {
- aa = _j(S)
- if (aa >>> 0 < 4294967280) {
- b: {
- c: {
- if (aa >>> 0 >= 11) {
- _ = (aa + 16) & -16
- $ = Hk(_)
- o[(Z + 24) >> 2] = _ | -2147483648
- o[(Z + 16) >> 2] = $
- o[(Z + 20) >> 2] = aa
- break c
- }
- m[(Z + 27) | 0] = aa
- $ = (Z + 16) | 0
- if (!aa) {
- break b
- }
- }
- wl($, S, aa)
- }
- m[($ + aa) | 0] = 0
- o[(Z + 8) >> 2] = 0
- o[Z >> 2] = 0
- o[(Z + 4) >> 2] = 0
- _ = _j(Y)
- if (_ >>> 0 >= 4294967280) {
- break a
- }
- d: {
- e: {
- if (_ >>> 0 >= 11) {
- S = (_ + 16) & -16
- $ = Hk(S)
- o[(Z + 8) >> 2] = S | -2147483648
- o[Z >> 2] = $
- o[(Z + 4) >> 2] = _
- break e
- }
- m[(Z + 11) | 0] = _
- $ = Z
- if (!_) {
- break d
- }
- }
- wl($, Y, _)
- }
- m[(_ + $) | 0] = 0
- Y = o[(a + 4) >> 2]
- S = -1
- f: {
- if (!Y) {
- break f
- }
- Y = dj(Y, (Z + 16) | 0, Z)
- S = -1
- if (!Y) {
- break f
- }
- S = uj(a, o[(Y + 24) >> 2])
- }
- a = S
- if (m[(Z + 11) | 0] <= -1) {
- ul(o[Z >> 2])
- }
- if (m[(Z + 27) | 0] <= -1) {
- ul(o[(Z + 16) >> 2])
- }
- R = (Z + 32) | 0
- return a
- }
- Kk()
- D()
- }
- Kk()
- D()
- }
- function ra(a, S, Y) {
- var ba = 0,
- ca = 0,
- da = 0
- ba = (R - 16) | 0
- R = ba
- ca = o[(a + 96) >> 2]
- o[(ba + 8) >> 2] = 0
- o[ba >> 2] = 0
- o[(ba + 4) >> 2] = 0
- a = Hk(12)
- o[ba >> 2] = a
- o[(ba + 4) >> 2] = a
- da = (a + 12) | 0
- o[(ba + 8) >> 2] = da
- ca = (wl(a, (ca + u(S, 12)) | 0, 12) + 12) | 0
- o[(ba + 4) >> 2] = ca
- S = o[Y >> 2]
- if (S) {
- o[(Y + 4) >> 2] = S
- ul(S)
- o[(Y + 8) >> 2] = 0
- o[Y >> 2] = 0
- o[(Y + 4) >> 2] = 0
- }
- o[Y >> 2] = a
- o[(Y + 8) >> 2] = da
- o[(Y + 4) >> 2] = ca
- R = (ba + 16) | 0
- return 1
- }
- function sa(a, S) {
- var Y = 0,
- ea = 0
- Y = (R - 96) | 0
- R = Y
- xl((Y + 16) | 0, 0, 76)
- o[(Y + 92) >> 2] = -1
- o[(Y + 8) >> 2] = 0
- o[Y >> 2] = 0
- o[(Y + 4) >> 2] = 0
- a: {
- if (ta((Y + 16) | 0, a, Y)) {
- a = o[S >> 2]
- if (a) {
- o[(S + 4) >> 2] = a
- ul(a)
- o[(S + 8) >> 2] = 0
- o[S >> 2] = 0
- o[(S + 4) >> 2] = 0
- }
- o[S >> 2] = o[Y >> 2]
- o[(S + 4) >> 2] = o[(Y + 4) >> 2]
- o[(S + 8) >> 2] = o[(Y + 8) >> 2]
- o[(Y + 8) >> 2] = 0
- o[Y >> 2] = 0
- o[(Y + 4) >> 2] = 0
- ea = o[(Y + 84) >> 2]
- break a
- }
- a = o[Y >> 2]
- if (!a) {
- break a
- }
- o[(Y + 4) >> 2] = a
- ul(a)
- }
- a = o[(Y + 72) >> 2]
- if (a) {
- ul(a)
- }
- a = o[(Y + 48) >> 2]
- if (a) {
- o[(Y + 52) >> 2] = a
- ul(a)
- }
- a = o[(Y + 36) >> 2]
- if (a) {
- o[(Y + 40) >> 2] = a
- ul(a)
- }
- a = o[(Y + 24) >> 2]
- if (a) {
- o[(Y + 28) >> 2] = a
- ul(a)
- }
- a = o[(Y + 20) >> 2]
- o[(Y + 20) >> 2] = 0
- if (a) {
- ua((Y + 16) | 4, a)
- }
- R = (Y + 96) | 0
- return ea
- }
- function ta(a, S, fa) {
- var ga = 0,
- ha = 0,
- ia = 0,
- ja = 0,
- ka = 0,
- la = 0,
- ma = 0,
- na = 0,
- oa = 0,
- pa = 0,
- qa = 0,
- ra = 0,
- sa = 0
- ja = (R - 16) | 0
- R = ja
- a: {
- if (!va(a, S)) {
- break a
- }
- ia = 1
- ha = o[(S + 96) >> 2]
- oa = (S + 100) | 0
- ga = o[oa >> 2]
- if ((ha | 0) == (ga | 0)) {
- break a
- }
- pa = (a + 12) | 0
- qa = (a + 24) | 0
- ra = (a + 36) | 0
- na = (fa + 8) | 0
- la = (fa + 4) | 0
- while (1) {
- if (!((o[(o[(a + 56) >> 2] + ((ma >>> 3) & 536870908)) >> 2] >>> (ma & 31)) & 1)) {
- ia = u(ma, 3)
- Zi(a, 0, ia)
- sa = o[pa >> 2]
- ka = o[(a + 8) >> 2]
- Zi(a, 1, (ia + 1) | 0)
- ha = o[qa >> 2]
- ga = o[(a + 20) >> 2]
- Zi(a, 2, (ia + 2) | 0)
- ia = (ha - ga) >> 2
- ha = (sa - ka) | 0
- ga = ha >> 2
- ka = ia >>> 0 > ga >>> 0
- ka = ((o[ra >> 2] - o[(a + 32) >> 2]) >> 2) >>> 0 > (ka ? ia : ga) >>> 0 ? 2 : ka ? 1 : ha ? 0 : -1
- b: {
- if (o[(a + 68) >> 2] < 1) {
- break b
- }
- ga = o[(a + 76) >> 2]
- o[(ja + 12) >> 2] = ga
- ha = o[la >> 2]
- c: {
- if (ha >>> 0 < r[na >> 2]) {
- o[ha >> 2] = ga
- o[la >> 2] = ha + 4
- break c
- }
- wa(fa, (ja + 12) | 0)
- }
- ga = ja
- ia = o[((((ka << 2) + a) | 0) + 44) >> 2]
- ha = -1
- d: {
- if ((ia | 0) < 0) {
- break d
- }
- ha = ((ia >>> 0) / 3) | 0
- ha = o[(((o[(o[a >> 2] + 96) >> 2] + u(ha, 12)) | 0) + ((ia - u(ha, 3)) << 2)) >> 2]
- }
- o[(ga + 8) >> 2] = ha
- ga = o[la >> 2]
- e: {
- if (ga >>> 0 < r[na >> 2]) {
- o[ga >> 2] = ha
- o[la >> 2] = ga + 4
- break e
- }
- wa(fa, (ja + 8) | 0)
- }
- ga = (o[(a + 72) >> 2] + 2) | 0
- o[(a + 72) >> 2] = ga
- if (!(ga & 1)) {
- break b
- }
- o[(ja + 4) >> 2] = ha
- ga = o[la >> 2]
- f: {
- if (ga >>> 0 < r[na >> 2]) {
- o[ga >> 2] = ha
- o[la >> 2] = ga + 4
- break f
- }
- wa(fa, (ja + 4) | 0)
- }
- o[(a + 72) >> 2] = o[(a + 72) >> 2] + 1
- }
- xa(a, ka, fa)
- ha = o[(S + 96) >> 2]
- ga = o[oa >> 2]
- }
- ia = 1
- ma = (ma + 1) | 0
- if (ma >>> 0 < (((ga - ha) | 0) / 12) >>> 0) {
- continue
- }
- break
- }
- }
- R = (ja + 16) | 0
- return ia
- }
- function ua(a, R) {
- if (R) {
- a = o[(R + 76) >> 2]
- if (a) {
- o[(R + 80) >> 2] = a
- ul(a)
- }
- a = o[(R - -64) >> 2]
- if (a) {
- o[(R + 68) >> 2] = a
- ul(a)
- }
- a = o[(R + 48) >> 2]
- if (a) {
- o[(R + 52) >> 2] = a
- ul(a)
- }
- a = o[(R + 24) >> 2]
- if (a) {
- o[(R + 28) >> 2] = a
- ul(a)
- }
- a = o[(R + 12) >> 2]
- if (a) {
- o[(R + 16) >> 2] = a
- ul(a)
- }
- a = o[R >> 2]
- if (a) {
- o[(R + 4) >> 2] = a
- ul(a)
- }
- ul(R)
- }
- }
- function va(a, S) {
- var fa = 0,
- ta = 0,
- va = 0
- fa = (R - 16) | 0
- R = fa
- o[(a + 68) >> 2] = 0
- o[(a + 72) >> 2] = 0
- o[a >> 2] = S
- Yi((fa + 8) | 0, S)
- ta = o[(fa + 8) >> 2]
- o[(fa + 8) >> 2] = 0
- va = o[(a + 4) >> 2]
- o[(a + 4) >> 2] = ta
- a: {
- if (!va) {
- o[(fa + 8) >> 2] = 0
- break a
- }
- ta = (a + 4) | 0
- ua(ta, va)
- va = o[(fa + 8) >> 2]
- o[(fa + 8) >> 2] = 0
- if (va) {
- ua((fa + 8) | 0, va)
- }
- ta = o[ta >> 2]
- }
- if (ta) {
- ta = o[(S + 100) >> 2]
- S = o[(S + 96) >> 2]
- m[(fa + 7) | 0] = 0
- $a((a + 56) | 0, (((ta - S) | 0) / 12) | 0, (fa + 7) | 0)
- a = 1
- } else {
- a = 0
- }
- R = (fa + 16) | 0
- return a
- }
- function wa(a, R) {
- var S = 0,
- ua = 0,
- wa = 0,
- xa = 0,
- ya = 0,
- za = 0
- a: {
- wa = o[a >> 2]
- ya = (o[(a + 4) >> 2] - wa) | 0
- S = ya >> 2
- ua = (S + 1) | 0
- if (ua >>> 0 < 1073741824) {
- za = S << 2
- S = (o[(a + 8) >> 2] - wa) | 0
- xa = S >> 1
- ua = (S >> 2) >>> 0 < 536870911 ? (xa >>> 0 < ua >>> 0 ? ua : xa) : 1073741823
- S = 0
- b: {
- if (!ua) {
- break b
- }
- if (ua >>> 0 >= 1073741824) {
- break a
- }
- S = Hk(ua << 2)
- }
- xa = (za + S) | 0
- o[xa >> 2] = o[R >> 2]
- R = (S + (ua << 2)) | 0
- ua = (xa + 4) | 0
- if ((ya | 0) >= 1) {
- wl(S, wa, ya)
- }
- o[a >> 2] = S
- o[(a + 8) >> 2] = R
- o[(a + 4) >> 2] = ua
- if (wa) {
- ul(wa)
- }
- return
- }
- Yk()
- D()
- }
- _a(1040)
- D()
- }
- function xa(a, Aa, Ba) {
- var Ca = 0,
- Da = 0,
- Ea = 0,
- Fa = 0,
- Ga = 0,
- Ha = 0,
- Ia = 0,
- Ja = 0
- Ea = (R - 16) | 0
- R = Ea
- o[(a + 68) >> 2] = o[(a + 68) >> 2] + 1
- Ca = (u(Aa, 12) + a) | 0
- Ca = (o[(Ca + 12) >> 2] - o[(Ca + 8) >> 2]) | 0
- if ((Ca | 0) >= 1) {
- Ja = Ca >> 2
- Ca = o[((((Aa << 2) + a) | 0) + 44) >> 2]
- Ha = (Ba + 8) | 0
- Fa = (Ba + 4) | 0
- while (1) {
- Aa = Ca
- Ga = ((Ca >>> 0) / 3) | 0
- Ca = (Ca | 0) == -1 ? -1 : Ga
- Da = (o[(a + 56) >> 2] + ((Ca >>> 3) & 536870908)) | 0
- o[Da >> 2] = o[Da >> 2] | (1 << (Ca & 31))
- o[(a + 72) >> 2] = o[(a + 72) >> 2] + 1
- a: {
- b: {
- if (!Ia) {
- Ca = (Aa | 0) < 0 ? -1 : o[(((o[(o[a >> 2] + 96) >> 2] + u(Ga, 12)) | 0) + ((Aa >>> 0) % 3 << 2)) >> 2]
- o[(Ea + 12) >> 2] = Ca
- Da = o[Fa >> 2]
- c: {
- if (Da >>> 0 < r[Ha >> 2]) {
- o[Da >> 2] = Ca
- o[Fa >> 2] = Da + 4
- break c
- }
- wa(Ba, (Ea + 12) | 0)
- }
- Ca = -1
- d: {
- if ((Aa | 0) == -1) {
- break d
- }
- Da = (Aa + 1) | 0
- Da = (Da >>> 0) % 3 | 0 ? Da : (Aa + -2) | 0
- if ((Da | 0) < 0) {
- break d
- }
- Ca = ((Da >>> 0) / 3) | 0
- Ca = o[(((o[(o[a >> 2] + 96) >> 2] + u(Ca, 12)) | 0) + ((Da - u(Ca, 3)) << 2)) >> 2]
- }
- o[(Ea + 12) >> 2] = Ca
- Da = o[Fa >> 2]
- e: {
- if (Da >>> 0 < r[Ha >> 2]) {
- o[Da >> 2] = Ca
- o[Fa >> 2] = Da + 4
- break e
- }
- wa(Ba, (Ea + 12) | 0)
- }
- Da = a
- Ca = -1
- f: {
- if ((Aa | 0) == -1) {
- break f
- }
- Ga = (((Aa >>> 0) % 3 | 0 ? -1 : 2) + Aa) | 0
- Ca = -1
- if ((Ga | 0) < 0) {
- break f
- }
- Ca = ((Ga >>> 0) / 3) | 0
- Ca = o[(((o[(o[a >> 2] + 96) >> 2] + u(Ca, 12)) | 0) + ((Ga - u(Ca, 3)) << 2)) >> 2]
- }
- o[(Da + 76) >> 2] = Ca
- o[(Ea + 12) >> 2] = Ca
- Da = o[Fa >> 2]
- if (Da >>> 0 < r[Ha >> 2]) {
- o[Da >> 2] = Ca
- o[Fa >> 2] = Da + 4
- break b
- }
- wa(Ba, (Ea + 12) | 0)
- break b
- }
- Ca = (Aa | 0) < 0 ? -1 : o[(((o[(o[a >> 2] + 96) >> 2] + u(Ga, 12)) | 0) + ((Aa >>> 0) % 3 << 2)) >> 2]
- o[(a + 76) >> 2] = Ca
- o[(Ea + 12) >> 2] = Ca
- Da = o[Fa >> 2]
- g: {
- if (Da >>> 0 < r[Ha >> 2]) {
- o[Da >> 2] = Ca
- o[Fa >> 2] = Da + 4
- break g
- }
- wa(Ba, (Ea + 12) | 0)
- }
- if (Ia & 1) {
- Ca = -1
- if ((Aa | 0) == -1) {
- break a
- }
- if (Aa - u(Ga, 3)) {
- Aa = (Aa + -1) | 0
- break b
- }
- Aa = (Aa + 2) | 0
- break b
- }
- Ca = -1
- if ((Aa | 0) == -1) {
- break a
- }
- Ca = (Aa + 1) | 0
- Aa = (Ca >>> 0) % 3 | 0 ? Ca : (Aa + -2) | 0
- }
- Ca = -1
- if ((Aa | 0) == -1) {
- break a
- }
- Ca = o[(o[(o[(a + 4) >> 2] + 12) >> 2] + (Aa << 2)) >> 2]
- }
- Ia = (Ia + 1) | 0
- if ((Ia | 0) < (Ja | 0)) {
- continue
- }
- break
- }
- }
- R = (Ea + 16) | 0
- }
- function ya(a, R, Aa) {
- var Ba = 0,
- Ka = 0,
- La = 0
- a: {
- if (r[(a + 80) >> 2] > 65535) {
- break a
- }
- Ka = o[(a + 96) >> 2]
- a = (o[(a + 100) >> 2] - Ka) | 0
- La = ((a | 0) / 12) | 0
- if ((u(La, 6) | 0) != (R | 0)) {
- break a
- }
- if (!a) {
- return 1
- }
- a = 0
- while (1) {
- R = (u(a, 6) + Aa) | 0
- Ba = (u(a, 12) + Ka) | 0
- n[R >> 1] = o[Ba >> 2]
- n[(R + 2) >> 1] = o[(Ba + 4) >> 2]
- n[(R + 4) >> 1] = o[(Ba + 8) >> 2]
- Ba = 1
- a = (a + 1) | 0
- if (a >>> 0 < La >>> 0) {
- continue
- }
- break
- }
- }
- return Ba
- }
- function za(a, R, Aa) {
- var Ma = 0,
- Na = 0,
- Oa = 0
- Na = o[(a + 96) >> 2]
- a = (o[(a + 100) >> 2] - Na) | 0
- Oa = ((a | 0) / 12) | 0
- if ((a | 0) == (R | 0)) {
- if (!R) {
- return 1
- }
- a = 0
- while (1) {
- Ma = u(a, 12)
- R = (Ma + Aa) | 0
- Ma = (Ma + Na) | 0
- o[R >> 2] = o[Ma >> 2]
- o[(R + 4) >> 2] = o[(Ma + 4) >> 2]
- o[(R + 8) >> 2] = o[(Ma + 8) >> 2]
- Ma = 1
- a = (a + 1) | 0
- if (a >>> 0 < Oa >>> 0) {
- continue
- }
- break
- }
- }
- return Ma
- }
- function Aa(a, Aa, Pa) {
- var Qa = 0,
- Ra = 0,
- Sa = 0,
- Ta = 0
- Qa = (R - 32) | 0
- R = Qa
- Ra = m[(a + 24) | 0]
- Ta = o[259]
- o[(Qa + 24) >> 2] = o[258]
- o[(Qa + 28) >> 2] = Ta
- Ta = o[257]
- o[(Qa + 16) >> 2] = o[256]
- o[(Qa + 20) >> 2] = Ta
- a: {
- if (Ba(a, Aa, Ra, (Qa + 16) | 0)) {
- a = 0
- o[(Qa + 8) >> 2] = 0
- o[Qa >> 2] = 0
- o[(Qa + 4) >> 2] = 0
- Aa = 0
- if (Ra) {
- if ((Ra | 0) <= -1) {
- break a
- }
- Aa = Ra << 2
- Sa = Hk(Aa)
- o[Qa >> 2] = Sa
- a = ((Ra << 2) + Sa) | 0
- o[(Qa + 8) >> 2] = a
- wl(Sa, (Qa + 16) | 0, Aa)
- o[(Qa + 4) >> 2] = a
- Aa = a
- }
- Ra = o[Pa >> 2]
- if (Ra) {
- o[(Pa + 4) >> 2] = Ra
- ul(Ra)
- o[(Pa + 8) >> 2] = 0
- o[Pa >> 2] = 0
- o[(Pa + 4) >> 2] = 0
- Aa = o[(Qa + 4) >> 2]
- Sa = o[Qa >> 2]
- a = o[(Qa + 8) >> 2]
- }
- o[Pa >> 2] = Sa
- o[(Pa + 8) >> 2] = a
- o[(Pa + 4) >> 2] = Aa
- Sa = 1
- }
- R = (Qa + 32) | 0
- return Sa
- }
- Yk()
- D()
- }
- function Ba(a, R, Aa, Pa) {
- var Ua = 0,
- Va = 0,
- Wa = v(0),
- Xa = 0,
- Ya = 0
- a: {
- b: {
- if (!Pa) {
- break b
- }
- Ua = (o[(a + 28) >> 2] + -1) | 0
- if (Ua >>> 0 > 10) {
- break b
- }
- c: {
- switch ((Ua - 1) | 0) {
- default:
- Ya = 1
- Ua = m[(a + 24) | 0]
- if ((((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24 >= 1) {
- Ua = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Ua + R) | 0
- Xa = p[(a + 32) | 0]
- while (1) {
- Wa = v(m[R | 0])
- s[((Va << 2) + Pa) >> 2] = Xa ? v(Wa / v(127)) : Wa
- R = (R + 1) | 0
- Va = (Va + 1) | 0
- Ua = m[(a + 24) | 0]
- if ((Va | 0) < (((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Ua | 0) >= (Aa | 0)) {
- break b
- }
- break a
- case 0:
- Ya = 1
- Ua = m[(a + 24) | 0]
- if ((((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24 >= 1) {
- Ua = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Ua + R) | 0
- Xa = p[(a + 32) | 0]
- while (1) {
- Wa = v(p[R | 0])
- s[((Va << 2) + Pa) >> 2] = Xa ? v(Wa / v(255)) : Wa
- R = (R + 1) | 0
- Va = (Va + 1) | 0
- Ua = m[(a + 24) | 0]
- if ((Va | 0) < (((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Ua | 0) >= (Aa | 0)) {
- break b
- }
- break a
- case 1:
- Ya = 1
- Ua = m[(a + 24) | 0]
- if ((((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24 >= 1) {
- Ua = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Ua + R) | 0
- Xa = p[(a + 32) | 0]
- while (1) {
- Wa = v(n[R >> 1])
- s[((Va << 2) + Pa) >> 2] = Xa ? v(Wa / v(32767)) : Wa
- R = (R + 2) | 0
- Va = (Va + 1) | 0
- Ua = m[(a + 24) | 0]
- if ((Va | 0) < (((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Ua | 0) >= (Aa | 0)) {
- break b
- }
- break a
- case 2:
- Ya = 1
- Ua = m[(a + 24) | 0]
- if ((((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24 >= 1) {
- Ua = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Ua + R) | 0
- Xa = p[(a + 32) | 0]
- while (1) {
- Wa = v(q[R >> 1])
- s[((Va << 2) + Pa) >> 2] = Xa ? v(Wa / v(65535)) : Wa
- R = (R + 2) | 0
- Va = (Va + 1) | 0
- Ua = m[(a + 24) | 0]
- if ((Va | 0) < (((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Ua | 0) >= (Aa | 0)) {
- break b
- }
- break a
- case 3:
- Ya = 1
- Ua = m[(a + 24) | 0]
- if ((((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24 >= 1) {
- Ua = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Ua + R) | 0
- Xa = p[(a + 32) | 0]
- while (1) {
- Wa = v(o[R >> 2])
- s[((Va << 2) + Pa) >> 2] = Xa ? v(Wa * v(4.656612873077393e-10)) : Wa
- R = (R + 4) | 0
- Va = (Va + 1) | 0
- Ua = m[(a + 24) | 0]
- if ((Va | 0) < (((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Ua | 0) >= (Aa | 0)) {
- break b
- }
- break a
- case 4:
- Ya = 1
- Ua = m[(a + 24) | 0]
- if ((((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24 >= 1) {
- Ua = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Ua + R) | 0
- Xa = p[(a + 32) | 0]
- while (1) {
- Wa = v(r[R >> 2])
- s[((Va << 2) + Pa) >> 2] = Xa ? v(Wa * v(2.3283064365386963e-10)) : Wa
- R = (R + 4) | 0
- Va = (Va + 1) | 0
- Ua = m[(a + 24) | 0]
- if ((Va | 0) < (((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Ua | 0) >= (Aa | 0)) {
- break b
- }
- break a
- case 5:
- Ya = 1
- Ua = m[(a + 24) | 0]
- if ((((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24 >= 1) {
- Ua = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Ua + R) | 0
- Xa = p[(a + 32) | 0]
- while (1) {
- Wa = v(+r[R >> 2] + 4294967296 * +o[(R + 4) >> 2])
- s[((Va << 2) + Pa) >> 2] = Xa ? v(Wa * v(1.0842021724855044e-19)) : Wa
- R = (R + 8) | 0
- Va = (Va + 1) | 0
- Ua = m[(a + 24) | 0]
- if ((Va | 0) < (((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Ua | 0) >= (Aa | 0)) {
- break b
- }
- break a
- case 6:
- Ya = 1
- Ua = m[(a + 24) | 0]
- if ((((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24 >= 1) {
- Ua = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Ua + R) | 0
- Xa = p[(a + 32) | 0]
- while (1) {
- Wa = v(+r[R >> 2] + 4294967296 * +r[(R + 4) >> 2])
- s[((Va << 2) + Pa) >> 2] = Xa ? v(Wa * v(5.421010862427522e-20)) : Wa
- R = (R + 8) | 0
- Va = (Va + 1) | 0
- Ua = m[(a + 24) | 0]
- if ((Va | 0) < (((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Ua | 0) >= (Aa | 0)) {
- break b
- }
- break a
- case 7:
- Ya = 1
- Ua = m[(a + 24) | 0]
- if ((((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24 >= 1) {
- Ua = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Ua + R) | 0
- while (1) {
- o[((Va << 2) + Pa) >> 2] = o[R >> 2]
- R = (R + 4) | 0
- Va = (Va + 1) | 0
- Ua = m[(a + 24) | 0]
- if ((Va | 0) < (((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Ua | 0) >= (Aa | 0)) {
- break b
- }
- break a
- case 8:
- Ya = 1
- Ua = m[(a + 24) | 0]
- if ((((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24 >= 1) {
- Ua = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Ua + R) | 0
- while (1) {
- s[((Va << 2) + Pa) >> 2] = t[R >> 3]
- R = (R + 8) | 0
- Va = (Va + 1) | 0
- Ua = m[(a + 24) | 0]
- if ((Va | 0) < (((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Ua | 0) >= (Aa | 0)) {
- break b
- }
- break a
- case 9:
- break c
- }
- }
- Ya = 1
- Ua = m[(a + 24) | 0]
- if ((((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24 >= 1) {
- Ua = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Ua + R) | 0
- while (1) {
- s[((Va << 2) + Pa) >> 2] = p[R | 0] ? v(1) : v(0)
- R = (R + 1) | 0
- Va = (Va + 1) | 0
- Ua = m[(a + 24) | 0]
- if ((Va | 0) < (((Ua | 0) > (Aa | 0) ? Aa : Ua) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Ua | 0) >= (Aa | 0)) {
- break b
- }
- xl(((Ua << 2) + Pa) | 0, 0, (Aa - Ua) << 2)
- }
- return Ya
- }
- xl(((Ua << 2) + Pa) | 0, 0, (Aa - Ua) << 2)
- return 1
- }
- function Ca(a, Aa, Pa) {
- var Za = 0,
- _a = 0,
- $a = 0,
- ab = 0,
- bb = 0,
- cb = 0,
- db = 0,
- eb = 0
- Za = (R - 16) | 0
- R = Za
- bb = o[(a + 80) >> 2]
- cb = m[(Aa + 24) | 0]
- a = o[259]
- o[(Za + 8) >> 2] = o[258]
- o[(Za + 12) >> 2] = a
- a = o[257]
- o[Za >> 2] = o[256]
- o[(Za + 4) >> 2] = a
- a = u(bb, cb)
- $a = o[Pa >> 2]
- _a = (o[(Pa + 4) >> 2] - $a) >> 2
- a: {
- if (a >>> 0 > _a >>> 0) {
- Da(Pa, (a - _a) | 0)
- break a
- }
- if (a >>> 0 >= _a >>> 0) {
- break a
- }
- o[(Pa + 4) >> 2] = $a + (a << 2)
- }
- b: {
- if (!bb) {
- a = 1
- break b
- }
- $a = 0
- db = (Aa + 68) | 0
- eb = (cb | 0) < 1
- while (1) {
- a = ab
- _a = Aa
- if (!p[(_a + 84) | 0]) {
- a = o[(o[db >> 2] + (ab << 2)) >> 2]
- }
- if (!Ba(_a, a, m[(Aa + 24) | 0], Za)) {
- a = 0
- break b
- }
- if (!eb) {
- _a = o[Pa >> 2]
- a = 0
- while (1) {
- o[(_a + ($a << 2)) >> 2] = o[((a << 2) + Za) >> 2]
- $a = ($a + 1) | 0
- a = (a + 1) | 0
- if ((cb | 0) != (a | 0)) {
- continue
- }
- break
- }
- }
- a = 1
- ab = (ab + 1) | 0
- if ((bb | 0) != (ab | 0)) {
- continue
- }
- break
- }
- }
- R = (Za + 16) | 0
- return a
- }
- function Da(a, R) {
- var Aa = 0,
- Pa = 0,
- fb = 0,
- gb = 0,
- hb = 0,
- ib = 0,
- jb = 0,
- kb = 0,
- lb = 0
- Pa = o[(a + 8) >> 2]
- fb = (a + 4) | 0
- Aa = o[fb >> 2]
- if (((Pa - Aa) >> 2) >>> 0 >= R >>> 0) {
- a = R << 2
- ;(kb = fb), (lb = (xl(Aa, 0, a) + a) | 0), (o[kb >> 2] = lb)
- return
- }
- a: {
- fb = o[a >> 2]
- hb = (Aa - fb) | 0
- Aa = hb >> 2
- gb = (Aa + R) | 0
- if (gb >>> 0 < 1073741824) {
- jb = Aa << 2
- Pa = (Pa - fb) | 0
- Aa = Pa >> 1
- Pa = (Pa >> 2) >>> 0 < 536870911 ? (Aa >>> 0 < gb >>> 0 ? gb : Aa) : 1073741823
- Aa = 0
- b: {
- if (!Pa) {
- break b
- }
- if (Pa >>> 0 >= 1073741824) {
- break a
- }
- ib = Hk(Pa << 2)
- Aa = ib
- }
- xl((jb + Aa) | 0, 0, R << 2)
- R = (Aa + (gb << 2)) | 0
- gb = (Aa + (Pa << 2)) | 0
- if ((hb | 0) >= 1) {
- wl(ib, fb, hb)
- }
- o[a >> 2] = Aa
- o[(a + 8) >> 2] = gb
- o[(a + 4) >> 2] = R
- if (fb) {
- ul(fb)
- }
- return
- }
- Yk()
- D()
- }
- _a(1040)
- D()
- }
- function Ea(a, mb, nb) {
- var ob = 0,
- pb = 0,
- qb = 0,
- rb = 0,
- sb = 0,
- tb = 0,
- ub = 0,
- vb = 0
- pb = (R - 16) | 0
- R = pb
- sb = o[(a + 80) >> 2]
- rb = m[(mb + 24) | 0]
- qb = u(sb, rb)
- a: {
- a = o[(mb + 28) >> 2]
- b: {
- if (!(!p[(mb + 84) | 0] | ((a | 0) != 2 ? (a | 0) != 1 : 0))) {
- rb = o[(mb + 48) >> 2]
- mb = o[o[mb >> 2] >> 2]
- o[(pb + 8) >> 2] = 0
- o[pb >> 2] = 0
- o[(pb + 4) >> 2] = 0
- a = 0
- if (qb) {
- if ((qb | 0) <= -1) {
- break a
- }
- a = Hk(qb)
- o[pb >> 2] = a
- ob = (a + qb) | 0
- o[(pb + 8) >> 2] = ob
- wl(a, (mb + rb) | 0, qb)
- o[(pb + 4) >> 2] = ob
- }
- mb = o[nb >> 2]
- if (mb) {
- o[(nb + 4) >> 2] = mb
- ul(mb)
- o[(nb + 8) >> 2] = 0
- o[nb >> 2] = 0
- o[(nb + 4) >> 2] = 0
- }
- o[nb >> 2] = a
- o[(nb + 8) >> 2] = ob
- o[(nb + 4) >> 2] = ob
- ob = 1
- break b
- }
- o[(pb + 8) >> 2] = 0
- o[pb >> 2] = 0
- o[(pb + 4) >> 2] = 0
- if (rb) {
- if ((rb | 0) <= -1) {
- break a
- }
- ob = Hk(rb)
- o[pb >> 2] = ob
- o[(pb + 4) >> 2] = ob
- o[(pb + 8) >> 2] = ob + rb
- a = rb
- while (1) {
- m[ob | 0] = 0
- ob = (o[(pb + 4) >> 2] + 1) | 0
- o[(pb + 4) >> 2] = ob
- a = (a + -1) | 0
- if (a) {
- continue
- }
- break
- }
- }
- ob = o[nb >> 2]
- a = (o[(nb + 4) >> 2] - ob) | 0
- c: {
- if (qb >>> 0 > a >>> 0) {
- Fa(nb, (qb - a) | 0)
- break c
- }
- if (qb >>> 0 >= a >>> 0) {
- break c
- }
- o[(nb + 4) >> 2] = ob + qb
- }
- d: {
- if (!sb) {
- ob = 1
- break d
- }
- a = 0
- tb = (mb + 68) | 0
- ub = (rb | 0) < 1
- qb = 0
- while (1) {
- ob = qb
- vb = mb
- if (!p[(mb + 84) | 0]) {
- ob = o[(o[tb >> 2] + (qb << 2)) >> 2]
- }
- if (!Ga(vb, ob, m[(mb + 24) | 0], o[pb >> 2])) {
- ob = 0
- break d
- }
- ob = 0
- if (!ub) {
- while (1) {
- m[(o[nb >> 2] + a) | 0] = p[(o[pb >> 2] + ob) | 0]
- a = (a + 1) | 0
- ob = (ob + 1) | 0
- if ((rb | 0) != (ob | 0)) {
- continue
- }
- break
- }
- }
- ob = 1
- qb = (qb + 1) | 0
- if ((sb | 0) != (qb | 0)) {
- continue
- }
- break
- }
- }
- a = o[pb >> 2]
- if (!a) {
- break b
- }
- o[(pb + 4) >> 2] = a
- ul(a)
- }
- R = (pb + 16) | 0
- return ob
- }
- Yk()
- D()
- }
- function Fa(a, R) {
- var mb = 0,
- nb = 0,
- wb = 0,
- xb = 0,
- yb = 0,
- zb = 0
- a: {
- nb = o[(a + 8) >> 2]
- wb = (a + 4) | 0
- mb = o[wb >> 2]
- b: {
- if ((nb - mb) >>> 0 >= R >>> 0) {
- while (1) {
- m[mb | 0] = 0
- mb = (o[wb >> 2] + 1) | 0
- o[wb >> 2] = mb
- R = (R + -1) | 0
- if (R) {
- continue
- }
- break b
- }
- }
- xb = o[a >> 2]
- yb = (mb - xb) | 0
- mb = (yb + R) | 0
- if ((mb | 0) <= -1) {
- break a
- }
- wb = 0
- nb = (nb - xb) | 0
- zb = nb << 1
- nb = nb >>> 0 < 1073741823 ? (zb >>> 0 < mb >>> 0 ? mb : zb) : 2147483647
- if (nb) {
- wb = Hk(nb)
- }
- mb = (wb + yb) | 0
- xl(mb, 0, R)
- nb = (nb + wb) | 0
- while (1) {
- mb = (mb + 1) | 0
- R = (R + -1) | 0
- if (R) {
- continue
- }
- break
- }
- if ((yb | 0) >= 1) {
- wl(wb, xb, yb)
- }
- o[a >> 2] = wb
- o[(a + 8) >> 2] = nb
- o[(a + 4) >> 2] = mb
- if (!xb) {
- break b
- }
- ul(xb)
- }
- return
- }
- Yk()
- D()
- }
- function Ga(a, R, Ab, Bb) {
- var Cb = 0,
- Db = 0,
- Eb = 0,
- Fb = 0,
- Gb = v(0),
- Hb = 0
- a: {
- b: {
- if (!Bb) {
- break b
- }
- Cb = (o[(a + 28) >> 2] + -1) | 0
- if (Cb >>> 0 > 10) {
- break b
- }
- c: {
- d: {
- e: {
- switch ((Cb - 1) | 0) {
- default:
- Eb = 1
- Cb = m[(a + 24) | 0]
- if ((((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24 >= 1) {
- Cb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Cb + R) | 0
- while (1) {
- m[(Bb + Db) | 0] = p[R | 0]
- R = (R + 1) | 0
- Db = (Db + 1) | 0
- Cb = m[(a + 24) | 0]
- if ((Db | 0) < (((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Cb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 0:
- Eb = 1
- Cb = m[(a + 24) | 0]
- if ((((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24 >= 1) {
- Cb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Cb + R) | 0
- while (1) {
- m[(Bb + Db) | 0] = p[R | 0]
- R = (R + 1) | 0
- Db = (Db + 1) | 0
- Cb = m[(a + 24) | 0]
- if ((Db | 0) < (((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Cb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 1:
- Eb = 1
- Cb = m[(a + 24) | 0]
- if ((((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24 >= 1) {
- Cb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Cb + R) | 0
- while (1) {
- m[(Bb + Db) | 0] = p[R | 0]
- R = (R + 2) | 0
- Db = (Db + 1) | 0
- Cb = m[(a + 24) | 0]
- if ((Db | 0) < (((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Cb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 2:
- Eb = 1
- Cb = m[(a + 24) | 0]
- if ((((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24 >= 1) {
- Cb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Cb + R) | 0
- while (1) {
- m[(Bb + Db) | 0] = p[R | 0]
- R = (R + 2) | 0
- Db = (Db + 1) | 0
- Cb = m[(a + 24) | 0]
- if ((Db | 0) < (((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Cb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 3:
- Eb = 1
- Cb = m[(a + 24) | 0]
- if ((((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24 >= 1) {
- Cb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Cb + R) | 0
- while (1) {
- m[(Bb + Db) | 0] = o[R >> 2]
- R = (R + 4) | 0
- Db = (Db + 1) | 0
- Cb = m[(a + 24) | 0]
- if ((Db | 0) < (((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Cb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 4:
- Eb = 1
- Cb = m[(a + 24) | 0]
- if ((((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24 >= 1) {
- Cb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Cb + R) | 0
- while (1) {
- m[(Bb + Db) | 0] = o[R >> 2]
- R = (R + 4) | 0
- Db = (Db + 1) | 0
- Cb = m[(a + 24) | 0]
- if ((Db | 0) < (((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Cb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 5:
- Eb = 1
- Cb = m[(a + 24) | 0]
- if ((((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24 >= 1) {
- Cb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Cb + R) | 0
- while (1) {
- m[(Bb + Db) | 0] = o[R >> 2]
- R = (R + 8) | 0
- Db = (Db + 1) | 0
- Cb = m[(a + 24) | 0]
- if ((Db | 0) < (((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Cb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 6:
- Eb = 1
- Cb = m[(a + 24) | 0]
- if ((((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24 >= 1) {
- Cb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Cb + R) | 0
- while (1) {
- m[(Bb + Db) | 0] = o[R >> 2]
- R = (R + 8) | 0
- Db = (Db + 1) | 0
- Cb = m[(a + 24) | 0]
- if ((Db | 0) < (((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Cb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 7:
- Eb = 1
- Cb = m[(a + 24) | 0]
- if ((((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24 < 1) {
- break c
- }
- Cb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Cb + R) | 0
- while (1) {
- Cb = (Bb + Db) | 0
- Gb = s[R >> 2]
- f: {
- if (v(w(Gb)) < v(2147483648)) {
- Fb = ~~Gb
- break f
- }
- Fb = -2147483648
- }
- m[Cb | 0] = Fb
- R = (R + 4) | 0
- Db = (Db + 1) | 0
- Cb = m[(a + 24) | 0]
- if ((Db | 0) < (((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24) {
- continue
- }
- break
- }
- break c
- case 8:
- Eb = 1
- Cb = m[(a + 24) | 0]
- if ((((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24 < 1) {
- break d
- }
- Cb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Cb + R) | 0
- while (1) {
- Cb = (Bb + Db) | 0
- Hb = t[R >> 3]
- g: {
- if (w(Hb) < 2147483648) {
- Fb = ~~Hb
- break g
- }
- Fb = -2147483648
- }
- m[Cb | 0] = Fb
- R = (R + 8) | 0
- Db = (Db + 1) | 0
- Cb = m[(a + 24) | 0]
- if ((Db | 0) < (((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24) {
- continue
- }
- break
- }
- break d
- case 9:
- break e
- }
- }
- Eb = 1
- Cb = m[(a + 24) | 0]
- if ((((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24 >= 1) {
- Cb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Cb + R) | 0
- while (1) {
- m[(Bb + Db) | 0] = p[R | 0]
- R = (R + 1) | 0
- Db = (Db + 1) | 0
- Cb = m[(a + 24) | 0]
- if ((Db | 0) < (((Cb | 0) > (Ab | 0) ? Ab : Cb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Cb | 0) >= (Ab | 0)) {
- break b
- }
- xl((Bb + Cb) | 0, 0, (Ab - Cb) | 0)
- break b
- }
- if ((Cb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- }
- if ((Cb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- }
- return Eb
- }
- xl((Bb + Cb) | 0, 0, (Ab - Cb) | 0)
- return 1
- }
- function Ha(a, Ab, Bb) {
- var Ib = 0,
- Jb = 0,
- Kb = 0,
- Lb = 0,
- Mb = 0,
- Nb = 0,
- Ob = 0,
- Pb = 0
- Jb = (R - 16) | 0
- R = Jb
- Mb = o[(a + 80) >> 2]
- Lb = m[(Ab + 24) | 0]
- Kb = u(Mb, Lb)
- a: {
- a = o[(Ab + 28) >> 2]
- b: {
- if (!(!p[(Ab + 84) | 0] | ((a | 0) != 2 ? (a | 0) != 1 : 0))) {
- Lb = o[(Ab + 48) >> 2]
- Ab = o[o[Ab >> 2] >> 2]
- o[(Jb + 8) >> 2] = 0
- o[Jb >> 2] = 0
- o[(Jb + 4) >> 2] = 0
- a = 0
- if (Kb) {
- if ((Kb | 0) <= -1) {
- break a
- }
- a = Hk(Kb)
- o[Jb >> 2] = a
- Ib = (a + Kb) | 0
- o[(Jb + 8) >> 2] = Ib
- wl(a, (Ab + Lb) | 0, Kb)
- o[(Jb + 4) >> 2] = Ib
- }
- Ab = o[Bb >> 2]
- if (Ab) {
- o[(Bb + 4) >> 2] = Ab
- ul(Ab)
- o[(Bb + 8) >> 2] = 0
- o[Bb >> 2] = 0
- o[(Bb + 4) >> 2] = 0
- }
- o[Bb >> 2] = a
- o[(Bb + 8) >> 2] = Ib
- o[(Bb + 4) >> 2] = Ib
- Ib = 1
- break b
- }
- o[(Jb + 8) >> 2] = 0
- o[Jb >> 2] = 0
- o[(Jb + 4) >> 2] = 0
- if (Lb) {
- if ((Lb | 0) <= -1) {
- break a
- }
- Ib = Hk(Lb)
- o[Jb >> 2] = Ib
- o[(Jb + 4) >> 2] = Ib
- o[(Jb + 8) >> 2] = Ib + Lb
- a = Lb
- while (1) {
- m[Ib | 0] = 0
- Ib = (o[(Jb + 4) >> 2] + 1) | 0
- o[(Jb + 4) >> 2] = Ib
- a = (a + -1) | 0
- if (a) {
- continue
- }
- break
- }
- }
- Ib = o[Bb >> 2]
- a = (o[(Bb + 4) >> 2] - Ib) | 0
- c: {
- if (Kb >>> 0 > a >>> 0) {
- Fa(Bb, (Kb - a) | 0)
- break c
- }
- if (Kb >>> 0 >= a >>> 0) {
- break c
- }
- o[(Bb + 4) >> 2] = Ib + Kb
- }
- d: {
- if (!Mb) {
- Ib = 1
- break d
- }
- a = 0
- Nb = (Ab + 68) | 0
- Ob = (Lb | 0) < 1
- Kb = 0
- while (1) {
- Ib = Kb
- Pb = Ab
- if (!p[(Ab + 84) | 0]) {
- Ib = o[(o[Nb >> 2] + (Kb << 2)) >> 2]
- }
- if (!Ia(Pb, Ib, m[(Ab + 24) | 0], o[Jb >> 2])) {
- Ib = 0
- break d
- }
- Ib = 0
- if (!Ob) {
- while (1) {
- m[(o[Bb >> 2] + a) | 0] = p[(o[Jb >> 2] + Ib) | 0]
- a = (a + 1) | 0
- Ib = (Ib + 1) | 0
- if ((Lb | 0) != (Ib | 0)) {
- continue
- }
- break
- }
- }
- Ib = 1
- Kb = (Kb + 1) | 0
- if ((Mb | 0) != (Kb | 0)) {
- continue
- }
- break
- }
- }
- a = o[Jb >> 2]
- if (!a) {
- break b
- }
- o[(Jb + 4) >> 2] = a
- ul(a)
- }
- R = (Jb + 16) | 0
- return Ib
- }
- Yk()
- D()
- }
- function Ia(a, R, Ab, Bb) {
- var Qb = 0,
- Rb = 0,
- Sb = 0,
- Tb = 0,
- Ub = v(0),
- Vb = 0
- a: {
- b: {
- if (!Bb) {
- break b
- }
- Qb = (o[(a + 28) >> 2] + -1) | 0
- if (Qb >>> 0 > 10) {
- break b
- }
- c: {
- d: {
- e: {
- switch ((Qb - 1) | 0) {
- default:
- Sb = 1
- Qb = m[(a + 24) | 0]
- if ((((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24 >= 1) {
- Qb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qb + R) | 0
- while (1) {
- m[(Bb + Rb) | 0] = p[R | 0]
- R = (R + 1) | 0
- Rb = (Rb + 1) | 0
- Qb = m[(a + 24) | 0]
- if ((Rb | 0) < (((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 0:
- Sb = 1
- Qb = m[(a + 24) | 0]
- if ((((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24 >= 1) {
- Qb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qb + R) | 0
- while (1) {
- m[(Bb + Rb) | 0] = p[R | 0]
- R = (R + 1) | 0
- Rb = (Rb + 1) | 0
- Qb = m[(a + 24) | 0]
- if ((Rb | 0) < (((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 1:
- Sb = 1
- Qb = m[(a + 24) | 0]
- if ((((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24 >= 1) {
- Qb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qb + R) | 0
- while (1) {
- m[(Bb + Rb) | 0] = p[R | 0]
- R = (R + 2) | 0
- Rb = (Rb + 1) | 0
- Qb = m[(a + 24) | 0]
- if ((Rb | 0) < (((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 2:
- Sb = 1
- Qb = m[(a + 24) | 0]
- if ((((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24 >= 1) {
- Qb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qb + R) | 0
- while (1) {
- m[(Bb + Rb) | 0] = p[R | 0]
- R = (R + 2) | 0
- Rb = (Rb + 1) | 0
- Qb = m[(a + 24) | 0]
- if ((Rb | 0) < (((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 3:
- Sb = 1
- Qb = m[(a + 24) | 0]
- if ((((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24 >= 1) {
- Qb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qb + R) | 0
- while (1) {
- m[(Bb + Rb) | 0] = o[R >> 2]
- R = (R + 4) | 0
- Rb = (Rb + 1) | 0
- Qb = m[(a + 24) | 0]
- if ((Rb | 0) < (((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 4:
- Sb = 1
- Qb = m[(a + 24) | 0]
- if ((((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24 >= 1) {
- Qb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qb + R) | 0
- while (1) {
- m[(Bb + Rb) | 0] = o[R >> 2]
- R = (R + 4) | 0
- Rb = (Rb + 1) | 0
- Qb = m[(a + 24) | 0]
- if ((Rb | 0) < (((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 5:
- Sb = 1
- Qb = m[(a + 24) | 0]
- if ((((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24 >= 1) {
- Qb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qb + R) | 0
- while (1) {
- m[(Bb + Rb) | 0] = o[R >> 2]
- R = (R + 8) | 0
- Rb = (Rb + 1) | 0
- Qb = m[(a + 24) | 0]
- if ((Rb | 0) < (((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 6:
- Sb = 1
- Qb = m[(a + 24) | 0]
- if ((((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24 >= 1) {
- Qb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qb + R) | 0
- while (1) {
- m[(Bb + Rb) | 0] = o[R >> 2]
- R = (R + 8) | 0
- Rb = (Rb + 1) | 0
- Qb = m[(a + 24) | 0]
- if ((Rb | 0) < (((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- case 7:
- Sb = 1
- Qb = m[(a + 24) | 0]
- if ((((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24 < 1) {
- break c
- }
- Qb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qb + R) | 0
- while (1) {
- Qb = (Bb + Rb) | 0
- Ub = s[R >> 2]
- f: {
- if ((Ub < v(4294967296)) & (Ub >= v(0))) {
- Tb = ~~Ub >>> 0
- break f
- }
- Tb = 0
- }
- m[Qb | 0] = Tb
- R = (R + 4) | 0
- Rb = (Rb + 1) | 0
- Qb = m[(a + 24) | 0]
- if ((Rb | 0) < (((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24) {
- continue
- }
- break
- }
- break c
- case 8:
- Sb = 1
- Qb = m[(a + 24) | 0]
- if ((((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24 < 1) {
- break d
- }
- Qb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qb + R) | 0
- while (1) {
- Qb = (Bb + Rb) | 0
- Vb = t[R >> 3]
- g: {
- if ((Vb < 4294967296) & (Vb >= 0)) {
- Tb = ~~Vb >>> 0
- break g
- }
- Tb = 0
- }
- m[Qb | 0] = Tb
- R = (R + 8) | 0
- Rb = (Rb + 1) | 0
- Qb = m[(a + 24) | 0]
- if ((Rb | 0) < (((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24) {
- continue
- }
- break
- }
- break d
- case 9:
- break e
- }
- }
- Sb = 1
- Qb = m[(a + 24) | 0]
- if ((((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24 >= 1) {
- Qb = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qb + R) | 0
- while (1) {
- m[(Bb + Rb) | 0] = p[R | 0]
- R = (R + 1) | 0
- Rb = (Rb + 1) | 0
- Qb = m[(a + 24) | 0]
- if ((Rb | 0) < (((Qb | 0) > (Ab | 0) ? Ab : Qb) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qb | 0) >= (Ab | 0)) {
- break b
- }
- xl((Bb + Qb) | 0, 0, (Ab - Qb) | 0)
- break b
- }
- if ((Qb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- }
- if ((Qb | 0) >= (Ab | 0)) {
- break b
- }
- break a
- }
- return Sb
- }
- xl((Bb + Qb) | 0, 0, (Ab - Qb) | 0)
- return 1
- }
- function Ja(a, Ab, Bb) {
- var Wb = 0,
- Xb = 0,
- Yb = 0,
- Zb = 0,
- _b = 0,
- $b = 0,
- ac = 0,
- bc = 0,
- cc = 0
- Wb = (R - 16) | 0
- R = Wb
- ac = o[(a + 80) >> 2]
- _b = m[(Ab + 24) | 0]
- a = u(ac, _b)
- a: {
- Xb = o[(Ab + 28) >> 2]
- b: {
- if (!(!p[(Ab + 84) | 0] | ((Xb | 0) != 4 ? (Xb | 0) != 3 : 0))) {
- $b = o[(Ab + 48) >> 2]
- Xb = o[o[Ab >> 2] >> 2]
- o[(Wb + 8) >> 2] = 0
- o[Wb >> 2] = 0
- o[(Wb + 4) >> 2] = 0
- Ab = 0
- a = a << 1
- if (a) {
- if ((a | 0) <= -1) {
- break a
- }
- Yb = Hk(a)
- o[Wb >> 2] = Yb
- Zb = (((a >> 1) << 1) + Yb) | 0
- o[(Wb + 8) >> 2] = Zb
- Ab = (wl(Yb, (Xb + $b) | 0, a) + a) | 0
- o[(Wb + 4) >> 2] = Ab
- }
- a = o[Bb >> 2]
- if (a) {
- o[(Bb + 4) >> 2] = a
- ul(a)
- o[(Bb + 8) >> 2] = 0
- o[Bb >> 2] = 0
- o[(Bb + 4) >> 2] = 0
- }
- o[Bb >> 2] = Yb
- o[(Bb + 8) >> 2] = Zb
- o[(Bb + 4) >> 2] = Ab
- a = 1
- break b
- }
- o[(Wb + 8) >> 2] = 0
- o[Wb >> 2] = 0
- o[(Wb + 4) >> 2] = 0
- if (_b) {
- if ((_b | 0) <= -1) {
- break a
- }
- Xb = _b << 1
- Yb = Hk(Xb)
- o[Wb >> 2] = Yb
- Zb = (Xb + Yb) | 0
- o[(Wb + 8) >> 2] = Zb
- xl(Yb, 0, Xb)
- o[(Wb + 4) >> 2] = Zb
- }
- Yb = o[Bb >> 2]
- Xb = (o[(Bb + 4) >> 2] - Yb) >> 1
- c: {
- if (a >>> 0 > Xb >>> 0) {
- Ka(Bb, (a - Xb) | 0)
- break c
- }
- if (a >>> 0 >= Xb >>> 0) {
- break c
- }
- o[(Bb + 4) >> 2] = Yb + (a << 1)
- }
- d: {
- if (!ac) {
- a = 1
- break d
- }
- Yb = 0
- Zb = (Ab + 68) | 0
- bc = (_b | 0) < 1
- while (1) {
- a = $b
- Xb = Ab
- if (!p[(Ab + 84) | 0]) {
- a = o[(o[Zb >> 2] + ($b << 2)) >> 2]
- }
- if (!La(Xb, a, m[(Ab + 24) | 0], o[Wb >> 2])) {
- a = 0
- break d
- }
- if (!bc) {
- Xb = o[Bb >> 2]
- a = 0
- cc = o[Wb >> 2]
- while (1) {
- n[(Xb + (Yb << 1)) >> 1] = q[(cc + (a << 1)) >> 1]
- Yb = (Yb + 1) | 0
- a = (a + 1) | 0
- if ((_b | 0) != (a | 0)) {
- continue
- }
- break
- }
- }
- a = 1
- $b = ($b + 1) | 0
- if ((ac | 0) != ($b | 0)) {
- continue
- }
- break
- }
- }
- Ab = o[Wb >> 2]
- if (!Ab) {
- break b
- }
- o[(Wb + 4) >> 2] = Ab
- ul(Ab)
- }
- R = (Wb + 16) | 0
- return a
- }
- Yk()
- D()
- }
- function Ka(a, R) {
- var Ab = 0,
- Bb = 0,
- dc = 0,
- ec = 0,
- fc = 0,
- gc = 0,
- hc = 0,
- ic = 0,
- jc = 0
- Bb = o[(a + 8) >> 2]
- dc = (a + 4) | 0
- Ab = o[dc >> 2]
- if (((Bb - Ab) >> 1) >>> 0 >= R >>> 0) {
- a = R << 1
- ;(ic = dc), (jc = (xl(Ab, 0, a) + a) | 0), (o[ic >> 2] = jc)
- return
- }
- a: {
- dc = o[a >> 2]
- fc = (Ab - dc) | 0
- Ab = fc >> 1
- ec = (Ab + R) | 0
- if ((ec | 0) > -1) {
- hc = Ab << 1
- Bb = (Bb - dc) | 0
- Bb = (Bb >> 1) >>> 0 < 1073741823 ? (Bb >>> 0 < ec >>> 0 ? ec : Bb) : 2147483647
- Ab = 0
- b: {
- if (!Bb) {
- break b
- }
- if ((Bb | 0) <= -1) {
- break a
- }
- gc = Hk(Bb << 1)
- Ab = gc
- }
- xl((hc + Ab) | 0, 0, R << 1)
- R = (Ab + (ec << 1)) | 0
- ec = (Ab + (Bb << 1)) | 0
- if ((fc | 0) >= 1) {
- wl(gc, dc, fc)
- }
- o[a >> 2] = Ab
- o[(a + 8) >> 2] = ec
- o[(a + 4) >> 2] = R
- if (dc) {
- ul(dc)
- }
- return
- }
- Yk()
- D()
- }
- _a(1040)
- D()
- }
- function La(a, R, kc, lc) {
- var mc = 0,
- nc = 0,
- oc = 0,
- pc = 0,
- qc = v(0),
- rc = 0
- a: {
- b: {
- if (!lc) {
- break b
- }
- mc = (o[(a + 28) >> 2] + -1) | 0
- if (mc >>> 0 > 10) {
- break b
- }
- c: {
- d: {
- e: {
- switch ((mc - 1) | 0) {
- default:
- oc = 1
- mc = m[(a + 24) | 0]
- if ((((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24 >= 1) {
- mc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (mc + R) | 0
- while (1) {
- n[((nc << 1) + lc) >> 1] = m[R | 0]
- R = (R + 1) | 0
- nc = (nc + 1) | 0
- mc = m[(a + 24) | 0]
- if ((nc | 0) < (((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((mc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 0:
- oc = 1
- mc = m[(a + 24) | 0]
- if ((((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24 >= 1) {
- mc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (mc + R) | 0
- while (1) {
- n[((nc << 1) + lc) >> 1] = p[R | 0]
- R = (R + 1) | 0
- nc = (nc + 1) | 0
- mc = m[(a + 24) | 0]
- if ((nc | 0) < (((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((mc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 1:
- oc = 1
- mc = m[(a + 24) | 0]
- if ((((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24 >= 1) {
- mc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (mc + R) | 0
- while (1) {
- n[((nc << 1) + lc) >> 1] = q[R >> 1]
- R = (R + 2) | 0
- nc = (nc + 1) | 0
- mc = m[(a + 24) | 0]
- if ((nc | 0) < (((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((mc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 2:
- oc = 1
- mc = m[(a + 24) | 0]
- if ((((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24 >= 1) {
- mc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (mc + R) | 0
- while (1) {
- n[((nc << 1) + lc) >> 1] = q[R >> 1]
- R = (R + 2) | 0
- nc = (nc + 1) | 0
- mc = m[(a + 24) | 0]
- if ((nc | 0) < (((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((mc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 3:
- oc = 1
- mc = m[(a + 24) | 0]
- if ((((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24 >= 1) {
- mc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (mc + R) | 0
- while (1) {
- n[((nc << 1) + lc) >> 1] = o[R >> 2]
- R = (R + 4) | 0
- nc = (nc + 1) | 0
- mc = m[(a + 24) | 0]
- if ((nc | 0) < (((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((mc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 4:
- oc = 1
- mc = m[(a + 24) | 0]
- if ((((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24 >= 1) {
- mc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (mc + R) | 0
- while (1) {
- n[((nc << 1) + lc) >> 1] = o[R >> 2]
- R = (R + 4) | 0
- nc = (nc + 1) | 0
- mc = m[(a + 24) | 0]
- if ((nc | 0) < (((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((mc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 5:
- oc = 1
- mc = m[(a + 24) | 0]
- if ((((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24 >= 1) {
- mc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (mc + R) | 0
- while (1) {
- n[((nc << 1) + lc) >> 1] = o[R >> 2]
- R = (R + 8) | 0
- nc = (nc + 1) | 0
- mc = m[(a + 24) | 0]
- if ((nc | 0) < (((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((mc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 6:
- oc = 1
- mc = m[(a + 24) | 0]
- if ((((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24 >= 1) {
- mc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (mc + R) | 0
- while (1) {
- n[((nc << 1) + lc) >> 1] = o[R >> 2]
- R = (R + 8) | 0
- nc = (nc + 1) | 0
- mc = m[(a + 24) | 0]
- if ((nc | 0) < (((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((mc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 7:
- oc = 1
- mc = m[(a + 24) | 0]
- if ((((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24 < 1) {
- break c
- }
- mc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (mc + R) | 0
- while (1) {
- mc = ((nc << 1) + lc) | 0
- qc = s[R >> 2]
- f: {
- if (v(w(qc)) < v(2147483648)) {
- pc = ~~qc
- break f
- }
- pc = -2147483648
- }
- n[mc >> 1] = pc
- R = (R + 4) | 0
- nc = (nc + 1) | 0
- mc = m[(a + 24) | 0]
- if ((nc | 0) < (((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24) {
- continue
- }
- break
- }
- break c
- case 8:
- oc = 1
- mc = m[(a + 24) | 0]
- if ((((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24 < 1) {
- break d
- }
- mc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (mc + R) | 0
- while (1) {
- mc = ((nc << 1) + lc) | 0
- rc = t[R >> 3]
- g: {
- if (w(rc) < 2147483648) {
- pc = ~~rc
- break g
- }
- pc = -2147483648
- }
- n[mc >> 1] = pc
- R = (R + 8) | 0
- nc = (nc + 1) | 0
- mc = m[(a + 24) | 0]
- if ((nc | 0) < (((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24) {
- continue
- }
- break
- }
- break d
- case 9:
- break e
- }
- }
- oc = 1
- mc = m[(a + 24) | 0]
- if ((((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24 >= 1) {
- mc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (mc + R) | 0
- while (1) {
- n[((nc << 1) + lc) >> 1] = p[R | 0]
- R = (R + 1) | 0
- nc = (nc + 1) | 0
- mc = m[(a + 24) | 0]
- if ((nc | 0) < (((mc | 0) > (kc | 0) ? kc : mc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((mc | 0) >= (kc | 0)) {
- break b
- }
- xl(((mc << 1) + lc) | 0, 0, (kc - mc) << 1)
- break b
- }
- if ((mc | 0) >= (kc | 0)) {
- break b
- }
- break a
- }
- if ((mc | 0) >= (kc | 0)) {
- break b
- }
- break a
- }
- return oc
- }
- xl(((mc << 1) + lc) | 0, 0, (kc - mc) << 1)
- return 1
- }
- function Ma(a, kc, lc) {
- var sc = 0,
- tc = 0,
- uc = 0,
- vc = 0,
- wc = 0,
- xc = 0,
- yc = 0,
- zc = 0,
- Ac = 0
- sc = (R - 16) | 0
- R = sc
- yc = o[(a + 80) >> 2]
- wc = m[(kc + 24) | 0]
- a = u(yc, wc)
- a: {
- tc = o[(kc + 28) >> 2]
- b: {
- if (!(!p[(kc + 84) | 0] | ((tc | 0) != 4 ? (tc | 0) != 3 : 0))) {
- xc = o[(kc + 48) >> 2]
- tc = o[o[kc >> 2] >> 2]
- o[(sc + 8) >> 2] = 0
- o[sc >> 2] = 0
- o[(sc + 4) >> 2] = 0
- kc = 0
- a = a << 1
- if (a) {
- if ((a | 0) <= -1) {
- break a
- }
- uc = Hk(a)
- o[sc >> 2] = uc
- vc = (((a >> 1) << 1) + uc) | 0
- o[(sc + 8) >> 2] = vc
- kc = (wl(uc, (tc + xc) | 0, a) + a) | 0
- o[(sc + 4) >> 2] = kc
- }
- a = o[lc >> 2]
- if (a) {
- o[(lc + 4) >> 2] = a
- ul(a)
- o[(lc + 8) >> 2] = 0
- o[lc >> 2] = 0
- o[(lc + 4) >> 2] = 0
- }
- o[lc >> 2] = uc
- o[(lc + 8) >> 2] = vc
- o[(lc + 4) >> 2] = kc
- a = 1
- break b
- }
- o[(sc + 8) >> 2] = 0
- o[sc >> 2] = 0
- o[(sc + 4) >> 2] = 0
- if (wc) {
- if ((wc | 0) <= -1) {
- break a
- }
- tc = wc << 1
- uc = Hk(tc)
- o[sc >> 2] = uc
- vc = (tc + uc) | 0
- o[(sc + 8) >> 2] = vc
- xl(uc, 0, tc)
- o[(sc + 4) >> 2] = vc
- }
- uc = o[lc >> 2]
- tc = (o[(lc + 4) >> 2] - uc) >> 1
- c: {
- if (a >>> 0 > tc >>> 0) {
- Ka(lc, (a - tc) | 0)
- break c
- }
- if (a >>> 0 >= tc >>> 0) {
- break c
- }
- o[(lc + 4) >> 2] = uc + (a << 1)
- }
- d: {
- if (!yc) {
- a = 1
- break d
- }
- uc = 0
- vc = (kc + 68) | 0
- zc = (wc | 0) < 1
- while (1) {
- a = xc
- tc = kc
- if (!p[(kc + 84) | 0]) {
- a = o[(o[vc >> 2] + (xc << 2)) >> 2]
- }
- if (!Na(tc, a, m[(kc + 24) | 0], o[sc >> 2])) {
- a = 0
- break d
- }
- if (!zc) {
- tc = o[lc >> 2]
- a = 0
- Ac = o[sc >> 2]
- while (1) {
- n[(tc + (uc << 1)) >> 1] = q[(Ac + (a << 1)) >> 1]
- uc = (uc + 1) | 0
- a = (a + 1) | 0
- if ((wc | 0) != (a | 0)) {
- continue
- }
- break
- }
- }
- a = 1
- xc = (xc + 1) | 0
- if ((yc | 0) != (xc | 0)) {
- continue
- }
- break
- }
- }
- kc = o[sc >> 2]
- if (!kc) {
- break b
- }
- o[(sc + 4) >> 2] = kc
- ul(kc)
- }
- R = (sc + 16) | 0
- return a
- }
- Yk()
- D()
- }
- function Na(a, R, kc, lc) {
- var Bc = 0,
- Cc = 0,
- Dc = 0,
- Ec = 0,
- Fc = v(0),
- Gc = 0
- a: {
- b: {
- if (!lc) {
- break b
- }
- Bc = (o[(a + 28) >> 2] + -1) | 0
- if (Bc >>> 0 > 10) {
- break b
- }
- c: {
- d: {
- e: {
- switch ((Bc - 1) | 0) {
- default:
- Dc = 1
- Bc = m[(a + 24) | 0]
- if ((((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24 >= 1) {
- Bc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Bc + R) | 0
- while (1) {
- n[((Cc << 1) + lc) >> 1] = m[R | 0]
- R = (R + 1) | 0
- Cc = (Cc + 1) | 0
- Bc = m[(a + 24) | 0]
- if ((Cc | 0) < (((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Bc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 0:
- Dc = 1
- Bc = m[(a + 24) | 0]
- if ((((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24 >= 1) {
- Bc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Bc + R) | 0
- while (1) {
- n[((Cc << 1) + lc) >> 1] = p[R | 0]
- R = (R + 1) | 0
- Cc = (Cc + 1) | 0
- Bc = m[(a + 24) | 0]
- if ((Cc | 0) < (((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Bc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 1:
- Dc = 1
- Bc = m[(a + 24) | 0]
- if ((((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24 >= 1) {
- Bc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Bc + R) | 0
- while (1) {
- n[((Cc << 1) + lc) >> 1] = q[R >> 1]
- R = (R + 2) | 0
- Cc = (Cc + 1) | 0
- Bc = m[(a + 24) | 0]
- if ((Cc | 0) < (((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Bc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 2:
- Dc = 1
- Bc = m[(a + 24) | 0]
- if ((((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24 >= 1) {
- Bc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Bc + R) | 0
- while (1) {
- n[((Cc << 1) + lc) >> 1] = q[R >> 1]
- R = (R + 2) | 0
- Cc = (Cc + 1) | 0
- Bc = m[(a + 24) | 0]
- if ((Cc | 0) < (((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Bc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 3:
- Dc = 1
- Bc = m[(a + 24) | 0]
- if ((((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24 >= 1) {
- Bc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Bc + R) | 0
- while (1) {
- n[((Cc << 1) + lc) >> 1] = o[R >> 2]
- R = (R + 4) | 0
- Cc = (Cc + 1) | 0
- Bc = m[(a + 24) | 0]
- if ((Cc | 0) < (((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Bc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 4:
- Dc = 1
- Bc = m[(a + 24) | 0]
- if ((((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24 >= 1) {
- Bc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Bc + R) | 0
- while (1) {
- n[((Cc << 1) + lc) >> 1] = o[R >> 2]
- R = (R + 4) | 0
- Cc = (Cc + 1) | 0
- Bc = m[(a + 24) | 0]
- if ((Cc | 0) < (((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Bc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 5:
- Dc = 1
- Bc = m[(a + 24) | 0]
- if ((((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24 >= 1) {
- Bc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Bc + R) | 0
- while (1) {
- n[((Cc << 1) + lc) >> 1] = o[R >> 2]
- R = (R + 8) | 0
- Cc = (Cc + 1) | 0
- Bc = m[(a + 24) | 0]
- if ((Cc | 0) < (((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Bc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 6:
- Dc = 1
- Bc = m[(a + 24) | 0]
- if ((((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24 >= 1) {
- Bc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Bc + R) | 0
- while (1) {
- n[((Cc << 1) + lc) >> 1] = o[R >> 2]
- R = (R + 8) | 0
- Cc = (Cc + 1) | 0
- Bc = m[(a + 24) | 0]
- if ((Cc | 0) < (((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Bc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 7:
- Dc = 1
- Bc = m[(a + 24) | 0]
- if ((((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24 < 1) {
- break c
- }
- Bc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Bc + R) | 0
- while (1) {
- Bc = ((Cc << 1) + lc) | 0
- Fc = s[R >> 2]
- f: {
- if ((Fc < v(4294967296)) & (Fc >= v(0))) {
- Ec = ~~Fc >>> 0
- break f
- }
- Ec = 0
- }
- n[Bc >> 1] = Ec
- R = (R + 4) | 0
- Cc = (Cc + 1) | 0
- Bc = m[(a + 24) | 0]
- if ((Cc | 0) < (((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24) {
- continue
- }
- break
- }
- break c
- case 8:
- Dc = 1
- Bc = m[(a + 24) | 0]
- if ((((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24 < 1) {
- break d
- }
- Bc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Bc + R) | 0
- while (1) {
- Bc = ((Cc << 1) + lc) | 0
- Gc = t[R >> 3]
- g: {
- if ((Gc < 4294967296) & (Gc >= 0)) {
- Ec = ~~Gc >>> 0
- break g
- }
- Ec = 0
- }
- n[Bc >> 1] = Ec
- R = (R + 8) | 0
- Cc = (Cc + 1) | 0
- Bc = m[(a + 24) | 0]
- if ((Cc | 0) < (((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24) {
- continue
- }
- break
- }
- break d
- case 9:
- break e
- }
- }
- Dc = 1
- Bc = m[(a + 24) | 0]
- if ((((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24 >= 1) {
- Bc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Bc + R) | 0
- while (1) {
- n[((Cc << 1) + lc) >> 1] = p[R | 0]
- R = (R + 1) | 0
- Cc = (Cc + 1) | 0
- Bc = m[(a + 24) | 0]
- if ((Cc | 0) < (((Bc | 0) > (kc | 0) ? kc : Bc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Bc | 0) >= (kc | 0)) {
- break b
- }
- xl(((Bc << 1) + lc) | 0, 0, (kc - Bc) << 1)
- break b
- }
- if ((Bc | 0) >= (kc | 0)) {
- break b
- }
- break a
- }
- if ((Bc | 0) >= (kc | 0)) {
- break b
- }
- break a
- }
- return Dc
- }
- xl(((Bc << 1) + lc) | 0, 0, (kc - Bc) << 1)
- return 1
- }
- function Oa(a, kc, lc) {
- var Hc = 0,
- Ic = 0,
- Jc = 0,
- Kc = 0,
- Lc = 0,
- Mc = 0,
- Nc = 0,
- Oc = 0,
- Pc = 0
- Hc = (R - 16) | 0
- R = Hc
- Nc = o[(a + 80) >> 2]
- Kc = m[(kc + 24) | 0]
- Jc = u(Nc, Kc)
- a: {
- a = o[(kc + 28) >> 2]
- b: {
- if (!(!p[(kc + 84) | 0] | ((a | 0) != 6 ? (a | 0) != 5 : 0))) {
- Mc = o[(kc + 48) >> 2]
- Kc = o[o[kc >> 2] >> 2]
- o[(Hc + 8) >> 2] = 0
- o[Hc >> 2] = 0
- o[(Hc + 4) >> 2] = 0
- a = 0
- kc = Jc << 2
- c: {
- if (!kc) {
- break c
- }
- a = kc >> 2
- if (a >>> 0 >= 1073741824) {
- break a
- }
- Ic = Hk(kc)
- o[Hc >> 2] = Ic
- o[(Hc + 4) >> 2] = Ic
- Lc = ((a << 2) + Ic) | 0
- o[(Hc + 8) >> 2] = Lc
- if ((kc | 0) < 1) {
- a = Ic
- break c
- }
- a = (wl(Ic, (Kc + Mc) | 0, kc) + kc) | 0
- o[(Hc + 4) >> 2] = a
- }
- kc = o[lc >> 2]
- if (kc) {
- o[(lc + 4) >> 2] = kc
- ul(kc)
- o[(lc + 8) >> 2] = 0
- o[lc >> 2] = 0
- o[(lc + 4) >> 2] = 0
- }
- o[lc >> 2] = Ic
- o[(lc + 8) >> 2] = Lc
- o[(lc + 4) >> 2] = a
- a = 1
- break b
- }
- o[(Hc + 8) >> 2] = 0
- o[Hc >> 2] = 0
- o[(Hc + 4) >> 2] = 0
- if (Kc) {
- if ((Kc | 0) <= -1) {
- break a
- }
- a = Kc << 2
- Ic = Hk(a)
- o[Hc >> 2] = Ic
- Lc = (a + Ic) | 0
- o[(Hc + 8) >> 2] = Lc
- xl(Ic, 0, a)
- o[(Hc + 4) >> 2] = Lc
- }
- Ic = o[lc >> 2]
- a = (o[(lc + 4) >> 2] - Ic) >> 2
- d: {
- if (Jc >>> 0 > a >>> 0) {
- Da(lc, (Jc - a) | 0)
- break d
- }
- if (Jc >>> 0 >= a >>> 0) {
- break d
- }
- o[(lc + 4) >> 2] = Ic + (Jc << 2)
- }
- e: {
- if (!Nc) {
- a = 1
- break e
- }
- Ic = 0
- Lc = (kc + 68) | 0
- Oc = (Kc | 0) < 1
- while (1) {
- a = Mc
- Jc = kc
- if (!p[(kc + 84) | 0]) {
- a = o[(o[Lc >> 2] + (Mc << 2)) >> 2]
- }
- if (!Pa(Jc, a, m[(kc + 24) | 0], o[Hc >> 2])) {
- a = 0
- break e
- }
- if (!Oc) {
- Jc = o[lc >> 2]
- a = 0
- Pc = o[Hc >> 2]
- while (1) {
- o[(Jc + (Ic << 2)) >> 2] = o[(Pc + (a << 2)) >> 2]
- Ic = (Ic + 1) | 0
- a = (a + 1) | 0
- if ((Kc | 0) != (a | 0)) {
- continue
- }
- break
- }
- }
- a = 1
- Mc = (Mc + 1) | 0
- if ((Nc | 0) != (Mc | 0)) {
- continue
- }
- break
- }
- }
- kc = o[Hc >> 2]
- if (!kc) {
- break b
- }
- o[(Hc + 4) >> 2] = kc
- ul(kc)
- }
- R = (Hc + 16) | 0
- return a
- }
- Yk()
- D()
- }
- function Pa(a, R, kc, lc) {
- var Qc = 0,
- Rc = 0,
- Sc = 0,
- Tc = 0,
- Uc = v(0),
- Vc = 0
- a: {
- b: {
- if (!lc) {
- break b
- }
- Qc = (o[(a + 28) >> 2] + -1) | 0
- if (Qc >>> 0 > 10) {
- break b
- }
- c: {
- d: {
- e: {
- switch ((Qc - 1) | 0) {
- default:
- Sc = 1
- Qc = m[(a + 24) | 0]
- if ((((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24 >= 1) {
- Qc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qc + R) | 0
- while (1) {
- o[((Rc << 2) + lc) >> 2] = m[R | 0]
- R = (R + 1) | 0
- Rc = (Rc + 1) | 0
- Qc = m[(a + 24) | 0]
- if ((Rc | 0) < (((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 0:
- Sc = 1
- Qc = m[(a + 24) | 0]
- if ((((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24 >= 1) {
- Qc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qc + R) | 0
- while (1) {
- o[((Rc << 2) + lc) >> 2] = p[R | 0]
- R = (R + 1) | 0
- Rc = (Rc + 1) | 0
- Qc = m[(a + 24) | 0]
- if ((Rc | 0) < (((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 1:
- Sc = 1
- Qc = m[(a + 24) | 0]
- if ((((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24 >= 1) {
- Qc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qc + R) | 0
- while (1) {
- o[((Rc << 2) + lc) >> 2] = n[R >> 1]
- R = (R + 2) | 0
- Rc = (Rc + 1) | 0
- Qc = m[(a + 24) | 0]
- if ((Rc | 0) < (((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 2:
- Sc = 1
- Qc = m[(a + 24) | 0]
- if ((((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24 >= 1) {
- Qc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qc + R) | 0
- while (1) {
- o[((Rc << 2) + lc) >> 2] = q[R >> 1]
- R = (R + 2) | 0
- Rc = (Rc + 1) | 0
- Qc = m[(a + 24) | 0]
- if ((Rc | 0) < (((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 3:
- Sc = 1
- Qc = m[(a + 24) | 0]
- if ((((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24 >= 1) {
- Qc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qc + R) | 0
- while (1) {
- o[((Rc << 2) + lc) >> 2] = o[R >> 2]
- R = (R + 4) | 0
- Rc = (Rc + 1) | 0
- Qc = m[(a + 24) | 0]
- if ((Rc | 0) < (((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 4:
- Sc = 1
- Qc = m[(a + 24) | 0]
- if ((((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24 >= 1) {
- Qc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qc + R) | 0
- while (1) {
- o[((Rc << 2) + lc) >> 2] = o[R >> 2]
- R = (R + 4) | 0
- Rc = (Rc + 1) | 0
- Qc = m[(a + 24) | 0]
- if ((Rc | 0) < (((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 5:
- Sc = 1
- Qc = m[(a + 24) | 0]
- if ((((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24 >= 1) {
- Qc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qc + R) | 0
- while (1) {
- o[((Rc << 2) + lc) >> 2] = o[R >> 2]
- R = (R + 8) | 0
- Rc = (Rc + 1) | 0
- Qc = m[(a + 24) | 0]
- if ((Rc | 0) < (((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 6:
- Sc = 1
- Qc = m[(a + 24) | 0]
- if ((((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24 >= 1) {
- Qc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qc + R) | 0
- while (1) {
- o[((Rc << 2) + lc) >> 2] = o[R >> 2]
- R = (R + 8) | 0
- Rc = (Rc + 1) | 0
- Qc = m[(a + 24) | 0]
- if ((Rc | 0) < (((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qc | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 7:
- Sc = 1
- Qc = m[(a + 24) | 0]
- if ((((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24 < 1) {
- break c
- }
- Qc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qc + R) | 0
- while (1) {
- Qc = ((Rc << 2) + lc) | 0
- Uc = s[R >> 2]
- f: {
- if (v(w(Uc)) < v(2147483648)) {
- Tc = ~~Uc
- break f
- }
- Tc = -2147483648
- }
- o[Qc >> 2] = Tc
- R = (R + 4) | 0
- Rc = (Rc + 1) | 0
- Qc = m[(a + 24) | 0]
- if ((Rc | 0) < (((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24) {
- continue
- }
- break
- }
- break c
- case 8:
- Sc = 1
- Qc = m[(a + 24) | 0]
- if ((((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24 < 1) {
- break d
- }
- Qc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qc + R) | 0
- while (1) {
- Qc = ((Rc << 2) + lc) | 0
- Vc = t[R >> 3]
- g: {
- if (w(Vc) < 2147483648) {
- Tc = ~~Vc
- break g
- }
- Tc = -2147483648
- }
- o[Qc >> 2] = Tc
- R = (R + 8) | 0
- Rc = (Rc + 1) | 0
- Qc = m[(a + 24) | 0]
- if ((Rc | 0) < (((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24) {
- continue
- }
- break
- }
- break d
- case 9:
- break e
- }
- }
- Sc = 1
- Qc = m[(a + 24) | 0]
- if ((((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24 >= 1) {
- Qc = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (Qc + R) | 0
- while (1) {
- o[((Rc << 2) + lc) >> 2] = p[R | 0]
- R = (R + 1) | 0
- Rc = (Rc + 1) | 0
- Qc = m[(a + 24) | 0]
- if ((Rc | 0) < (((Qc | 0) > (kc | 0) ? kc : Qc) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Qc | 0) >= (kc | 0)) {
- break b
- }
- xl(((Qc << 2) + lc) | 0, 0, (kc - Qc) << 2)
- break b
- }
- if ((Qc | 0) >= (kc | 0)) {
- break b
- }
- break a
- }
- if ((Qc | 0) >= (kc | 0)) {
- break b
- }
- break a
- }
- return Sc
- }
- xl(((Qc << 2) + lc) | 0, 0, (kc - Qc) << 2)
- return 1
- }
- function Qa(a, kc, lc) {
- var Wc = 0,
- Xc = 0,
- Yc = 0,
- Zc = 0,
- _c = 0,
- $c = 0,
- ad = 0,
- bd = 0,
- cd = 0
- Wc = (R - 16) | 0
- R = Wc
- ad = o[(a + 80) >> 2]
- Zc = m[(kc + 24) | 0]
- Yc = u(ad, Zc)
- a: {
- a = o[(kc + 28) >> 2]
- b: {
- if (!(!p[(kc + 84) | 0] | ((a | 0) != 6 ? (a | 0) != 5 : 0))) {
- $c = o[(kc + 48) >> 2]
- Zc = o[o[kc >> 2] >> 2]
- o[(Wc + 8) >> 2] = 0
- o[Wc >> 2] = 0
- o[(Wc + 4) >> 2] = 0
- a = 0
- kc = Yc << 2
- c: {
- if (!kc) {
- break c
- }
- a = kc >> 2
- if (a >>> 0 >= 1073741824) {
- break a
- }
- Xc = Hk(kc)
- o[Wc >> 2] = Xc
- o[(Wc + 4) >> 2] = Xc
- _c = ((a << 2) + Xc) | 0
- o[(Wc + 8) >> 2] = _c
- if ((kc | 0) < 1) {
- a = Xc
- break c
- }
- a = (wl(Xc, (Zc + $c) | 0, kc) + kc) | 0
- o[(Wc + 4) >> 2] = a
- }
- kc = o[lc >> 2]
- if (kc) {
- o[(lc + 4) >> 2] = kc
- ul(kc)
- o[(lc + 8) >> 2] = 0
- o[lc >> 2] = 0
- o[(lc + 4) >> 2] = 0
- }
- o[lc >> 2] = Xc
- o[(lc + 8) >> 2] = _c
- o[(lc + 4) >> 2] = a
- a = 1
- break b
- }
- o[(Wc + 8) >> 2] = 0
- o[Wc >> 2] = 0
- o[(Wc + 4) >> 2] = 0
- if (Zc) {
- if ((Zc | 0) <= -1) {
- break a
- }
- a = Zc << 2
- Xc = Hk(a)
- o[Wc >> 2] = Xc
- _c = (a + Xc) | 0
- o[(Wc + 8) >> 2] = _c
- xl(Xc, 0, a)
- o[(Wc + 4) >> 2] = _c
- }
- Xc = o[lc >> 2]
- a = (o[(lc + 4) >> 2] - Xc) >> 2
- d: {
- if (Yc >>> 0 > a >>> 0) {
- Da(lc, (Yc - a) | 0)
- break d
- }
- if (Yc >>> 0 >= a >>> 0) {
- break d
- }
- o[(lc + 4) >> 2] = Xc + (Yc << 2)
- }
- e: {
- if (!ad) {
- a = 1
- break e
- }
- Xc = 0
- _c = (kc + 68) | 0
- bd = (Zc | 0) < 1
- while (1) {
- a = $c
- Yc = kc
- if (!p[(kc + 84) | 0]) {
- a = o[(o[_c >> 2] + ($c << 2)) >> 2]
- }
- if (!Ra(Yc, a, m[(kc + 24) | 0], o[Wc >> 2])) {
- a = 0
- break e
- }
- if (!bd) {
- Yc = o[lc >> 2]
- a = 0
- cd = o[Wc >> 2]
- while (1) {
- o[(Yc + (Xc << 2)) >> 2] = o[(cd + (a << 2)) >> 2]
- Xc = (Xc + 1) | 0
- a = (a + 1) | 0
- if ((Zc | 0) != (a | 0)) {
- continue
- }
- break
- }
- }
- a = 1
- $c = ($c + 1) | 0
- if ((ad | 0) != ($c | 0)) {
- continue
- }
- break
- }
- }
- kc = o[Wc >> 2]
- if (!kc) {
- break b
- }
- o[(Wc + 4) >> 2] = kc
- ul(kc)
- }
- R = (Wc + 16) | 0
- return a
- }
- Yk()
- D()
- }
- function Ra(a, R, kc, lc) {
- var dd = 0,
- ed = 0,
- fd = 0,
- gd = 0,
- hd = v(0),
- id = 0
- a: {
- b: {
- if (!lc) {
- break b
- }
- dd = (o[(a + 28) >> 2] + -1) | 0
- if (dd >>> 0 > 10) {
- break b
- }
- c: {
- d: {
- e: {
- switch ((dd - 1) | 0) {
- default:
- fd = 1
- dd = m[(a + 24) | 0]
- if ((((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24 >= 1) {
- dd = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (dd + R) | 0
- while (1) {
- o[((ed << 2) + lc) >> 2] = m[R | 0]
- R = (R + 1) | 0
- ed = (ed + 1) | 0
- dd = m[(a + 24) | 0]
- if ((ed | 0) < (((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((dd | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 0:
- fd = 1
- dd = m[(a + 24) | 0]
- if ((((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24 >= 1) {
- dd = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (dd + R) | 0
- while (1) {
- o[((ed << 2) + lc) >> 2] = p[R | 0]
- R = (R + 1) | 0
- ed = (ed + 1) | 0
- dd = m[(a + 24) | 0]
- if ((ed | 0) < (((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((dd | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 1:
- fd = 1
- dd = m[(a + 24) | 0]
- if ((((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24 >= 1) {
- dd = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (dd + R) | 0
- while (1) {
- o[((ed << 2) + lc) >> 2] = n[R >> 1]
- R = (R + 2) | 0
- ed = (ed + 1) | 0
- dd = m[(a + 24) | 0]
- if ((ed | 0) < (((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((dd | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 2:
- fd = 1
- dd = m[(a + 24) | 0]
- if ((((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24 >= 1) {
- dd = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (dd + R) | 0
- while (1) {
- o[((ed << 2) + lc) >> 2] = q[R >> 1]
- R = (R + 2) | 0
- ed = (ed + 1) | 0
- dd = m[(a + 24) | 0]
- if ((ed | 0) < (((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((dd | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 3:
- fd = 1
- dd = m[(a + 24) | 0]
- if ((((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24 >= 1) {
- dd = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (dd + R) | 0
- while (1) {
- o[((ed << 2) + lc) >> 2] = o[R >> 2]
- R = (R + 4) | 0
- ed = (ed + 1) | 0
- dd = m[(a + 24) | 0]
- if ((ed | 0) < (((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((dd | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 4:
- fd = 1
- dd = m[(a + 24) | 0]
- if ((((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24 >= 1) {
- dd = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (dd + R) | 0
- while (1) {
- o[((ed << 2) + lc) >> 2] = o[R >> 2]
- R = (R + 4) | 0
- ed = (ed + 1) | 0
- dd = m[(a + 24) | 0]
- if ((ed | 0) < (((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((dd | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 5:
- fd = 1
- dd = m[(a + 24) | 0]
- if ((((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24 >= 1) {
- dd = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (dd + R) | 0
- while (1) {
- o[((ed << 2) + lc) >> 2] = o[R >> 2]
- R = (R + 8) | 0
- ed = (ed + 1) | 0
- dd = m[(a + 24) | 0]
- if ((ed | 0) < (((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((dd | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 6:
- fd = 1
- dd = m[(a + 24) | 0]
- if ((((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24 >= 1) {
- dd = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (dd + R) | 0
- while (1) {
- o[((ed << 2) + lc) >> 2] = o[R >> 2]
- R = (R + 8) | 0
- ed = (ed + 1) | 0
- dd = m[(a + 24) | 0]
- if ((ed | 0) < (((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((dd | 0) >= (kc | 0)) {
- break b
- }
- break a
- case 7:
- fd = 1
- dd = m[(a + 24) | 0]
- if ((((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24 < 1) {
- break c
- }
- dd = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (dd + R) | 0
- while (1) {
- dd = ((ed << 2) + lc) | 0
- hd = s[R >> 2]
- f: {
- if ((hd < v(4294967296)) & (hd >= v(0))) {
- gd = ~~hd >>> 0
- break f
- }
- gd = 0
- }
- o[dd >> 2] = gd
- R = (R + 4) | 0
- ed = (ed + 1) | 0
- dd = m[(a + 24) | 0]
- if ((ed | 0) < (((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24) {
- continue
- }
- break
- }
- break c
- case 8:
- fd = 1
- dd = m[(a + 24) | 0]
- if ((((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24 < 1) {
- break d
- }
- dd = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (dd + R) | 0
- while (1) {
- dd = ((ed << 2) + lc) | 0
- id = t[R >> 3]
- g: {
- if ((id < 4294967296) & (id >= 0)) {
- gd = ~~id >>> 0
- break g
- }
- gd = 0
- }
- o[dd >> 2] = gd
- R = (R + 8) | 0
- ed = (ed + 1) | 0
- dd = m[(a + 24) | 0]
- if ((ed | 0) < (((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24) {
- continue
- }
- break
- }
- break d
- case 9:
- break e
- }
- }
- fd = 1
- dd = m[(a + 24) | 0]
- if ((((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24 >= 1) {
- dd = o[o[a >> 2] >> 2]
- R = (o[(a + 48) >> 2] + Vl(o[(a + 40) >> 2], o[(a + 44) >> 2], R, 0)) | 0
- R = (dd + R) | 0
- while (1) {
- o[((ed << 2) + lc) >> 2] = p[R | 0]
- R = (R + 1) | 0
- ed = (ed + 1) | 0
- dd = m[(a + 24) | 0]
- if ((ed | 0) < (((dd | 0) > (kc | 0) ? kc : dd) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((dd | 0) >= (kc | 0)) {
- break b
- }
- xl(((dd << 2) + lc) | 0, 0, (kc - dd) << 2)
- break b
- }
- if ((dd | 0) >= (kc | 0)) {
- break b
- }
- break a
- }
- if ((dd | 0) >= (kc | 0)) {
- break b
- }
- break a
- }
- return fd
- }
- xl(((dd << 2) + lc) | 0, 0, (kc - dd) << 2)
- return 1
- }
- function Sa(a, kc, lc, jd, kd) {
- var ld = 0,
- md = 0,
- nd = 0,
- od = 0,
- pd = 0,
- qd = 0,
- rd = 0
- md = (R - 16) | 0
- R = md
- lc = (lc + -1) | 0
- a: {
- if (lc >>> 0 > 8) {
- break a
- }
- b: {
- switch ((lc - 1) | 0) {
- default:
- ld = Ta(a, kc, jd, kd)
- break a
- case 1:
- ld = Ua(a, kc, jd, kd)
- break a
- case 3:
- ld = Va(a, kc, jd, kd)
- break a
- case 0:
- ld = Wa(a, kc, jd, kd)
- break a
- case 2:
- ld = Xa(a, kc, jd, kd)
- break a
- case 4:
- ld = Ya(a, kc, jd, kd)
- break a
- case 5:
- case 6:
- break a
- case 7:
- break b
- }
- }
- nd = o[(a + 80) >> 2]
- od = m[(kc + 24) | 0]
- pd = od << 2
- if ((u(nd, pd) | 0) != (jd | 0)) {
- break a
- }
- a = 0
- lc = o[259]
- o[(md + 8) >> 2] = o[258]
- o[(md + 12) >> 2] = lc
- lc = o[257]
- o[md >> 2] = o[256]
- o[(md + 4) >> 2] = lc
- if (!nd) {
- ld = 1
- break a
- }
- qd = (kc + 68) | 0
- rd = (od | 0) < 1
- lc = 0
- while (1) {
- jd = lc
- ld = kc
- if (!p[(kc + 84) | 0]) {
- jd = o[(o[qd >> 2] + (lc << 2)) >> 2]
- }
- if (!Ba(ld, jd, m[(kc + 24) | 0], md)) {
- ld = 0
- break a
- }
- if (!rd) {
- wl(((a << 2) + kd) | 0, md, pd)
- a = (a + od) | 0
- }
- ld = 1
- lc = (lc + 1) | 0
- if ((nd | 0) != (lc | 0)) {
- continue
- }
- break
- }
- }
- R = (md + 16) | 0
- return ld
- }
- function Ta(a, kc, lc, jd) {
- var kd = 0,
- sd = 0,
- td = 0,
- ud = 0,
- vd = 0,
- wd = 0,
- xd = 0
- sd = (R - 16) | 0
- R = sd
- a: {
- vd = o[(a + 80) >> 2]
- td = m[(kc + 24) | 0]
- b: {
- if ((u(vd, td) | 0) != (lc | 0)) {
- break b
- }
- if (!(!p[(kc + 84) | 0] | (o[(kc + 28) >> 2] != 1))) {
- wl(jd, (o[o[kc >> 2] >> 2] + o[(kc + 48) >> 2]) | 0, lc)
- kd = 1
- break b
- }
- o[(sd + 8) >> 2] = 0
- o[sd >> 2] = 0
- o[(sd + 4) >> 2] = 0
- if (td) {
- if ((td | 0) <= -1) {
- break a
- }
- kd = Hk(td)
- o[sd >> 2] = kd
- o[(sd + 4) >> 2] = kd
- o[(sd + 8) >> 2] = kd + td
- lc = td
- while (1) {
- m[kd | 0] = 0
- kd = (o[(sd + 4) >> 2] + 1) | 0
- o[(sd + 4) >> 2] = kd
- lc = (lc + -1) | 0
- if (lc) {
- continue
- }
- break
- }
- }
- c: {
- if (!vd) {
- kd = 1
- break c
- }
- lc = 0
- wd = (kc + 68) | 0
- xd = (td | 0) < 1
- while (1) {
- a = ud
- kd = kc
- if (!p[(kd + 84) | 0]) {
- a = o[(o[wd >> 2] + (ud << 2)) >> 2]
- }
- if (!Ga(kd, a, m[(kc + 24) | 0], o[sd >> 2])) {
- kd = 0
- break c
- }
- if (!xd) {
- kd = 0
- a = o[sd >> 2]
- while (1) {
- m[(lc + jd) | 0] = p[(a + kd) | 0]
- lc = (lc + 1) | 0
- kd = (kd + 1) | 0
- if ((td | 0) != (kd | 0)) {
- continue
- }
- break
- }
- }
- kd = 1
- ud = (ud + 1) | 0
- if ((vd | 0) != (ud | 0)) {
- continue
- }
- break
- }
- }
- a = o[sd >> 2]
- if (!a) {
- break b
- }
- o[(sd + 4) >> 2] = a
- ul(a)
- }
- R = (sd + 16) | 0
- return kd
- }
- Yk()
- D()
- }
- function Ua(a, kc, lc, jd) {
- var yd = 0,
- zd = 0,
- Ad = 0,
- Bd = 0,
- Cd = 0,
- Dd = 0,
- Ed = 0,
- Fd = 0,
- Gd = 0
- yd = (R - 16) | 0
- R = yd
- a: {
- Cd = o[(a + 80) >> 2]
- Ad = m[(kc + 24) | 0]
- a = Ad << 1
- b: {
- if ((u(Cd, a) | 0) != (lc | 0)) {
- break b
- }
- if (!(!p[(kc + 84) | 0] | (o[(kc + 28) >> 2] != 3))) {
- wl(jd, (o[o[kc >> 2] >> 2] + o[(kc + 48) >> 2]) | 0, lc)
- zd = 1
- break b
- }
- lc = 0
- o[(yd + 8) >> 2] = 0
- o[yd >> 2] = 0
- o[(yd + 4) >> 2] = 0
- if (Ad) {
- if ((Ad | 0) <= -1) {
- break a
- }
- lc = Hk(a)
- o[yd >> 2] = lc
- o[(yd + 8) >> 2] = (Ad << 1) + lc
- ;(Fd = yd), (Gd = (xl(lc, 0, a) + a) | 0), (o[(Fd + 4) >> 2] = Gd)
- }
- c: {
- if (!Cd) {
- zd = 1
- break c
- }
- lc = 0
- Dd = (kc + 68) | 0
- Ed = (Ad | 0) < 1
- while (1) {
- a = Bd
- zd = kc
- if (!p[(kc + 84) | 0]) {
- a = o[(o[Dd >> 2] + (Bd << 2)) >> 2]
- }
- d: {
- if (!La(zd, a, m[(kc + 24) | 0], o[yd >> 2])) {
- zd = 0
- break d
- }
- if (!Ed) {
- zd = 0
- a = o[yd >> 2]
- while (1) {
- n[((lc << 1) + jd) >> 1] = q[(a + (zd << 1)) >> 1]
- lc = (lc + 1) | 0
- zd = (zd + 1) | 0
- if ((Ad | 0) != (zd | 0)) {
- continue
- }
- break
- }
- }
- zd = 1
- Bd = (Bd + 1) | 0
- if ((Cd | 0) != (Bd | 0)) {
- continue
- }
- }
- break
- }
- lc = o[yd >> 2]
- }
- if (!lc) {
- break b
- }
- o[(yd + 4) >> 2] = lc
- ul(lc)
- }
- R = (yd + 16) | 0
- return zd
- }
- Yk()
- D()
- }
- function Va(a, kc, lc, jd) {
- var Hd = 0,
- Id = 0,
- Jd = 0,
- Kd = 0,
- Ld = 0,
- Md = 0,
- Nd = 0,
- Od = 0,
- Pd = 0
- Hd = (R - 16) | 0
- R = Hd
- a: {
- Ld = o[(a + 80) >> 2]
- Jd = m[(kc + 24) | 0]
- a = Jd << 2
- b: {
- if ((u(Ld, a) | 0) != (lc | 0)) {
- break b
- }
- if (!(!p[(kc + 84) | 0] | (o[(kc + 28) >> 2] != 5))) {
- wl(jd, (o[o[kc >> 2] >> 2] + o[(kc + 48) >> 2]) | 0, lc)
- Id = 1
- break b
- }
- lc = 0
- o[(Hd + 8) >> 2] = 0
- o[Hd >> 2] = 0
- o[(Hd + 4) >> 2] = 0
- if (Jd) {
- if ((Jd | 0) <= -1) {
- break a
- }
- lc = Hk(a)
- o[Hd >> 2] = lc
- o[(Hd + 8) >> 2] = (Jd << 2) + lc
- ;(Od = Hd), (Pd = (xl(lc, 0, a) + a) | 0), (o[(Od + 4) >> 2] = Pd)
- }
- c: {
- if (!Ld) {
- Id = 1
- break c
- }
- lc = 0
- Md = (kc + 68) | 0
- Nd = (Jd | 0) < 1
- while (1) {
- a = Kd
- Id = kc
- if (!p[(kc + 84) | 0]) {
- a = o[(o[Md >> 2] + (Kd << 2)) >> 2]
- }
- d: {
- if (!Pa(Id, a, m[(kc + 24) | 0], o[Hd >> 2])) {
- Id = 0
- break d
- }
- if (!Nd) {
- Id = 0
- a = o[Hd >> 2]
- while (1) {
- o[((lc << 2) + jd) >> 2] = o[(a + (Id << 2)) >> 2]
- lc = (lc + 1) | 0
- Id = (Id + 1) | 0
- if ((Jd | 0) != (Id | 0)) {
- continue
- }
- break
- }
- }
- Id = 1
- Kd = (Kd + 1) | 0
- if ((Ld | 0) != (Kd | 0)) {
- continue
- }
- }
- break
- }
- lc = o[Hd >> 2]
- }
- if (!lc) {
- break b
- }
- o[(Hd + 4) >> 2] = lc
- ul(lc)
- }
- R = (Hd + 16) | 0
- return Id
- }
- Yk()
- D()
- }
- function Wa(a, kc, lc, jd) {
- var Qd = 0,
- Rd = 0,
- Sd = 0,
- Td = 0,
- Ud = 0,
- Vd = 0,
- Wd = 0
- Rd = (R - 16) | 0
- R = Rd
- a: {
- Ud = o[(a + 80) >> 2]
- Sd = m[(kc + 24) | 0]
- b: {
- if ((u(Ud, Sd) | 0) != (lc | 0)) {
- break b
- }
- if (!(!p[(kc + 84) | 0] | (o[(kc + 28) >> 2] != 2))) {
- wl(jd, (o[o[kc >> 2] >> 2] + o[(kc + 48) >> 2]) | 0, lc)
- Qd = 1
- break b
- }
- o[(Rd + 8) >> 2] = 0
- o[Rd >> 2] = 0
- o[(Rd + 4) >> 2] = 0
- if (Sd) {
- if ((Sd | 0) <= -1) {
- break a
- }
- Qd = Hk(Sd)
- o[Rd >> 2] = Qd
- o[(Rd + 4) >> 2] = Qd
- o[(Rd + 8) >> 2] = Qd + Sd
- lc = Sd
- while (1) {
- m[Qd | 0] = 0
- Qd = (o[(Rd + 4) >> 2] + 1) | 0
- o[(Rd + 4) >> 2] = Qd
- lc = (lc + -1) | 0
- if (lc) {
- continue
- }
- break
- }
- }
- c: {
- if (!Ud) {
- Qd = 1
- break c
- }
- lc = 0
- Vd = (kc + 68) | 0
- Wd = (Sd | 0) < 1
- while (1) {
- a = Td
- Qd = kc
- if (!p[(Qd + 84) | 0]) {
- a = o[(o[Vd >> 2] + (Td << 2)) >> 2]
- }
- if (!Ia(Qd, a, m[(kc + 24) | 0], o[Rd >> 2])) {
- Qd = 0
- break c
- }
- if (!Wd) {
- Qd = 0
- a = o[Rd >> 2]
- while (1) {
- m[(lc + jd) | 0] = p[(a + Qd) | 0]
- lc = (lc + 1) | 0
- Qd = (Qd + 1) | 0
- if ((Sd | 0) != (Qd | 0)) {
- continue
- }
- break
- }
- }
- Qd = 1
- Td = (Td + 1) | 0
- if ((Ud | 0) != (Td | 0)) {
- continue
- }
- break
- }
- }
- a = o[Rd >> 2]
- if (!a) {
- break b
- }
- o[(Rd + 4) >> 2] = a
- ul(a)
- }
- R = (Rd + 16) | 0
- return Qd
- }
- Yk()
- D()
- }
- function Xa(a, kc, lc, jd) {
- var Xd = 0,
- Yd = 0,
- Zd = 0,
- _d = 0,
- $d = 0,
- ae = 0,
- be = 0,
- ce = 0,
- de = 0
- Xd = (R - 16) | 0
- R = Xd
- a: {
- $d = o[(a + 80) >> 2]
- Zd = m[(kc + 24) | 0]
- a = Zd << 1
- b: {
- if ((u($d, a) | 0) != (lc | 0)) {
- break b
- }
- if (!(!p[(kc + 84) | 0] | (o[(kc + 28) >> 2] != 4))) {
- wl(jd, (o[o[kc >> 2] >> 2] + o[(kc + 48) >> 2]) | 0, lc)
- Yd = 1
- break b
- }
- lc = 0
- o[(Xd + 8) >> 2] = 0
- o[Xd >> 2] = 0
- o[(Xd + 4) >> 2] = 0
- if (Zd) {
- if ((Zd | 0) <= -1) {
- break a
- }
- lc = Hk(a)
- o[Xd >> 2] = lc
- o[(Xd + 8) >> 2] = (Zd << 1) + lc
- ;(ce = Xd), (de = (xl(lc, 0, a) + a) | 0), (o[(ce + 4) >> 2] = de)
- }
- c: {
- if (!$d) {
- Yd = 1
- break c
- }
- lc = 0
- ae = (kc + 68) | 0
- be = (Zd | 0) < 1
- while (1) {
- a = _d
- Yd = kc
- if (!p[(kc + 84) | 0]) {
- a = o[(o[ae >> 2] + (_d << 2)) >> 2]
- }
- d: {
- if (!Na(Yd, a, m[(kc + 24) | 0], o[Xd >> 2])) {
- Yd = 0
- break d
- }
- if (!be) {
- Yd = 0
- a = o[Xd >> 2]
- while (1) {
- n[((lc << 1) + jd) >> 1] = q[(a + (Yd << 1)) >> 1]
- lc = (lc + 1) | 0
- Yd = (Yd + 1) | 0
- if ((Zd | 0) != (Yd | 0)) {
- continue
- }
- break
- }
- }
- Yd = 1
- _d = (_d + 1) | 0
- if (($d | 0) != (_d | 0)) {
- continue
- }
- }
- break
- }
- lc = o[Xd >> 2]
- }
- if (!lc) {
- break b
- }
- o[(Xd + 4) >> 2] = lc
- ul(lc)
- }
- R = (Xd + 16) | 0
- return Yd
- }
- Yk()
- D()
- }
- function Ya(a, kc, lc, jd) {
- var ee = 0,
- fe = 0,
- ge = 0,
- he = 0,
- ie = 0,
- je = 0,
- ke = 0,
- le = 0,
- me = 0
- ee = (R - 16) | 0
- R = ee
- a: {
- ie = o[(a + 80) >> 2]
- ge = m[(kc + 24) | 0]
- a = ge << 2
- b: {
- if ((u(ie, a) | 0) != (lc | 0)) {
- break b
- }
- if (!(!p[(kc + 84) | 0] | (o[(kc + 28) >> 2] != 6))) {
- wl(jd, (o[o[kc >> 2] >> 2] + o[(kc + 48) >> 2]) | 0, lc)
- fe = 1
- break b
- }
- lc = 0
- o[(ee + 8) >> 2] = 0
- o[ee >> 2] = 0
- o[(ee + 4) >> 2] = 0
- if (ge) {
- if ((ge | 0) <= -1) {
- break a
- }
- lc = Hk(a)
- o[ee >> 2] = lc
- o[(ee + 8) >> 2] = (ge << 2) + lc
- ;(le = ee), (me = (xl(lc, 0, a) + a) | 0), (o[(le + 4) >> 2] = me)
- }
- c: {
- if (!ie) {
- fe = 1
- break c
- }
- lc = 0
- je = (kc + 68) | 0
- ke = (ge | 0) < 1
- while (1) {
- a = he
- fe = kc
- if (!p[(kc + 84) | 0]) {
- a = o[(o[je >> 2] + (he << 2)) >> 2]
- }
- d: {
- if (!Ra(fe, a, m[(kc + 24) | 0], o[ee >> 2])) {
- fe = 0
- break d
- }
- if (!ke) {
- fe = 0
- a = o[ee >> 2]
- while (1) {
- o[((lc << 2) + jd) >> 2] = o[(a + (fe << 2)) >> 2]
- lc = (lc + 1) | 0
- fe = (fe + 1) | 0
- if ((ge | 0) != (fe | 0)) {
- continue
- }
- break
- }
- }
- fe = 1
- he = (he + 1) | 0
- if ((ie | 0) != (he | 0)) {
- continue
- }
- }
- break
- }
- lc = o[ee >> 2]
- }
- if (!lc) {
- break b
- }
- o[(ee + 4) >> 2] = lc
- ul(lc)
- }
- R = (ee + 16) | 0
- return fe
- }
- Yk()
- D()
- }
- function Za(a, R) {
- var kc = 0,
- lc = 0
- kc = o[(a + 4) >> 2]
- if (!kc) {
- return 0
- }
- R = o[(o[(o[(a + 8) >> 2] + (R << 2)) >> 2] + 60) >> 2]
- if ((R | 0) < 0) {
- return 0
- }
- a = o[(kc + 24) >> 2]
- kc = o[(kc + 28) >> 2]
- if ((a | 0) == (kc | 0)) {
- return 0
- }
- a: {
- while (1) {
- lc = o[a >> 2]
- if ((R | 0) == o[(lc + 24) >> 2]) {
- break a
- }
- a = (a + 4) | 0
- if ((kc | 0) != (a | 0)) {
- continue
- }
- break
- }
- return 0
- }
- return lc
- }
- function _a(a) {
- var R = 0
- R = G(8) | 0
- o[R >> 2] = 12288
- o[R >> 2] = 12332
- Ik((R + 4) | 0, a)
- o[R >> 2] = 12380
- H(R | 0, 12412, 1)
- D()
- }
- function $a(a, jd, ne) {
- var oe = 0,
- pe = 0,
- qe = 0,
- re = 0,
- se = 0
- pe = (R - 16) | 0
- R = pe
- o[(a + 4) >> 2] = 0
- a: {
- b: {
- if (!jd) {
- break b
- }
- qe = o[(a + 8) >> 2]
- oe = qe << 5
- c: {
- if (oe >>> 0 >= jd >>> 0) {
- o[(a + 4) >> 2] = jd
- break c
- }
- o[(pe + 8) >> 2] = 0
- o[pe >> 2] = 0
- o[(pe + 4) >> 2] = 0
- if ((jd | 0) <= -1) {
- break a
- }
- se = pe
- if (oe >>> 0 <= 1073741822) {
- re = (jd + 31) & -32
- oe = qe << 6
- re = oe >>> 0 < re >>> 0 ? re : oe
- } else {
- re = 2147483647
- }
- ab(se, re)
- re = o[a >> 2]
- o[a >> 2] = o[pe >> 2]
- o[pe >> 2] = re
- qe = o[(a + 4) >> 2]
- o[(a + 4) >> 2] = jd
- o[(pe + 4) >> 2] = qe
- oe = (a + 8) | 0
- qe = o[oe >> 2]
- o[oe >> 2] = o[(pe + 8) >> 2]
- o[(pe + 8) >> 2] = qe
- if (!re) {
- break c
- }
- ul(re)
- }
- oe = jd >>> 5
- qe = oe << 2
- a = o[a >> 2]
- if (p[ne | 0]) {
- a = xl(a, 255, qe)
- jd = jd & 31
- if (!jd) {
- break b
- }
- a = (a + (oe << 2)) | 0
- o[a >> 2] = o[a >> 2] | (-1 >>> (32 - jd))
- break b
- }
- a = xl(a, 0, qe)
- jd = jd & 31
- if (!jd) {
- break b
- }
- a = (a + (oe << 2)) | 0
- o[a >> 2] = o[a >> 2] & ((-1 >>> (32 - jd)) ^ -1)
- }
- R = (pe + 16) | 0
- return
- }
- Yk()
- D()
- }
- function ab(a, jd) {
- var ne = 0,
- te = 0
- ne = (R - 32) | 0
- R = ne
- a: {
- b: {
- if ((o[(a + 8) >> 2] << 5) >>> 0 >= jd >>> 0) {
- break b
- }
- o[(ne + 24) >> 2] = 0
- o[(ne + 16) >> 2] = 0
- o[(ne + 20) >> 2] = 0
- if ((jd | 0) <= -1) {
- break a
- }
- jd = (((jd + -1) >>> 5) + 1) | 0
- te = Hk(jd << 2)
- o[(ne + 24) >> 2] = jd
- o[(ne + 20) >> 2] = 0
- o[(ne + 16) >> 2] = te
- jd = o[a >> 2]
- o[(ne + 12) >> 2] = 0
- o[(ne + 8) >> 2] = jd
- te = o[(a + 4) >> 2]
- o[(ne + 4) >> 2] = te & 31
- o[ne >> 2] = jd + ((te >>> 3) & 536870908)
- bb((ne + 16) | 0, (ne + 8) | 0, ne)
- jd = o[a >> 2]
- o[a >> 2] = o[(ne + 16) >> 2]
- o[(ne + 16) >> 2] = jd
- te = o[(a + 4) >> 2]
- o[(a + 4) >> 2] = o[(ne + 20) >> 2]
- o[(ne + 20) >> 2] = te
- a = (a + 8) | 0
- te = o[a >> 2]
- o[a >> 2] = o[(ne + 24) >> 2]
- o[(ne + 24) >> 2] = te
- if (!jd) {
- break b
- }
- ul(jd)
- }
- R = (ne + 32) | 0
- return
- }
- Yk()
- D()
- }
- function bb(a, jd, ue) {
- var ve = 0,
- we = 0,
- xe = 0,
- ye = 0,
- ze = 0,
- Ae = 0
- xe = (R - 32) | 0
- R = xe
- ze = o[(ue + 4) >> 2]
- ve = o[(jd + 4) >> 2]
- Ae = o[ue >> 2]
- ye = o[jd >> 2]
- jd = (((ze - ve) | 0) + ((Ae - ye) << 3)) | 0
- ue = o[(a + 4) >> 2]
- we = (jd + ue) | 0
- o[(a + 4) >> 2] = we
- a: {
- if (!(!ue | (((we + -1) ^ (ue + -1)) >>> 0 > 31))) {
- a = o[a >> 2]
- break a
- }
- a = o[a >> 2]
- if (we >>> 0 <= 32) {
- o[a >> 2] = 0
- break a
- }
- o[((((we + -1) >>> 3) & 536870908) + a) >> 2] = 0
- }
- a = (((ue >>> 3) & 536870908) + a) | 0
- ue = ue & 31
- b: {
- if ((ue | 0) == (ve | 0)) {
- c: {
- if ((jd | 0) < 1) {
- break c
- }
- d: {
- if (!ve) {
- ue = 0
- break d
- }
- we = (32 - ve) | 0
- ue = (jd | 0) < (we | 0) ? jd : we
- we = (-1 << ve) & (-1 >>> (we - ue))
- o[a >> 2] = (o[a >> 2] & (we ^ -1)) | (we & o[ye >> 2])
- jd = (jd - ue) | 0
- ve = (ue + ve) | 0
- ue = ve & 31
- a = (((ve >>> 3) & 536870908) + a) | 0
- ye = (ye + 4) | 0
- }
- ve = ((jd | 0) / 32) | 0
- we = ve << 2
- a = (yl(a, ye, we) + we) | 0
- ve = (jd - (ve << 5)) | 0
- if ((ve | 0) < 1) {
- ve = ue
- break c
- }
- jd = -1 >>> (32 - ve)
- o[a >> 2] = (o[a >> 2] & (jd ^ -1)) | (jd & o[(we + ye) >> 2])
- }
- o[(xe + 4) >> 2] = ve
- o[xe >> 2] = a
- break b
- }
- o[(xe + 28) >> 2] = ve
- o[(xe + 24) >> 2] = ye
- o[(xe + 20) >> 2] = ze
- o[(xe + 16) >> 2] = Ae
- o[(xe + 12) >> 2] = ue
- o[(xe + 8) >> 2] = a
- cb(xe, (xe + 24) | 0, (xe + 16) | 0, (xe + 8) | 0)
- }
- R = (xe + 32) | 0
- }
- function cb(a, jd, ue, Be) {
- var Ce = 0,
- De = 0,
- Ee = 0,
- Fe = 0,
- Ge = 0,
- He = 0,
- Ie = 0,
- Je = 0
- De = o[jd >> 2]
- Ce = (o[(ue + 4) >> 2] + ((o[ue >> 2] - De) << 3)) | 0
- ue = o[(jd + 4) >> 2]
- Ee = (Ce - ue) | 0
- a: {
- if ((Ee | 0) <= 0) {
- ue = o[(Be + 4) >> 2]
- break a
- }
- b: {
- if (!ue) {
- ue = o[(Be + 4) >> 2]
- break b
- }
- Ce = o[(Be + 4) >> 2]
- He = (32 - Ce) | 0
- Ie = (32 - ue) | 0
- Fe = (Ee | 0) < (Ie | 0) ? Ee : Ie
- Ge = He >>> 0 < Fe >>> 0 ? He : Fe
- Je = o[Be >> 2]
- De = o[De >> 2] & ((-1 << ue) & (-1 >>> (Ie - Fe)))
- o[Je >> 2] = (o[Je >> 2] & (((-1 << Ce) & (-1 >>> (He - Ge))) ^ -1)) | (Ce >>> 0 > ue >>> 0 ? De << (Ce - ue) : De >>> (ue - Ce))
- Ce = (Ce + Ge) | 0
- ue = Ce & 31
- o[(Be + 4) >> 2] = ue
- He = (Je + ((Ce >>> 3) & 536870908)) | 0
- o[Be >> 2] = He
- Ce = (Fe - Ge) | 0
- if ((Ce | 0) >= 1) {
- o[He >> 2] = (o[He >> 2] & ((-1 >>> (32 - Ce)) ^ -1)) | (De >>> (Ge + o[(jd + 4) >> 2]))
- o[(Be + 4) >> 2] = Ce
- ue = Ce
- }
- Ee = (Ee - Fe) | 0
- De = (o[jd >> 2] + 4) | 0
- o[jd >> 2] = De
- }
- Ge = -1 << ue
- Fe = (32 - ue) | 0
- c: {
- if ((Ee | 0) < 32) {
- Ce = Ee
- break c
- }
- He = Ge ^ -1
- while (1) {
- Ce = o[Be >> 2]
- De = o[De >> 2]
- o[Ce >> 2] = (He & o[Ce >> 2]) | (De << ue)
- o[Be >> 2] = Ce + 4
- o[(Ce + 4) >> 2] = (Ge & o[(Ce + 4) >> 2]) | (De >>> Fe)
- De = (o[jd >> 2] + 4) | 0
- o[jd >> 2] = De
- Ie = (Ee | 0) > 63
- Ce = (Ee + -32) | 0
- Ee = Ce
- if (Ie) {
- continue
- }
- break
- }
- }
- if ((Ce | 0) < 1) {
- break a
- }
- jd = o[Be >> 2]
- Ee = (Fe | 0) < (Ce | 0) ? Fe : Ce
- Ge = o[jd >> 2] & ((Ge & (-1 >>> (Fe - Ee))) ^ -1)
- Fe = o[De >> 2] & (-1 >>> (32 - Ce))
- o[jd >> 2] = Ge | (Fe << ue)
- De = (ue + Ee) | 0
- ue = De & 31
- o[(Be + 4) >> 2] = ue
- De = (jd + ((De >>> 3) & 536870908)) | 0
- o[Be >> 2] = De
- jd = (Ce - Ee) | 0
- if ((jd | 0) < 1) {
- break a
- }
- o[De >> 2] = (o[De >> 2] & ((-1 >>> (32 - jd)) ^ -1)) | (Fe >>> Ee)
- o[(Be + 4) >> 2] = jd
- ue = jd
- }
- jd = o[Be >> 2]
- o[(a + 4) >> 2] = ue
- o[a >> 2] = jd
- }
- function db(a) {
- a = a | 0
- return o[a >> 2]
- }
- function eb(a) {
- a = a | 0
- return !o[a >> 2] | 0
- }
- function fb(a) {
- a = a | 0
- var jd = 0
- jd = (a + 4) | 0
- if (m[(a + 15) | 0] <= -1) {
- jd = o[jd >> 2]
- }
- return jd | 0
- }
- function gb(a) {
- a = a | 0
- if (a) {
- if (m[(a + 15) | 0] <= -1) {
- ul(o[(a + 4) >> 2])
- }
- ul(a)
- }
- }
- function hb() {
- var a = 0
- a = Hk(12)
- o[a >> 2] = 0
- o[(a + 4) >> 2] = 0
- o[(a + 8) >> 2] = 0
- return a | 0
- }
- function ib(ue, Be) {
- ue = ue | 0
- Be = Be | 0
- return q[(o[ue >> 2] + (Be << 1)) >> 1]
- }
- function jb(ue) {
- ue = ue | 0
- return (o[(ue + 4) >> 2] - o[ue >> 2]) >> 1
- }
- function kb(ue) {
- ue = ue | 0
- var Be = 0
- if (ue) {
- Be = o[ue >> 2]
- if (Be) {
- o[(ue + 4) >> 2] = Be
- ul(Be)
- }
- ul(ue)
- }
- }
- function lb() {
- return qj(Hk(84)) | 0
- }
- function mb(ue) {
- ue = ue | 0
- return (o[(ue + 12) >> 2] - o[(ue + 8) >> 2]) >> 2
- }
- function nb(ue) {
- ue = ue | 0
- return o[(ue + 80) >> 2]
- }
- function ob(ue) {
- ue = ue | 0
- if (ue) {
- l[o[(o[ue >> 2] + 4) >> 2]](ue)
- }
- }
- function pb(ue, Ke) {
- ue = ue | 0
- Ke = Ke | 0
- return p[(o[ue >> 2] + Ke) | 0]
- }
- function qb(ue) {
- ue = ue | 0
- return (o[(ue + 4) >> 2] - o[ue >> 2]) | 0
- }
- function rb(ue, Ke) {
- ue = ue | 0
- Ke = Ke | 0
- return o[(o[ue >> 2] + (Ke << 2)) >> 2]
- }
- function sb(ue) {
- ue = ue | 0
- return (o[(ue + 4) >> 2] - o[ue >> 2]) >> 2
- }
- function tb() {
- var ue = 0
- ue = Hk(8)
- o[(ue + 4) >> 2] = -1
- o[ue >> 2] = 1116
- return ue | 0
- }
- function ub(Ke, Le) {
- Ke = Ke | 0
- Le = Le | 0
- return l[o[(o[Ke >> 2] + 12) >> 2]](Ke, Le) | 0
- }
- function vb(Ke) {
- Ke = Ke | 0
- return o[(Ke + 4) >> 2]
- }
- function wb() {
- return pd(Hk(96)) | 0
- }
- function xb(Ke) {
- Ke = Ke | 0
- return o[(Ke + 88) >> 2]
- }
- function yb(Ke) {
- Ke = Ke | 0
- return o[(Ke + 56) >> 2]
- }
- function zb(Ke) {
- Ke = Ke | 0
- return o[(Ke + 28) >> 2]
- }
- function Ab(o) {
- o = o | 0
- return m[(o + 24) | 0]
- }
- function Bb(o) {
- o = o | 0
- return p[(o + 32) | 0]
- }
- function Cb(Ke) {
- Ke = Ke | 0
- return o[(Ke + 40) >> 2]
- }
- function Db(Ke) {
- Ke = Ke | 0
- return o[(Ke + 48) >> 2]
- }
- function Eb(Ke) {
- Ke = Ke | 0
- return o[(Ke + 60) >> 2]
- }
- function Fb(Ke) {
- Ke = Ke | 0
- var Le = 0,
- Me = 0
- if (Ke) {
- Le = (Ke + 88) | 0
- Me = o[Le >> 2]
- o[Le >> 2] = 0
- if (Me) {
- Le = o[(Me + 8) >> 2]
- if (Le) {
- o[(Me + 12) >> 2] = Le
- ul(Le)
- }
- ul(Me)
- }
- Me = o[(Ke + 68) >> 2]
- if (Me) {
- o[(Ke + 72) >> 2] = Me
- ul(Me)
- }
- Le = (Ke - -64) | 0
- Me = o[Le >> 2]
- o[Le >> 2] = 0
- if (Me) {
- Le = o[Me >> 2]
- if (Le) {
- o[(Me + 4) >> 2] = Le
- ul(Le)
- }
- ul(Me)
- }
- ul(Ke)
- }
- }
- function Gb() {
- var Ke = 0
- Ke = Hk(40)
- o[Ke >> 2] = -1
- ki((Ke + 8) | 0)
- return Ke | 0
- }
- function Hb(Ne) {
- Ne = Ne | 0
- var Oe = 0
- if (Ne) {
- Oe = o[(Ne + 8) >> 2]
- if (Oe) {
- o[(Ne + 12) >> 2] = Oe
- ul(Oe)
- }
- ul(Ne)
- }
- }
- function Ib() {
- var Ne = 0
- Ne = Hk(24)
- o[(Ne + 4) >> 2] = -1
- o[Ne >> 2] = 1232
- o[(Ne + 8) >> 2] = 0
- o[(Ne + 12) >> 2] = 0
- o[(Ne + 16) >> 2] = 0
- o[(Ne + 20) >> 2] = 0
- return Ne | 0
- }
- function Jb(Pe, Qe) {
- Pe = Pe | 0
- Qe = Qe | 0
- return v(s[(o[(Pe + 8) >> 2] + (Qe << 2)) >> 2])
- }
- function Kb(o) {
- o = o | 0
- return v(s[(o + 20) >> 2])
- }
- function Lb(Pe, Qe) {
- Pe = Pe | 0
- Qe = Qe | 0
- return m[(o[Pe >> 2] + Qe) | 0]
- }
- function Mb() {
- var Pe = 0
- Pe = Hk(28)
- o[Pe >> 2] = 0
- o[(Pe + 4) >> 2] = 0
- o[(Pe + 24) >> 2] = 0
- o[(Pe + 16) >> 2] = 0
- o[(Pe + 20) >> 2] = 0
- o[(Pe + 8) >> 2] = 0
- o[(Pe + 12) >> 2] = 0
- return Pe | 0
- }
- function Nb(o, Qe, Re) {
- o = o | 0
- Qe = Qe | 0
- Re = Re | 0
- return da(Qe, Re) | 0
- }
- function Ob(o, Qe, Re) {
- o = o | 0
- Qe = Qe | 0
- Re = Re | 0
- return fa(Qe, Re) | 0
- }
- function Pb(o, Qe, Re, Se) {
- o = o | 0
- Qe = Qe | 0
- Re = Re | 0
- Se = Se | 0
- ga(Qe, Re, Se)
- }
- function Qb(o, Qe, Re) {
- o = o | 0
- Qe = Qe | 0
- Re = Re | 0
- return +ha(Qe, Re)
- }
- function Rb(o, Qe, Re) {
- o = o | 0
- Qe = Qe | 0
- Re = Re | 0
- return ia(o, Qe, Re) | 0
- }
- function Sb(Qe, Re) {
- Qe = Qe | 0
- Re = Re | 0
- return o[(Re + 8) >> 2]
- }
- function Tb(o, Qe, Re) {
- o = o | 0
- Qe = Qe | 0
- Re = Re | 0
- return ja(o, Qe, Re) | 0
- }
- function Ub(Qe) {
- Qe = Qe | 0
- var Re = 0,
- Se = 0,
- Te = 0,
- Ue = 0,
- Ve = 0
- if (Qe) {
- if (m[(Qe + 27) | 0] <= -1) {
- ul(o[(Qe + 16) >> 2])
- }
- Se = o[Qe >> 2]
- if (Se) {
- Re = Se
- Ve = (Qe + 4) | 0
- Te = o[Ve >> 2]
- Ue = Re
- a: {
- if ((Te | 0) == (Re | 0)) {
- break a
- }
- while (1) {
- Re = (Te + -12) | 0
- if (m[(Te + -1) | 0] <= -1) {
- ul(o[Re >> 2])
- }
- Te = Re
- if ((Re | 0) != (Se | 0)) {
- continue
- }
- break
- }
- Ue = o[Qe >> 2]
- }
- Re = Ue
- o[Ve >> 2] = Se
- ul(Re)
- }
- ul(Qe)
- }
- }
- function Vb(Qe, We) {
- Qe = Qe | 0
- We = We | 0
- return n[(o[Qe >> 2] + (We << 1)) >> 1]
- }
- function Wb(Qe, We) {
- Qe = Qe | 0
- We = We | 0
- return v(s[(o[Qe >> 2] + (We << 2)) >> 2])
- }
- function Xb() {
- return ld(Hk(64)) | 0
- }
- function Yb(o) {
- o = o | 0
- if (o) {
- ul(o)
- }
- }
- function Zb() {
- return oi(Hk(40)) | 0
- }
- function _b(Qe, We, Xe) {
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- o[(Qe + 16) >> 2] = 0
- o[(Qe + 20) >> 2] = 0
- o[Qe >> 2] = We
- o[(Qe + 8) >> 2] = Xe
- o[(Qe + 12) >> 2] = 0
- }
- function $b() {
- return la(Hk(40)) | 0
- }
- function ac(o, Qe) {
- o = o | 0
- Qe = Qe | 0
- return ma(Qe) | 0
- }
- function bc(o, Qe, We) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- return na(o) | 0
- }
- function cc(o, Qe, We) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- return oa(o, Qe, We) | 0
- }
- function dc(o, Qe, We) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- return rj(Qe, We) | 0
- }
- function ec(o, Qe, We) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- return pa(Qe, We) | 0
- }
- function fc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return qa(Qe, We, Xe) | 0
- }
- function gc(Qe, We, Xe) {
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return o[(o[(We + 8) >> 2] + (Xe << 2)) >> 2]
- }
- function hc(o, Qe, We) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- return tj(Qe, We) | 0
- }
- function ic(Qe, We) {
- Qe = Qe | 0
- We = We | 0
- return o[(We + 4) >> 2]
- }
- function jc(o, Qe, We) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- return Za(Qe, We) | 0
- }
- function kc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return ra(Qe, We, Xe) | 0
- }
- function lc(o, Qe, We) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- return sa(Qe, We) | 0
- }
- function mc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return ya(Qe, We, Xe) | 0
- }
- function nc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return za(Qe, We, Xe) | 0
- }
- function oc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return Aa(Qe, We, Xe) | 0
- }
- function pc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return Ca(Qe, We, Xe) | 0
- }
- function qc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return Oa(Qe, We, Xe) | 0
- }
- function rc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return Ea(Qe, We, Xe) | 0
- }
- function sc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return Ha(Qe, We, Xe) | 0
- }
- function tc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return Ja(Qe, We, Xe) | 0
- }
- function uc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return Ma(Qe, We, Xe) | 0
- }
- function vc(o, Qe, We, Xe) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- return Qa(Qe, We, Xe) | 0
- }
- function wc(o, Qe, We, Xe, Ye, Ze) {
- o = o | 0
- Qe = Qe | 0
- We = We | 0
- Xe = Xe | 0
- Ye = Ye | 0
- Ze = Ze | 0
- return Sa(Qe, We, Xe, Ye, Ze) | 0
- }
- function xc(o, Qe) {
- o = o | 0
- Qe = Qe | 0
- Uf(o, Qe)
- }
- function yc(Qe) {
- Qe = Qe | 0
- if (Qe) {
- if (m[(Qe + 39) | 0] <= -1) {
- ul(o[(Qe + 28) >> 2])
- }
- zc((Qe + 12) | 0, o[(Qe + 16) >> 2])
- Ac(Qe, o[(Qe + 4) >> 2])
- ul(Qe)
- }
- }
- function zc(Qe, We) {
- if (We) {
- zc(Qe, o[We >> 2])
- zc(Qe, o[(We + 4) >> 2])
- Ac((We + 20) | 0, o[(We + 24) >> 2])
- ul(We)
- }
- }
- function Ac(Qe, We) {
- if (We) {
- Ac(Qe, o[We >> 2])
- Ac(Qe, o[(We + 4) >> 2])
- if (m[(We + 39) | 0] <= -1) {
- ul(o[(We + 28) >> 2])
- }
- if (m[(We + 27) | 0] <= -1) {
- ul(o[(We + 16) >> 2])
- }
- ul(We)
- }
- }
- function Bc() {
- return Li(Hk(108)) | 0
- }
- function Cc(Qe) {
- Qe = Qe | 0
- return (((o[(Qe + 100) >> 2] - o[(Qe + 96) >> 2]) | 0) / 12) | 0
- }
- function Dc() {
- var Qe = 0,
- We = 0,
- Xe = 0
- We = Hk(24)
- Xe = (We + 4) | 0
- Qe = Xe
- o[Qe >> 2] = 0
- o[(Qe + 4) >> 2] = 0
- Qe = (We + 16) | 0
- o[Qe >> 2] = 0
- o[(Qe + 4) >> 2] = 0
- o[We >> 2] = Xe
- o[(We + 12) >> 2] = Qe
- return We | 0
- }
- function Ec(Ye) {
- Ye = Ye | 0
- if (Ye) {
- Fc((Ye + 12) | 0, o[(Ye + 16) >> 2])
- Gc(Ye, o[(Ye + 4) >> 2])
- ul(Ye)
- }
- }
- function Fc(Ye, Ze) {
- var _e = 0
- if (Ze) {
- Fc(Ye, o[Ze >> 2])
- Fc(Ye, o[(Ze + 4) >> 2])
- _e = (Ze + 28) | 0
- Ye = o[_e >> 2]
- o[_e >> 2] = 0
- if (Ye) {
- Fc((Ye + 12) | 0, o[(Ye + 16) >> 2])
- Gc(Ye, o[(Ye + 4) >> 2])
- ul(Ye)
- }
- if (m[(Ze + 27) | 0] <= -1) {
- ul(o[(Ze + 16) >> 2])
- }
- ul(Ze)
- }
- }
- function Gc(Ye, Ze) {
- if (Ze) {
- Gc(Ye, o[Ze >> 2])
- Gc(Ye, o[(Ze + 4) >> 2])
- Ye = o[(Ze + 28) >> 2]
- if (Ye) {
- o[(Ze + 32) >> 2] = Ye
- ul(Ye)
- }
- if (m[(Ze + 27) | 0] <= -1) {
- ul(o[(Ze + 16) >> 2])
- }
- ul(Ze)
- }
- }
- function Hc() {
- return 0
- }
- function Ic() {
- return -1
- }
- function Jc() {
- return -2
- }
- function Kc() {
- return -3
- }
- function Lc() {
- return -4
- }
- function Mc() {
- return -5
- }
- function Nc() {
- return 1
- }
- function Oc() {
- return 2
- }
- function Pc() {
- return 3
- }
- function Qc() {
- return 4
- }
- function Rc() {
- return 5
- }
- function Sc() {
- return 6
- }
- function Tc() {
- return 7
- }
- function Uc() {
- return 8
- }
- function Vc() {
- return 9
- }
- function Wc() {
- return 10
- }
- function Xc() {
- return 11
- }
- function Yc() {
- return 12
- }
- function Zc(Ye, Ze) {
- Ye = Ye | 0
- Ze = Ze | 0
- var $e = 0
- Ze = o[(Ze + 88) >> 2]
- if (!(!Ze | (o[Ze >> 2] != 2))) {
- $e = Ye
- Ye = o[(Ze + 8) >> 2]
- o[($e + 4) >> 2] = p[Ye | 0] | (p[(Ye + 1) | 0] << 8) | ((p[(Ye + 2) | 0] << 16) | (p[(Ye + 3) | 0] << 24))
- $e = 1
- }
- return $e | 0
- }
- function _c(Ye, Ze) {
- Ye = Ye | 0
- Ze = Ze | 0
- var af = 0,
- bf = 0
- o[Ze >> 2] = 2
- af = o[(Ze + 8) >> 2]
- bf = (o[(Ze + 12) >> 2] - af) | 0
- if (bf >>> 0 <= 4294967291) {
- Ze = (Ze + 8) | 0
- ni(Ze, (bf + 4) | 0)
- af = o[Ze >> 2]
- }
- Ze = (af + bf) | 0
- Ye = p[(Ye + 4) | 0] | (p[(Ye + 5) | 0] << 8) | ((p[(Ye + 6) | 0] << 16) | (p[(Ye + 7) | 0] << 24))
- m[Ze | 0] = Ye
- m[(Ze + 1) | 0] = Ye >>> 8
- m[(Ze + 2) | 0] = Ye >>> 16
- m[(Ze + 3) | 0] = Ye >>> 24
- }
- function $c(o) {
- o = o | 0
- return o | 0
- }
- function ad(o) {
- o = o | 0
- ul(o)
- }
- function bd(o) {
- o = o | 0
- return 2
- }
- function cd(Ye, Ze) {
- Ye = Ye | 0
- Ze = Ze | 0
- var cf = 0,
- df = 0,
- ef = 0,
- ff = 0,
- gf = 0,
- hf = 0
- ef = o[(Ze + 88) >> 2]
- if (!(!ef | (o[ef >> 2] != 1))) {
- ff = (ef + 8) | 0
- ef = o[ff >> 2]
- cf = ef
- o[(Ye + 4) >> 2] = p[cf | 0] | (p[(cf + 1) | 0] << 8) | ((p[(cf + 2) | 0] << 16) | (p[(cf + 3) | 0] << 24))
- gf = (Ye + 8) | 0
- hf = o[(Ye + 8) >> 2]
- df = (o[(Ye + 12) >> 2] - hf) >> 2
- cf = m[(Ze + 24) | 0]
- a: {
- if (df >>> 0 < cf >>> 0) {
- Da(gf, (cf - df) | 0)
- ef = o[ff >> 2]
- cf = p[(Ze + 24) | 0]
- break a
- }
- if (df >>> 0 <= cf >>> 0) {
- break a
- }
- o[(Ye + 12) >> 2] = hf + (cf << 2)
- }
- ff = 1
- Ze = ef
- df = p[(Ze + 4) | 0] | (p[(Ze + 5) | 0] << 8) | ((p[(Ze + 6) | 0] << 16) | (p[(Ze + 7) | 0] << 24))
- if ((cf << 24) >> 24 >= 1) {
- hf = cf & 255
- gf = o[gf >> 2]
- Ze = 0
- cf = 4
- while (1) {
- o[(gf + (Ze << 2)) >> 2] = df
- cf = (cf + 4) | 0
- df = (ef + cf) | 0
- df = p[df | 0] | (p[(df + 1) | 0] << 8) | ((p[(df + 2) | 0] << 16) | (p[(df + 3) | 0] << 24))
- Ze = (Ze + 1) | 0
- if (Ze >>> 0 < hf >>> 0) {
- continue
- }
- break
- }
- }
- o[(Ye + 20) >> 2] = df
- }
- return ff | 0
- }
- function dd(Ye, Ze) {
- Ye = Ye | 0
- Ze = Ze | 0
- var jf = 0,
- kf = 0,
- lf = 0,
- mf = 0,
- nf = 0,
- of = 0
- o[Ze >> 2] = 1
- mf = (Ze + 8) | 0
- jf = o[(Ze + 8) >> 2]
- kf = (o[(Ze + 12) >> 2] - jf) | 0
- if (kf >>> 0 <= 4294967291) {
- ni(mf, (kf + 4) | 0)
- jf = o[mf >> 2]
- }
- kf = (jf + kf) | 0
- jf = p[(Ye + 4) | 0] | (p[(Ye + 5) | 0] << 8) | ((p[(Ye + 6) | 0] << 16) | (p[(Ye + 7) | 0] << 24))
- m[kf | 0] = jf
- m[(kf + 1) | 0] = jf >>> 8
- m[(kf + 2) | 0] = jf >>> 16
- m[(kf + 3) | 0] = jf >>> 24
- jf = o[(Ye + 8) >> 2]
- if ((jf | 0) != o[(Ye + 12) >> 2]) {
- of = (Ze + 12) | 0
- while (1) {
- kf = ((nf << 2) + jf) | 0
- jf = o[(Ze + 8) >> 2]
- lf = (o[of >> 2] - jf) | 0
- if (lf >>> 0 <= 4294967291) {
- ni(mf, (lf + 4) | 0)
- jf = o[mf >> 2]
- }
- lf = (jf + lf) | 0
- jf = p[kf | 0] | (p[(kf + 1) | 0] << 8) | ((p[(kf + 2) | 0] << 16) | (p[(kf + 3) | 0] << 24))
- m[lf | 0] = jf
- m[(lf + 1) | 0] = jf >>> 8
- m[(lf + 2) | 0] = jf >>> 16
- m[(lf + 3) | 0] = jf >>> 24
- nf = (nf + 1) | 0
- jf = o[(Ye + 8) >> 2]
- if (nf >>> 0 < ((o[(Ye + 12) >> 2] - jf) >> 2) >>> 0) {
- continue
- }
- break
- }
- }
- jf = o[(Ze + 12) >> 2]
- Ze = o[(Ze + 8) >> 2]
- jf = (jf - Ze) | 0
- if (jf >>> 0 <= 4294967291) {
- ni(mf, (jf + 4) | 0)
- Ze = o[mf >> 2]
- }
- Ze = (Ze + jf) | 0
- Ye = p[(Ye + 20) | 0] | (p[(Ye + 21) | 0] << 8) | ((p[(Ye + 22) | 0] << 16) | (p[(Ye + 23) | 0] << 24))
- m[Ze | 0] = Ye
- m[(Ze + 1) | 0] = Ye >>> 8
- m[(Ze + 2) | 0] = Ye >>> 16
- m[(Ze + 3) | 0] = Ye >>> 24
- }
- function ed(Ye, Ze, pf, qf, rf) {
- o[(Ye + 4) >> 2] = Ze
- fd((Ye + 8) | 0, pf, ((qf << 2) + pf) | 0)
- s[(Ye + 20) >> 2] = rf
- }
- function fd(Ye, Ze, pf) {
- var qf = 0,
- rf = 0,
- sf = 0,
- tf = 0,
- uf = 0,
- vf = 0,
- wf = 0
- a: {
- tf = (pf - Ze) | 0
- sf = tf >> 2
- qf = o[(Ye + 8) >> 2]
- rf = o[Ye >> 2]
- b: {
- if (sf >>> 0 <= ((qf - rf) >> 2) >>> 0) {
- qf = (o[(Ye + 4) >> 2] - rf) | 0
- tf = qf >> 2
- qf = sf >>> 0 > tf >>> 0 ? (Ze + qf) | 0 : pf
- uf = (qf - Ze) | 0
- if (uf) {
- yl(rf, Ze, uf)
- }
- if (sf >>> 0 > tf >>> 0) {
- Ze = (pf - qf) | 0
- if ((Ze | 0) < 1) {
- break b
- }
- Ye = (Ye + 4) | 0
- wl(o[Ye >> 2], qf, Ze)
- o[Ye >> 2] = Ze + o[Ye >> 2]
- return
- }
- o[(Ye + 4) >> 2] = rf + ((uf >> 2) << 2)
- return
- }
- if (rf) {
- o[(Ye + 4) >> 2] = rf
- ul(rf)
- o[(Ye + 8) >> 2] = 0
- o[Ye >> 2] = 0
- o[(Ye + 4) >> 2] = 0
- qf = 0
- }
- if (sf >>> 0 >= 1073741824) {
- break a
- }
- pf = qf >> 1
- pf = (qf >> 2) >>> 0 < 536870911 ? (pf >>> 0 < sf >>> 0 ? sf : pf) : 1073741823
- if (pf >>> 0 >= 1073741824) {
- break a
- }
- rf = pf << 2
- pf = Hk(rf)
- o[Ye >> 2] = pf
- sf = (Ye + 4) | 0
- o[sf >> 2] = pf
- o[(Ye + 8) >> 2] = pf + rf
- if ((tf | 0) < 1) {
- break b
- }
- ;(vf = sf), (wf = (wl(pf, Ze, tf) + tf) | 0), (o[vf >> 2] = wf)
- }
- return
- }
- Yk()
- D()
- }
- function gd(Ye) {
- Ye = Ye | 0
- var Ze = 0
- o[Ye >> 2] = 1232
- Ze = o[(Ye + 8) >> 2]
- if (Ze) {
- o[(Ye + 12) >> 2] = Ze
- ul(Ze)
- }
- return Ye | 0
- }
- function hd(Ye) {
- Ye = Ye | 0
- var pf = 0
- o[Ye >> 2] = 1232
- pf = o[(Ye + 8) >> 2]
- if (pf) {
- o[(Ye + 12) >> 2] = pf
- ul(pf)
- }
- ul(Ye)
- }
- function id(o) {
- o = o | 0
- return 1
- }
- function jd(Ye, xf) {
- var yf = 0
- yf = Hk(40)
- o[yf >> 2] = -1
- ki((yf + 8) | 0)
- l[o[(o[Ye >> 2] + 16) >> 2]](Ye, yf)
- Ye = o[(xf + 88) >> 2]
- o[(xf + 88) >> 2] = yf
- if (Ye) {
- xf = o[(Ye + 8) >> 2]
- if (xf) {
- o[(Ye + 12) >> 2] = xf
- ul(xf)
- }
- ul(Ye)
- }
- return 1
- }
- function kd(Ye, xf, zf) {
- var Af = 0,
- Bf = 0,
- Cf = 0,
- Df = 0,
- Ef = 0,
- Ff = 0
- Cf = o[(Ye + 8) >> 2]
- Af = o[(Ye + 4) >> 2]
- if (((Cf - Af) >> 2) >>> 0 >= xf >>> 0) {
- while (1) {
- o[Af >> 2] = o[zf >> 2]
- Af = (Af + 4) | 0
- xf = (xf + -1) | 0
- if (xf) {
- continue
- }
- break
- }
- o[(Ye + 4) >> 2] = Af
- return
- }
- a: {
- Df = o[Ye >> 2]
- Ef = (Af - Df) | 0
- Ff = Ef >> 2
- Af = (Ff + xf) | 0
- if (Af >>> 0 < 1073741824) {
- Cf = (Cf - Df) | 0
- Bf = Cf >> 1
- Af = (Cf >> 2) >>> 0 < 536870911 ? (Bf >>> 0 < Af >>> 0 ? Af : Bf) : 1073741823
- Bf = 0
- b: {
- if (!Af) {
- break b
- }
- if (Af >>> 0 >= 1073741824) {
- break a
- }
- Bf = Hk(Af << 2)
- }
- Cf = (Bf + (Af << 2)) | 0
- Af = (Bf + (Ff << 2)) | 0
- while (1) {
- o[Af >> 2] = o[zf >> 2]
- Af = (Af + 4) | 0
- xf = (xf + -1) | 0
- if (xf) {
- continue
- }
- break
- }
- if ((Ef | 0) >= 1) {
- wl(Bf, Df, Ef)
- }
- o[Ye >> 2] = Bf
- o[(Ye + 8) >> 2] = Cf
- o[(Ye + 4) >> 2] = Af
- if (Df) {
- ul(Df)
- }
- return
- }
- Yk()
- D()
- }
- _a(1308)
- D()
- }
- function ld(Ye) {
- o[(Ye + 8) >> 2] = 0
- o[(Ye + 12) >> 2] = 0
- o[Ye >> 2] = 0
- o[(Ye + 40) >> 2] = 0
- o[(Ye + 44) >> 2] = 0
- o[(Ye + 28) >> 2] = 9
- m[(Ye + 24) | 0] = 1
- o[(Ye + 56) >> 2] = -1
- o[(Ye + 60) >> 2] = 0
- o[(Ye + 16) >> 2] = 0
- o[(Ye + 20) >> 2] = 0
- o[(Ye + 48) >> 2] = 0
- o[(Ye + 52) >> 2] = 0
- return Ye
- }
- function md(Ye, xf, zf, Gf, Hf, If, Jf) {
- o[Ye >> 2] = 0
- o[(Ye + 56) >> 2] = xf
- o[(Ye + 48) >> 2] = 0
- o[(Ye + 52) >> 2] = 0
- o[(Ye + 40) >> 2] = If
- o[(Ye + 44) >> 2] = Jf
- m[(Ye + 32) | 0] = Hf
- o[(Ye + 28) >> 2] = Gf
- m[(Ye + 24) | 0] = zf
- }
- function nd(Ye, xf) {
- var zf = 0,
- Gf = 0,
- Hf = 0
- Gf = o[Ye >> 2]
- a: {
- if (!Gf) {
- break a
- }
- zf = o[xf >> 2]
- if (!zf) {
- break a
- }
- Hf = Gf
- Gf = o[zf >> 2]
- li(Hf, Gf, (o[(zf + 4) >> 2] - Gf) | 0, 0)
- m[(Ye + 24) | 0] = p[(xf + 24) | 0]
- o[(Ye + 28) >> 2] = o[(xf + 28) >> 2]
- m[(Ye + 32) | 0] = p[(xf + 32) | 0]
- zf = o[(xf + 44) >> 2]
- o[(Ye + 40) >> 2] = o[(xf + 40) >> 2]
- o[(Ye + 44) >> 2] = zf
- zf = o[(xf + 52) >> 2]
- o[(Ye + 48) >> 2] = o[(xf + 48) >> 2]
- o[(Ye + 52) >> 2] = zf
- o[(Ye + 56) >> 2] = o[(xf + 56) >> 2]
- zf = o[(xf + 12) >> 2]
- o[(Ye + 8) >> 2] = o[(xf + 8) >> 2]
- o[(Ye + 12) >> 2] = zf
- zf = o[(xf + 20) >> 2]
- o[(Ye + 16) >> 2] = o[(xf + 16) >> 2]
- o[(Ye + 20) >> 2] = zf
- o[(Ye + 60) >> 2] = o[(xf + 60) >> 2]
- Hf = 1
- }
- return Hf
- }
- function od(Ye, xf, If, Jf) {
- var Kf = 0
- o[Ye >> 2] = xf
- Kf = o[(xf + 20) >> 2]
- o[(Ye + 8) >> 2] = o[(xf + 16) >> 2]
- o[(Ye + 12) >> 2] = Kf
- Kf = o[(xf + 24) >> 2]
- xf = o[(xf + 28) >> 2]
- o[(Ye + 48) >> 2] = 0
- o[(Ye + 52) >> 2] = 0
- o[(Ye + 40) >> 2] = If
- o[(Ye + 44) >> 2] = Jf
- o[(Ye + 16) >> 2] = Kf
- o[(Ye + 20) >> 2] = xf
- }
- function pd(Ye) {
- ld(Ye)
- o[(Ye + 64) >> 2] = 0
- o[(Ye + 68) >> 2] = 0
- o[(Ye + 88) >> 2] = 0
- o[(Ye + 72) >> 2] = 0
- o[(Ye + 76) >> 2] = 0
- m[(Ye + 77) | 0] = 0
- m[(Ye + 78) | 0] = 0
- m[(Ye + 79) | 0] = 0
- m[(Ye + 80) | 0] = 0
- m[(Ye + 81) | 0] = 0
- m[(Ye + 82) | 0] = 0
- m[(Ye + 83) | 0] = 0
- m[(Ye + 84) | 0] = 0
- return Ye
- }
- function qd(Ye, xf) {
- var If = 0
- If = o[(xf + 4) >> 2]
- o[Ye >> 2] = o[xf >> 2]
- o[(Ye + 4) >> 2] = If
- If = o[(xf + 60) >> 2]
- o[(Ye + 56) >> 2] = o[(xf + 56) >> 2]
- o[(Ye + 60) >> 2] = If
- If = o[(xf + 52) >> 2]
- o[(Ye + 48) >> 2] = o[(xf + 48) >> 2]
- o[(Ye + 52) >> 2] = If
- If = o[(xf + 44) >> 2]
- o[(Ye + 40) >> 2] = o[(xf + 40) >> 2]
- o[(Ye + 44) >> 2] = If
- If = o[(xf + 36) >> 2]
- o[(Ye + 32) >> 2] = o[(xf + 32) >> 2]
- o[(Ye + 36) >> 2] = If
- If = o[(xf + 28) >> 2]
- o[(Ye + 24) >> 2] = o[(xf + 24) >> 2]
- o[(Ye + 28) >> 2] = If
- If = o[(xf + 20) >> 2]
- o[(Ye + 16) >> 2] = o[(xf + 16) >> 2]
- o[(Ye + 20) >> 2] = If
- If = o[(xf + 12) >> 2]
- o[(Ye + 8) >> 2] = o[(xf + 8) >> 2]
- o[(Ye + 12) >> 2] = If
- o[(Ye + 88) >> 2] = 0
- o[(Ye + 64) >> 2] = 0
- o[(Ye + 68) >> 2] = 0
- o[(Ye + 72) >> 2] = 0
- o[(Ye + 76) >> 2] = 0
- m[(Ye + 77) | 0] = 0
- m[(Ye + 78) | 0] = 0
- m[(Ye + 79) | 0] = 0
- m[(Ye + 80) | 0] = 0
- m[(Ye + 81) | 0] = 0
- m[(Ye + 82) | 0] = 0
- m[(Ye + 83) | 0] = 0
- m[(Ye + 84) | 0] = 0
- }
- function rd(Ye, xf) {
- var Jf = 0,
- Lf = 0
- a: {
- if (o[(Ye + 64) >> 2]) {
- break a
- }
- Lf = Hk(32)
- ki(Lf)
- Jf = o[(Ye + 64) >> 2]
- o[(Ye + 64) >> 2] = Lf
- if (!Jf) {
- break a
- }
- Lf = o[Jf >> 2]
- if (Lf) {
- o[(Jf + 4) >> 2] = Lf
- ul(Lf)
- }
- ul(Jf)
- }
- Jf = ti(o[(Ye + 28) >> 2])
- Jf = u(Jf, m[(Ye + 24) | 0])
- Lf = Jf
- Jf = Jf >> 31
- if (li(o[(Ye + 64) >> 2], 0, Vl(Lf, Jf, xf, 0), T)) {
- od(Ye, o[(Ye + 64) >> 2], Lf, Jf)
- o[(Ye + 80) >> 2] = xf
- Ye = 1
- } else {
- Ye = 0
- }
- return Ye
- }
- function sd(Ye, xf) {
- var Mf = 0,
- Nf = 0,
- Of = 0,
- Pf = 0,
- Qf = 0,
- Rf = 0,
- Sf = 0
- if (!o[(Ye - -64) >> 2]) {
- Mf = Hk(32)
- ki(Mf)
- Of = o[(Ye + 64) >> 2]
- o[(Ye + 64) >> 2] = Mf
- Nf = Ye
- if (Of) {
- Mf = o[Of >> 2]
- if (Mf) {
- o[(Of + 4) >> 2] = Mf
- ul(Mf)
- }
- ul(Of)
- Mf = o[(Ye + 64) >> 2]
- }
- od(Nf, Mf, 0, 0)
- }
- a: {
- b: {
- if (!nd(Ye, xf)) {
- break b
- }
- m[(Ye + 84) | 0] = p[(xf + 84) | 0]
- o[(Ye + 80) >> 2] = o[(xf + 80) >> 2]
- if ((Ye | 0) != (xf | 0)) {
- td((Ye + 68) | 0, o[(xf + 68) >> 2], o[(xf + 72) >> 2])
- }
- Mf = o[(xf + 88) >> 2]
- if (Mf) {
- xf = Hk(40)
- Nf = o[Mf >> 2]
- o[(xf + 16) >> 2] = 0
- o[(xf + 8) >> 2] = 0
- o[(xf + 12) >> 2] = 0
- o[xf >> 2] = Nf
- Nf = (o[(Mf + 12) >> 2] - o[(Mf + 8) >> 2]) | 0
- c: {
- if (!Nf) {
- break c
- }
- if ((Nf | 0) <= -1) {
- break a
- }
- Of = Hk(Nf)
- o[(xf + 8) >> 2] = Of
- Pf = (xf + 12) | 0
- o[Pf >> 2] = Of
- o[(xf + 16) >> 2] = Nf + Of
- Qf = o[(Mf + 8) >> 2]
- Nf = (o[(Mf + 12) >> 2] - Qf) | 0
- if ((Nf | 0) < 1) {
- break c
- }
- ;(Rf = Pf), (Sf = (wl(Of, Qf, Nf) + Nf) | 0), (o[Rf >> 2] = Sf)
- }
- Nf = o[(Mf + 36) >> 2]
- o[(xf + 32) >> 2] = o[(Mf + 32) >> 2]
- o[(xf + 36) >> 2] = Nf
- Nf = o[(Mf + 28) >> 2]
- o[(xf + 24) >> 2] = o[(Mf + 24) >> 2]
- o[(xf + 28) >> 2] = Nf
- Mf = o[(Ye + 88) >> 2]
- o[(Ye + 88) >> 2] = xf
- if (!Mf) {
- break b
- }
- Ye = o[(Mf + 8) >> 2]
- if (Ye) {
- o[(Mf + 12) >> 2] = Ye
- ul(Ye)
- }
- ul(Mf)
- return
- }
- xf = (Ye + 88) | 0
- Ye = o[xf >> 2]
- o[xf >> 2] = 0
- if (!Ye) {
- break b
- }
- xf = o[(Ye + 8) >> 2]
- if (xf) {
- o[(Ye + 12) >> 2] = xf
- ul(xf)
- }
- ul(Ye)
- }
- return
- }
- Yk()
- D()
- }
- function td(Ye, xf, Tf) {
- var Uf = 0,
- Vf = 0,
- Wf = 0,
- Xf = 0,
- Yf = 0,
- Zf = 0,
- _f = 0
- a: {
- Uf = (Tf - xf) | 0
- Wf = Uf >> 2
- Xf = o[(Ye + 8) >> 2]
- Vf = o[Ye >> 2]
- b: {
- if (Wf >>> 0 <= ((Xf - Vf) >> 2) >>> 0) {
- Yf = o[(Ye + 4) >> 2]
- Uf = (Yf - Vf) | 0
- Xf = Uf >> 2
- Uf = Wf >>> 0 > Xf >>> 0 ? (xf + Uf) | 0 : Tf
- if ((Uf | 0) != (xf | 0)) {
- while (1) {
- o[Vf >> 2] = o[xf >> 2]
- Vf = (Vf + 4) | 0
- xf = (xf + 4) | 0
- if ((Uf | 0) != (xf | 0)) {
- continue
- }
- break
- }
- }
- if (Wf >>> 0 > Xf >>> 0) {
- xf = (Tf - Uf) | 0
- if ((xf | 0) < 1) {
- break b
- }
- wl(Yf, Uf, xf)
- Ye = (Ye + 4) | 0
- o[Ye >> 2] = xf + o[Ye >> 2]
- return
- }
- o[(Ye + 4) >> 2] = Vf
- return
- }
- if (Vf) {
- o[(Ye + 4) >> 2] = Vf
- ul(Vf)
- o[(Ye + 8) >> 2] = 0
- o[Ye >> 2] = 0
- o[(Ye + 4) >> 2] = 0
- Xf = 0
- }
- if (Wf >>> 0 >= 1073741824) {
- break a
- }
- Tf = Xf >> 1
- Tf = (Xf >> 2) >>> 0 < 536870911 ? (Tf >>> 0 < Wf >>> 0 ? Wf : Tf) : 1073741823
- if (Tf >>> 0 >= 1073741824) {
- break a
- }
- Vf = Tf << 2
- Tf = Hk(Vf)
- o[Ye >> 2] = Tf
- Wf = (Ye + 4) | 0
- o[Wf >> 2] = Tf
- o[(Ye + 8) >> 2] = Tf + Vf
- if ((Uf | 0) < 1) {
- break b
- }
- ;(Zf = Wf), (_f = (wl(Tf, xf, Uf) + Uf) | 0), (o[Zf >> 2] = _f)
- }
- return
- }
- Yk()
- D()
- }
- function ud(Ye) {
- o[Ye >> 2] = 1384
- o[(Ye + 4) >> 2] = 0
- o[(Ye + 8) >> 2] = 0
- o[(Ye + 12) >> 2] = 0
- o[(Ye + 16) >> 2] = 0
- o[(Ye + 20) >> 2] = 0
- o[(Ye + 24) >> 2] = 0
- o[(Ye + 28) >> 2] = 0
- o[(Ye + 32) >> 2] = 0
- }
- function vd(Ye, xf, Tf) {
- Ye = Ye | 0
- xf = xf | 0
- Tf = Tf | 0
- o[(Ye + 32) >> 2] = Tf
- o[(Ye + 28) >> 2] = xf
- return 1
- }
- function wd(Ye, xf) {
- Ye = Ye | 0
- xf = xf | 0
- var Tf = 0,
- $f = 0,
- ag = 0,
- bg = 0,
- cg = 0,
- dg = 0,
- eg = 0,
- fg = 0,
- gg = 0,
- hg = 0,
- ig = 0,
- jg = 0,
- kg = 0,
- lg = 0,
- mg = 0,
- ng = 0,
- og = 0,
- pg = 0
- ag = (R - 96) | 0
- R = ag
- a: {
- if (!xd(1, (ag + 92) | 0, xf)) {
- break a
- }
- fg = o[(ag + 92) >> 2]
- if (!fg) {
- break a
- }
- Tf = o[(Ye + 4) >> 2]
- $f = (o[(Ye + 8) >> 2] - Tf) >> 2
- b: {
- if (fg >>> 0 > $f >>> 0) {
- Da((Ye + 4) | 0, (fg - $f) | 0)
- break b
- }
- if (fg >>> 0 >= $f >>> 0) {
- break b
- }
- o[(Ye + 8) >> 2] = Tf + (fg << 2)
- }
- lg = (Ye + 16) | 0
- mg = o[(Ye + 32) >> 2]
- pg = (mg + 8) | 0
- ng = (Ye + 20) | 0
- while (1) {
- hg = o[(xf + 8) >> 2]
- gg = o[(xf + 16) >> 2]
- bg = o[(xf + 12) >> 2]
- Tf = bg
- $f = o[(xf + 20) >> 2]
- if ((Tf | 0) < ($f | 0) ? 1 : (Tf | 0) <= ($f | 0) ? (hg >>> 0 > gg >>> 0 ? 0 : 1) : 0) {
- $f = 0
- break a
- }
- ig = o[xf >> 2]
- og = p[(ig + gg) | 0]
- Tf = $f
- dg = (gg + 1) | 0
- if (dg >>> 0 < 1) {
- Tf = (Tf + 1) | 0
- }
- cg = xf
- o[(xf + 16) >> 2] = dg
- o[(xf + 20) >> 2] = Tf
- if ((bg | 0) < (Tf | 0) ? 1 : (bg | 0) <= (Tf | 0) ? (hg >>> 0 > dg >>> 0 ? 0 : 1) : 0) {
- $f = 0
- break a
- }
- dg = p[(dg + ig) | 0]
- Tf = $f
- eg = (gg + 2) | 0
- if (eg >>> 0 < 2) {
- Tf = (Tf + 1) | 0
- }
- o[(xf + 16) >> 2] = eg
- o[(cg + 20) >> 2] = Tf
- if ((bg | 0) < (Tf | 0) ? 1 : (bg | 0) <= (Tf | 0) ? (hg >>> 0 > eg >>> 0 ? 0 : 1) : 0) {
- $f = 0
- break a
- }
- eg = p[(eg + ig) | 0]
- Tf = $f
- jg = (gg + 3) | 0
- if (jg >>> 0 < 3) {
- Tf = (Tf + 1) | 0
- }
- o[(xf + 16) >> 2] = jg
- o[(cg + 20) >> 2] = Tf
- if ((bg | 0) < (Tf | 0) ? 1 : (bg | 0) <= (Tf | 0) ? (hg >>> 0 > jg >>> 0 ? 0 : 1) : 0) {
- $f = 0
- break a
- }
- bg = p[(jg + ig) | 0]
- Tf = $f
- $f = (gg + 4) | 0
- if ($f >>> 0 < 4) {
- Tf = (Tf + 1) | 0
- }
- o[(xf + 16) >> 2] = $f
- o[(cg + 20) >> 2] = Tf
- if (og >>> 0 > 4) {
- $f = 0
- break a
- }
- if (((dg + -1) & 255) >>> 0 > 10) {
- $f = 0
- break a
- }
- $f = ld((ag + 24) | 0)
- Tf = u(ti(dg), eg)
- md($f, og, (eg << 24) >> 24, dg, (bg | 0) != 0, Tf, Tf >> 31)
- xd(1, (ag + 20) | 0, xf)
- cg = o[(ag + 20) >> 2]
- o[(ag + 84) >> 2] = cg
- Tf = Hk(96)
- qd(Tf, $f)
- o[(ag + 16) >> 2] = Tf
- $f = vj(mg, (ag + 16) | 0)
- Tf = o[(ag + 16) >> 2]
- o[(ag + 16) >> 2] = 0
- if (Tf) {
- Fb(Tf)
- }
- bg = $f << 2
- o[(o[(bg + o[pg >> 2]) >> 2] + 60) >> 2] = cg
- o[(o[(Ye + 4) >> 2] + (kg << 2)) >> 2] = $f
- Tf = o[(Ye + 16) >> 2]
- cg = (o[ng >> 2] - Tf) >> 2
- c: {
- if (($f | 0) < (cg | 0)) {
- break c
- }
- o[(ag + 12) >> 2] = -1
- $f = ($f + 1) | 0
- if ($f >>> 0 > cg >>> 0) {
- yd(lg, ($f - cg) | 0, (ag + 12) | 0)
- Tf = o[lg >> 2]
- break c
- }
- if ($f >>> 0 >= cg >>> 0) {
- break c
- }
- o[ng >> 2] = ($f << 2) + Tf
- }
- o[(Tf + bg) >> 2] = kg
- $f = 1
- kg = (kg + 1) | 0
- if ((fg | 0) != (kg | 0)) {
- continue
- }
- break
- }
- }
- R = (ag + 96) | 0
- return $f | 0
- }
- function xd(Ye, xf, qg) {
- var rg = 0,
- sg = 0,
- tg = 0,
- ug = 0
- a: {
- if (Ye >>> 0 > 5) {
- break a
- }
- tg = o[(qg + 16) >> 2]
- rg = o[(qg + 12) >> 2]
- sg = o[(qg + 20) >> 2]
- if ((rg | 0) < (sg | 0) ? 1 : (rg | 0) <= (sg | 0) ? (r[(qg + 8) >> 2] > tg >>> 0 ? 0 : 1) : 0) {
- break a
- }
- rg = p[(tg + o[qg >> 2]) | 0]
- tg = (tg + 1) | 0
- if (tg >>> 0 < 1) {
- sg = (sg + 1) | 0
- }
- o[(qg + 16) >> 2] = tg
- o[(qg + 20) >> 2] = sg
- sg = xf
- if (rg & 128) {
- if (!xd((Ye + 1) | 0, xf, qg)) {
- break a
- }
- Ye = o[xf >> 2] << 7
- o[xf >> 2] = Ye
- rg = Ye | (rg & 127)
- }
- o[sg >> 2] = rg
- ug = 1
- }
- return ug
- }
- function yd(Ye, xf, qg) {
- var vg = 0,
- wg = 0,
- xg = 0,
- yg = 0,
- zg = 0,
- Ag = 0
- xg = o[(Ye + 8) >> 2]
- vg = o[(Ye + 4) >> 2]
- if (((xg - vg) >> 2) >>> 0 >= xf >>> 0) {
- while (1) {
- o[vg >> 2] = o[qg >> 2]
- vg = (vg + 4) | 0
- xf = (xf + -1) | 0
- if (xf) {
- continue
- }
- break
- }
- o[(Ye + 4) >> 2] = vg
- return
- }
- a: {
- yg = o[Ye >> 2]
- zg = (vg - yg) | 0
- Ag = zg >> 2
- vg = (Ag + xf) | 0
- if (vg >>> 0 < 1073741824) {
- xg = (xg - yg) | 0
- wg = xg >> 1
- vg = (xg >> 2) >>> 0 < 536870911 ? (wg >>> 0 < vg >>> 0 ? vg : wg) : 1073741823
- wg = 0
- b: {
- if (!vg) {
- break b
- }
- if (vg >>> 0 >= 1073741824) {
- break a
- }
- wg = Hk(vg << 2)
- }
- xg = (wg + (vg << 2)) | 0
- vg = (wg + (Ag << 2)) | 0
- while (1) {
- o[vg >> 2] = o[qg >> 2]
- vg = (vg + 4) | 0
- xf = (xf + -1) | 0
- if (xf) {
- continue
- }
- break
- }
- if ((zg | 0) >= 1) {
- wl(wg, yg, zg)
- }
- o[Ye >> 2] = wg
- o[(Ye + 8) >> 2] = xg
- o[(Ye + 4) >> 2] = vg
- if (yg) {
- ul(yg)
- }
- return
- }
- Yk()
- D()
- }
- _a(1520)
- D()
- }
- function zd(Ye) {
- Ye = Ye | 0
- var xf = 0
- o[Ye >> 2] = 1384
- xf = o[(Ye + 16) >> 2]
- if (xf) {
- o[(Ye + 20) >> 2] = xf
- ul(xf)
- }
- xf = o[(Ye + 4) >> 2]
- if (xf) {
- o[(Ye + 8) >> 2] = xf
- ul(xf)
- }
- return Ye | 0
- }
- function Ad(o) {
- o = o | 0
- D()
- }
- function Bd(Ye, qg) {
- Ye = Ye | 0
- qg = qg | 0
- var Bg = 0
- a: {
- if (!l[o[(o[Ye >> 2] + 36) >> 2]](Ye, qg)) {
- break a
- }
- if (!l[o[(o[Ye >> 2] + 40) >> 2]](Ye, qg)) {
- break a
- }
- Bg = l[o[(o[Ye >> 2] + 44) >> 2]](Ye) | 0
- }
- return Bg | 0
- }
- function Cd(Ye, qg) {
- Ye = Ye | 0
- qg = qg | 0
- return o[(o[(Ye + 4) >> 2] + (qg << 2)) >> 2]
- }
- function Dd(Ye) {
- Ye = Ye | 0
- return (o[(Ye + 8) >> 2] - o[(Ye + 4) >> 2]) >> 2
- }
- function Ed(o, Ye) {
- o = o | 0
- Ye = Ye | 0
- return 0
- }
- function Fd(o, Ye) {
- o = o | 0
- Ye = Ye | 0
- return 1
- }
- function Gd(Ye) {
- o[(Ye + 12) >> 2] = -1
- o[(Ye + 16) >> 2] = 0
- o[(Ye + 4) >> 2] = 0
- o[(Ye + 8) >> 2] = 0
- o[Ye >> 2] = 1596
- }
- function Hd(Ye, qg, Cg) {
- Ye = Ye | 0
- qg = qg | 0
- Cg = Cg | 0
- o[(Ye + 4) >> 2] = qg
- qg = o[(o[(o[(qg + 4) >> 2] + 8) >> 2] + (Cg << 2)) >> 2]
- o[(Ye + 12) >> 2] = Cg
- o[(Ye + 8) >> 2] = qg
- return 1
- }
- function Id(Ye, qg) {
- Ye = Ye | 0
- qg = qg | 0
- o[(Ye + 12) >> 2] = -1
- o[(Ye + 8) >> 2] = qg
- return 1
- }
- function Jd(Ye, qg, Cg) {
- Ye = Ye | 0
- qg = qg | 0
- Cg = Cg | 0
- var Dg = 0,
- Eg = 0
- Dg = o[(Ye + 8) >> 2]
- a: {
- if (m[(Dg + 24) | 0] < 1) {
- break a
- }
- if (!rd(Dg, (o[(qg + 4) >> 2] - o[qg >> 2]) >> 2)) {
- break a
- }
- Eg = l[o[(o[Ye >> 2] + 32) >> 2]](Ye, qg, Cg) | 0
- }
- return Eg | 0
- }
- function Kd(o, Ye, qg) {
- o = o | 0
- Ye = Ye | 0
- qg = qg | 0
- return 1
- }
- function Ld(Ye) {
- var qg = 0,
- Cg = 0,
- Fg = 0,
- Gg = 0,
- Hg = 0,
- Ig = 0,
- Jg = 0,
- Kg = 0
- a: {
- Fg = o[(Ye + 8) >> 2]
- if (p[(Fg + 84) | 0]) {
- break a
- }
- qg = o[(Ye + 16) >> 2]
- if (!qg | !p[(qg + 84) | 0]) {
- break a
- }
- Cg = o[(Fg + 72) >> 2]
- Gg = o[(Fg + 68) >> 2]
- m[(qg + 84) | 0] = 0
- Cg = (Cg - Gg) >> 2
- Hg = o[(qg + 68) >> 2]
- Gg = (o[(qg + 72) >> 2] - Hg) >> 2
- b: {
- if (Cg >>> 0 > Gg >>> 0) {
- kd((qg + 68) | 0, (Cg - Gg) | 0, 1680)
- Fg = o[(Ye + 8) >> 2]
- break b
- }
- if (Cg >>> 0 >= Gg >>> 0) {
- break b
- }
- o[(qg + 72) >> 2] = Hg + (Cg << 2)
- }
- qg = 0
- Gg = p[(Fg + 84) | 0]
- Ig = (Fg + 72) | 0
- Jg = (Ye + 16) | 0
- Kg = (Fg + 68) | 0
- while (1) {
- if (qg >>> 0 >= (Gg ? 0 : (o[Ig >> 2] - o[(Fg + 68) >> 2]) >> 2) >>> 0) {
- break a
- }
- Cg = qg
- Hg = (o[(o[Jg >> 2] + 68) >> 2] + (qg << 2)) | 0
- if (!Gg) {
- Cg = o[(o[Kg >> 2] + (qg << 2)) >> 2]
- }
- o[Hg >> 2] = Cg
- qg = (qg + 1) | 0
- continue
- }
- }
- return o[(Ye + 16) >> 2]
- }
- function Md(Ye, Lg) {
- Ye = Ye | 0
- Lg = Lg | 0
- var Mg = 0,
- Ng = 0,
- Og = 0
- Ng = 1
- a: {
- if ((l[o[(o[Lg >> 2] + 20) >> 2]](Lg) | 0) < 1) {
- break a
- }
- Ng = 0
- while (1) {
- Mg = rj(o[(o[(Ye + 4) >> 2] + 4) >> 2], l[o[(o[Lg >> 2] + 24) >> 2]](Lg, Og) | 0)
- if ((Mg | 0) == -1) {
- break a
- }
- Mg = ii(o[(Ye + 4) >> 2], Mg)
- if (!Mg) {
- break a
- }
- if (!l[o[(o[Lg >> 2] + 28) >> 2]](Lg, Mg)) {
- break a
- }
- Og = (Og + 1) | 0
- if ((Og | 0) < (l[o[(o[Lg >> 2] + 20) >> 2]](Lg) | 0)) {
- continue
- }
- break
- }
- Ng = 1
- }
- return Ng | 0
- }
- function Nd(Ye, Lg, Pg) {
- Ye = Ye | 0
- Lg = Lg | 0
- Pg = Pg | 0
- var Qg = 0,
- Rg = 0,
- Sg = 0,
- Tg = 0,
- Ug = 0,
- Vg = 0,
- Wg = 0,
- Xg = 0,
- Yg = 0,
- Zg = 0,
- _g = 0
- Qg = o[(Lg + 4) >> 2]
- Rg = o[Lg >> 2]
- Lg = o[(o[(Ye + 8) >> 2] + 40) >> 2]
- Sg = Lg
- Tg = Hk((Lg | 0) > -1 ? Lg : -1)
- Qg = (Qg - Rg) | 0
- if ((Qg | 0) >= 1) {
- Zg = Qg >> 2
- while (1) {
- Vg = o[(Pg + 12) >> 2]
- Qg = (_g + o[(Pg + 20) >> 2]) | 0
- Wg = o[(Pg + 16) >> 2]
- Ug = (Lg + Wg) | 0
- if (Ug >>> 0 < Lg >>> 0) {
- Qg = (Qg + 1) | 0
- }
- Rg = Qg
- if ((Vg | 0) < (Qg | 0) ? 1 : (Vg | 0) <= (Qg | 0) ? (r[(Pg + 8) >> 2] >= Ug >>> 0 ? 0 : 1) : 0) {
- ul(Tg)
- return 0
- }
- Qg = wl(Tg, (Wg + o[Pg >> 2]) | 0, Sg)
- o[(Pg + 16) >> 2] = Ug
- o[(Pg + 20) >> 2] = Rg
- wl((o[o[(o[(Ye + 8) >> 2] - -64) >> 2] >> 2] + Xg) | 0, Qg, Sg)
- Xg = (Sg + Xg) | 0
- Yg = (Yg + 1) | 0
- if ((Yg | 0) < (Zg | 0)) {
- continue
- }
- break
- }
- }
- ul(Tg)
- return 1
- }
- function Od(Ye) {
- Ye = Ye | 0
- var Lg = 0
- o[Ye >> 2] = 1596
- Lg = o[(Ye + 16) >> 2]
- o[(Ye + 16) >> 2] = 0
- if (Lg) {
- Fb(Lg)
- }
- return Ye | 0
- }
- function Pd(Ye) {
- Ye = Ye | 0
- var Pg = 0
- o[Ye >> 2] = 1596
- Pg = o[(Ye + 16) >> 2]
- o[(Ye + 16) >> 2] = 0
- if (Pg) {
- Fb(Pg)
- }
- ul(Ye)
- }
- function Qd(Ye, $g) {
- var ah = 0
- ud(Ye)
- o[(Ye + 36) >> 2] = 0
- o[(Ye + 40) >> 2] = 0
- o[Ye >> 2] = 1692
- o[(Ye + 44) >> 2] = 0
- o[(Ye + 48) >> 2] = 0
- o[(Ye + 52) >> 2] = 0
- o[(Ye + 56) >> 2] = 0
- ah = o[$g >> 2]
- o[$g >> 2] = 0
- o[(Ye + 60) >> 2] = ah
- }
- function Rd(Ye, $g) {
- Ye = Ye | 0
- $g = $g | 0
- var bh = 0,
- ch = 0,
- dh = 0,
- eh = 0,
- fh = 0,
- gh = 0,
- hh = 0,
- ih = 0,
- jh = 0,
- kh = 0,
- lh = 0,
- mh = 0,
- nh = 0
- fh = (R - 16) | 0
- R = fh
- a: {
- if (!wd(Ye, $g)) {
- break a
- }
- jh = (Ye + 36) | 0
- gh = l[o[(o[Ye >> 2] + 24) >> 2]](Ye) | 0
- dh = o[(Ye + 40) >> 2]
- ch = o[(Ye + 36) >> 2]
- bh = (dh - ch) >> 2
- b: {
- if (gh >>> 0 > bh >>> 0) {
- Sd(jh, (gh - bh) | 0)
- break b
- }
- if (gh >>> 0 >= bh >>> 0) {
- break b
- }
- ch = (ch + (gh << 2)) | 0
- if ((ch | 0) != (dh | 0)) {
- while (1) {
- dh = (dh + -4) | 0
- bh = o[dh >> 2]
- o[dh >> 2] = 0
- if (bh) {
- l[o[(o[bh >> 2] + 4) >> 2]](bh)
- }
- if ((dh | 0) != (ch | 0)) {
- continue
- }
- break
- }
- }
- o[(Ye + 40) >> 2] = ch
- }
- ih = 1
- if ((gh | 0) < 1) {
- break a
- }
- ih = 0
- dh = 0
- while (1) {
- eh = o[($g + 16) >> 2]
- ch = o[($g + 12) >> 2]
- bh = o[($g + 20) >> 2]
- if ((ch | 0) < (bh | 0) ? 1 : (ch | 0) <= (bh | 0) ? (r[($g + 8) >> 2] > eh >>> 0 ? 0 : 1) : 0) {
- break a
- }
- hh = p[(eh + o[$g >> 2]) | 0]
- eh = (eh + 1) | 0
- if (eh >>> 0 < 1) {
- bh = (bh + 1) | 0
- }
- ch = $g
- o[(ch + 16) >> 2] = eh
- o[(ch + 20) >> 2] = bh
- l[o[(o[Ye >> 2] + 48) >> 2]]((fh + 8) | 0, Ye, hh)
- bh = o[(Ye + 36) >> 2]
- ch = o[(fh + 8) >> 2]
- o[(fh + 8) >> 2] = 0
- eh = dh << 2
- hh = (bh + eh) | 0
- bh = o[hh >> 2]
- o[hh >> 2] = ch
- if (bh) {
- l[o[(o[bh >> 2] + 4) >> 2]](bh)
- }
- bh = o[(fh + 8) >> 2]
- o[(fh + 8) >> 2] = 0
- if (bh) {
- l[o[(o[bh >> 2] + 4) >> 2]](bh)
- }
- bh = o[(o[jh >> 2] + eh) >> 2]
- if (!bh) {
- break a
- }
- if (
- !((lh = bh),
- (mh = l[o[(o[Ye >> 2] + 28) >> 2]](Ye) | 0),
- (nh = l[o[(o[Ye >> 2] + 20) >> 2]](Ye, dh) | 0),
- (kh = o[(o[bh >> 2] + 8) >> 2]),
- l[kh](lh | 0, mh | 0, nh | 0) | 0)
- ) {
- break a
- }
- dh = (dh + 1) | 0
- if ((gh | 0) != (dh | 0)) {
- continue
- }
- break
- }
- ih = 1
- }
- R = (fh + 16) | 0
- return ih | 0
- }
- function Sd(Ye, $g) {
- var oh = 0,
- ph = 0,
- qh = 0,
- rh = 0,
- sh = 0,
- th = 0,
- uh = 0,
- vh = 0,
- wh = 0
- ph = o[(Ye + 8) >> 2]
- qh = (Ye + 4) | 0
- oh = o[qh >> 2]
- if (((ph - oh) >> 2) >>> 0 >= $g >>> 0) {
- Ye = $g << 2
- ;(vh = qh), (wh = (xl(oh, 0, Ye) + Ye) | 0), (o[vh >> 2] = wh)
- return
- }
- a: {
- qh = o[Ye >> 2]
- rh = (oh - qh) >> 2
- sh = (rh + $g) | 0
- if (sh >>> 0 < 1073741824) {
- rh = rh << 2
- ph = (ph - qh) | 0
- uh = ph >> 1
- ph = (ph >> 2) >>> 0 < 536870911 ? (uh >>> 0 < sh >>> 0 ? sh : uh) : 1073741823
- if (ph) {
- if (ph >>> 0 >= 1073741824) {
- break a
- }
- th = Hk(ph << 2)
- }
- rh = (rh + th) | 0
- xl(rh, 0, $g << 2)
- $g = ((sh << 2) + th) | 0
- sh = ((ph << 2) + th) | 0
- if ((oh | 0) != (qh | 0)) {
- while (1) {
- oh = (oh + -4) | 0
- ph = o[oh >> 2]
- o[oh >> 2] = 0
- rh = (rh + -4) | 0
- o[rh >> 2] = ph
- if ((oh | 0) != (qh | 0)) {
- continue
- }
- break
- }
- qh = o[Ye >> 2]
- oh = o[(Ye + 4) >> 2]
- }
- o[Ye >> 2] = rh
- o[(Ye + 8) >> 2] = sh
- o[(Ye + 4) >> 2] = $g
- if ((oh | 0) != (qh | 0)) {
- while (1) {
- oh = (oh + -4) | 0
- Ye = o[oh >> 2]
- o[oh >> 2] = 0
- if (Ye) {
- l[o[(o[Ye >> 2] + 4) >> 2]](Ye)
- }
- if ((oh | 0) != (qh | 0)) {
- continue
- }
- break
- }
- }
- if (qh) {
- ul(qh)
- }
- return
- }
- Yk()
- D()
- }
- _a(1832)
- D()
- }
- function Td(Ye, $g) {
- Ye = Ye | 0
- $g = $g | 0
- var xh = 0,
- yh = 0,
- zh = 0,
- Ah = 0,
- Bh = 0,
- Ch = 0,
- Dh = 0
- xh = o[(Ye + 60) >> 2]
- a: {
- if (!xh) {
- break a
- }
- o[(xh + 4) >> 2] = Ye + 48
- if (!l[o[(o[xh >> 2] + 12) >> 2]](xh)) {
- break a
- }
- b: {
- yh = l[o[(o[Ye >> 2] + 24) >> 2]](Ye) | 0
- if ((yh | 0) < 1) {
- break b
- }
- Ah = (Ye + 60) | 0
- xh = 0
- while (1) {
- c: {
- Bh = o[((l[o[(o[Ye >> 2] + 28) >> 2]](Ye) | 0) + 4) >> 2]
- Ch = l[o[(o[Ye >> 2] + 20) >> 2]](Ye, xh) | 0
- zh = o[Ah >> 2]
- if (!l[o[(o[zh >> 2] + 8) >> 2]](zh, o[(o[(Bh + 8) >> 2] + (Ch << 2)) >> 2])) {
- break c
- }
- xh = (xh + 1) | 0
- if ((yh | 0) != (xh | 0)) {
- continue
- }
- break b
- }
- break
- }
- return 0
- }
- if (!l[o[(o[Ye >> 2] + 36) >> 2]](Ye, $g)) {
- break a
- }
- if (!l[o[(o[Ye >> 2] + 40) >> 2]](Ye, $g)) {
- break a
- }
- Dh = l[o[(o[Ye >> 2] + 44) >> 2]](Ye) | 0
- }
- return Dh | 0
- }
- function Ud(Ye, $g) {
- Ye = Ye | 0
- $g = $g | 0
- var Eh = 0,
- Fh = 0,
- Gh = 0,
- Hh = 0,
- Ih = 0
- Eh = 1
- Fh = l[o[(o[Ye >> 2] + 24) >> 2]](Ye) | 0
- a: {
- if ((Fh | 0) < 1) {
- break a
- }
- Hh = (Ye + 48) | 0
- Eh = 0
- Ih = (Ye + 36) | 0
- Ye = 0
- while (1) {
- Gh = o[(o[Ih >> 2] + (Ye << 2)) >> 2]
- if (!l[o[(o[Gh >> 2] + 16) >> 2]](Gh, Hh, $g)) {
- break a
- }
- Ye = (Ye + 1) | 0
- if ((Fh | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- Eh = 1
- }
- return Eh | 0
- }
- function Vd(Ye, $g) {
- Ye = Ye | 0
- $g = $g | 0
- var Jh = 0,
- Kh = 0,
- Lh = 0,
- Mh = 0,
- Nh = 0
- Jh = 1
- Kh = l[o[(o[Ye >> 2] + 24) >> 2]](Ye) | 0
- a: {
- if ((Kh | 0) < 1) {
- break a
- }
- Mh = (Ye + 48) | 0
- Jh = 0
- Nh = (Ye + 36) | 0
- Ye = 0
- while (1) {
- Lh = o[(o[Nh >> 2] + (Ye << 2)) >> 2]
- if (!l[o[(o[Lh >> 2] + 20) >> 2]](Lh, Mh, $g)) {
- break a
- }
- Ye = (Ye + 1) | 0
- if ((Kh | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- Jh = 1
- }
- return Jh | 0
- }
- function Wd(Ye) {
- Ye = Ye | 0
- var $g = 0,
- Oh = 0,
- Ph = 0,
- Qh = 0,
- Rh = 0,
- Sh = 0,
- Th = 0,
- Uh = 0,
- Vh = 0,
- Wh = 0,
- Xh = 0,
- Yh = 0,
- Zh = 0
- Qh = (R - 16) | 0
- R = Qh
- $g = 1
- Th = l[o[(o[Ye >> 2] + 24) >> 2]](Ye) | 0
- a: {
- if ((Th | 0) < 1) {
- break a
- }
- Zh = (Ye + 48) | 0
- Sh = (Ye + 36) | 0
- while (1) {
- b: {
- c: {
- if (!o[((l[o[(o[Ye >> 2] + 28) >> 2]](Ye) | 0) + 40) >> 2]) {
- break c
- }
- Uh = Rh << 2
- $g = o[(Uh + o[Sh >> 2]) >> 2]
- Oh = o[($g + 8) >> 2]
- Vh = Ld($g)
- if (!Vh) {
- break c
- }
- $g = l[o[(o[Ye >> 2] + 28) >> 2]](Ye) | 0
- Wh = o[(Oh + 56) >> 2]
- Xh = o[($g + 40) >> 2]
- $g = Hk(32)
- o[Qh >> 2] = $g
- o[(Qh + 4) >> 2] = 24
- o[(Qh + 8) >> 2] = -2147483616
- m[($g + 24) | 0] = 0
- Oh = p[1764] | (p[1765] << 8) | ((p[1766] << 16) | (p[1767] << 24))
- Ph = p[1760] | (p[1761] << 8) | ((p[1762] << 16) | (p[1763] << 24))
- m[($g + 16) | 0] = Ph
- m[($g + 17) | 0] = Ph >>> 8
- m[($g + 18) | 0] = Ph >>> 16
- m[($g + 19) | 0] = Ph >>> 24
- m[($g + 20) | 0] = Oh
- m[($g + 21) | 0] = Oh >>> 8
- m[($g + 22) | 0] = Oh >>> 16
- m[($g + 23) | 0] = Oh >>> 24
- Oh = p[1756] | (p[1757] << 8) | ((p[1758] << 16) | (p[1759] << 24))
- Ph = p[1752] | (p[1753] << 8) | ((p[1754] << 16) | (p[1755] << 24))
- m[($g + 8) | 0] = Ph
- m[($g + 9) | 0] = Ph >>> 8
- m[($g + 10) | 0] = Ph >>> 16
- m[($g + 11) | 0] = Ph >>> 24
- m[($g + 12) | 0] = Oh
- m[($g + 13) | 0] = Oh >>> 8
- m[($g + 14) | 0] = Oh >>> 16
- m[($g + 15) | 0] = Oh >>> 24
- Oh = p[1748] | (p[1749] << 8) | ((p[1750] << 16) | (p[1751] << 24))
- Ph = p[1744] | (p[1745] << 8) | ((p[1746] << 16) | (p[1747] << 24))
- m[$g | 0] = Ph
- m[($g + 1) | 0] = Ph >>> 8
- m[($g + 2) | 0] = Ph >>> 16
- m[($g + 3) | 0] = Ph >>> 24
- m[($g + 4) | 0] = Oh
- m[($g + 5) | 0] = Oh >>> 8
- m[($g + 6) | 0] = Oh >>> 16
- m[($g + 7) | 0] = Oh >>> 24
- d: {
- e: {
- Ph = (Xh + 16) | 0
- Oh = Ph
- $g = o[Oh >> 2]
- if (!$g) {
- break e
- }
- while (1) {
- Yh = o[($g + 16) >> 2] < (Wh | 0)
- Oh = Yh ? Oh : $g
- $g = o[((Yh << 2) + $g) >> 2]
- if ($g) {
- continue
- }
- break
- }
- if (((Oh | 0) == (Ph | 0)) | ((Wh | 0) < o[(Oh + 16) >> 2])) {
- break e
- }
- $g = (Oh + 20) | 0
- if (!ea($g, Qh)) {
- break e
- }
- $g = yi($g, Qh)
- break d
- }
- $g = yi(Xh, Qh)
- }
- if (m[(Qh + 11) | 0] <= -1) {
- ul(o[Qh >> 2])
- }
- if (!$g) {
- break c
- }
- sd(o[(o[(o[Sh >> 2] + Uh) >> 2] + 8) >> 2], Vh)
- break b
- }
- $g = o[(o[Sh >> 2] + (Rh << 2)) >> 2]
- if (l[o[(o[$g >> 2] + 24) >> 2]]($g, Zh)) {
- break b
- }
- $g = 0
- break a
- }
- $g = 1
- Rh = (Rh + 1) | 0
- if ((Th | 0) != (Rh | 0)) {
- continue
- }
- break
- }
- }
- R = (Qh + 16) | 0
- return $g | 0
- }
- function Xd(Ye, _h, $h) {
- Ye = Ye | 0
- _h = _h | 0
- $h = $h | 0
- if ($h >>> 0 > 3) {
- o[Ye >> 2] = 0
- return
- }
- a: {
- b: {
- switch (($h - 1) | 0) {
- default:
- _h = Hk(20)
- Gd(_h)
- break a
- case 0:
- _h = Hk(24)
- $d(_h)
- break a
- case 1:
- _h = Hk(36)
- $d(_h)
- o[(_h + 32) >> 2] = 0
- o[(_h + 24) >> 2] = -1
- o[(_h + 28) >> 2] = 0
- o[_h >> 2] = 7664
- break a
- case 2:
- break b
- }
- }
- _h = Hk(28)
- $d(_h)
- o[(_h + 24) >> 2] = -1
- o[_h >> 2] = 5528
- o[Ye >> 2] = _h
- return
- }
- o[Ye >> 2] = _h
- }
- function Yd(Ye) {
- Ye = Ye | 0
- var _h = 0,
- $h = 0,
- ai = 0,
- bi = 0,
- ci = 0
- o[Ye >> 2] = 1692
- _h = (Ye + 60) | 0
- $h = o[_h >> 2]
- o[_h >> 2] = 0
- if ($h) {
- l[o[(o[$h >> 2] + 4) >> 2]]($h)
- }
- _h = o[(Ye + 48) >> 2]
- if (_h) {
- o[(Ye + 52) >> 2] = _h
- ul(_h)
- }
- $h = o[(Ye + 36) >> 2]
- if ($h) {
- _h = $h
- ci = (Ye + 40) | 0
- ai = o[ci >> 2]
- bi = _h
- a: {
- if ((_h | 0) == (ai | 0)) {
- break a
- }
- while (1) {
- ai = (ai + -4) | 0
- _h = o[ai >> 2]
- o[ai >> 2] = 0
- if (_h) {
- l[o[(o[_h >> 2] + 4) >> 2]](_h)
- }
- if (($h | 0) != (ai | 0)) {
- continue
- }
- break
- }
- bi = o[(Ye + 36) >> 2]
- }
- _h = bi
- o[ci >> 2] = $h
- ul(_h)
- }
- o[Ye >> 2] = 1384
- _h = o[(Ye + 16) >> 2]
- if (_h) {
- o[(Ye + 20) >> 2] = _h
- ul(_h)
- }
- _h = o[(Ye + 4) >> 2]
- if (_h) {
- o[(Ye + 8) >> 2] = _h
- ul(_h)
- }
- return Ye | 0
- }
- function Zd(Ye) {
- Ye = Ye | 0
- var di = 0,
- ei = 0,
- fi = 0,
- gi = 0,
- hi = 0
- o[Ye >> 2] = 1692
- di = (Ye + 60) | 0
- ei = o[di >> 2]
- o[di >> 2] = 0
- if (ei) {
- l[o[(o[ei >> 2] + 4) >> 2]](ei)
- }
- di = o[(Ye + 48) >> 2]
- if (di) {
- o[(Ye + 52) >> 2] = di
- ul(di)
- }
- ei = o[(Ye + 36) >> 2]
- if (ei) {
- di = ei
- hi = (Ye + 40) | 0
- fi = o[hi >> 2]
- gi = di
- a: {
- if ((di | 0) == (fi | 0)) {
- break a
- }
- while (1) {
- fi = (fi + -4) | 0
- di = o[fi >> 2]
- o[fi >> 2] = 0
- if (di) {
- l[o[(o[di >> 2] + 4) >> 2]](di)
- }
- if ((ei | 0) != (fi | 0)) {
- continue
- }
- break
- }
- gi = o[(Ye + 36) >> 2]
- }
- di = gi
- o[hi >> 2] = ei
- ul(di)
- }
- o[Ye >> 2] = 1384
- di = o[(Ye + 16) >> 2]
- if (di) {
- o[(Ye + 20) >> 2] = di
- ul(di)
- }
- di = o[(Ye + 4) >> 2]
- if (di) {
- o[(Ye + 8) >> 2] = di
- ul(di)
- }
- ul(Ye)
- }
- function _d(Ye, ii) {
- Ye = Ye | 0
- ii = ii | 0
- var ji = 0,
- ki = 0
- ki = o[(Ye + 16) >> 2]
- ji = 0
- a: {
- if ((o[(Ye + 20) >> 2] - ki) >> 2 <= (ii | 0)) {
- break a
- }
- ii = o[((ii << 2) + ki) >> 2]
- ji = 0
- if ((ii | 0) < 0) {
- break a
- }
- ji = Ld(o[(o[(Ye + 36) >> 2] + (ii << 2)) >> 2])
- }
- return ji | 0
- }
- function $d(Ye) {
- Gd(Ye)
- o[(Ye + 20) >> 2] = 0
- o[Ye >> 2] = 1908
- }
- function ae(o, Ye, ii) {
- o = o | 0
- Ye = Ye | 0
- ii = ii | 0
- return Hd(o, Ye, ii) | 0
- }
- function be(Ye, ii) {
- Ye = Ye | 0
- ii = ii | 0
- return l[o[(o[Ye >> 2] + 48) >> 2]](Ye, (o[(ii + 4) >> 2] - o[ii >> 2]) >> 2) | 0
- }
- function ce(Ye, ii, li) {
- Ye = Ye | 0
- ii = ii | 0
- li = li | 0
- var mi = 0,
- ni = 0,
- oi = 0,
- pi = 0,
- qi = 0,
- ri = 0,
- si = 0,
- ti = 0,
- ui = 0,
- vi = 0
- oi = (R - 16) | 0
- R = oi
- si = o[(li + 8) >> 2]
- pi = o[(li + 16) >> 2]
- qi = o[(li + 12) >> 2]
- mi = qi
- ni = o[(li + 20) >> 2]
- a: {
- if ((mi | 0) < (ni | 0) ? 1 : (mi | 0) <= (ni | 0) ? (si >>> 0 > pi >>> 0 ? 0 : 1) : 0) {
- break a
- }
- ti = o[li >> 2]
- ui = m[(ti + pi) | 0]
- mi = ni
- ri = (pi + 1) | 0
- if (ri >>> 0 < 1) {
- mi = (mi + 1) | 0
- }
- o[(li + 16) >> 2] = ri
- o[(li + 20) >> 2] = mi
- b: {
- if ((ui | 0) == -2) {
- break b
- }
- if ((qi | 0) < (mi | 0) ? 1 : (qi | 0) <= (mi | 0) ? (si >>> 0 > ri >>> 0 ? 0 : 1) : 0) {
- break a
- }
- qi = m[(ri + ti) | 0]
- pi = (pi + 2) | 0
- if (pi >>> 0 < 2) {
- ni = (ni + 1) | 0
- }
- mi = li
- o[(mi + 16) >> 2] = pi
- o[(mi + 20) >> 2] = ni
- l[o[(o[Ye >> 2] + 40) >> 2]]((oi + 8) | 0, Ye, ui, qi)
- ni = o[(oi + 8) >> 2]
- o[(oi + 8) >> 2] = 0
- mi = o[(Ye + 20) >> 2]
- o[(Ye + 20) >> 2] = ni
- if (!mi) {
- o[(oi + 8) >> 2] = 0
- break b
- }
- l[o[(o[mi >> 2] + 4) >> 2]](mi)
- mi = o[(oi + 8) >> 2]
- o[(oi + 8) >> 2] = 0
- if (!mi) {
- break b
- }
- l[o[(o[mi >> 2] + 4) >> 2]](mi)
- }
- mi = o[(Ye + 20) >> 2]
- if (mi) {
- if (!l[o[(o[Ye >> 2] + 28) >> 2]](Ye, mi)) {
- break a
- }
- }
- vi = l[o[(o[Ye >> 2] + 36) >> 2]](Ye, ii, li) | 0
- }
- R = (oi + 16) | 0
- return vi | 0
- }
- function de(Ye, ii, li, wi) {
- Ye = Ye | 0
- ii = ii | 0
- li = li | 0
- wi = wi | 0
- var xi = 0,
- yi = 0
- xi = (R - 48) | 0
- R = xi
- a: {
- if ((wi | 0) != 1) {
- o[Ye >> 2] = 0
- break a
- }
- wi = o[(ii + 4) >> 2]
- ii = o[(ii + 12) >> 2]
- o[(xi + 40) >> 2] = 0
- yi = (xi + 32) | 0
- o[yi >> 2] = 0
- o[(yi + 4) >> 2] = 0
- o[(xi + 24) >> 2] = 0
- o[(xi + 28) >> 2] = 0
- o[(xi + 16) >> 2] = 0
- o[(xi + 20) >> 2] = 0
- o[(xi + 8) >> 2] = 0
- o[(xi + 12) >> 2] = 0
- ee(xi, li, ii, wi, (xi + 8) | 0)
- ii = o[yi >> 2]
- if (ii) {
- o[(xi + 36) >> 2] = ii
- ul(ii)
- }
- o[Ye >> 2] = o[xi >> 2]
- }
- R = (xi + 48) | 0
- }
- function ee(Ye, ii, li, wi, zi) {
- var Ai = 0,
- Bi = 0
- a: {
- if ((ii | 0) != -2) {
- Bi = o[(o[(o[(wi + 4) >> 2] + 8) >> 2] + (li << 2)) >> 2]
- if ((l[o[(o[wi >> 2] + 8) >> 2]](wi) | 0) == 1) {
- Ai = ii
- ii = q[(wi + 36) >> 1]
- le(Ye, wi, Ai, li, zi, ((ii << 24) | ((ii << 8) & 16711680)) >>> 16)
- if (o[Ye >> 2]) {
- break a
- }
- o[Ye >> 2] = 0
- }
- Ai = Hk(44)
- me(Ai, Bi, zi)
- }
- o[Ye >> 2] = Ai
- }
- }
- function fe(Ye, ii, li) {
- Ye = Ye | 0
- ii = ii | 0
- li = li | 0
- var wi = 0,
- zi = 0,
- Ci = 0,
- Di = 0,
- Ei = 0,
- Fi = 0,
- Gi = 0,
- Hi = 0,
- Ii = 0,
- Ji = 0,
- Ki = 0,
- Li = 0,
- Mi = 0
- a: {
- Ki = l[o[(o[Ye >> 2] + 44) >> 2]](Ye) | 0
- if ((Ki | 0) < 1) {
- break a
- }
- Ei = (o[(ii + 4) >> 2] - o[ii >> 2]) >> 2
- ge(Ye, Ei, Ki)
- wi = o[(Ye + 16) >> 2]
- if (!o[(wi + 80) >> 2]) {
- break a
- }
- Ci = o[o[wi >> 2] >> 2]
- if (!Ci) {
- break a
- }
- Gi = o[(li + 8) >> 2]
- Fi = o[(li + 16) >> 2]
- Di = o[(li + 12) >> 2]
- Hi = Di
- zi = o[(li + 20) >> 2]
- if ((Hi | 0) < (zi | 0) ? 1 : (Hi | 0) <= (zi | 0) ? (Gi >>> 0 > Fi >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Hi = u(Ei, Ki)
- Ji = (Ci + o[(wi + 48) >> 2]) | 0
- Li = o[li >> 2]
- Mi = p[(Li + Fi) | 0]
- Ei = li
- wi = zi
- Ci = (Fi + 1) | 0
- if (Ci >>> 0 < 1) {
- wi = (wi + 1) | 0
- }
- Ii = Ci
- Ci = wi
- o[(Ei + 16) >> 2] = Ii
- o[(Ei + 20) >> 2] = wi
- b: {
- c: {
- d: {
- if (Mi) {
- if (_f(Hi, Ki, li, Ji)) {
- break d
- }
- break a
- }
- if ((Di | 0) < (Ci | 0) ? 1 : (Di | 0) <= (Ci | 0) ? (Gi >>> 0 > Ii >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Ei = p[(Ii + Li) | 0]
- wi = zi
- zi = (Fi + 2) | 0
- if (zi >>> 0 < 2) {
- wi = (wi + 1) | 0
- }
- o[(li + 16) >> 2] = zi
- o[(li + 20) >> 2] = wi
- wi = ti(5)
- zi = o[(o[(Ye + 16) >> 2] - -64) >> 2]
- zi = (o[(zi + 4) >> 2] - o[zi >> 2]) | 0
- e: {
- if ((wi | 0) == (Ei | 0)) {
- Ei = Hi << 2
- if (zi >>> 0 < Ei >>> 0) {
- break a
- }
- Ci = o[(li + 12) >> 2]
- wi = o[(li + 20) >> 2]
- Fi = o[(li + 16) >> 2]
- zi = Ei
- Di = (Fi + zi) | 0
- if (Di >>> 0 < zi >>> 0) {
- wi = (wi + 1) | 0
- }
- if ((Ci | 0) > (wi | 0) ? 1 : (Ci | 0) >= (wi | 0) ? (r[(li + 8) >> 2] < Di >>> 0 ? 0 : 1) : 0) {
- break e
- }
- break a
- }
- if (zi >>> 0 < u(Ei, Hi) >>> 0) {
- break a
- }
- Fi = o[(li + 12) >> 2]
- wi = o[(li + 20) >> 2]
- Gi = o[(li + 8) >> 2]
- Ci = Gi
- Ii = o[(li + 16) >> 2]
- Di = Ii
- zi = Ei
- Mi = (Ci - Di) >>> 0 >= Vl(zi, 0, Hi, 0) >>> 0 ? 0 : 1
- Ci = (Fi - ((wi + (Ci >>> 0 < Di >>> 0)) | 0)) | 0
- Di = T
- if ((Ci | 0) < (Di | 0) ? 1 : (Ci | 0) <= (Di | 0) ? Mi : 0) {
- break a
- }
- Ci = 0
- if (!Hi) {
- break c
- }
- Di = 0
- Ci = Gi
- Gi = (zi + Ii) | 0
- if (Gi >>> 0 < zi >>> 0) {
- wi = (wi + 1) | 0
- }
- if ((Fi | 0) < (wi | 0) ? 1 : (Fi | 0) <= (wi | 0) ? (Ci >>> 0 >= Gi >>> 0 ? 0 : 1) : 0) {
- break b
- }
- Gi = 0
- while (1) {
- wl((Ji + (Gi << 2)) | 0, (Ii + o[li >> 2]) | 0, Ei)
- wi = o[(li + 20) >> 2]
- Ii = (zi + o[(li + 16) >> 2]) | 0
- if (Ii >>> 0 < zi >>> 0) {
- wi = (wi + 1) | 0
- }
- o[(li + 16) >> 2] = Ii
- o[(li + 20) >> 2] = wi
- Gi = (Gi + 1) | 0
- if ((Hi | 0) == (Gi | 0)) {
- break d
- }
- Fi = o[(li + 12) >> 2]
- Li = (zi + Ii) | 0
- if (Li >>> 0 < zi >>> 0) {
- wi = (wi + 1) | 0
- }
- if ((Fi | 0) > (wi | 0) ? 1 : (Fi | 0) >= (wi | 0) ? (r[(li + 8) >> 2] < Li >>> 0 ? 0 : 1) : 0) {
- continue
- }
- break
- }
- break b
- }
- wl(Ji, (Fi + o[li >> 2]) | 0, Ei)
- wi = o[(li + 20) >> 2]
- Ci = (zi + o[(li + 16) >> 2]) | 0
- if (Ci >>> 0 < zi >>> 0) {
- wi = (wi + 1) | 0
- }
- o[(li + 16) >> 2] = Ci
- o[(li + 20) >> 2] = wi
- }
- Ci = 0
- if (!Hi) {
- break c
- }
- zi = o[(Ye + 20) >> 2]
- if (zi) {
- Ci = 1
- if (l[o[(o[zi >> 2] + 32) >> 2]](zi)) {
- break c
- }
- }
- ji(Ji, Hi, Ji)
- Ci = 1
- }
- zi = o[(Ye + 20) >> 2]
- f: {
- if (!zi) {
- break f
- }
- if (!l[o[(o[zi >> 2] + 40) >> 2]](zi, li)) {
- break a
- }
- if (!Ci) {
- break f
- }
- Di = 0
- Ye = o[(Ye + 20) >> 2]
- if (!l[o[(o[Ye >> 2] + 44) >> 2]](Ye, Ji, Ji, Hi, Ki, o[ii >> 2])) {
- break b
- }
- }
- Di = 1
- }
- return Di | 0
- }
- return 0
- }
- function ge(Ye, ii, li) {
- var Ni = 0,
- Oi = 0,
- Pi = 0,
- Qi = 0
- Ni = (R - 80) | 0
- R = Ni
- Oi = ld((Ni + 16) | 0)
- Pi = o[(o[(Ye + 8) >> 2] + 56) >> 2]
- Qi = (li << 24) >> 24
- li = u(ti(5), li)
- md(Oi, Pi, Qi, 5, 0, li, li >> 31)
- li = Hk(96)
- qd(li, Oi)
- o[(Ni + 8) >> 2] = li
- m[(li + 84) | 0] = 1
- o[(li + 72) >> 2] = o[(li + 68) >> 2]
- rd(li, ii)
- o[Ni >> 2] = 0
- ii = o[(Ni + 8) >> 2]
- o[(Ni + 8) >> 2] = 0
- li = (Ye + 16) | 0
- Ye = o[li >> 2]
- o[li >> 2] = ii
- a: {
- if (!Ye) {
- o[Ni >> 2] = 0
- break a
- }
- Fb(Ye)
- Ye = o[Ni >> 2]
- o[Ni >> 2] = 0
- if (!Ye) {
- break a
- }
- Fb(Ye)
- }
- Ye = o[(Ni + 8) >> 2]
- o[(Ni + 8) >> 2] = 0
- if (Ye) {
- Fb(Ye)
- }
- R = (Ni + 80) | 0
- }
- function he(Ye, ii) {
- Ye = Ye | 0
- ii = ii | 0
- var li = 0,
- Ri = 0,
- Si = 0,
- Ti = 0,
- Ui = 0,
- Vi = 0,
- Wi = 0,
- Xi = 0,
- Yi = 0
- Ri = o[(Ye + 8) >> 2]
- li = (o[(Ri + 28) >> 2] + -1) | 0
- if (li >>> 0 > 5) {
- return 0
- }
- a: {
- b: {
- switch ((li - 1) | 0) {
- case 0:
- Ti = m[(Ri + 24) | 0]
- Ui = Hk((Ti | 0) > -1 ? Ti : -1)
- li = o[(Ye + 16) >> 2]
- Ri = 0
- c: {
- if (!o[(li + 80) >> 2]) {
- break c
- }
- Ri = (o[o[li >> 2] >> 2] + o[(li + 48) >> 2]) | 0
- }
- if (!ii) {
- break a
- }
- Vi = (Ti | 0) < 1
- Xi = (Ye + 8) | 0
- li = 0
- while (1) {
- Ye = 0
- if (!Vi) {
- while (1) {
- m[(Ye + Ui) | 0] = o[(Ri + (li << 2)) >> 2]
- li = (li + 1) | 0
- Ye = (Ye + 1) | 0
- if ((Ti | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- wl((o[o[(o[Xi >> 2] - -64) >> 2] >> 2] + Wi) | 0, Ui, Ti)
- Wi = (Ti + Wi) | 0
- Si = (Si + 1) | 0
- if ((Si | 0) != (ii | 0)) {
- continue
- }
- break
- }
- break a
- default:
- Ti = m[(Ri + 24) | 0]
- Ui = Hk((Ti | 0) > -1 ? Ti : -1)
- li = o[(Ye + 16) >> 2]
- Ri = 0
- d: {
- if (!o[(li + 80) >> 2]) {
- break d
- }
- Ri = (o[o[li >> 2] >> 2] + o[(li + 48) >> 2]) | 0
- }
- if (!ii) {
- break a
- }
- Vi = (Ti | 0) < 1
- Xi = (Ye + 8) | 0
- li = 0
- while (1) {
- Ye = 0
- if (!Vi) {
- while (1) {
- m[(Ye + Ui) | 0] = o[(Ri + (li << 2)) >> 2]
- li = (li + 1) | 0
- Ye = (Ye + 1) | 0
- if ((Ti | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- wl((o[o[(o[Xi >> 2] - -64) >> 2] >> 2] + Wi) | 0, Ui, Ti)
- Wi = (Ti + Wi) | 0
- Si = (Si + 1) | 0
- if ((Si | 0) != (ii | 0)) {
- continue
- }
- break
- }
- break a
- case 2:
- Si = m[(Ri + 24) | 0]
- Ri = (Si + Si) | 0
- Ui = Hk(Ri >>> 0 < Si >>> 0 ? -1 : Ri)
- li = o[(Ye + 16) >> 2]
- Ri = 0
- e: {
- if (!o[(li + 80) >> 2]) {
- break e
- }
- Ri = (o[o[li >> 2] >> 2] + o[(li + 48) >> 2]) | 0
- }
- if (!ii) {
- break a
- }
- Vi = Si << 1
- Xi = (Si | 0) < 1
- Yi = (Ye + 8) | 0
- li = 0
- while (1) {
- Ye = 0
- if (!Xi) {
- while (1) {
- n[((Ye << 1) + Ui) >> 1] = o[(Ri + (li << 2)) >> 2]
- li = (li + 1) | 0
- Ye = (Ye + 1) | 0
- if ((Si | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- wl((o[o[(o[Yi >> 2] - -64) >> 2] >> 2] + Wi) | 0, Ui, Vi)
- Wi = (Wi + Vi) | 0
- Ti = (Ti + 1) | 0
- if ((Ti | 0) != (ii | 0)) {
- continue
- }
- break
- }
- break a
- case 1:
- Si = m[(Ri + 24) | 0]
- Ri = (Si + Si) | 0
- Ui = Hk(Ri >>> 0 < Si >>> 0 ? -1 : Ri)
- li = o[(Ye + 16) >> 2]
- Ri = 0
- f: {
- if (!o[(li + 80) >> 2]) {
- break f
- }
- Ri = (o[o[li >> 2] >> 2] + o[(li + 48) >> 2]) | 0
- }
- if (!ii) {
- break a
- }
- Vi = Si << 1
- Xi = (Si | 0) < 1
- Yi = (Ye + 8) | 0
- li = 0
- while (1) {
- Ye = 0
- if (!Xi) {
- while (1) {
- n[((Ye << 1) + Ui) >> 1] = o[(Ri + (li << 2)) >> 2]
- li = (li + 1) | 0
- Ye = (Ye + 1) | 0
- if ((Si | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- wl((o[o[(o[Yi >> 2] - -64) >> 2] >> 2] + Wi) | 0, Ui, Vi)
- Wi = (Wi + Vi) | 0
- Ti = (Ti + 1) | 0
- if ((Ti | 0) != (ii | 0)) {
- continue
- }
- break
- }
- break a
- case 4:
- Si = m[(Ri + 24) | 0]
- Vi = Si << 2
- Ui = Hk((Si | 0) != (Si & 1073741823) ? -1 : Vi)
- li = o[(Ye + 16) >> 2]
- Ri = 0
- g: {
- if (!o[(li + 80) >> 2]) {
- break g
- }
- Ri = (o[o[li >> 2] >> 2] + o[(li + 48) >> 2]) | 0
- }
- if (!ii) {
- break a
- }
- Xi = (Si | 0) < 1
- Yi = (Ye + 8) | 0
- li = 0
- while (1) {
- Ye = 0
- if (!Xi) {
- while (1) {
- o[((Ye << 2) + Ui) >> 2] = o[(Ri + (li << 2)) >> 2]
- li = (li + 1) | 0
- Ye = (Ye + 1) | 0
- if ((Si | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- wl((o[o[(o[Yi >> 2] - -64) >> 2] >> 2] + Wi) | 0, Ui, Vi)
- Wi = (Wi + Vi) | 0
- Ti = (Ti + 1) | 0
- if ((Ti | 0) != (ii | 0)) {
- continue
- }
- break
- }
- break a
- case 3:
- break b
- }
- }
- Si = m[(Ri + 24) | 0]
- Vi = Si << 2
- Ui = Hk((Si | 0) != (Si & 1073741823) ? -1 : Vi)
- li = o[(Ye + 16) >> 2]
- Ri = 0
- h: {
- if (!o[(li + 80) >> 2]) {
- break h
- }
- Ri = (o[o[li >> 2] >> 2] + o[(li + 48) >> 2]) | 0
- }
- if (!ii) {
- break a
- }
- Xi = (Si | 0) < 1
- Yi = (Ye + 8) | 0
- li = 0
- while (1) {
- Ye = 0
- if (!Xi) {
- while (1) {
- o[((Ye << 2) + Ui) >> 2] = o[(Ri + (li << 2)) >> 2]
- li = (li + 1) | 0
- Ye = (Ye + 1) | 0
- if ((Si | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- wl((o[o[(o[Yi >> 2] - -64) >> 2] >> 2] + Wi) | 0, Ui, Vi)
- Wi = (Wi + Vi) | 0
- Ti = (Ti + 1) | 0
- if ((Ti | 0) != (ii | 0)) {
- continue
- }
- break
- }
- }
- ul(Ui)
- return 1
- }
- function ie(Ye) {
- Ye = Ye | 0
- var ii = 0,
- Zi = 0
- o[Ye >> 2] = 1908
- Zi = (Ye + 20) | 0
- ii = o[Zi >> 2]
- o[Zi >> 2] = 0
- if (ii) {
- l[o[(o[ii >> 2] + 4) >> 2]](ii)
- }
- o[Ye >> 2] = 1596
- Zi = (Ye + 16) | 0
- ii = o[Zi >> 2]
- o[Zi >> 2] = 0
- if (ii) {
- Fb(ii)
- }
- return Ye | 0
- }
- function je(Ye) {
- Ye = Ye | 0
- var _i = 0,
- $i = 0
- o[Ye >> 2] = 1908
- $i = (Ye + 20) | 0
- _i = o[$i >> 2]
- o[$i >> 2] = 0
- if (_i) {
- l[o[(o[_i >> 2] + 4) >> 2]](_i)
- }
- o[Ye >> 2] = 1596
- $i = (Ye + 16) | 0
- _i = o[$i >> 2]
- o[$i >> 2] = 0
- if (_i) {
- Fb(_i)
- }
- ul(Ye)
- }
- function ke(Ye) {
- Ye = Ye | 0
- return m[(o[(Ye + 8) >> 2] + 24) | 0]
- }
- function le(Ye, aj, bj, cj, dj, ej) {
- var fj = 0,
- gj = 0,
- hj = 0
- ej = (R - 32) | 0
- R = ej
- gj = o[(o[(o[(aj + 4) >> 2] + 8) >> 2] + (cj << 2)) >> 2]
- a: {
- b: {
- if (((l[o[(o[aj >> 2] + 8) >> 2]](aj) | 0) != 1) | ((bj + -1) >>> 0 > 5)) {
- break b
- }
- hj = l[o[(o[aj >> 2] + 36) >> 2]](aj) | 0
- fj = l[o[(o[aj >> 2] + 44) >> 2]](aj, cj) | 0
- if (!(fj ? hj : 0)) {
- o[Ye >> 2] = 0
- break a
- }
- cj = l[o[(o[aj >> 2] + 40) >> 2]](aj, cj) | 0
- if (cj) {
- aj = o[(aj + 44) >> 2]
- o[(ej + 12) >> 2] = cj
- o[(ej + 8) >> 2] = aj
- o[(ej + 20) >> 2] = fj
- o[(ej + 16) >> 2] = fj + 12
- ne(Ye, bj, gj, dj, (ej + 8) | 0)
- if (o[Ye >> 2]) {
- break a
- }
- o[Ye >> 2] = 0
- break b
- }
- aj = o[(aj + 44) >> 2]
- o[(ej + 12) >> 2] = hj
- o[(ej + 8) >> 2] = aj
- o[(ej + 20) >> 2] = fj
- o[(ej + 16) >> 2] = fj + 12
- oe(Ye, bj, gj, dj, (ej + 8) | 0)
- if (o[Ye >> 2]) {
- break a
- }
- o[Ye >> 2] = 0
- }
- o[Ye >> 2] = 0
- }
- R = (ej + 32) | 0
- }
- function me(Ye, aj, bj) {
- var cj = 0,
- dj = 0,
- ej = 0,
- ij = 0,
- jj = 0,
- kj = 0,
- lj = 0,
- mj = 0
- o[Ye >> 2] = 2732
- o[(Ye + 4) >> 2] = aj
- aj = o[(bj + 8) >> 2]
- cj = o[(bj + 12) >> 2]
- dj = o[(bj + 16) >> 2]
- ij = o[(bj + 20) >> 2]
- jj = o[bj >> 2]
- kj = o[(bj + 4) >> 2]
- o[(Ye + 40) >> 2] = 0
- ej = (Ye + 32) | 0
- o[ej >> 2] = 0
- o[(ej + 4) >> 2] = 0
- o[(Ye + 24) >> 2] = dj
- o[(Ye + 28) >> 2] = ij
- o[(Ye + 16) >> 2] = aj
- o[(Ye + 20) >> 2] = cj
- o[(Ye + 8) >> 2] = jj
- o[(Ye + 12) >> 2] = kj
- a: {
- aj = (o[(bj + 28) >> 2] - o[(bj + 24) >> 2]) | 0
- b: {
- if (!aj) {
- break b
- }
- cj = aj >> 2
- if (cj >>> 0 >= 1073741824) {
- break a
- }
- aj = Hk(aj)
- o[(Ye + 32) >> 2] = aj
- dj = (Ye + 36) | 0
- o[dj >> 2] = aj
- o[(Ye + 40) >> 2] = aj + (cj << 2)
- cj = o[(bj + 24) >> 2]
- bj = (o[(bj + 28) >> 2] - cj) | 0
- if ((bj | 0) < 1) {
- break b
- }
- ;(lj = dj), (mj = (wl(aj, cj, bj) + bj) | 0), (o[lj >> 2] = mj)
- }
- o[Ye >> 2] = 5368
- return
- }
- Yk()
- D()
- }
- function ne(Ye, aj, bj, nj, oj) {
- var pj = 0
- a: {
- aj = (aj + -1) | 0
- b: {
- if (aj >>> 0 > 5) {
- break b
- }
- c: {
- switch ((aj - 1) | 0) {
- default:
- aj = Hk(60)
- pe(aj, bj, nj, oj)
- o[aj >> 2] = 2024
- break a
- case 2:
- aj = Hk(112)
- pe(aj, bj, nj, oj)
- o[aj >> 2] = 2788
- o[(aj + 60) >> 2] = 0
- o[(aj + 64) >> 2] = 0
- o[(aj + 68) >> 2] = 0
- o[(aj + 72) >> 2] = 0
- o[(aj + 76) >> 2] = 0
- o[(aj + 80) >> 2] = 0
- o[(aj + 84) >> 2] = 0
- o[(aj + 88) >> 2] = 0
- o[(aj + 92) >> 2] = 0
- o[(aj + 96) >> 2] = 0
- o[(aj + 100) >> 2] = 0
- o[(aj + 104) >> 2] = 0
- o[(aj + 108) >> 2] = 0
- break a
- case 3:
- aj = Hk(104)
- pe(aj, bj, nj, oj)
- o[(aj + 76) >> 2] = 0
- o[(aj + 80) >> 2] = 0
- o[(aj + 60) >> 2] = 0
- o[(aj + 64) >> 2] = 0
- o[aj >> 2] = 3036
- o[(aj + 84) >> 2] = 0
- bj = o[(oj + 4) >> 2]
- o[(aj + 88) >> 2] = o[oj >> 2]
- o[(aj + 92) >> 2] = bj
- bj = o[(oj + 12) >> 2]
- o[(aj + 96) >> 2] = o[(oj + 8) >> 2]
- o[(aj + 100) >> 2] = bj
- break a
- case 0:
- case 1:
- break b
- case 4:
- break c
- }
- }
- pj = Hk(124)
- pe(pj, bj, nj, oj)
- o[pj >> 2] = 3272
- aj = (pj - -64) | 0
- o[aj >> 2] = 0
- o[(aj + 4) >> 2] = 0
- aj = o[(oj + 4) >> 2]
- o[(pj + 72) >> 2] = o[oj >> 2]
- o[(pj + 76) >> 2] = aj
- aj = o[(oj + 12) >> 2]
- o[(pj + 80) >> 2] = o[(oj + 8) >> 2]
- o[(pj + 84) >> 2] = aj
- o[(pj + 92) >> 2] = -1
- o[(pj + 96) >> 2] = -1
- o[(pj + 88) >> 2] = 1
- o[(pj + 60) >> 2] = 3508
- o[(pj + 100) >> 2] = -1
- o[(pj + 104) >> 2] = -1
- Mf((pj + 108) | 0)
- }
- o[Ye >> 2] = pj
- return
- }
- o[Ye >> 2] = aj
- }
- function oe(Ye, aj, bj, nj, oj) {
- var qj = 0
- a: {
- aj = (aj + -1) | 0
- b: {
- if (aj >>> 0 > 5) {
- break b
- }
- c: {
- switch ((aj - 1) | 0) {
- default:
- aj = Hk(60)
- Xe(aj, bj, nj, oj)
- o[aj >> 2] = 3900
- break a
- case 2:
- aj = Hk(112)
- Xe(aj, bj, nj, oj)
- o[aj >> 2] = 4324
- o[(aj + 60) >> 2] = 0
- o[(aj + 64) >> 2] = 0
- o[(aj + 68) >> 2] = 0
- o[(aj + 72) >> 2] = 0
- o[(aj + 76) >> 2] = 0
- o[(aj + 80) >> 2] = 0
- o[(aj + 84) >> 2] = 0
- o[(aj + 88) >> 2] = 0
- o[(aj + 92) >> 2] = 0
- o[(aj + 96) >> 2] = 0
- o[(aj + 100) >> 2] = 0
- o[(aj + 104) >> 2] = 0
- o[(aj + 108) >> 2] = 0
- break a
- case 3:
- aj = Hk(104)
- Xe(aj, bj, nj, oj)
- o[(aj + 76) >> 2] = 0
- o[(aj + 80) >> 2] = 0
- o[(aj + 60) >> 2] = 0
- o[(aj + 64) >> 2] = 0
- o[aj >> 2] = 4560
- o[(aj + 84) >> 2] = 0
- bj = o[(oj + 4) >> 2]
- o[(aj + 88) >> 2] = o[oj >> 2]
- o[(aj + 92) >> 2] = bj
- bj = o[(oj + 12) >> 2]
- o[(aj + 96) >> 2] = o[(oj + 8) >> 2]
- o[(aj + 100) >> 2] = bj
- break a
- case 0:
- case 1:
- break b
- case 4:
- break c
- }
- }
- qj = Hk(124)
- Xe(qj, bj, nj, oj)
- o[qj >> 2] = 4784
- aj = (qj - -64) | 0
- o[aj >> 2] = 0
- o[(aj + 4) >> 2] = 0
- aj = o[(oj + 4) >> 2]
- o[(qj + 72) >> 2] = o[oj >> 2]
- o[(qj + 76) >> 2] = aj
- aj = o[(oj + 12) >> 2]
- o[(qj + 80) >> 2] = o[(oj + 8) >> 2]
- o[(qj + 84) >> 2] = aj
- o[(qj + 92) >> 2] = -1
- o[(qj + 96) >> 2] = -1
- o[(qj + 88) >> 2] = 1
- o[(qj + 60) >> 2] = 5004
- o[(qj + 100) >> 2] = -1
- o[(qj + 104) >> 2] = -1
- Mf((qj + 108) | 0)
- }
- o[Ye >> 2] = qj
- return
- }
- o[Ye >> 2] = aj
- }
- function pe(Ye, aj, bj, nj) {
- var oj = 0,
- rj = 0,
- sj = 0,
- tj = 0,
- uj = 0,
- vj = 0,
- wj = 0,
- xj = 0
- o[Ye >> 2] = 2732
- o[(Ye + 4) >> 2] = aj
- aj = o[(bj + 8) >> 2]
- oj = o[(bj + 12) >> 2]
- rj = o[(bj + 16) >> 2]
- tj = o[(bj + 20) >> 2]
- uj = o[bj >> 2]
- vj = o[(bj + 4) >> 2]
- o[(Ye + 40) >> 2] = 0
- sj = (Ye + 32) | 0
- o[sj >> 2] = 0
- o[(sj + 4) >> 2] = 0
- o[(Ye + 24) >> 2] = rj
- o[(Ye + 28) >> 2] = tj
- o[(Ye + 16) >> 2] = aj
- o[(Ye + 20) >> 2] = oj
- o[(Ye + 8) >> 2] = uj
- o[(Ye + 12) >> 2] = vj
- a: {
- aj = (o[(bj + 28) >> 2] - o[(bj + 24) >> 2]) | 0
- b: {
- if (!aj) {
- break b
- }
- oj = aj >> 2
- if (oj >>> 0 >= 1073741824) {
- break a
- }
- aj = Hk(aj)
- o[(Ye + 32) >> 2] = aj
- rj = (Ye + 36) | 0
- o[rj >> 2] = aj
- o[(Ye + 40) >> 2] = aj + (oj << 2)
- oj = o[(bj + 24) >> 2]
- bj = (o[(bj + 28) >> 2] - oj) | 0
- if ((bj | 0) < 1) {
- break b
- }
- ;(wj = rj), (xj = (wl(aj, oj, bj) + bj) | 0), (o[wj >> 2] = xj)
- }
- o[Ye >> 2] = 2676
- aj = o[(nj + 4) >> 2]
- o[(Ye + 44) >> 2] = o[nj >> 2]
- o[(Ye + 48) >> 2] = aj
- aj = o[(nj + 12) >> 2]
- o[(Ye + 52) >> 2] = o[(nj + 8) >> 2]
- o[(Ye + 56) >> 2] = aj
- return
- }
- Yk()
- D()
- }
- function qe(Ye) {
- Ye = Ye | 0
- var aj = 0
- o[Ye >> 2] = 2732
- aj = o[(Ye + 32) >> 2]
- if (aj) {
- o[(Ye + 36) >> 2] = aj
- ul(aj)
- }
- return Ye | 0
- }
- function re(Ye) {
- Ye = Ye | 0
- var bj = 0
- o[Ye >> 2] = 2732
- bj = o[(Ye + 32) >> 2]
- if (bj) {
- o[(Ye + 36) >> 2] = bj
- ul(bj)
- }
- ul(Ye)
- }
- function se(Ye) {
- Ye = Ye | 0
- var nj = 0
- if (!(!o[(Ye + 52) >> 2] | (!o[(Ye + 44) >> 2] | !o[(Ye + 48) >> 2]))) {
- nj = o[(Ye + 56) >> 2] != 0
- }
- return nj | 0
- }
- function te(o) {
- o = o | 0
- return 0
- }
- function ue(o, Ye) {
- o = o | 0
- Ye = Ye | 0
- return -1
- }
- function ve(Ye, yj) {
- Ye = Ye | 0
- yj = yj | 0
- var zj = 0,
- Aj = 0,
- Bj = 0,
- Cj = 0,
- Dj = 0,
- Ej = 0,
- Fj = 0,
- Gj = 0,
- Hj = 0,
- Ij = 0
- Aj = o[(yj + 12) >> 2]
- Fj = Aj
- zj = o[(yj + 20) >> 2]
- Cj = zj
- Dj = o[(yj + 16) >> 2]
- Bj = (Dj + 4) | 0
- if (Bj >>> 0 < 4) {
- zj = (zj + 1) | 0
- }
- Gj = o[(yj + 8) >> 2]
- Ej = Bj
- Bj = zj
- a: {
- if ((Aj | 0) < (zj | 0) ? 1 : (Aj | 0) <= (zj | 0) ? (Gj >>> 0 >= Ej >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Hj = o[yj >> 2]
- zj = (Hj + Dj) | 0
- Aj = p[zj | 0] | (p[(zj + 1) | 0] << 8) | ((p[(zj + 2) | 0] << 16) | (p[(zj + 3) | 0] << 24))
- o[(yj + 16) >> 2] = Ej
- o[(yj + 20) >> 2] = Bj
- zj = Cj
- Cj = (Dj + 8) | 0
- if (Cj >>> 0 < 8) {
- zj = (zj + 1) | 0
- }
- Bj = Cj
- Cj = zj
- if ((Fj | 0) < (zj | 0) ? 1 : (Fj | 0) <= (zj | 0) ? (Gj >>> 0 >= Bj >>> 0 ? 0 : 1) : 0) {
- break a
- }
- zj = (Ej + Hj) | 0
- zj = p[zj | 0] | (p[(zj + 1) | 0] << 8) | ((p[(zj + 2) | 0] << 16) | (p[(zj + 3) | 0] << 24))
- o[(yj + 16) >> 2] = Bj
- o[(yj + 20) >> 2] = Cj
- if ((Aj | 0) > (zj | 0)) {
- break a
- }
- o[(Ye + 16) >> 2] = zj
- o[(Ye + 12) >> 2] = Aj
- yj = Aj
- Aj = ((zj >> 31) - (((zj >>> 0 < yj >>> 0) + (yj >> 31)) | 0)) | 0
- yj = (zj - yj) | 0
- if ((!Aj & (yj >>> 0 > 2147483646)) | (Aj >>> 0 > 0)) {
- break a
- }
- Ij = 1
- yj = (yj + 1) | 0
- o[(Ye + 20) >> 2] = yj
- Aj = (Ye + 24) | 0
- zj = ((yj | 0) / 2) | 0
- o[Aj >> 2] = zj
- o[(Ye + 28) >> 2] = 0 - zj
- if (yj & 1) {
- break a
- }
- o[Aj >> 2] = zj + -1
- }
- return Ij | 0
- }
- function we(Ye, yj, Jj, Kj, Lj, Mj) {
- Ye = Ye | 0
- yj = yj | 0
- Jj = Jj | 0
- Kj = Kj | 0
- Lj = Lj | 0
- Mj = Mj | 0
- var Nj = 0,
- Oj = 0,
- Pj = 0,
- Qj = 0,
- Rj = 0,
- Sj = 0,
- Tj = 0,
- Uj = 0,
- Vj = 0,
- Wj = 0,
- Xj = 0,
- Yj = 0,
- Zj = 0,
- _j = 0,
- $j = 0,
- ak = 0
- o[(Ye + 8) >> 2] = Lj
- Mj = (Ye + 32) | 0
- Nj = o[Mj >> 2]
- Kj = (o[(Ye + 36) >> 2] - Nj) >> 2
- a: {
- if (Kj >>> 0 < Lj >>> 0) {
- Da(Mj, (Lj - Kj) | 0)
- break a
- }
- if (Kj >>> 0 <= Lj >>> 0) {
- break a
- }
- o[(Ye + 36) >> 2] = Nj + (Lj << 2)
- }
- $j = o[(Ye + 52) >> 2]
- Yj = o[(Ye + 48) >> 2]
- Kj = 0
- Mj = (Lj & 1073741823) != (Lj | 0) ? -1 : Lj << 2
- Wj = xl(Hk(Mj), 0, Mj)
- Sj = (Ye + 8) | 0
- Mj = o[Sj >> 2]
- b: {
- if ((Mj | 0) < 1) {
- break b
- }
- Tj = (Ye + 16) | 0
- Nj = (Ye + 32) | 0
- Uj = (Ye + 12) | 0
- while (1) {
- Mj = Kj << 2
- Pj = o[(Mj + Wj) >> 2]
- Rj = o[Tj >> 2]
- c: {
- if ((Pj | 0) > (Rj | 0)) {
- Oj = o[Nj >> 2]
- o[(Mj + Oj) >> 2] = Rj
- break c
- }
- Oj = o[Nj >> 2]
- Mj = (Mj + Oj) | 0
- Rj = o[Uj >> 2]
- if ((Pj | 0) < (Rj | 0)) {
- o[Mj >> 2] = Rj
- break c
- }
- o[Mj >> 2] = Pj
- }
- Kj = (Kj + 1) | 0
- Mj = o[Sj >> 2]
- if ((Kj | 0) < (Mj | 0)) {
- continue
- }
- break
- }
- if ((Mj | 0) < 1) {
- break b
- }
- Nj = 0
- Sj = (Ye + 16) | 0
- Pj = (Ye + 20) | 0
- Tj = (Ye + 8) | 0
- Uj = (Ye + 12) | 0
- while (1) {
- Mj = Nj << 2
- Kj = (Mj + Jj) | 0
- Mj = (o[(yj + Mj) >> 2] + o[(Mj + Oj) >> 2]) | 0
- o[Kj >> 2] = Mj
- d: {
- if ((Mj | 0) > o[Sj >> 2]) {
- Mj = (Mj - o[Pj >> 2]) | 0
- } else {
- if ((Mj | 0) >= o[Uj >> 2]) {
- break d
- }
- Mj = (Mj + o[Pj >> 2]) | 0
- }
- o[Kj >> 2] = Mj
- }
- Nj = (Nj + 1) | 0
- Mj = o[Tj >> 2]
- if ((Nj | 0) < (Mj | 0)) {
- continue
- }
- break
- }
- }
- Kj = o[(Ye + 56) >> 2]
- Zj = o[Kj >> 2]
- Kj = (o[(Kj + 4) >> 2] - Zj) | 0
- if ((Kj | 0) >= 5) {
- _j = Kj >> 2
- Sj = (Ye + 16) | 0
- Tj = (Ye + 32) | 0
- Uj = (Ye + 8) | 0
- Rj = (Ye + 20) | 0
- Xj = (Ye + 12) | 0
- ak = (Yj + 28) | 0
- Pj = 1
- while (1) {
- e: {
- f: {
- if (_j >>> 0 > Pj >>> 0) {
- Vj = u(Lj, Pj)
- Ye = o[((Pj << 2) + Zj) >> 2]
- if (((Ye | 0) == -1) | ((o[(o[Yj >> 2] + ((Ye >>> 3) & 536870908)) >> 2] >>> (Ye & 31)) & 1)) {
- break f
- }
- Ye = o[(o[(o[(Yj + 64) >> 2] + 12) >> 2] + (Ye << 2)) >> 2]
- if ((Ye | 0) == -1) {
- break f
- }
- Nj = o[$j >> 2]
- Kj = o[ak >> 2]
- Oj = o[(Nj + (o[(Kj + (Ye << 2)) >> 2] << 2)) >> 2]
- if ((Oj | 0) >= (Pj | 0)) {
- break f
- }
- Qj = (Ye + 1) | 0
- Qj = o[(Nj + (o[(Kj + (((Qj >>> 0) % 3 | 0 ? Qj : (Ye + -2) | 0) << 2)) >> 2] << 2)) >> 2]
- if ((Qj | 0) >= (Pj | 0)) {
- break f
- }
- Ye = o[(Nj + (o[(Kj + ((Ye + ((Ye >>> 0) % 3 | 0 ? -1 : 2)) << 2)) >> 2] << 2)) >> 2]
- if ((Ye | 0) >= (Pj | 0)) {
- break f
- }
- if ((Lj | 0) >= 1) {
- Ye = u(Ye, Lj)
- Nj = u(Lj, Qj)
- Oj = u(Lj, Oj)
- Kj = 0
- while (1) {
- o[((Kj << 2) + Wj) >> 2] = ((o[(((Ye + Kj) << 2) + Jj) >> 2] + o[(((Kj + Nj) << 2) + Jj) >> 2]) | 0) - o[(((Kj + Oj) << 2) + Jj) >> 2]
- Kj = (Kj + 1) | 0
- if ((Lj | 0) != (Kj | 0)) {
- continue
- }
- break
- }
- }
- if ((Mj | 0) < 1) {
- break e
- }
- Kj = 0
- while (1) {
- Ye = Kj << 2
- Mj = o[(Ye + Wj) >> 2]
- Nj = o[Sj >> 2]
- g: {
- if ((Mj | 0) > (Nj | 0)) {
- Oj = o[Tj >> 2]
- o[(Ye + Oj) >> 2] = Nj
- break g
- }
- Oj = o[Tj >> 2]
- Ye = (Ye + Oj) | 0
- Nj = o[Xj >> 2]
- if ((Mj | 0) < (Nj | 0)) {
- o[Ye >> 2] = Nj
- break g
- }
- o[Ye >> 2] = Mj
- }
- Kj = (Kj + 1) | 0
- Mj = o[Uj >> 2]
- if ((Kj | 0) < (Mj | 0)) {
- continue
- }
- break
- }
- Nj = 0
- if ((Mj | 0) < 1) {
- break e
- }
- Ye = Vj << 2
- Vj = (Ye + Jj) | 0
- Qj = (Ye + yj) | 0
- while (1) {
- Kj = Nj << 2
- Ye = (Kj + Vj) | 0
- Kj = (o[(Kj + Qj) >> 2] + o[(Kj + Oj) >> 2]) | 0
- o[Ye >> 2] = Kj
- h: {
- if ((Kj | 0) > o[Sj >> 2]) {
- Kj = (Kj - o[Rj >> 2]) | 0
- } else {
- if ((Kj | 0) >= o[Xj >> 2]) {
- break h
- }
- Kj = (Kj + o[Rj >> 2]) | 0
- }
- o[Ye >> 2] = Kj
- }
- Nj = (Nj + 1) | 0
- Mj = o[Uj >> 2]
- if ((Nj | 0) < (Mj | 0)) {
- continue
- }
- break
- }
- break e
- }
- Zk()
- D()
- }
- if ((Mj | 0) < 1) {
- break e
- }
- Nj = ((u((Pj + -1) | 0, Lj) << 2) + Jj) | 0
- Kj = 0
- while (1) {
- Ye = Kj << 2
- Mj = o[(Ye + Nj) >> 2]
- Qj = o[Sj >> 2]
- i: {
- if ((Mj | 0) > (Qj | 0)) {
- Oj = o[Tj >> 2]
- o[(Ye + Oj) >> 2] = Qj
- break i
- }
- Oj = o[Tj >> 2]
- Ye = (Ye + Oj) | 0
- Qj = o[Xj >> 2]
- if ((Mj | 0) < (Qj | 0)) {
- o[Ye >> 2] = Qj
- break i
- }
- o[Ye >> 2] = Mj
- }
- Kj = (Kj + 1) | 0
- Mj = o[Uj >> 2]
- if ((Kj | 0) < (Mj | 0)) {
- continue
- }
- break
- }
- Nj = 0
- if ((Mj | 0) < 1) {
- break e
- }
- Ye = Vj << 2
- Vj = (Ye + Jj) | 0
- Qj = (Ye + yj) | 0
- while (1) {
- Kj = Nj << 2
- Ye = (Kj + Vj) | 0
- Kj = (o[(Kj + Qj) >> 2] + o[(Kj + Oj) >> 2]) | 0
- o[Ye >> 2] = Kj
- j: {
- if ((Kj | 0) > o[Sj >> 2]) {
- Kj = (Kj - o[Rj >> 2]) | 0
- } else {
- if ((Kj | 0) >= o[Xj >> 2]) {
- break j
- }
- Kj = (Kj + o[Rj >> 2]) | 0
- }
- o[Ye >> 2] = Kj
- }
- Nj = (Nj + 1) | 0
- Mj = o[Uj >> 2]
- if ((Nj | 0) < (Mj | 0)) {
- continue
- }
- break
- }
- }
- Pj = (Pj + 1) | 0
- if ((Pj | 0) < (_j | 0)) {
- continue
- }
- break
- }
- }
- ul(Wj)
- return 1
- }
- function xe(Ye) {
- Ye = Ye | 0
- var yj = 0
- o[Ye >> 2] = 2788
- yj = o[(Ye + 96) >> 2]
- if (yj) {
- ul(yj)
- }
- yj = o[(Ye + 84) >> 2]
- if (yj) {
- ul(yj)
- }
- yj = o[(Ye + 72) >> 2]
- if (yj) {
- ul(yj)
- }
- yj = o[(Ye + 60) >> 2]
- if (yj) {
- ul(yj)
- }
- o[Ye >> 2] = 2732
- yj = o[(Ye + 32) >> 2]
- if (yj) {
- o[(Ye + 36) >> 2] = yj
- ul(yj)
- }
- return Ye | 0
- }
- function ye(Ye) {
- Ye = Ye | 0
- var Jj = 0
- o[Ye >> 2] = 2788
- Jj = o[(Ye + 96) >> 2]
- if (Jj) {
- ul(Jj)
- }
- Jj = o[(Ye + 84) >> 2]
- if (Jj) {
- ul(Jj)
- }
- Jj = o[(Ye + 72) >> 2]
- if (Jj) {
- ul(Jj)
- }
- Jj = o[(Ye + 60) >> 2]
- if (Jj) {
- ul(Jj)
- }
- o[Ye >> 2] = 2732
- Jj = o[(Ye + 32) >> 2]
- if (Jj) {
- o[(Ye + 36) >> 2] = Jj
- ul(Jj)
- }
- ul(Ye)
- }
- function ze(o) {
- o = o | 0
- return 4
- }
- function Ae(Ye, Kj) {
- Ye = Ye | 0
- Kj = Kj | 0
- var Lj = 0,
- Mj = 0,
- bk = 0,
- ck = 0,
- dk = 0,
- ek = 0,
- fk = 0,
- gk = 0,
- hk = 0,
- ik = 0,
- jk = 0
- fk = (R - 32) | 0
- R = fk
- a: {
- b: {
- while (1) {
- if (!Be(1, (fk + 28) | 0, Kj)) {
- break b
- }
- Lj = o[(fk + 28) >> 2]
- if (Lj) {
- ck = (((u(Mj, 12) + Ye) | 0) + 60) | 0
- Ce(ck, Lj)
- ek = Mf((fk + 8) | 0)
- if (!Nf(ek, Kj)) {
- break b
- }
- dk = 0
- while (1) {
- gk = 1 << (dk & 31)
- hk = Pf(ek)
- bk = (o[ck >> 2] + ((dk >>> 3) & 536870908)) | 0
- ik = bk
- if (hk) {
- bk = gk | o[bk >> 2]
- } else {
- bk = o[bk >> 2] & (gk ^ -1)
- }
- o[ik >> 2] = bk
- dk = (dk + 1) | 0
- if ((Lj | 0) != (dk | 0)) {
- continue
- }
- break
- }
- }
- Mj = (Mj + 1) | 0
- if ((Mj | 0) != 4) {
- continue
- }
- break
- }
- dk = 0
- Mj = o[(Kj + 12) >> 2]
- gk = Mj
- Lj = o[(Kj + 20) >> 2]
- bk = Lj
- ek = o[(Kj + 16) >> 2]
- ck = (ek + 4) | 0
- if (ck >>> 0 < 4) {
- Lj = (Lj + 1) | 0
- }
- ik = o[(Kj + 8) >> 2]
- hk = ck
- ck = Lj
- if ((Mj | 0) < (Lj | 0) ? 1 : (Mj | 0) <= (Lj | 0) ? (ik >>> 0 >= hk >>> 0 ? 0 : 1) : 0) {
- break a
- }
- jk = o[Kj >> 2]
- Lj = (jk + ek) | 0
- Mj = p[Lj | 0] | (p[(Lj + 1) | 0] << 8) | ((p[(Lj + 2) | 0] << 16) | (p[(Lj + 3) | 0] << 24))
- o[(Kj + 16) >> 2] = hk
- o[(Kj + 20) >> 2] = ck
- Lj = bk
- bk = (ek + 8) | 0
- if (bk >>> 0 < 8) {
- Lj = (Lj + 1) | 0
- }
- ck = bk
- bk = Lj
- if ((gk | 0) < (Lj | 0) ? 1 : (gk | 0) <= (Lj | 0) ? (ik >>> 0 >= ck >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Lj = (hk + jk) | 0
- Lj = p[Lj | 0] | (p[(Lj + 1) | 0] << 8) | ((p[(Lj + 2) | 0] << 16) | (p[(Lj + 3) | 0] << 24))
- o[(Kj + 16) >> 2] = ck
- o[(Kj + 20) >> 2] = bk
- if ((Mj | 0) > (Lj | 0)) {
- break a
- }
- o[(Ye + 16) >> 2] = Lj
- o[(Ye + 12) >> 2] = Mj
- Kj = Mj
- Mj = ((Lj >> 31) - (((Lj >>> 0 < Kj >>> 0) + (Kj >> 31)) | 0)) | 0
- Kj = (Lj - Kj) | 0
- if ((!Mj & (Kj >>> 0 > 2147483646)) | (Mj >>> 0 > 0)) {
- break a
- }
- dk = 1
- Kj = (Kj + 1) | 0
- o[(Ye + 20) >> 2] = Kj
- Mj = (Ye + 24) | 0
- Lj = ((Kj | 0) / 2) | 0
- o[Mj >> 2] = Lj
- o[(Ye + 28) >> 2] = 0 - Lj
- if (Kj & 1) {
- break a
- }
- o[Mj >> 2] = Lj + -1
- break a
- }
- dk = 0
- }
- R = (fk + 32) | 0
- return dk | 0
- }
- function Be(Ye, Kj, kk) {
- var lk = 0,
- mk = 0,
- nk = 0,
- ok = 0
- a: {
- if (Ye >>> 0 > 5) {
- break a
- }
- nk = o[(kk + 16) >> 2]
- lk = o[(kk + 12) >> 2]
- mk = o[(kk + 20) >> 2]
- if ((lk | 0) < (mk | 0) ? 1 : (lk | 0) <= (mk | 0) ? (r[(kk + 8) >> 2] > nk >>> 0 ? 0 : 1) : 0) {
- break a
- }
- lk = p[(nk + o[kk >> 2]) | 0]
- nk = (nk + 1) | 0
- if (nk >>> 0 < 1) {
- mk = (mk + 1) | 0
- }
- o[(kk + 16) >> 2] = nk
- o[(kk + 20) >> 2] = mk
- mk = Kj
- if (lk & 128) {
- if (!Be((Ye + 1) | 0, Kj, kk)) {
- break a
- }
- Ye = o[Kj >> 2] << 7
- o[Kj >> 2] = Ye
- lk = Ye | (lk & 127)
- }
- o[mk >> 2] = lk
- ok = 1
- }
- return ok
- }
- function Ce(Ye, Kj) {
- var kk = 0,
- pk = 0,
- qk = 0,
- rk = 0,
- sk = 0,
- tk = 0
- pk = (R - 32) | 0
- R = pk
- a: {
- kk = o[(Ye + 4) >> 2]
- b: {
- if (kk >>> 0 < Kj >>> 0) {
- sk = o[(Ye + 8) >> 2]
- qk = sk << 5
- rk = (Kj - kk) | 0
- c: {
- if (!((qk >>> 0 < rk >>> 0) | (kk >>> 0 > (qk - rk) >>> 0))) {
- o[(Ye + 4) >> 2] = Kj
- Kj = kk & 31
- Ye = (o[Ye >> 2] + ((kk >>> 3) & 536870908)) | 0
- break c
- }
- o[(pk + 24) >> 2] = 0
- o[(pk + 16) >> 2] = 0
- o[(pk + 20) >> 2] = 0
- if ((Kj | 0) <= -1) {
- break a
- }
- kk = (pk + 16) | 0
- if (qk >>> 0 <= 1073741822) {
- Kj = (Kj + 31) & -32
- qk = sk << 6
- Kj = qk >>> 0 < Kj >>> 0 ? Kj : qk
- } else {
- Kj = 2147483647
- }
- ab(kk, Kj)
- kk = o[(Ye + 4) >> 2]
- o[(pk + 20) >> 2] = kk + rk
- Kj = o[(pk + 16) >> 2]
- d: {
- if ((kk | 0) < 1) {
- kk = 0
- break d
- }
- sk = o[Ye >> 2]
- qk = (kk >>> 5) << 2
- Kj = (yl(Kj, sk, qk) + qk) | 0
- kk = kk & 31
- if (!kk) {
- kk = 0
- break d
- }
- tk = -1 >>> (32 - kk)
- o[Kj >> 2] = (o[Kj >> 2] & (tk ^ -1)) | (o[(qk + sk) >> 2] & tk)
- }
- o[(pk + 12) >> 2] = kk
- o[(pk + 8) >> 2] = Kj
- kk = o[(pk + 8) >> 2]
- Kj = o[(pk + 12) >> 2]
- qk = o[Ye >> 2]
- o[Ye >> 2] = o[(pk + 16) >> 2]
- o[(pk + 16) >> 2] = qk
- sk = o[(Ye + 4) >> 2]
- o[(Ye + 4) >> 2] = o[(pk + 20) >> 2]
- o[(pk + 20) >> 2] = sk
- Ye = (Ye + 8) | 0
- sk = o[Ye >> 2]
- o[Ye >> 2] = o[(pk + 24) >> 2]
- o[(pk + 24) >> 2] = sk
- if (qk) {
- ul(qk)
- }
- Ye = kk
- }
- if (!rk) {
- break b
- }
- if (Kj) {
- kk = (32 - Kj) | 0
- qk = kk >>> 0 > rk >>> 0 ? rk : kk
- o[Ye >> 2] = o[Ye >> 2] & (((-1 << Kj) & (-1 >>> (kk - qk))) ^ -1)
- rk = (rk - qk) | 0
- Ye = (Ye + 4) | 0
- }
- Kj = Ye
- Ye = (rk >>> 5) << 2
- Kj = xl(Kj, 0, Ye)
- kk = rk & 31
- if (!kk) {
- break b
- }
- Ye = (Ye + Kj) | 0
- o[Ye >> 2] = o[Ye >> 2] & ((-1 >>> (32 - kk)) ^ -1)
- break b
- }
- o[(Ye + 4) >> 2] = Kj
- }
- R = (pk + 32) | 0
- return
- }
- Yk()
- D()
- }
- function De(Ye, Kj, uk, vk, wk, xk) {
- Ye = Ye | 0
- Kj = Kj | 0
- uk = uk | 0
- vk = vk | 0
- wk = wk | 0
- xk = xk | 0
- var yk = 0,
- zk = 0,
- Ak = 0,
- Bk = 0,
- Ck = 0,
- Dk = 0,
- Ek = 0,
- Fk = 0,
- Gk = 0,
- Ik = 0,
- Jk = 0,
- Kk = 0,
- Lk = 0,
- Mk = 0,
- Nk = 0,
- Ok = 0,
- Pk = 0,
- Qk = 0,
- Rk = 0,
- Sk = 0,
- Tk = 0,
- Uk = 0,
- Vk = 0,
- Wk = 0,
- Xk = 0,
- _k = 0
- Ak = (R + -64) | 0
- R = Ak
- o[(Ye + 8) >> 2] = wk
- xk = (Ye + 32) | 0
- Bk = o[xk >> 2]
- vk = (o[(Ye + 36) >> 2] - Bk) >> 2
- a: {
- if (vk >>> 0 < wk >>> 0) {
- Da(xk, (wk - vk) | 0)
- break a
- }
- if (vk >>> 0 <= wk >>> 0) {
- break a
- }
- o[(Ye + 36) >> 2] = Bk + (wk << 2)
- }
- o[(Ak + 56) >> 2] = 0
- o[(Ak + 60) >> 2] = 0
- o[(Ak + 48) >> 2] = 0
- o[(Ak + 52) >> 2] = 0
- o[(Ak + 40) >> 2] = 0
- o[(Ak + 44) >> 2] = 0
- xk = (Ak + 32) | 0
- o[xk >> 2] = 0
- o[(xk + 4) >> 2] = 0
- o[(Ak + 24) >> 2] = 0
- o[(Ak + 28) >> 2] = 0
- o[(Ak + 16) >> 2] = 0
- o[(Ak + 20) >> 2] = 0
- o[Ak >> 2] = 0
- vk = 0
- if (wk) {
- yd((Ak + 16) | 0, wk, Ak)
- zk = o[(Ak + 28) >> 2]
- vk = o[xk >> 2]
- }
- o[Ak >> 2] = 0
- vk = (vk - zk) >> 2
- b: {
- if (vk >>> 0 >= wk >>> 0) {
- if (vk >>> 0 <= wk >>> 0) {
- break b
- }
- o[(Ak + 32) >> 2] = (wk << 2) + zk
- break b
- }
- yd((Ak + 16) | 12, (wk - vk) | 0, Ak)
- }
- o[Ak >> 2] = 0
- xk = o[(Ak + 40) >> 2]
- vk = (o[(Ak + 44) >> 2] - xk) >> 2
- c: {
- if (vk >>> 0 >= wk >>> 0) {
- if (vk >>> 0 <= wk >>> 0) {
- break c
- }
- o[(Ak + 44) >> 2] = xk + (wk << 2)
- break c
- }
- yd((Ak + 40) | 0, (wk - vk) | 0, Ak)
- }
- o[Ak >> 2] = 0
- xk = o[(Ak + 52) >> 2]
- vk = (o[(Ak + 56) >> 2] - xk) >> 2
- d: {
- if (vk >>> 0 >= wk >>> 0) {
- if (vk >>> 0 <= wk >>> 0) {
- break d
- }
- o[(Ak + 56) >> 2] = xk + (wk << 2)
- break d
- }
- yd((Ak + 52) | 0, (wk - vk) | 0, Ak)
- }
- Dk = (Ye + 8) | 0
- e: {
- if (o[Dk >> 2] <= 0) {
- break e
- }
- Ek = o[(Ak + 16) >> 2]
- zk = 0
- Gk = (Ye + 16) | 0
- vk = (Ye + 32) | 0
- Ck = (Ye + 12) | 0
- while (1) {
- xk = zk << 2
- yk = o[(xk + Ek) >> 2]
- Ik = o[Gk >> 2]
- f: {
- if ((yk | 0) > (Ik | 0)) {
- Bk = o[vk >> 2]
- o[(xk + Bk) >> 2] = Ik
- break f
- }
- Bk = o[vk >> 2]
- xk = (xk + Bk) | 0
- Ik = o[Ck >> 2]
- if ((yk | 0) < (Ik | 0)) {
- o[xk >> 2] = Ik
- break f
- }
- o[xk >> 2] = yk
- }
- zk = (zk + 1) | 0
- xk = o[Dk >> 2]
- if ((zk | 0) < (xk | 0)) {
- continue
- }
- break
- }
- if ((xk | 0) < 1) {
- break e
- }
- vk = 0
- Dk = (Ye + 16) | 0
- zk = (Ye + 20) | 0
- Ek = (Ye + 8) | 0
- Gk = (Ye + 12) | 0
- while (1) {
- yk = vk << 2
- xk = (yk + uk) | 0
- yk = (o[(Kj + yk) >> 2] + o[(yk + Bk) >> 2]) | 0
- o[xk >> 2] = yk
- g: {
- if ((yk | 0) > o[Dk >> 2]) {
- yk = (yk - o[zk >> 2]) | 0
- } else {
- if ((yk | 0) >= o[Gk >> 2]) {
- break g
- }
- yk = (yk + o[zk >> 2]) | 0
- }
- o[xk >> 2] = yk
- }
- vk = (vk + 1) | 0
- if ((vk | 0) < o[Ek >> 2]) {
- continue
- }
- break
- }
- }
- Wk = o[(Ye + 52) >> 2]
- Ek = o[(Ye + 48) >> 2]
- Qk = Hk(16)
- vk = Qk
- o[vk >> 2] = 0
- o[(vk + 4) >> 2] = 0
- o[(vk + 8) >> 2] = 0
- o[(vk + 12) >> 2] = 0
- o[(Ak + 8) >> 2] = 0
- o[Ak >> 2] = 0
- o[(Ak + 4) >> 2] = 0
- h: {
- if (wk) {
- if (wk >>> 0 >= 1073741824) {
- break h
- }
- vk = wk << 2
- Mk = Hk(vk)
- o[Ak >> 2] = Mk
- xk = (vk + Mk) | 0
- o[(Ak + 8) >> 2] = xk
- xl(Mk, 0, vk)
- o[(Ak + 4) >> 2] = xk
- }
- vk = 1
- xk = o[(Ye + 56) >> 2]
- Uk = o[xk >> 2]
- xk = (o[(xk + 4) >> 2] - Uk) | 0
- i: {
- if ((xk | 0) < 5) {
- break i
- }
- Vk = xk >> 2
- Xk = wk << 2
- Gk = (Ye + 8) | 0
- Ik = (Ye + 16) | 0
- Nk = (Ye + 32) | 0
- Ok = (Ye + 20) | 0
- Pk = (Ye + 12) | 0
- _k = (Ek + 28) | 0
- Dk = 1
- while (1) {
- j: {
- k: {
- l: {
- if (Vk >>> 0 > Dk >>> 0) {
- m: {
- n: {
- Bk = o[((Dk << 2) + Uk) >> 2]
- if ((Bk | 0) == -1) {
- break n
- }
- Fk = (Bk + ((Bk >>> 0) % 3 | 0 ? -1 : 2)) | 0
- Rk = Fk >>> 5
- Ck = 1
- Sk = 1 << (Fk & 31)
- Tk = o[Ek >> 2]
- xk = 0
- vk = Bk
- o: {
- while (1) {
- p: {
- if ((o[(Tk + ((vk >>> 3) & 536870908)) >> 2] >>> (vk & 31)) & 1) {
- break p
- }
- yk = o[(o[(o[(Ek + 64) >> 2] + 12) >> 2] + (vk << 2)) >> 2]
- if ((yk | 0) == -1) {
- break p
- }
- Kk = o[Wk >> 2]
- zk = o[_k >> 2]
- Lk = o[(Kk + (o[(zk + (yk << 2)) >> 2] << 2)) >> 2]
- if ((Lk | 0) >= (Dk | 0)) {
- break p
- }
- Jk = (yk + 1) | 0
- Jk = o[(Kk + (o[(zk + (((Jk >>> 0) % 3 | 0 ? Jk : (yk + -2) | 0) << 2)) >> 2] << 2)) >> 2]
- if ((Jk | 0) >= (Dk | 0)) {
- break p
- }
- yk = o[(Kk + (o[(zk + ((yk + ((yk >>> 0) % 3 | 0 ? -1 : 2)) << 2)) >> 2] << 2)) >> 2]
- if ((yk | 0) >= (Dk | 0)) {
- break p
- }
- if ((wk | 0) >= 1) {
- Kk = o[(((Ak + 16) | 0) + u(xk, 12)) >> 2]
- yk = u(wk, yk)
- Jk = u(wk, Jk)
- Lk = u(wk, Lk)
- zk = 0
- while (1) {
- o[(Kk + (zk << 2)) >> 2] =
- ((o[(((yk + zk) << 2) + uk) >> 2] + o[(((zk + Jk) << 2) + uk) >> 2]) | 0) - o[(((zk + Lk) << 2) + uk) >> 2]
- zk = (zk + 1) | 0
- if ((zk | 0) != (wk | 0)) {
- continue
- }
- break
- }
- }
- yk = 4
- xk = (xk + 1) | 0
- if ((xk | 0) == 4) {
- break o
- }
- }
- q: {
- if (Ck & 1) {
- zk = -1
- yk = (vk + 1) | 0
- vk = (yk >>> 0) % 3 | 0 ? yk : (vk + -2) | 0
- if (((vk | 0) == -1) | ((o[(o[Ek >> 2] + ((vk >>> 3) & 536870908)) >> 2] >>> (vk & 31)) & 1)) {
- break q
- }
- vk = o[(o[(o[(Ek + 64) >> 2] + 12) >> 2] + (vk << 2)) >> 2]
- if ((vk | 0) == -1) {
- break q
- }
- yk = (vk + 1) | 0
- zk = (yk >>> 0) % 3 | 0 ? yk : (vk + -2) | 0
- break q
- }
- zk = -1
- vk = (((vk >>> 0) % 3 | 0 ? -1 : 2) + vk) | 0
- if (((vk | 0) == -1) | ((o[(o[Ek >> 2] + ((vk >>> 3) & 536870908)) >> 2] >>> (vk & 31)) & 1)) {
- break q
- }
- vk = o[(o[(o[(Ek + 64) >> 2] + 12) >> 2] + (vk << 2)) >> 2]
- if ((vk | 0) == -1) {
- break q
- }
- if ((vk >>> 0) % 3) {
- zk = (vk + -1) | 0
- break q
- }
- zk = (vk + 2) | 0
- }
- r: {
- if ((zk | 0) == (Bk | 0)) {
- break r
- }
- vk = zk
- yk = (zk | 0) != -1
- zk = (yk | (Ck ^ -1)) & 1
- vk = zk ? vk : -1
- Ck = yk & Ck
- if (!(((Fk | 0) == -1) | zk)) {
- if (o[(o[Ek >> 2] + (Rk << 2)) >> 2] & Sk) {
- break r
- }
- yk = o[(o[(o[(Ek + 64) >> 2] + 12) >> 2] + (Fk << 2)) >> 2]
- if ((yk | 0) == -1) {
- break r
- }
- Ck = 0
- if ((yk >>> 0) % 3) {
- vk = (yk + -1) | 0
- } else {
- vk = (yk + 2) | 0
- }
- }
- if ((vk | 0) != -1) {
- continue
- }
- }
- break
- }
- yk = xk
- if ((yk | 0) < 1) {
- break n
- }
- }
- Fk = (wk | 0) < 1
- if (!Fk) {
- xl(Mk, 0, Xk)
- }
- vk = (yk + -1) | 0
- Ck = ((vk << 2) + Qk) | 0
- vk = (u(vk, 12) + Ye) | 0
- Kk = (vk + 60) | 0
- Rk = o[(vk - -64) >> 2]
- vk = 0
- Sk = o[Ak >> 2]
- Bk = 0
- xk = 0
- while (1) {
- zk = o[Ck >> 2]
- o[Ck >> 2] = zk + 1
- if (Rk >>> 0 <= zk >>> 0) {
- break i
- }
- s: {
- if ((o[(o[Kk >> 2] + ((zk >>> 3) & 536870908)) >> 2] >>> (zk & 31)) & 1) {
- break s
- }
- xk = (xk + 1) | 0
- if (Fk) {
- break s
- }
- Tk = o[(((Ak + 16) | 0) + u(Bk, 12)) >> 2]
- zk = 0
- while (1) {
- Lk = zk << 2
- Jk = (Lk + Sk) | 0
- o[Jk >> 2] = o[Jk >> 2] + o[(Lk + Tk) >> 2]
- zk = (zk + 1) | 0
- if ((zk | 0) != (wk | 0)) {
- continue
- }
- break
- }
- }
- Bk = (Bk + 1) | 0
- if ((yk | 0) != (Bk | 0)) {
- continue
- }
- break
- }
- Ck = u(wk, Dk)
- yk = Ck
- if (!xk) {
- break m
- }
- zk = 0
- if ((wk | 0) > 0) {
- break l
- }
- break k
- }
- yk = u(wk, Dk)
- }
- if (o[Gk >> 2] < 1) {
- break j
- }
- Ck = ((u((Dk + -1) | 0, wk) << 2) + uk) | 0
- zk = 0
- while (1) {
- vk = zk << 2
- xk = o[(vk + Ck) >> 2]
- Fk = o[Ik >> 2]
- t: {
- if ((xk | 0) > (Fk | 0)) {
- Bk = o[Nk >> 2]
- o[(vk + Bk) >> 2] = Fk
- break t
- }
- Bk = o[Nk >> 2]
- vk = (vk + Bk) | 0
- Fk = o[Pk >> 2]
- if ((xk | 0) < (Fk | 0)) {
- o[vk >> 2] = Fk
- break t
- }
- o[vk >> 2] = xk
- }
- zk = (zk + 1) | 0
- xk = o[Gk >> 2]
- if ((zk | 0) < (xk | 0)) {
- continue
- }
- break
- }
- vk = 0
- if ((xk | 0) < 1) {
- break j
- }
- xk = yk << 2
- zk = (xk + uk) | 0
- Ck = (Kj + xk) | 0
- while (1) {
- yk = vk << 2
- xk = (yk + zk) | 0
- yk = (o[(yk + Ck) >> 2] + o[(yk + Bk) >> 2]) | 0
- o[xk >> 2] = yk
- u: {
- if ((yk | 0) > o[Ik >> 2]) {
- yk = (yk - o[Ok >> 2]) | 0
- } else {
- if ((yk | 0) >= o[Pk >> 2]) {
- break u
- }
- yk = (yk + o[Ok >> 2]) | 0
- }
- o[xk >> 2] = yk
- }
- vk = (vk + 1) | 0
- if ((vk | 0) < o[Gk >> 2]) {
- continue
- }
- break
- }
- break j
- }
- Zk()
- D()
- }
- while (1) {
- vk = ((zk << 2) + Mk) | 0
- o[vk >> 2] = o[vk >> 2] / (xk | 0)
- zk = (zk + 1) | 0
- if ((zk | 0) != (wk | 0)) {
- continue
- }
- break
- }
- }
- if (o[Gk >> 2] < 1) {
- break j
- }
- zk = 0
- while (1) {
- vk = zk << 2
- xk = o[(vk + Mk) >> 2]
- yk = o[Ik >> 2]
- v: {
- if ((xk | 0) > (yk | 0)) {
- Bk = o[Nk >> 2]
- o[(vk + Bk) >> 2] = yk
- break v
- }
- Bk = o[Nk >> 2]
- vk = (vk + Bk) | 0
- yk = o[Pk >> 2]
- if ((xk | 0) < (yk | 0)) {
- o[vk >> 2] = yk
- break v
- }
- o[vk >> 2] = xk
- }
- zk = (zk + 1) | 0
- xk = o[Gk >> 2]
- if ((zk | 0) < (xk | 0)) {
- continue
- }
- break
- }
- vk = 0
- if ((xk | 0) < 1) {
- break j
- }
- xk = Ck << 2
- zk = (xk + uk) | 0
- Ck = (Kj + xk) | 0
- while (1) {
- yk = vk << 2
- xk = (yk + zk) | 0
- yk = (o[(yk + Ck) >> 2] + o[(yk + Bk) >> 2]) | 0
- o[xk >> 2] = yk
- w: {
- if ((yk | 0) > o[Ik >> 2]) {
- yk = (yk - o[Ok >> 2]) | 0
- } else {
- if ((yk | 0) >= o[Pk >> 2]) {
- break w
- }
- yk = (yk + o[Ok >> 2]) | 0
- }
- o[xk >> 2] = yk
- }
- vk = (vk + 1) | 0
- if ((vk | 0) < o[Gk >> 2]) {
- continue
- }
- break
- }
- }
- vk = 1
- Dk = (Dk + 1) | 0
- if ((Dk | 0) < (Vk | 0)) {
- continue
- }
- break
- }
- }
- Ye = o[Ak >> 2]
- if (Ye) {
- o[(Ak + 4) >> 2] = Ye
- ul(Ye)
- }
- ul(Qk)
- Ye = o[(Ak + 52) >> 2]
- if (Ye) {
- o[(Ak + 56) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(Ak + 40) >> 2]
- if (Ye) {
- o[(Ak + 44) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(Ak + 28) >> 2]
- if (Ye) {
- o[(Ak + 32) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(Ak + 16) >> 2]
- if (Ye) {
- o[(Ak + 20) >> 2] = Ye
- ul(Ye)
- }
- R = (Ak - -64) | 0
- return vk | 0
- }
- Yk()
- D()
- }
- function Ee(Ye) {
- Ye = Ye | 0
- var Kj = 0
- o[Ye >> 2] = 3036
- Kj = o[(Ye + 76) >> 2]
- if (Kj) {
- ul(Kj)
- }
- o[Ye >> 2] = 2732
- Kj = o[(Ye + 32) >> 2]
- if (Kj) {
- o[(Ye + 36) >> 2] = Kj
- ul(Kj)
- }
- return Ye | 0
- }
- function Fe(Ye) {
- Ye = Ye | 0
- var uk = 0
- o[Ye >> 2] = 3036
- uk = o[(Ye + 76) >> 2]
- if (uk) {
- ul(uk)
- }
- o[Ye >> 2] = 2732
- uk = o[(Ye + 32) >> 2]
- if (uk) {
- o[(Ye + 36) >> 2] = uk
- ul(uk)
- }
- ul(Ye)
- }
- function Ge(o) {
- o = o | 0
- return 5
- }
- function He(Ye) {
- Ye = Ye | 0
- if (!(!o[(Ye + 60) >> 2] | !o[(Ye + 44) >> 2] | (!o[(Ye + 48) >> 2] | !o[(Ye + 52) >> 2]))) {
- return (o[(Ye + 56) >> 2] != 0) | 0
- }
- return 0
- }
- function Ie(Ye, vk) {
- Ye = Ye | 0
- vk = vk | 0
- var wk = 0
- if (!(o[(vk + 56) >> 2] | !vk | (p[(vk + 24) | 0] != 3))) {
- o[(Ye + 60) >> 2] = vk
- wk = 1
- }
- return wk | 0
- }
- function Je(Ye, vk) {
- Ye = Ye | 0
- vk = vk | 0
- var xk = 0,
- Hk = 0,
- Yk = 0,
- Zk = 0,
- $k = 0,
- al = 0,
- bl = 0,
- cl = 0,
- dl = 0,
- el = 0,
- fl = 0
- cl = (R - 16) | 0
- R = cl
- Yk = o[(vk + 12) >> 2]
- xk = o[(vk + 20) >> 2]
- Zk = o[(vk + 16) >> 2]
- Hk = (Zk + 4) | 0
- if (Hk >>> 0 < 4) {
- xk = (xk + 1) | 0
- }
- $k = Hk
- Hk = xk
- a: {
- if ((Yk | 0) < (xk | 0) ? 1 : (Yk | 0) <= (xk | 0) ? (r[(vk + 8) >> 2] >= $k >>> 0 ? 0 : 1) : 0) {
- break a
- }
- xk = (Zk + o[vk >> 2]) | 0
- xk = p[xk | 0] | (p[(xk + 1) | 0] << 8) | ((p[(xk + 2) | 0] << 16) | (p[(xk + 3) | 0] << 24))
- o[(vk + 16) >> 2] = $k
- o[(vk + 20) >> 2] = Hk
- if ((xk | 0) < 0) {
- break a
- }
- Ce((Ye + 76) | 0, xk)
- $k = Mf(cl)
- b: {
- if (!Nf($k, vk)) {
- break b
- }
- if ((xk | 0) >= 1) {
- Yk = 1
- while (1) {
- Zk = 1 << (bl & 31)
- al = Pf($k)
- Hk = (o[(Ye + 76) >> 2] + ((bl >>> 3) & 536870908)) | 0
- Yk = Yk ^ al
- al = o[Hk >> 2] | Zk
- c: {
- if (!(Yk & 1)) {
- break c
- }
- al = o[Hk >> 2] & (Zk ^ -1)
- }
- Zk = al
- Yk = Yk ^ 1
- o[Hk >> 2] = Zk
- bl = (bl + 1) | 0
- if ((xk | 0) != (bl | 0)) {
- continue
- }
- break
- }
- }
- Hk = o[(vk + 12) >> 2]
- bl = Hk
- xk = o[(vk + 20) >> 2]
- Yk = xk
- $k = o[(vk + 16) >> 2]
- Zk = ($k + 4) | 0
- if (Zk >>> 0 < 4) {
- xk = (xk + 1) | 0
- }
- dl = o[(vk + 8) >> 2]
- al = Zk
- Zk = xk
- if ((Hk | 0) < (xk | 0) ? 1 : (Hk | 0) <= (xk | 0) ? (dl >>> 0 >= al >>> 0 ? 0 : 1) : 0) {
- break b
- }
- el = o[vk >> 2]
- xk = (el + $k) | 0
- Hk = p[xk | 0] | (p[(xk + 1) | 0] << 8) | ((p[(xk + 2) | 0] << 16) | (p[(xk + 3) | 0] << 24))
- o[(vk + 16) >> 2] = al
- o[(vk + 20) >> 2] = Zk
- xk = Yk
- Yk = ($k + 8) | 0
- if (Yk >>> 0 < 8) {
- xk = (xk + 1) | 0
- }
- Zk = Yk
- Yk = xk
- if ((bl | 0) < (xk | 0) ? 1 : (bl | 0) <= (xk | 0) ? (dl >>> 0 >= Zk >>> 0 ? 0 : 1) : 0) {
- break b
- }
- xk = (al + el) | 0
- xk = p[xk | 0] | (p[(xk + 1) | 0] << 8) | ((p[(xk + 2) | 0] << 16) | (p[(xk + 3) | 0] << 24))
- o[(vk + 16) >> 2] = Zk
- o[(vk + 20) >> 2] = Yk
- if ((Hk | 0) > (xk | 0)) {
- break b
- }
- o[(Ye + 16) >> 2] = xk
- o[(Ye + 12) >> 2] = Hk
- vk = Hk
- Hk = ((xk >> 31) - (((xk >>> 0 < vk >>> 0) + (vk >> 31)) | 0)) | 0
- vk = (xk - vk) | 0
- if ((!Hk & (vk >>> 0 > 2147483646)) | (Hk >>> 0 > 0)) {
- break b
- }
- fl = 1
- vk = (vk + 1) | 0
- o[(Ye + 20) >> 2] = vk
- Hk = (Ye + 24) | 0
- xk = ((vk | 0) / 2) | 0
- o[Hk >> 2] = xk
- o[(Ye + 28) >> 2] = 0 - xk
- if (vk & 1) {
- break b
- }
- o[Hk >> 2] = xk + -1
- }
- }
- R = (cl + 16) | 0
- return fl | 0
- }
- function Ke(Ye, vk, gl, hl, il, jl) {
- Ye = Ye | 0
- vk = vk | 0
- gl = gl | 0
- hl = hl | 0
- il = il | 0
- jl = jl | 0
- var kl = 0,
- ll = 0,
- ml = 0,
- nl = 0,
- ol = 0,
- pl = 0,
- ql = 0,
- rl = 0,
- sl = 0,
- tl = 0,
- ul = 0,
- vl = 0
- hl = 0
- a: {
- if ((il | 0) != 2) {
- break a
- }
- o[(Ye + 8) >> 2] = 2
- o[(Ye - -64) >> 2] = jl
- hl = (Ye + 32) | 0
- il = o[hl >> 2]
- jl = (o[(Ye + 36) >> 2] - il) | 0
- kl = jl >> 2
- b: {
- if (kl >>> 0 <= 1) {
- Da(hl, (2 - kl) | 0)
- break b
- }
- if ((jl | 0) == 8) {
- break b
- }
- o[(Ye + 36) >> 2] = il + 8
- }
- hl = 1
- il = o[(Ye + 56) >> 2]
- jl = o[(il + 4) >> 2]
- il = o[il >> 2]
- kl = (jl - il) | 0
- if ((kl | 0) < 1) {
- break a
- }
- if ((il | 0) != (jl | 0)) {
- sl = (Ye + 60) | 0
- tl = kl >> 2
- kl = (Ye + 8) | 0
- ol = (Ye + 16) | 0
- pl = (Ye + 32) | 0
- ql = (Ye + 20) | 0
- rl = (Ye + 12) | 0
- ul = (Ye + 56) | 0
- while (1) {
- if (!Le(sl, o[((ml << 2) + il) >> 2], gl, ml)) {
- hl = 0
- break a
- }
- c: {
- if (o[kl >> 2] < 1) {
- break c
- }
- il = 0
- while (1) {
- hl = il << 2
- jl = o[(((hl + Ye) | 0) + 68) >> 2]
- ll = o[ol >> 2]
- d: {
- if ((jl | 0) > (ll | 0)) {
- nl = o[pl >> 2]
- o[(hl + nl) >> 2] = ll
- break d
- }
- nl = o[pl >> 2]
- hl = (hl + nl) | 0
- ll = o[rl >> 2]
- if ((jl | 0) < (ll | 0)) {
- o[hl >> 2] = ll
- break d
- }
- o[hl >> 2] = jl
- }
- il = (il + 1) | 0
- hl = o[kl >> 2]
- if ((il | 0) < (hl | 0)) {
- continue
- }
- break
- }
- jl = 0
- if ((hl | 0) < 1) {
- break c
- }
- hl = ml << 3
- ll = (hl + gl) | 0
- vl = (vk + hl) | 0
- while (1) {
- il = jl << 2
- hl = (il + ll) | 0
- il = (o[(il + vl) >> 2] + o[(il + nl) >> 2]) | 0
- o[hl >> 2] = il
- e: {
- if ((il | 0) > o[ol >> 2]) {
- il = (il - o[ql >> 2]) | 0
- } else {
- if ((il | 0) >= o[rl >> 2]) {
- break e
- }
- il = (il + o[ql >> 2]) | 0
- }
- o[hl >> 2] = il
- }
- jl = (jl + 1) | 0
- if ((jl | 0) < o[kl >> 2]) {
- continue
- }
- break
- }
- }
- hl = 1
- ml = (ml + 1) | 0
- if ((ml | 0) >= (tl | 0)) {
- break a
- }
- hl = o[ul >> 2]
- il = o[hl >> 2]
- if (((o[(hl + 4) >> 2] - il) >> 2) >>> 0 > ml >>> 0) {
- continue
- }
- break
- }
- }
- Zk()
- D()
- }
- return hl | 0
- }
- function Le(Ye, vk, gl, hl) {
- var il = 0,
- jl = 0,
- wl = 0,
- xl = 0,
- yl = 0,
- zl = 0,
- Al = 0,
- Bl = 0,
- Cl = 0,
- Dl = 0,
- El = 0,
- Fl = 0,
- Gl = 0,
- Hl = 0,
- Il = 0,
- Jl = 0,
- Kl = 0,
- Ll = 0,
- Ml = 0,
- Nl = 0,
- Ol = 0,
- Pl = 0,
- Ql = 0,
- Rl = 0,
- Sl = 0
- wl = (R - 80) | 0
- R = wl
- jl = -1
- il = -1
- a: {
- if ((vk | 0) == -1) {
- break a
- }
- il = (vk + 1) | 0
- jl = (il >>> 0) % 3 | 0 ? il : (vk + -2) | 0
- il = (vk + -1) | 0
- if ((vk >>> 0) % 3) {
- break a
- }
- il = (vk + 2) | 0
- }
- xl = o[(Ye + 36) >> 2]
- vk = o[xl >> 2]
- b: {
- c: {
- d: {
- e: {
- f: {
- xl = (o[(xl + 4) >> 2] - vk) >> 2
- yl = jl << 2
- jl = o[(o[(Ye + 32) >> 2] + 28) >> 2]
- zl = o[(yl + jl) >> 2]
- if (xl >>> 0 <= zl >>> 0) {
- break f
- }
- il = o[(jl + (il << 2)) >> 2]
- if (xl >>> 0 <= il >>> 0) {
- break f
- }
- g: {
- h: {
- Cl = o[(vk + (zl << 2)) >> 2]
- Fl = (Cl | 0) >= (hl | 0)
- if (Fl) {
- break h
- }
- jl = o[(vk + (il << 2)) >> 2]
- if ((jl | 0) >= (hl | 0)) {
- break h
- }
- vk = jl << 3
- Kl = o[((vk | 4) + gl) >> 2]
- il = Cl << 3
- Dl = o[((il | 4) + gl) >> 2]
- Hl = o[(vk + gl) >> 2]
- Jl = o[(gl + il) >> 2]
- if (!(((Hl | 0) != (Jl | 0)) | ((Dl | 0) != (Kl | 0)))) {
- o[(Ye + 8) >> 2] = Jl
- o[(Ye + 12) >> 2] = Dl
- break g
- }
- vk = o[(o[(Ye + 4) >> 2] + (hl << 2)) >> 2]
- o[(wl + 72) >> 2] = 0
- o[(wl + 76) >> 2] = 0
- il = (wl - -64) | 0
- o[il >> 2] = 0
- o[(il + 4) >> 2] = 0
- o[(wl + 56) >> 2] = 0
- o[(wl + 60) >> 2] = 0
- il = o[Ye >> 2]
- if (!p[(il + 84) | 0]) {
- vk = o[(o[(il + 68) >> 2] + (vk << 2)) >> 2]
- }
- Me(il, vk, m[(il + 24) | 0], (wl + 56) | 0)
- vk = o[(o[(Ye + 4) >> 2] + (Cl << 2)) >> 2]
- o[(wl + 48) >> 2] = 0
- o[(wl + 52) >> 2] = 0
- o[(wl + 40) >> 2] = 0
- o[(wl + 44) >> 2] = 0
- o[(wl + 32) >> 2] = 0
- o[(wl + 36) >> 2] = 0
- il = o[Ye >> 2]
- if (!p[(il + 84) | 0]) {
- vk = o[(o[(il + 68) >> 2] + (vk << 2)) >> 2]
- }
- Me(il, vk, m[(il + 24) | 0], (wl + 32) | 0)
- vk = o[(o[(Ye + 4) >> 2] + (jl << 2)) >> 2]
- o[(wl + 24) >> 2] = 0
- o[(wl + 28) >> 2] = 0
- o[(wl + 16) >> 2] = 0
- o[(wl + 20) >> 2] = 0
- o[(wl + 8) >> 2] = 0
- o[(wl + 12) >> 2] = 0
- il = o[Ye >> 2]
- if (!p[(il + 84) | 0]) {
- vk = o[(o[(il + 68) >> 2] + (vk << 2)) >> 2]
- }
- Me(il, vk, m[(il + 24) | 0], (wl + 8) | 0)
- Ll = o[(wl + 44) >> 2]
- vk = o[(wl + 16) >> 2]
- yl = o[(wl + 40) >> 2]
- il = yl
- jl = (o[(wl + 20) >> 2] - ((Ll + (vk >>> 0 < il >>> 0)) | 0)) | 0
- Nl = (vk - il) | 0
- vk = Vl(Nl, jl, Nl, jl)
- il = T
- Bl = vk
- Ml = o[(wl + 36) >> 2]
- vk = o[(wl + 8) >> 2]
- Al = o[(wl + 32) >> 2]
- zl = Al
- xl = (o[(wl + 12) >> 2] - ((Ml + (vk >>> 0 < zl >>> 0)) | 0)) | 0
- Ol = (vk - zl) | 0
- zl = Vl(Ol, xl, Ol, xl)
- vk = (Bl + zl) | 0
- il = (T + il) | 0
- il = vk >>> 0 < zl >>> 0 ? (il + 1) | 0 : il
- Gl = vk
- Ql = o[(wl + 52) >> 2]
- vk = o[(wl + 24) >> 2]
- Bl = o[(wl + 48) >> 2]
- zl = Bl
- El = (o[(wl + 28) >> 2] - ((Ql + (vk >>> 0 < zl >>> 0)) | 0)) | 0
- Pl = (vk - zl) | 0
- zl = Vl(Pl, El, Pl, El)
- vk = (Gl + zl) | 0
- il = (T + il) | 0
- Il = vk
- zl = vk >>> 0 < zl >>> 0 ? (il + 1) | 0 : il
- if (!(vk | zl)) {
- break h
- }
- hl = 1
- vk = 0
- il = o[(wl + 64) >> 2]
- gl = (o[(wl + 68) >> 2] - (((il >>> 0 < yl >>> 0) + Ll) | 0)) | 0
- il = (il - yl) | 0
- Cl = il
- Fl = gl
- gl = Vl(Nl, jl, il, gl)
- il = T
- Gl = gl
- yl = o[(wl + 56) >> 2]
- gl = (yl - Al) | 0
- Ll = (o[(wl + 60) >> 2] - (((yl >>> 0 < Al >>> 0) + Ml) | 0)) | 0
- Al = Vl(gl, Ll, Ol, xl)
- yl = (Gl + Al) | 0
- il = (T + il) | 0
- il = yl >>> 0 < Al >>> 0 ? (il + 1) | 0 : il
- Gl = yl
- yl = o[(wl + 72) >> 2]
- Al = (yl - Bl) | 0
- Ml = (o[(wl + 76) >> 2] - (((yl >>> 0 < Bl >>> 0) + Ql) | 0)) | 0
- Bl = Vl(Al, Ml, Pl, El)
- yl = (Gl + Bl) | 0
- il = (T + il) | 0
- il = yl >>> 0 < Bl >>> 0 ? (il + 1) | 0 : il
- Bl = yl
- yl = il
- jl = Wl(Vl(Bl, il, Nl, jl), T, Il, zl)
- Fl = (Fl - ((T + (Cl >>> 0 < jl >>> 0)) | 0)) | 0
- jl = (Cl - jl) | 0
- jl = Vl(jl, Fl, jl, Fl)
- Cl = T
- Gl = jl
- il = Wl(Vl(Ol, xl, Bl, il), T, Il, zl)
- jl = (Ll - ((T + (gl >>> 0 < il >>> 0)) | 0)) | 0
- gl = (gl - il) | 0
- jl = Vl(gl, jl, gl, jl)
- gl = (Gl + jl) | 0
- il = (T + Cl) | 0
- il = gl >>> 0 < jl >>> 0 ? (il + 1) | 0 : il
- xl = gl
- gl = Wl(Vl(Bl, yl, Pl, El), T, Il, zl)
- jl = (Ml - ((T + (Al >>> 0 < gl >>> 0)) | 0)) | 0
- gl = (Al - gl) | 0
- jl = Vl(gl, jl, gl, jl)
- gl = (xl + jl) | 0
- il = (T + il) | 0
- jl = Vl(gl, gl >>> 0 < jl >>> 0 ? (il + 1) | 0 : il, Il, zl)
- gl = T
- xl = gl
- if ((!gl & (jl >>> 0 <= 1)) | (gl >>> 0 < 0)) {
- break e
- }
- El = jl
- gl = xl
- while (1) {
- il = (vk << 1) | (hl >>> 31)
- hl = hl << 1
- vk = il
- Al = (!gl & (El >>> 0 > 7)) | (gl >>> 0 > 0)
- El = ((gl & 3) << 30) | (El >>> 2)
- gl = gl >>> 2
- if (Al) {
- continue
- }
- break
- }
- break d
- }
- il = Ye
- if (Fl) {
- if ((hl | 0) <= 0) {
- o[(Ye + 8) >> 2] = 0
- o[(Ye + 12) >> 2] = 0
- break g
- }
- vk = ((hl << 1) + -2) | 0
- } else {
- vk = Cl << 1
- }
- vk = ((vk << 2) + gl) | 0
- o[(il + 8) >> 2] = o[vk >> 2]
- o[(Ye + 12) >> 2] = o[(vk + 4) >> 2]
- }
- gl = 1
- break b
- }
- Zk()
- D()
- }
- hl = jl
- vk = xl
- if (jl - 1) {
- break c
- }
- }
- while (1) {
- gl = (Xl(jl, xl, hl, vk) + hl) | 0
- il = (vk + T) | 0
- il = gl >>> 0 < hl >>> 0 ? (il + 1) | 0 : il
- hl = ((il & 1) << 31) | (gl >>> 1)
- vk = il >>> 1
- gl = Vl(hl, vk, hl, vk)
- il = T
- if ((((xl | 0) == (il | 0)) & (gl >>> 0 > jl >>> 0)) | (il >>> 0 > xl >>> 0)) {
- continue
- }
- break
- }
- }
- il = o[(Ye + 20) >> 2]
- gl = 0
- if (!il) {
- break b
- }
- xl = (il + -1) | 0
- El = o[(o[(Ye + 16) >> 2] + ((xl >>> 3) & 536870908)) >> 2]
- o[(Ye + 20) >> 2] = xl
- gl = Kl
- il = Dl
- Al = (gl - il) | 0
- Dl = il >> 31
- Kl = ((gl >> 31) - ((Dl + (gl >>> 0 < il >>> 0)) | 0)) | 0
- gl = Vl(Bl, yl, Al, Kl)
- jl = T
- Dl = Vl(il, Dl, Il, zl)
- gl = (Dl + gl) | 0
- il = (T + jl) | 0
- il = gl >>> 0 < Dl >>> 0 ? (il + 1) | 0 : il
- Gl = gl
- gl = Hl
- jl = Jl
- Cl = (gl - jl) | 0
- Jl = jl >> 31
- Dl = ((gl >> 31) - ((Jl + (gl >>> 0 < jl >>> 0)) | 0)) | 0
- gl = Vl(hl, vk, Cl, Dl)
- Hl = gl
- gl = (El >>> (xl & 31)) & 1
- Fl = gl ? (0 - Hl) | 0 : Hl
- xl = (Gl + Fl) | 0
- El = il
- il = T
- il = (El + (gl ? (0 - ((il + (0 < Hl >>> 0)) | 0)) | 0 : il)) | 0
- ;(Rl = Ye), (Sl = Wl(xl, xl >>> 0 < Fl >>> 0 ? (il + 1) | 0 : il, Il, zl)), (o[(Rl + 12) >> 2] = Sl)
- il = Vl(Bl, yl, Cl, Dl)
- xl = T
- Hl = Ye
- jl = Vl(jl, Jl, Il, zl)
- Ye = (jl + il) | 0
- il = (T + xl) | 0
- il = Ye >>> 0 < jl >>> 0 ? (il + 1) | 0 : il
- yl = Ye
- Ye = Vl(hl, vk, Al, Kl)
- hl = gl ? Ye : (0 - Ye) | 0
- vk = (yl + hl) | 0
- yl = il
- il = T
- Ye = (yl + (gl ? il : (0 - (((0 < Ye >>> 0) + il) | 0)) | 0)) | 0
- ;(Rl = Hl), (Sl = Wl(vk, vk >>> 0 < hl >>> 0 ? (Ye + 1) | 0 : Ye, Il, zl)), (o[(Rl + 8) >> 2] = Sl)
- gl = 1
- }
- R = (wl + 80) | 0
- return gl
- }
- function Me(Ye, vk, gl, hl) {
- var Tl = 0,
- Ul = 0,
- Wl = 0,
- Xl = 0,
- Yl = v(0),
- Zl = 0,
- _l = 0
- a: {
- b: {
- if (!hl) {
- break b
- }
- Tl = (o[(Ye + 28) >> 2] + -1) | 0
- if (Tl >>> 0 > 10) {
- break b
- }
- c: {
- d: {
- e: {
- switch ((Tl - 1) | 0) {
- default:
- Tl = m[(Ye + 24) | 0]
- if ((((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24 >= 1) {
- Wl = o[o[Ye >> 2] >> 2]
- Tl = (o[(Ye + 48) >> 2] + Vl(o[(Ye + 40) >> 2], o[(Ye + 44) >> 2], vk, 0)) | 0
- vk = (Wl + Tl) | 0
- while (1) {
- Tl = ((Ul << 3) + hl) | 0
- Xl = m[vk | 0]
- o[Tl >> 2] = Xl
- o[(Tl + 4) >> 2] = Xl >> 31
- vk = (vk + 1) | 0
- Ul = (Ul + 1) | 0
- Tl = m[(Ye + 24) | 0]
- if ((Ul | 0) < (((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Tl | 0) >= (gl | 0)) {
- break b
- }
- break a
- case 0:
- Tl = m[(Ye + 24) | 0]
- if ((((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24 >= 1) {
- Wl = o[o[Ye >> 2] >> 2]
- Tl = (o[(Ye + 48) >> 2] + Vl(o[(Ye + 40) >> 2], o[(Ye + 44) >> 2], vk, 0)) | 0
- vk = (Wl + Tl) | 0
- while (1) {
- Tl = ((Ul << 3) + hl) | 0
- o[Tl >> 2] = p[vk | 0]
- o[(Tl + 4) >> 2] = 0
- vk = (vk + 1) | 0
- Ul = (Ul + 1) | 0
- Tl = m[(Ye + 24) | 0]
- if ((Ul | 0) < (((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Tl | 0) >= (gl | 0)) {
- break b
- }
- break a
- case 1:
- Tl = m[(Ye + 24) | 0]
- if ((((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24 >= 1) {
- Wl = o[o[Ye >> 2] >> 2]
- Tl = (o[(Ye + 48) >> 2] + Vl(o[(Ye + 40) >> 2], o[(Ye + 44) >> 2], vk, 0)) | 0
- vk = (Wl + Tl) | 0
- while (1) {
- Tl = ((Ul << 3) + hl) | 0
- Xl = n[vk >> 1]
- o[Tl >> 2] = Xl
- o[(Tl + 4) >> 2] = Xl >> 31
- vk = (vk + 2) | 0
- Ul = (Ul + 1) | 0
- Tl = m[(Ye + 24) | 0]
- if ((Ul | 0) < (((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Tl | 0) >= (gl | 0)) {
- break b
- }
- break a
- case 2:
- Tl = m[(Ye + 24) | 0]
- if ((((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24 >= 1) {
- Wl = o[o[Ye >> 2] >> 2]
- Tl = (o[(Ye + 48) >> 2] + Vl(o[(Ye + 40) >> 2], o[(Ye + 44) >> 2], vk, 0)) | 0
- vk = (Wl + Tl) | 0
- while (1) {
- Tl = ((Ul << 3) + hl) | 0
- o[Tl >> 2] = q[vk >> 1]
- o[(Tl + 4) >> 2] = 0
- vk = (vk + 2) | 0
- Ul = (Ul + 1) | 0
- Tl = m[(Ye + 24) | 0]
- if ((Ul | 0) < (((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Tl | 0) >= (gl | 0)) {
- break b
- }
- break a
- case 3:
- Tl = m[(Ye + 24) | 0]
- if ((((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24 >= 1) {
- Wl = o[o[Ye >> 2] >> 2]
- Tl = (o[(Ye + 48) >> 2] + Vl(o[(Ye + 40) >> 2], o[(Ye + 44) >> 2], vk, 0)) | 0
- vk = (Wl + Tl) | 0
- while (1) {
- Tl = ((Ul << 3) + hl) | 0
- Xl = o[vk >> 2]
- o[Tl >> 2] = Xl
- o[(Tl + 4) >> 2] = Xl >> 31
- vk = (vk + 4) | 0
- Ul = (Ul + 1) | 0
- Tl = m[(Ye + 24) | 0]
- if ((Ul | 0) < (((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Tl | 0) >= (gl | 0)) {
- break b
- }
- break a
- case 4:
- Tl = m[(Ye + 24) | 0]
- if ((((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24 >= 1) {
- Wl = o[o[Ye >> 2] >> 2]
- Tl = (o[(Ye + 48) >> 2] + Vl(o[(Ye + 40) >> 2], o[(Ye + 44) >> 2], vk, 0)) | 0
- vk = (Wl + Tl) | 0
- while (1) {
- Tl = ((Ul << 3) + hl) | 0
- o[Tl >> 2] = o[vk >> 2]
- o[(Tl + 4) >> 2] = 0
- vk = (vk + 4) | 0
- Ul = (Ul + 1) | 0
- Tl = m[(Ye + 24) | 0]
- if ((Ul | 0) < (((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Tl | 0) >= (gl | 0)) {
- break b
- }
- break a
- case 5:
- Tl = m[(Ye + 24) | 0]
- if ((((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24 >= 1) {
- Wl = o[o[Ye >> 2] >> 2]
- Tl = (o[(Ye + 48) >> 2] + Vl(o[(Ye + 40) >> 2], o[(Ye + 44) >> 2], vk, 0)) | 0
- vk = (Wl + Tl) | 0
- while (1) {
- Xl = o[(vk + 4) >> 2]
- Tl = ((Ul << 3) + hl) | 0
- o[Tl >> 2] = o[vk >> 2]
- o[(Tl + 4) >> 2] = Xl
- vk = (vk + 8) | 0
- Ul = (Ul + 1) | 0
- Tl = m[(Ye + 24) | 0]
- if ((Ul | 0) < (((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Tl | 0) >= (gl | 0)) {
- break b
- }
- break a
- case 6:
- Tl = m[(Ye + 24) | 0]
- if ((((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24 >= 1) {
- Wl = o[o[Ye >> 2] >> 2]
- Tl = (o[(Ye + 48) >> 2] + Vl(o[(Ye + 40) >> 2], o[(Ye + 44) >> 2], vk, 0)) | 0
- vk = (Wl + Tl) | 0
- while (1) {
- Xl = o[(vk + 4) >> 2]
- Tl = ((Ul << 3) + hl) | 0
- o[Tl >> 2] = o[vk >> 2]
- o[(Tl + 4) >> 2] = Xl
- vk = (vk + 8) | 0
- Ul = (Ul + 1) | 0
- Tl = m[(Ye + 24) | 0]
- if ((Ul | 0) < (((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Tl | 0) >= (gl | 0)) {
- break b
- }
- break a
- case 7:
- Tl = m[(Ye + 24) | 0]
- if ((((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24 < 1) {
- break c
- }
- Wl = o[o[Ye >> 2] >> 2]
- Tl = (o[(Ye + 48) >> 2] + Vl(o[(Ye + 40) >> 2], o[(Ye + 44) >> 2], vk, 0)) | 0
- vk = (Wl + Tl) | 0
- while (1) {
- Tl = ((Ul << 3) + hl) | 0
- Wl = Tl
- Yl = s[vk >> 2]
- f: {
- if (v(w(Yl)) < v(0x8000000000000000)) {
- Xl =
- v(w(Yl)) >= v(1)
- ? Yl > v(0)
- ? ~~v(y(v(A(v(Yl / v(4294967296)))), v(4294967296))) >>> 0
- : ~~v(B(v(v(Yl - v((~~Yl >>> 0) >>> 0)) / v(4294967296)))) >>> 0
- : 0
- _l = ~~Yl >>> 0
- break f
- }
- Xl = -2147483648
- _l = 0
- }
- o[Wl >> 2] = _l
- o[(Tl + 4) >> 2] = Xl
- vk = (vk + 4) | 0
- Ul = (Ul + 1) | 0
- Tl = m[(Ye + 24) | 0]
- if ((Ul | 0) < (((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24) {
- continue
- }
- break
- }
- break c
- case 8:
- Tl = m[(Ye + 24) | 0]
- if ((((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24 < 1) {
- break d
- }
- Wl = o[o[Ye >> 2] >> 2]
- Tl = (o[(Ye + 48) >> 2] + Vl(o[(Ye + 40) >> 2], o[(Ye + 44) >> 2], vk, 0)) | 0
- vk = (Wl + Tl) | 0
- while (1) {
- Tl = ((Ul << 3) + hl) | 0
- Wl = Tl
- Zl = t[vk >> 3]
- g: {
- if (w(Zl) < 0x8000000000000000) {
- Xl = w(Zl) >= 1 ? (Zl > 0 ? ~~y(A(Zl / 4294967296), 4294967295) >>> 0 : ~~B((Zl - +((~~Zl >>> 0) >>> 0)) / 4294967296) >>> 0) : 0
- _l = ~~Zl >>> 0
- break g
- }
- Xl = -2147483648
- _l = 0
- }
- o[Wl >> 2] = _l
- o[(Tl + 4) >> 2] = Xl
- vk = (vk + 8) | 0
- Ul = (Ul + 1) | 0
- Tl = m[(Ye + 24) | 0]
- if ((Ul | 0) < (((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24) {
- continue
- }
- break
- }
- break d
- case 9:
- break e
- }
- }
- Tl = m[(Ye + 24) | 0]
- if ((((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24 >= 1) {
- Wl = o[o[Ye >> 2] >> 2]
- Tl = (o[(Ye + 48) >> 2] + Vl(o[(Ye + 40) >> 2], o[(Ye + 44) >> 2], vk, 0)) | 0
- vk = (Wl + Tl) | 0
- while (1) {
- Tl = ((Ul << 3) + hl) | 0
- o[Tl >> 2] = p[vk | 0]
- o[(Tl + 4) >> 2] = 0
- vk = (vk + 1) | 0
- Ul = (Ul + 1) | 0
- Tl = m[(Ye + 24) | 0]
- if ((Ul | 0) < (((Tl | 0) > (gl | 0) ? gl : Tl) << 24) >> 24) {
- continue
- }
- break
- }
- }
- if ((Tl | 0) >= (gl | 0)) {
- break b
- }
- xl(((Tl << 3) + hl) | 0, 0, (gl - Tl) << 3)
- break b
- }
- if ((Tl | 0) >= (gl | 0)) {
- break b
- }
- break a
- }
- if ((Tl | 0) >= (gl | 0)) {
- break b
- }
- xl(((Tl << 3) + hl) | 0, 0, (gl - Tl) << 3)
- }
- return
- }
- xl(((Tl << 3) + hl) | 0, 0, (gl - Tl) << 3)
- }
- function Ne(Ye) {
- Ye = Ye | 0
- var vk = 0
- o[Ye >> 2] = 3272
- o[Ye >> 2] = 2732
- vk = o[(Ye + 32) >> 2]
- if (vk) {
- o[(Ye + 36) >> 2] = vk
- ul(vk)
- }
- return Ye | 0
- }
- function Oe(Ye) {
- Ye = Ye | 0
- var gl = 0
- o[Ye >> 2] = 3272
- o[Ye >> 2] = 2732
- gl = o[(Ye + 32) >> 2]
- if (gl) {
- o[(Ye + 36) >> 2] = gl
- ul(gl)
- }
- ul(Ye)
- }
- function Pe(o) {
- o = o | 0
- return 6
- }
- function Qe(Ye) {
- Ye = Ye | 0
- var hl = 0
- a: {
- if (!o[(Ye - -64) >> 2] | !o[(Ye + 68) >> 2] | (!o[(Ye + 44) >> 2] | !o[(Ye + 48) >> 2])) {
- break a
- }
- if (!o[(Ye + 52) >> 2] | !o[(Ye + 56) >> 2]) {
- break a
- }
- hl = o[(Ye + 92) >> 2] != -1
- }
- return hl | 0
- }
- function Re(Ye, Vl) {
- Ye = Ye | 0
- Vl = Vl | 0
- var $l = 0
- if (!(o[(Vl + 56) >> 2] | (p[(Vl + 24) | 0] != 3))) {
- o[(Ye - -64) >> 2] = Vl
- $l = 1
- }
- return $l | 0
- }
- function Se(Ye, Vl) {
- Ye = Ye | 0
- Vl = Vl | 0
- var am = 0,
- bm = 0,
- cm = 0,
- dm = 0,
- em = 0,
- fm = 0,
- gm = 0,
- hm = 0,
- im = 0,
- jm = 0
- bm = o[(Vl + 12) >> 2]
- cm = bm
- am = o[(Vl + 20) >> 2]
- em = am
- fm = o[(Vl + 16) >> 2]
- dm = (fm + 4) | 0
- if (dm >>> 0 < 4) {
- am = (am + 1) | 0
- }
- hm = o[(Vl + 8) >> 2]
- gm = dm
- dm = am
- a: {
- if ((bm | 0) < (am | 0) ? 1 : (bm | 0) <= (am | 0) ? (hm >>> 0 >= gm >>> 0 ? 0 : 1) : 0) {
- break a
- }
- im = o[Vl >> 2]
- am = (im + fm) | 0
- bm = p[am | 0] | (p[(am + 1) | 0] << 8) | ((p[(am + 2) | 0] << 16) | (p[(am + 3) | 0] << 24))
- o[(Vl + 16) >> 2] = gm
- o[(Vl + 20) >> 2] = dm
- am = em
- em = (fm + 8) | 0
- if (em >>> 0 < 8) {
- am = (am + 1) | 0
- }
- dm = em
- em = am
- if ((cm | 0) < (am | 0) ? 1 : (cm | 0) <= (am | 0) ? (hm >>> 0 >= dm >>> 0 ? 0 : 1) : 0) {
- break a
- }
- am = (gm + im) | 0
- am = p[am | 0] | (p[(am + 1) | 0] << 8) | ((p[(am + 2) | 0] << 16) | (p[(am + 3) | 0] << 24))
- o[(Vl + 16) >> 2] = dm
- o[(Vl + 20) >> 2] = em
- if ((bm | 0) > (am | 0)) {
- break a
- }
- o[(Ye + 16) >> 2] = am
- o[(Ye + 12) >> 2] = bm
- cm = bm
- bm = ((am >> 31) - (((bm >> 31) + (am >>> 0 < bm >>> 0)) | 0)) | 0
- am = (am - cm) | 0
- if ((!bm & (am >>> 0 > 2147483646)) | (bm >>> 0 > 0)) {
- break a
- }
- am = (am + 1) | 0
- o[(Ye + 20) >> 2] = am
- cm = (Ye + 24) | 0
- bm = ((am | 0) / 2) | 0
- o[cm >> 2] = bm
- o[(Ye + 28) >> 2] = 0 - bm
- if (!(am & 1)) {
- o[cm >> 2] = bm + -1
- }
- jm = Nf((Ye + 108) | 0, Vl)
- }
- return jm | 0
- }
- function Te(Ye, km, lm, mm, nm, om) {
- Ye = Ye | 0
- km = km | 0
- lm = lm | 0
- mm = mm | 0
- nm = nm | 0
- om = om | 0
- var pm = 0,
- qm = 0,
- rm = 0,
- sm = 0,
- tm = 0,
- um = 0,
- vm = 0,
- wm = 0,
- xm = 0,
- ym = 0,
- zm = 0,
- Am = 0,
- Bm = 0,
- Cm = 0,
- Dm = 0
- qm = (R - 32) | 0
- R = qm
- o[(Ye + 68) >> 2] = om
- mm = o[(Ye + 56) >> 2]
- nm = o[mm >> 2]
- om = (mm + 4) | 0
- pm = o[om >> 2]
- o[(qm + 24) >> 2] = 0
- o[(qm + 16) >> 2] = 0
- o[(qm + 20) >> 2] = 0
- a: {
- nm = (pm - nm) | 0
- if ((nm | 0) < 1) {
- break a
- }
- mm = o[mm >> 2]
- if ((mm | 0) != o[om >> 2]) {
- Am = nm >> 2
- Bm = (Ye + 60) | 0
- Cm = (Ye + 108) | 0
- vm = (Ye + 8) | 0
- wm = (Ye + 16) | 0
- xm = (Ye + 32) | 0
- ym = (Ye + 20) | 0
- zm = (Ye + 12) | 0
- Dm = (Ye + 56) | 0
- while (1) {
- Ue(Bm, o[((tm << 2) + mm) >> 2], (qm + 16) | 0)
- nm = o[(qm + 20) >> 2]
- pm = nm >> 31
- om = o[(qm + 16) >> 2]
- rm = om >> 31
- um = o[(qm + 24) >> 2]
- sm = um >> 31
- mm = 0
- sm = sm ^ (sm + um)
- pm = (sm + (((pm ^ (nm + pm)) + (rm ^ (om + rm))) | 0)) | 0
- if (pm >>> 0 < sm >>> 0) {
- mm = 1
- }
- b: {
- if (!(mm | pm)) {
- o[(qm + 16) >> 2] = o[(Ye + 104) >> 2]
- break b
- }
- rm = o[(Ye + 104) >> 2]
- sm = rm >> 31
- nm = Wl(Vl(rm, sm, nm, nm >> 31), T, pm, mm)
- o[(qm + 20) >> 2] = nm
- mm = Wl(Vl(rm, sm, om, om >> 31), T, pm, mm)
- o[(qm + 16) >> 2] = mm
- om = mm
- mm = mm >> 31
- mm = (((rm - ((om + mm) ^ mm)) | 0) + ((nm | 0) < 0 ? nm : (0 - nm) | 0)) | 0
- if ((um | 0) >= 0) {
- o[(qm + 24) >> 2] = mm
- break b
- }
- o[(qm + 24) >> 2] = 0 - mm
- }
- mm = Pf(Cm)
- om = o[(qm + 16) >> 2]
- c: {
- if (!mm) {
- nm = o[(qm + 20) >> 2]
- break c
- }
- o[(qm + 24) >> 2] = 0 - o[(qm + 24) >> 2]
- nm = (0 - o[(qm + 20) >> 2]) | 0
- o[(qm + 20) >> 2] = nm
- om = (0 - om) | 0
- o[(qm + 16) >> 2] = om
- }
- d: {
- if ((om | 0) >= 0) {
- mm = o[(Ye + 104) >> 2]
- om = (mm + o[(qm + 24) >> 2]) | 0
- mm = (mm + nm) | 0
- break d
- }
- e: {
- if ((nm | 0) <= -1) {
- om = o[(qm + 24) >> 2]
- mm = om >> 31
- mm = mm ^ (mm + om)
- break e
- }
- om = o[(qm + 24) >> 2]
- mm = om >> 31
- mm = (o[(Ye + 100) >> 2] - (mm ^ (mm + om))) | 0
- }
- if ((om | 0) <= -1) {
- om = nm
- nm = nm >> 31
- om = (om + nm) ^ nm
- break d
- }
- om = nm
- nm = nm >> 31
- om = (o[(Ye + 100) >> 2] - ((om + nm) ^ nm)) | 0
- }
- nm = o[(Ye + 100) >> 2]
- f: {
- if (!(mm | om)) {
- om = nm
- mm = nm
- break f
- }
- if (!(((nm | 0) != (om | 0)) | mm)) {
- mm = om
- break f
- }
- if (!(((mm | 0) != (nm | 0)) | om)) {
- om = mm
- break f
- }
- g: {
- if (mm) {
- break g
- }
- pm = o[(Ye + 104) >> 2]
- if ((pm | 0) >= (om | 0)) {
- break g
- }
- om = ((pm << 1) - om) | 0
- mm = 0
- break f
- }
- h: {
- if ((mm | 0) != (nm | 0)) {
- break h
- }
- pm = o[(Ye + 104) >> 2]
- if ((pm | 0) <= (om | 0)) {
- break h
- }
- om = ((pm << 1) - om) | 0
- break f
- }
- i: {
- if ((nm | 0) != (om | 0)) {
- break i
- }
- nm = o[(Ye + 104) >> 2]
- if ((nm | 0) <= (mm | 0)) {
- break i
- }
- mm = ((nm << 1) - mm) | 0
- break f
- }
- if (om) {
- break f
- }
- om = 0
- nm = o[(Ye + 104) >> 2]
- if ((nm | 0) >= (mm | 0)) {
- break f
- }
- mm = ((nm << 1) - mm) | 0
- }
- o[(qm + 12) >> 2] = om
- o[(qm + 8) >> 2] = mm
- j: {
- if (o[vm >> 2] < 1) {
- break j
- }
- om = 0
- while (1) {
- pm = o[wm >> 2]
- k: {
- if ((mm | 0) > (pm | 0)) {
- nm = o[xm >> 2]
- o[(nm + (om << 2)) >> 2] = pm
- break k
- }
- nm = o[xm >> 2]
- pm = (nm + (om << 2)) | 0
- rm = o[zm >> 2]
- if ((mm | 0) < (rm | 0)) {
- o[pm >> 2] = rm
- break k
- }
- o[pm >> 2] = mm
- }
- om = (om + 1) | 0
- pm = o[vm >> 2]
- if ((om | 0) < (pm | 0)) {
- mm = o[(((qm + 8) | 0) + (om << 2)) >> 2]
- continue
- }
- break
- }
- mm = 0
- if ((pm | 0) < 1) {
- break j
- }
- om = tm << 3
- rm = (om + lm) | 0
- um = (km + om) | 0
- while (1) {
- pm = mm << 2
- om = (pm + rm) | 0
- pm = (o[(pm + um) >> 2] + o[(nm + pm) >> 2]) | 0
- o[om >> 2] = pm
- l: {
- if ((pm | 0) > o[wm >> 2]) {
- sm = (pm - o[ym >> 2]) | 0
- } else {
- if ((pm | 0) >= o[zm >> 2]) {
- break l
- }
- sm = (pm + o[ym >> 2]) | 0
- }
- o[om >> 2] = sm
- }
- mm = (mm + 1) | 0
- if ((mm | 0) < o[vm >> 2]) {
- continue
- }
- break
- }
- }
- tm = (tm + 1) | 0
- if ((tm | 0) >= (Am | 0)) {
- break a
- }
- nm = o[Dm >> 2]
- mm = o[nm >> 2]
- if (((o[(nm + 4) >> 2] - mm) >> 2) >>> 0 > tm >>> 0) {
- continue
- }
- break
- }
- }
- Zk()
- D()
- }
- R = (qm + 32) | 0
- return 1
- }
- function Ue(Ye, km, lm) {
- Ye = Ye | 0
- km = km | 0
- lm = lm | 0
- var mm = 0,
- nm = 0,
- om = 0,
- Em = 0,
- Fm = 0,
- Gm = 0,
- Hm = 0,
- Im = 0,
- Jm = 0,
- Km = 0,
- Lm = 0,
- Mm = 0,
- Nm = 0,
- Om = 0,
- Pm = 0,
- Qm = 0,
- Rm = 0,
- Sm = 0,
- Tm = 0,
- Um = 0,
- Vm = 0,
- Wm = 0,
- Xm = 0,
- Ym = 0,
- Zm = 0,
- _m = 0
- nm = (R - 96) | 0
- R = nm
- mm = o[(Ye + 16) >> 2]
- m[(nm + 92) | 0] = 1
- o[(nm + 88) >> 2] = km
- o[(nm + 84) >> 2] = km
- o[(nm + 80) >> 2] = mm
- Em = o[(Ye + 20) >> 2]
- om = o[Em >> 2]
- a: {
- b: {
- c: {
- d: {
- mm = o[(o[(mm + 28) >> 2] + (km << 2)) >> 2]
- if (((o[(Em + 4) >> 2] - om) >> 2) >>> 0 > mm >>> 0) {
- mm = o[(o[(Ye + 8) >> 2] + (o[(om + (mm << 2)) >> 2] << 2)) >> 2]
- om = o[(Ye + 4) >> 2]
- if (!p[(om + 84) | 0]) {
- mm = o[(o[(om + 68) >> 2] + (mm << 2)) >> 2]
- }
- o[(nm + 72) >> 2] = 0
- o[(nm + 76) >> 2] = 0
- Em = (nm - -64) | 0
- o[Em >> 2] = 0
- o[(Em + 4) >> 2] = 0
- o[(nm + 56) >> 2] = 0
- o[(nm + 60) >> 2] = 0
- Me(om, mm, m[(om + 24) | 0], (nm + 56) | 0)
- if ((km | 0) == -1) {
- break a
- }
- mm = (km + 1) | 0
- Em = (mm >>> 0) % 3 | 0 ? mm : (km + -2) | 0
- Om = (((km >>> 0) % 3 | 0 ? -1 : 2) + km) | 0
- Vm = (Ye + 28) | 0
- Fm = !o[Vm >> 2]
- Wm = (Ye + 20) | 0
- Xm = (Ye + 16) | 0
- Ym = (Ye + 8) | 0
- while (1) {
- om = Em
- mm = Om
- e: {
- if (Fm) {
- break e
- }
- mm = (km + 1) | 0
- om = (mm >>> 0) % 3 | 0 ? mm : (km + -2) | 0
- mm = (km + -1) | 0
- if ((km >>> 0) % 3) {
- break e
- }
- mm = (km + 2) | 0
- }
- Fm = o[Wm >> 2]
- km = o[Fm >> 2]
- om = o[(o[(o[Xm >> 2] + 28) >> 2] + (om << 2)) >> 2]
- if (((o[(Fm + 4) >> 2] - km) >> 2) >>> 0 <= om >>> 0) {
- break d
- }
- om = o[(o[Ym >> 2] + (o[(km + (om << 2)) >> 2] << 2)) >> 2]
- Fm = (Ye + 4) | 0
- km = o[Fm >> 2]
- if (!p[(km + 84) | 0]) {
- om = o[(o[(km + 68) >> 2] + (om << 2)) >> 2]
- }
- o[(nm + 48) >> 2] = 0
- o[(nm + 52) >> 2] = 0
- o[(nm + 40) >> 2] = 0
- o[(nm + 44) >> 2] = 0
- o[(nm + 32) >> 2] = 0
- o[(nm + 36) >> 2] = 0
- Me(km, om, m[(km + 24) | 0], (nm + 32) | 0)
- om = o[Wm >> 2]
- km = o[om >> 2]
- mm = o[(o[(o[Xm >> 2] + 28) >> 2] + (mm << 2)) >> 2]
- if (((o[(om + 4) >> 2] - km) >> 2) >>> 0 <= mm >>> 0) {
- break c
- }
- om = o[(o[Ym >> 2] + (o[(km + (mm << 2)) >> 2] << 2)) >> 2]
- km = o[Fm >> 2]
- if (!p[(km + 84) | 0]) {
- om = o[(o[(km + 68) >> 2] + (om << 2)) >> 2]
- }
- Fm = (nm + 24) | 0
- mm = Fm
- o[mm >> 2] = 0
- o[(mm + 4) >> 2] = 0
- Im = (nm + 16) | 0
- mm = Im
- o[mm >> 2] = 0
- o[(mm + 4) >> 2] = 0
- o[(nm + 8) >> 2] = 0
- o[(nm + 12) >> 2] = 0
- Me(km, om, m[(km + 24) | 0], (nm + 8) | 0)
- mm = o[(nm + 8) >> 2]
- km = o[(nm + 56) >> 2]
- Pm = (mm - km) | 0
- Qm = o[(nm + 60) >> 2]
- om = (o[(nm + 12) >> 2] - ((Qm + (mm >>> 0 < km >>> 0)) | 0)) | 0
- Rm = o[(nm + 40) >> 2]
- mm = o[(nm + 64) >> 2]
- Zm = (Rm - mm) | 0
- Sm = o[(nm + 68) >> 2]
- Rm = (o[(nm + 44) >> 2] - ((Sm + (Rm >>> 0 < mm >>> 0)) | 0)) | 0
- Tm = Vl(Pm, om, Zm, Rm)
- Um = (Gm - Tm) | 0
- Jm = (Jm - ((T + (Gm >>> 0 < Tm >>> 0)) | 0)) | 0
- Gm = o[Im >> 2]
- Tm = (Gm - mm) | 0
- Im = (o[(Im + 4) >> 2] - (((Gm >>> 0 < mm >>> 0) + Sm) | 0)) | 0
- Gm = o[(nm + 32) >> 2]
- Sm = (Gm - km) | 0
- Qm = (o[(nm + 36) >> 2] - (((Gm >>> 0 < km >>> 0) + Qm) | 0)) | 0
- mm = Vl(Tm, Im, Sm, Qm)
- Gm = (mm + Um) | 0
- km = (T + Jm) | 0
- km = Gm >>> 0 < mm >>> 0 ? (km + 1) | 0 : km
- Jm = km
- mm = Hm
- Lm = Pm
- _m = om
- Hm = o[(nm + 48) >> 2]
- km = o[(nm + 72) >> 2]
- om = (Hm - km) | 0
- Pm = o[(nm + 76) >> 2]
- Um = (o[(nm + 52) >> 2] - ((Pm + (Hm >>> 0 < km >>> 0)) | 0)) | 0
- Lm = Vl(Lm, _m, om, Um)
- Hm = (mm + Lm) | 0
- mm = (T + Mm) | 0
- mm = Hm >>> 0 < Lm >>> 0 ? (mm + 1) | 0 : mm
- Mm = Hm
- Hm = o[Fm >> 2]
- Lm = (Hm - km) | 0
- km = (o[(Fm + 4) >> 2] - (((Hm >>> 0 < km >>> 0) + Pm) | 0)) | 0
- Fm = Vl(Lm, km, Sm, Qm)
- Hm = (Mm - Fm) | 0
- Mm = (mm - ((T + (Mm >>> 0 < Fm >>> 0)) | 0)) | 0
- mm = Vl(Tm, Im, om, Um)
- om = (Km - mm) | 0
- Nm = (Nm - ((T + (Km >>> 0 < mm >>> 0)) | 0)) | 0
- mm = Vl(Lm, km, Zm, Rm)
- Km = (mm + om) | 0
- km = (T + Nm) | 0
- km = Km >>> 0 < mm >>> 0 ? (km + 1) | 0 : km
- Nm = km
- We((nm + 80) | 0)
- Im = o[Vm >> 2]
- Fm = !Im
- km = o[(nm + 88) >> 2]
- if ((km | 0) != -1) {
- continue
- }
- break
- }
- km = Mm
- mm = km >> 31
- Ye = km >> 31
- km = (Ye + km) | 0
- Em = (mm + Hm) | 0
- if (Em >>> 0 < mm >>> 0) {
- km = (km + 1) | 0
- }
- mm = mm ^ Em
- Fm = Ye ^ km
- km = Nm
- Ye = km >> 31
- km = km >> 31
- Em = Ye
- Om = (Nm + Ye) | 0
- om = (km + Km) | 0
- if (om >>> 0 < km >>> 0) {
- Om = (Om + 1) | 0
- }
- Ye = km ^ om
- om = Em ^ Om
- f: {
- if ((Jm | 0) < -1 ? 1 : (Jm | 0) <= -1 ? (Gm >>> 0 > 4294967295 ? 0 : 1) : 0) {
- km = Gm
- Em = (Ye + ((mm - km) | 0)) | 0
- km = (om + ((Fm - (((mm >>> 0 < km >>> 0) + Jm) | 0)) | 0)) | 0
- mm = Em
- Ye = mm >>> 0 < Ye >>> 0 ? (km + 1) | 0 : km
- if (!Im) {
- break f
- }
- break b
- }
- km = (Fm + Jm) | 0
- Em = mm
- mm = Gm
- Em = (Em + mm) | 0
- if (Em >>> 0 < mm >>> 0) {
- km = (km + 1) | 0
- }
- mm = Ye
- Em = (mm + Em) | 0
- Ye = (km + om) | 0
- Ye = Em >>> 0 < mm >>> 0 ? (Ye + 1) | 0 : Ye
- mm = Em
- if (Im) {
- break b
- }
- }
- if ((mm | 0) < 536870913) {
- break a
- }
- Ye = (((Ye & 536870911) << 3) | (mm >>> 29)) & 7
- km = 0
- Gm = Wl(Gm, Jm, Ye, km)
- Hm = Wl(Hm, Mm, Ye, km)
- Km = Wl(Km, Nm, Ye, km)
- break a
- }
- Zk()
- D()
- }
- Zk()
- D()
- }
- Zk()
- D()
- }
- if ((Ye | 0) < 0 ? 1 : (Ye | 0) <= 0 ? (mm >>> 0 >= 536870913 ? 0 : 1) : 0) {
- break a
- }
- km = Ye >>> 29
- Ye = ((Ye & 536870911) << 3) | (mm >>> 29)
- Gm = Wl(Gm, Jm, Ye, km)
- Hm = Wl(Hm, Mm, Ye, km)
- Km = Wl(Km, Nm, Ye, km)
- }
- o[(lm + 8) >> 2] = Gm
- o[(lm + 4) >> 2] = Hm
- o[lm >> 2] = Km
- R = (nm + 96) | 0
- }
- function Ve(Ye, Vl) {
- Ye = Ye | 0
- Vl = Vl | 0
- if (Vl >>> 0 <= 1) {
- o[(Ye + 28) >> 2] = Vl
- Ye = 1
- } else {
- Ye = 0
- }
- return Ye | 0
- }
- function We(Ye) {
- var Vl = 0,
- km = 0,
- lm = 0
- Vl = o[(Ye + 8) >> 2]
- lm = o[Ye >> 2]
- a: {
- if (p[(Ye + 12) | 0]) {
- b: {
- c: {
- d: {
- e: {
- if ((Vl | 0) == -1) {
- break e
- }
- km = (Vl + 1) | 0
- Vl = (km >>> 0) % 3 | 0 ? km : (Vl + -2) | 0
- if (((Vl | 0) == -1) | ((o[(o[lm >> 2] + ((Vl >>> 3) & 536870908)) >> 2] >>> (Vl & 31)) & 1)) {
- break e
- }
- Vl = o[(o[(o[(lm + 64) >> 2] + 12) >> 2] + (Vl << 2)) >> 2]
- if ((Vl | 0) != -1) {
- break d
- }
- }
- o[(Ye + 8) >> 2] = -1
- break c
- }
- km = (Vl + 1) | 0
- Vl = (km >>> 0) % 3 | 0 ? km : (Vl + -2) | 0
- o[(Ye + 8) >> 2] = Vl
- if ((Vl | 0) != -1) {
- break b
- }
- }
- Vl = -1
- km = o[(Ye + 4) >> 2]
- f: {
- if ((km | 0) == -1) {
- break f
- }
- km = (km + ((km >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if (((km | 0) == -1) | ((o[(o[lm >> 2] + ((km >>> 3) & 536870908)) >> 2] >>> (km & 31)) & 1)) {
- break f
- }
- lm = o[(o[(o[(lm + 64) >> 2] + 12) >> 2] + (km << 2)) >> 2]
- if ((lm | 0) == -1) {
- break f
- }
- if ((lm >>> 0) % 3) {
- Vl = (lm + -1) | 0
- break f
- }
- Vl = (lm + 2) | 0
- }
- m[(Ye + 12) | 0] = 0
- o[(Ye + 8) >> 2] = Vl
- return
- }
- if ((Vl | 0) != o[(Ye + 4) >> 2]) {
- break a
- }
- o[(Ye + 8) >> 2] = -1
- return
- }
- km = -1
- g: {
- if ((Vl | 0) == -1) {
- break g
- }
- Vl = (Vl + ((Vl >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if (((Vl | 0) == -1) | ((o[(o[lm >> 2] + ((Vl >>> 3) & 536870908)) >> 2] >>> (Vl & 31)) & 1)) {
- break g
- }
- Vl = o[(o[(o[(lm + 64) >> 2] + 12) >> 2] + (Vl << 2)) >> 2]
- if ((Vl | 0) == -1) {
- break g
- }
- if ((Vl >>> 0) % 3) {
- km = (Vl + -1) | 0
- break g
- }
- km = (Vl + 2) | 0
- }
- o[(Ye + 8) >> 2] = km
- }
- }
- function Xe(Ye, $m, an, bn) {
- var cn = 0,
- dn = 0,
- en = 0,
- fn = 0,
- gn = 0,
- hn = 0,
- jn = 0,
- kn = 0
- o[Ye >> 2] = 2732
- o[(Ye + 4) >> 2] = $m
- $m = o[(an + 8) >> 2]
- cn = o[(an + 12) >> 2]
- dn = o[(an + 16) >> 2]
- fn = o[(an + 20) >> 2]
- gn = o[an >> 2]
- hn = o[(an + 4) >> 2]
- o[(Ye + 40) >> 2] = 0
- en = (Ye + 32) | 0
- o[en >> 2] = 0
- o[(en + 4) >> 2] = 0
- o[(Ye + 24) >> 2] = dn
- o[(Ye + 28) >> 2] = fn
- o[(Ye + 16) >> 2] = $m
- o[(Ye + 20) >> 2] = cn
- o[(Ye + 8) >> 2] = gn
- o[(Ye + 12) >> 2] = hn
- a: {
- $m = (o[(an + 28) >> 2] - o[(an + 24) >> 2]) | 0
- b: {
- if (!$m) {
- break b
- }
- cn = $m >> 2
- if (cn >>> 0 >= 1073741824) {
- break a
- }
- $m = Hk($m)
- o[(Ye + 32) >> 2] = $m
- dn = (Ye + 36) | 0
- o[dn >> 2] = $m
- o[(Ye + 40) >> 2] = $m + (cn << 2)
- cn = o[(an + 24) >> 2]
- an = (o[(an + 28) >> 2] - cn) | 0
- if ((an | 0) < 1) {
- break b
- }
- ;(jn = dn), (kn = (wl($m, cn, an) + an) | 0), (o[jn >> 2] = kn)
- }
- o[Ye >> 2] = 4268
- $m = o[(bn + 4) >> 2]
- o[(Ye + 44) >> 2] = o[bn >> 2]
- o[(Ye + 48) >> 2] = $m
- $m = o[(bn + 12) >> 2]
- o[(Ye + 52) >> 2] = o[(bn + 8) >> 2]
- o[(Ye + 56) >> 2] = $m
- return
- }
- Yk()
- D()
- }
- function Ye(Ye, $m, an, bn, ln, mn) {
- Ye = Ye | 0
- $m = $m | 0
- an = an | 0
- bn = bn | 0
- ln = ln | 0
- mn = mn | 0
- var nn = 0,
- on = 0,
- pn = 0,
- qn = 0,
- rn = 0,
- sn = 0,
- tn = 0,
- un = 0,
- vn = 0,
- wn = 0,
- xn = 0,
- yn = 0,
- zn = 0,
- An = 0,
- Bn = 0,
- Cn = 0
- o[(Ye + 8) >> 2] = ln
- mn = (Ye + 32) | 0
- on = o[mn >> 2]
- bn = (o[(Ye + 36) >> 2] - on) >> 2
- a: {
- if (bn >>> 0 < ln >>> 0) {
- Da(mn, (ln - bn) | 0)
- break a
- }
- if (bn >>> 0 <= ln >>> 0) {
- break a
- }
- o[(Ye + 36) >> 2] = on + (ln << 2)
- }
- Cn = o[(Ye + 52) >> 2]
- zn = o[(Ye + 48) >> 2]
- bn = 0
- mn = (ln & 1073741823) != (ln | 0) ? -1 : ln << 2
- yn = xl(Hk(mn), 0, mn)
- rn = (Ye + 8) | 0
- mn = o[rn >> 2]
- b: {
- if ((mn | 0) < 1) {
- break b
- }
- tn = (Ye + 16) | 0
- on = (Ye + 32) | 0
- un = (Ye + 12) | 0
- while (1) {
- mn = bn << 2
- nn = o[(mn + yn) >> 2]
- qn = o[tn >> 2]
- c: {
- if ((nn | 0) > (qn | 0)) {
- sn = o[on >> 2]
- o[(mn + sn) >> 2] = qn
- break c
- }
- sn = o[on >> 2]
- mn = (mn + sn) | 0
- qn = o[un >> 2]
- if ((nn | 0) < (qn | 0)) {
- o[mn >> 2] = qn
- break c
- }
- o[mn >> 2] = nn
- }
- bn = (bn + 1) | 0
- mn = o[rn >> 2]
- if ((bn | 0) < (mn | 0)) {
- continue
- }
- break
- }
- if ((mn | 0) < 1) {
- break b
- }
- on = 0
- rn = (Ye + 16) | 0
- nn = (Ye + 20) | 0
- tn = (Ye + 8) | 0
- un = (Ye + 12) | 0
- while (1) {
- mn = on << 2
- bn = (mn + an) | 0
- mn = (o[($m + mn) >> 2] + o[(mn + sn) >> 2]) | 0
- o[bn >> 2] = mn
- d: {
- if ((mn | 0) > o[rn >> 2]) {
- mn = (mn - o[nn >> 2]) | 0
- } else {
- if ((mn | 0) >= o[un >> 2]) {
- break d
- }
- mn = (mn + o[nn >> 2]) | 0
- }
- o[bn >> 2] = mn
- }
- on = (on + 1) | 0
- mn = o[tn >> 2]
- if ((on | 0) < (mn | 0)) {
- continue
- }
- break
- }
- }
- bn = o[(Ye + 56) >> 2]
- An = o[bn >> 2]
- bn = (o[(bn + 4) >> 2] - An) | 0
- if ((bn | 0) >= 5) {
- Bn = bn >> 2
- sn = (Ye + 16) | 0
- rn = (Ye + 32) | 0
- tn = (Ye + 8) | 0
- un = (Ye + 20) | 0
- qn = (Ye + 12) | 0
- on = 1
- while (1) {
- e: {
- f: {
- if (Bn >>> 0 > on >>> 0) {
- xn = u(ln, on)
- Ye = o[((on << 2) + An) >> 2]
- if ((Ye | 0) == -1) {
- break f
- }
- Ye = o[(o[(zn + 12) >> 2] + (Ye << 2)) >> 2]
- if ((Ye | 0) == -1) {
- break f
- }
- bn = -1
- pn = o[Cn >> 2]
- nn = o[zn >> 2]
- vn = o[(pn + (o[(nn + (Ye << 2)) >> 2] << 2)) >> 2]
- wn = (Ye + 1) | 0
- wn = (wn >>> 0) % 3 | 0 ? wn : (Ye + -2) | 0
- if ((wn | 0) != -1) {
- wn = o[(nn + (wn << 2)) >> 2]
- } else {
- wn = -1
- }
- Ye = (Ye + ((Ye >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((Ye | 0) != -1) {
- bn = o[(nn + (Ye << 2)) >> 2]
- }
- if ((vn | 0) >= (on | 0)) {
- break f
- }
- Ye = o[((wn << 2) + pn) >> 2]
- if ((Ye | 0) >= (on | 0)) {
- break f
- }
- bn = o[(pn + (bn << 2)) >> 2]
- if ((bn | 0) >= (on | 0)) {
- break f
- }
- if ((ln | 0) >= 1) {
- nn = u(bn, ln)
- Ye = u(Ye, ln)
- pn = u(ln, vn)
- bn = 0
- while (1) {
- o[((bn << 2) + yn) >> 2] = ((o[(((bn + nn) << 2) + an) >> 2] + o[(((Ye + bn) << 2) + an) >> 2]) | 0) - o[(((bn + pn) << 2) + an) >> 2]
- bn = (bn + 1) | 0
- if ((ln | 0) != (bn | 0)) {
- continue
- }
- break
- }
- }
- if ((mn | 0) < 1) {
- break e
- }
- bn = 0
- while (1) {
- Ye = bn << 2
- mn = o[(Ye + yn) >> 2]
- pn = o[sn >> 2]
- g: {
- if ((mn | 0) > (pn | 0)) {
- nn = o[rn >> 2]
- o[(Ye + nn) >> 2] = pn
- break g
- }
- nn = o[rn >> 2]
- Ye = (Ye + nn) | 0
- pn = o[qn >> 2]
- if ((mn | 0) < (pn | 0)) {
- o[Ye >> 2] = pn
- break g
- }
- o[Ye >> 2] = mn
- }
- bn = (bn + 1) | 0
- mn = o[tn >> 2]
- if ((bn | 0) < (mn | 0)) {
- continue
- }
- break
- }
- bn = 0
- if ((mn | 0) < 1) {
- break e
- }
- Ye = xn << 2
- xn = (Ye + an) | 0
- pn = (Ye + $m) | 0
- while (1) {
- mn = bn << 2
- Ye = (mn + xn) | 0
- mn = (o[(mn + pn) >> 2] + o[(mn + nn) >> 2]) | 0
- o[Ye >> 2] = mn
- h: {
- if ((mn | 0) > o[sn >> 2]) {
- mn = (mn - o[un >> 2]) | 0
- } else {
- if ((mn | 0) >= o[qn >> 2]) {
- break h
- }
- mn = (mn + o[un >> 2]) | 0
- }
- o[Ye >> 2] = mn
- }
- bn = (bn + 1) | 0
- mn = o[tn >> 2]
- if ((bn | 0) < (mn | 0)) {
- continue
- }
- break
- }
- break e
- }
- Zk()
- D()
- }
- if ((mn | 0) < 1) {
- break e
- }
- pn = ((u((on + -1) | 0, ln) << 2) + an) | 0
- bn = 0
- while (1) {
- Ye = bn << 2
- mn = o[(Ye + pn) >> 2]
- vn = o[sn >> 2]
- i: {
- if ((mn | 0) > (vn | 0)) {
- nn = o[rn >> 2]
- o[(Ye + nn) >> 2] = vn
- break i
- }
- nn = o[rn >> 2]
- Ye = (Ye + nn) | 0
- vn = o[qn >> 2]
- if ((mn | 0) < (vn | 0)) {
- o[Ye >> 2] = vn
- break i
- }
- o[Ye >> 2] = mn
- }
- bn = (bn + 1) | 0
- mn = o[tn >> 2]
- if ((bn | 0) < (mn | 0)) {
- continue
- }
- break
- }
- bn = 0
- if ((mn | 0) < 1) {
- break e
- }
- Ye = xn << 2
- xn = (Ye + an) | 0
- pn = (Ye + $m) | 0
- while (1) {
- mn = bn << 2
- Ye = (mn + xn) | 0
- mn = (o[(mn + pn) >> 2] + o[(mn + nn) >> 2]) | 0
- o[Ye >> 2] = mn
- j: {
- if ((mn | 0) > o[sn >> 2]) {
- mn = (mn - o[un >> 2]) | 0
- } else {
- if ((mn | 0) >= o[qn >> 2]) {
- break j
- }
- mn = (mn + o[un >> 2]) | 0
- }
- o[Ye >> 2] = mn
- }
- bn = (bn + 1) | 0
- mn = o[tn >> 2]
- if ((bn | 0) < (mn | 0)) {
- continue
- }
- break
- }
- }
- on = (on + 1) | 0
- if ((on | 0) < (Bn | 0)) {
- continue
- }
- break
- }
- }
- ul(yn)
- return 1
- }
- function Ze(Ye) {
- Ye = Ye | 0
- var $m = 0
- o[Ye >> 2] = 4324
- $m = o[(Ye + 96) >> 2]
- if ($m) {
- ul($m)
- }
- $m = o[(Ye + 84) >> 2]
- if ($m) {
- ul($m)
- }
- $m = o[(Ye + 72) >> 2]
- if ($m) {
- ul($m)
- }
- $m = o[(Ye + 60) >> 2]
- if ($m) {
- ul($m)
- }
- o[Ye >> 2] = 2732
- $m = o[(Ye + 32) >> 2]
- if ($m) {
- o[(Ye + 36) >> 2] = $m
- ul($m)
- }
- return Ye | 0
- }
- function _e(Ye) {
- Ye = Ye | 0
- var an = 0
- o[Ye >> 2] = 4324
- an = o[(Ye + 96) >> 2]
- if (an) {
- ul(an)
- }
- an = o[(Ye + 84) >> 2]
- if (an) {
- ul(an)
- }
- an = o[(Ye + 72) >> 2]
- if (an) {
- ul(an)
- }
- an = o[(Ye + 60) >> 2]
- if (an) {
- ul(an)
- }
- o[Ye >> 2] = 2732
- an = o[(Ye + 32) >> 2]
- if (an) {
- o[(Ye + 36) >> 2] = an
- ul(an)
- }
- ul(Ye)
- }
- function $e(Ye, bn, ln, mn, Dn, En) {
- Ye = Ye | 0
- bn = bn | 0
- ln = ln | 0
- mn = mn | 0
- Dn = Dn | 0
- En = En | 0
- var Fn = 0,
- Gn = 0,
- Hn = 0,
- In = 0,
- Jn = 0,
- Kn = 0,
- Ln = 0,
- Mn = 0,
- Nn = 0,
- On = 0,
- Pn = 0,
- Qn = 0,
- Rn = 0,
- Sn = 0,
- Tn = 0,
- Un = 0,
- Vn = 0,
- Wn = 0,
- Xn = 0,
- Yn = 0,
- Zn = 0,
- _n = 0,
- $n = 0,
- ao = 0,
- bo = 0
- Hn = (R + -64) | 0
- R = Hn
- o[(Ye + 8) >> 2] = Dn
- En = (Ye + 32) | 0
- In = o[En >> 2]
- mn = (o[(Ye + 36) >> 2] - In) >> 2
- a: {
- if (mn >>> 0 < Dn >>> 0) {
- Da(En, (Dn - mn) | 0)
- break a
- }
- if (mn >>> 0 <= Dn >>> 0) {
- break a
- }
- o[(Ye + 36) >> 2] = In + (Dn << 2)
- }
- o[(Hn + 56) >> 2] = 0
- o[(Hn + 60) >> 2] = 0
- o[(Hn + 48) >> 2] = 0
- o[(Hn + 52) >> 2] = 0
- o[(Hn + 40) >> 2] = 0
- o[(Hn + 44) >> 2] = 0
- mn = (Hn + 32) | 0
- o[mn >> 2] = 0
- o[(mn + 4) >> 2] = 0
- o[(Hn + 24) >> 2] = 0
- o[(Hn + 28) >> 2] = 0
- o[(Hn + 16) >> 2] = 0
- o[(Hn + 20) >> 2] = 0
- o[Hn >> 2] = 0
- En = 0
- if (Dn) {
- yd((Hn + 16) | 0, Dn, Hn)
- Gn = o[(Hn + 28) >> 2]
- En = o[mn >> 2]
- }
- o[Hn >> 2] = 0
- mn = (En - Gn) >> 2
- b: {
- if (mn >>> 0 >= Dn >>> 0) {
- if (mn >>> 0 <= Dn >>> 0) {
- break b
- }
- o[(Hn + 32) >> 2] = (Dn << 2) + Gn
- break b
- }
- yd((Hn + 16) | 12, (Dn - mn) | 0, Hn)
- }
- o[Hn >> 2] = 0
- En = o[(Hn + 40) >> 2]
- mn = (o[(Hn + 44) >> 2] - En) >> 2
- c: {
- if (mn >>> 0 >= Dn >>> 0) {
- if (mn >>> 0 <= Dn >>> 0) {
- break c
- }
- o[(Hn + 44) >> 2] = En + (Dn << 2)
- break c
- }
- yd((Hn + 40) | 0, (Dn - mn) | 0, Hn)
- }
- o[Hn >> 2] = 0
- En = o[(Hn + 52) >> 2]
- mn = (o[(Hn + 56) >> 2] - En) >> 2
- d: {
- if (mn >>> 0 >= Dn >>> 0) {
- if (mn >>> 0 <= Dn >>> 0) {
- break d
- }
- o[(Hn + 56) >> 2] = En + (Dn << 2)
- break d
- }
- yd((Hn + 52) | 0, (Dn - mn) | 0, Hn)
- }
- Kn = (Ye + 8) | 0
- e: {
- if (o[Kn >> 2] <= 0) {
- break e
- }
- Mn = o[(Hn + 16) >> 2]
- Gn = 0
- Jn = (Ye + 16) | 0
- mn = (Ye + 32) | 0
- Rn = (Ye + 12) | 0
- while (1) {
- En = Gn << 2
- Fn = o[(En + Mn) >> 2]
- Nn = o[Jn >> 2]
- f: {
- if ((Fn | 0) > (Nn | 0)) {
- In = o[mn >> 2]
- o[(En + In) >> 2] = Nn
- break f
- }
- In = o[mn >> 2]
- En = (En + In) | 0
- Nn = o[Rn >> 2]
- if ((Fn | 0) < (Nn | 0)) {
- o[En >> 2] = Nn
- break f
- }
- o[En >> 2] = Fn
- }
- Gn = (Gn + 1) | 0
- En = o[Kn >> 2]
- if ((Gn | 0) < (En | 0)) {
- continue
- }
- break
- }
- if ((En | 0) < 1) {
- break e
- }
- En = 0
- Kn = (Ye + 16) | 0
- Gn = (Ye + 20) | 0
- Mn = (Ye + 8) | 0
- Jn = (Ye + 12) | 0
- while (1) {
- Fn = En << 2
- mn = (Fn + ln) | 0
- Fn = (o[(bn + Fn) >> 2] + o[(Fn + In) >> 2]) | 0
- o[mn >> 2] = Fn
- g: {
- if ((Fn | 0) > o[Kn >> 2]) {
- Fn = (Fn - o[Gn >> 2]) | 0
- } else {
- if ((Fn | 0) >= o[Jn >> 2]) {
- break g
- }
- Fn = (Fn + o[Gn >> 2]) | 0
- }
- o[mn >> 2] = Fn
- }
- En = (En + 1) | 0
- if ((En | 0) < o[Mn >> 2]) {
- continue
- }
- break
- }
- }
- ao = o[(Ye + 52) >> 2]
- Zn = o[(Ye + 48) >> 2]
- Yn = Hk(16)
- mn = Yn
- o[mn >> 2] = 0
- o[(mn + 4) >> 2] = 0
- o[(mn + 8) >> 2] = 0
- o[(mn + 12) >> 2] = 0
- o[(Hn + 8) >> 2] = 0
- o[Hn >> 2] = 0
- o[(Hn + 4) >> 2] = 0
- h: {
- if (Dn) {
- if (Dn >>> 0 >= 1073741824) {
- break h
- }
- mn = Dn << 2
- Sn = Hk(mn)
- o[Hn >> 2] = Sn
- En = (mn + Sn) | 0
- o[(Hn + 8) >> 2] = En
- xl(Sn, 0, mn)
- o[(Hn + 4) >> 2] = En
- }
- In = 1
- mn = o[(Ye + 56) >> 2]
- _n = o[mn >> 2]
- mn = (o[(mn + 4) >> 2] - _n) | 0
- i: {
- if ((mn | 0) < 5) {
- break i
- }
- $n = mn >> 2
- bo = Dn << 2
- Mn = (Ye + 8) | 0
- Rn = (Ye + 16) | 0
- Nn = (Ye + 32) | 0
- Vn = (Ye + 20) | 0
- Wn = (Ye + 12) | 0
- Kn = 1
- while (1) {
- j: {
- k: {
- l: {
- if ($n >>> 0 > Kn >>> 0) {
- m: {
- n: {
- In = o[((Kn << 2) + _n) >> 2]
- if ((In | 0) == -1) {
- break n
- }
- Ln = o[(Zn + 12) >> 2]
- Un = (In + ((In >>> 0) % 3 | 0 ? -1 : 2)) | 0
- Xn = (Ln + (Un << 2)) | 0
- Jn = 1
- En = 0
- mn = In
- o: {
- while (1) {
- Fn = o[(Ln + (mn << 2)) >> 2]
- p: {
- if ((Fn | 0) == -1) {
- break p
- }
- Gn = -1
- Qn = o[ao >> 2]
- On = o[Zn >> 2]
- Tn = o[(Qn + (o[(On + (Fn << 2)) >> 2] << 2)) >> 2]
- Pn = (Fn + 1) | 0
- Pn = (Pn >>> 0) % 3 | 0 ? Pn : (Fn + -2) | 0
- if ((Pn | 0) != -1) {
- Pn = o[(On + (Pn << 2)) >> 2]
- } else {
- Pn = -1
- }
- Fn = (Fn + ((Fn >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((Fn | 0) != -1) {
- Gn = o[(On + (Fn << 2)) >> 2]
- }
- if ((Tn | 0) >= (Kn | 0)) {
- break p
- }
- Fn = o[((Pn << 2) + Qn) >> 2]
- if ((Fn | 0) >= (Kn | 0)) {
- break p
- }
- Gn = o[(Qn + (Gn << 2)) >> 2]
- if ((Gn | 0) >= (Kn | 0)) {
- break p
- }
- On = o[(((Hn + 16) | 0) + u(En, 12)) >> 2]
- if ((Dn | 0) >= 1) {
- Qn = u(Dn, Gn)
- Fn = u(Dn, Fn)
- Tn = u(Dn, Tn)
- Gn = 0
- while (1) {
- o[(On + (Gn << 2)) >> 2] =
- ((o[(((Gn + Qn) << 2) + ln) >> 2] + o[(((Fn + Gn) << 2) + ln) >> 2]) | 0) - o[(((Gn + Tn) << 2) + ln) >> 2]
- Gn = (Gn + 1) | 0
- if ((Gn | 0) != (Dn | 0)) {
- continue
- }
- break
- }
- }
- Fn = 4
- En = (En + 1) | 0
- if ((En | 0) == 4) {
- break o
- }
- }
- q: {
- if (Jn & 1) {
- On = (mn + 1) | 0
- mn = (On >>> 0) % 3 | 0 ? On : (mn + -2) | 0
- Fn = -1
- if ((mn | 0) == -1) {
- break q
- }
- mn = o[(Ln + (mn << 2)) >> 2]
- Fn = -1
- if ((mn | 0) == -1) {
- break q
- }
- Fn = (mn + 1) | 0
- Fn = (Fn >>> 0) % 3 | 0 ? Fn : (mn + -2) | 0
- break q
- }
- mn = (((mn >>> 0) % 3 | 0 ? -1 : 2) + mn) | 0
- Fn = -1
- if ((mn | 0) == -1) {
- break q
- }
- mn = o[(Ln + (mn << 2)) >> 2]
- Fn = -1
- if ((mn | 0) == -1) {
- break q
- }
- Fn = (mn + -1) | 0
- if ((mn >>> 0) % 3) {
- break q
- }
- Fn = (mn + 2) | 0
- }
- r: {
- if ((Fn | 0) == (In | 0)) {
- break r
- }
- mn = Fn
- Fn = (Fn | 0) != -1
- Gn = (Fn | (Jn ^ -1)) & 1
- mn = Gn ? mn : -1
- Jn = Fn & Jn
- if (!(((Un | 0) == -1) | Gn)) {
- Fn = o[Xn >> 2]
- if ((Fn | 0) == -1) {
- break r
- }
- Jn = 0
- if ((Fn >>> 0) % 3) {
- mn = (Fn + -1) | 0
- } else {
- mn = (Fn + 2) | 0
- }
- }
- if ((mn | 0) != -1) {
- continue
- }
- }
- break
- }
- Fn = En
- if ((Fn | 0) < 1) {
- break n
- }
- }
- Ln = (Dn | 0) < 1
- if (!Ln) {
- xl(Sn, 0, bo)
- }
- mn = (Fn + -1) | 0
- Jn = ((mn << 2) + Yn) | 0
- mn = (u(mn, 12) + Ye) | 0
- On = (mn + 60) | 0
- Qn = o[(mn - -64) >> 2]
- In = 0
- Tn = o[Hn >> 2]
- mn = 0
- En = 0
- while (1) {
- Gn = o[Jn >> 2]
- o[Jn >> 2] = Gn + 1
- if (Qn >>> 0 <= Gn >>> 0) {
- break i
- }
- s: {
- if ((o[(o[On >> 2] + ((Gn >>> 3) & 536870908)) >> 2] >>> (Gn & 31)) & 1) {
- break s
- }
- En = (En + 1) | 0
- if (Ln) {
- break s
- }
- Pn = o[(((Hn + 16) | 0) + u(mn, 12)) >> 2]
- Gn = 0
- while (1) {
- Un = Gn << 2
- Xn = (Un + Tn) | 0
- o[Xn >> 2] = o[Xn >> 2] + o[(Pn + Un) >> 2]
- Gn = (Gn + 1) | 0
- if ((Gn | 0) != (Dn | 0)) {
- continue
- }
- break
- }
- }
- mn = (mn + 1) | 0
- if ((Fn | 0) != (mn | 0)) {
- continue
- }
- break
- }
- Fn = u(Dn, Kn)
- mn = Fn
- if (!En) {
- break m
- }
- Gn = 0
- if ((Dn | 0) > 0) {
- break l
- }
- break k
- }
- mn = u(Dn, Kn)
- }
- if (o[Mn >> 2] < 1) {
- break j
- }
- Jn = ((u((Kn + -1) | 0, Dn) << 2) + ln) | 0
- Gn = 0
- while (1) {
- En = Gn << 2
- Fn = o[(En + Jn) >> 2]
- Ln = o[Rn >> 2]
- t: {
- if ((Fn | 0) > (Ln | 0)) {
- In = o[Nn >> 2]
- o[(En + In) >> 2] = Ln
- break t
- }
- In = o[Nn >> 2]
- En = (En + In) | 0
- Ln = o[Wn >> 2]
- if ((Fn | 0) < (Ln | 0)) {
- o[En >> 2] = Ln
- break t
- }
- o[En >> 2] = Fn
- }
- Gn = (Gn + 1) | 0
- Fn = o[Mn >> 2]
- if ((Gn | 0) < (Fn | 0)) {
- continue
- }
- break
- }
- En = 0
- if ((Fn | 0) < 1) {
- break j
- }
- mn = mn << 2
- Gn = (mn + ln) | 0
- Jn = (bn + mn) | 0
- while (1) {
- Fn = En << 2
- mn = (Fn + Gn) | 0
- Fn = (o[(Fn + Jn) >> 2] + o[(Fn + In) >> 2]) | 0
- o[mn >> 2] = Fn
- u: {
- if ((Fn | 0) > o[Rn >> 2]) {
- Fn = (Fn - o[Vn >> 2]) | 0
- } else {
- if ((Fn | 0) >= o[Wn >> 2]) {
- break u
- }
- Fn = (Fn + o[Vn >> 2]) | 0
- }
- o[mn >> 2] = Fn
- }
- En = (En + 1) | 0
- if ((En | 0) < o[Mn >> 2]) {
- continue
- }
- break
- }
- break j
- }
- Zk()
- D()
- }
- while (1) {
- mn = ((Gn << 2) + Sn) | 0
- o[mn >> 2] = o[mn >> 2] / (En | 0)
- Gn = (Gn + 1) | 0
- if ((Gn | 0) != (Dn | 0)) {
- continue
- }
- break
- }
- }
- if (o[Mn >> 2] < 1) {
- break j
- }
- Gn = 0
- while (1) {
- mn = Gn << 2
- En = o[(mn + Sn) >> 2]
- Jn = o[Rn >> 2]
- v: {
- if ((En | 0) > (Jn | 0)) {
- In = o[Nn >> 2]
- o[(mn + In) >> 2] = Jn
- break v
- }
- In = o[Nn >> 2]
- mn = (mn + In) | 0
- Jn = o[Wn >> 2]
- if ((En | 0) < (Jn | 0)) {
- o[mn >> 2] = Jn
- break v
- }
- o[mn >> 2] = En
- }
- Gn = (Gn + 1) | 0
- mn = o[Mn >> 2]
- if ((Gn | 0) < (mn | 0)) {
- continue
- }
- break
- }
- En = 0
- if ((mn | 0) < 1) {
- break j
- }
- mn = Fn << 2
- Gn = (mn + ln) | 0
- Jn = (bn + mn) | 0
- while (1) {
- Fn = En << 2
- mn = (Fn + Gn) | 0
- Fn = (o[(Fn + Jn) >> 2] + o[(Fn + In) >> 2]) | 0
- o[mn >> 2] = Fn
- w: {
- if ((Fn | 0) > o[Rn >> 2]) {
- Fn = (Fn - o[Vn >> 2]) | 0
- } else {
- if ((Fn | 0) >= o[Wn >> 2]) {
- break w
- }
- Fn = (Fn + o[Vn >> 2]) | 0
- }
- o[mn >> 2] = Fn
- }
- En = (En + 1) | 0
- if ((En | 0) < o[Mn >> 2]) {
- continue
- }
- break
- }
- }
- In = 1
- Kn = (Kn + 1) | 0
- if ((Kn | 0) < ($n | 0)) {
- continue
- }
- break
- }
- }
- Ye = o[Hn >> 2]
- if (Ye) {
- o[(Hn + 4) >> 2] = Ye
- ul(Ye)
- }
- ul(Yn)
- Ye = o[(Hn + 52) >> 2]
- if (Ye) {
- o[(Hn + 56) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(Hn + 40) >> 2]
- if (Ye) {
- o[(Hn + 44) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(Hn + 28) >> 2]
- if (Ye) {
- o[(Hn + 32) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(Hn + 16) >> 2]
- if (Ye) {
- o[(Hn + 20) >> 2] = Ye
- ul(Ye)
- }
- R = (Hn - -64) | 0
- return In | 0
- }
- Yk()
- D()
- }
- function af(Ye) {
- Ye = Ye | 0
- var bn = 0
- o[Ye >> 2] = 4560
- bn = o[(Ye + 76) >> 2]
- if (bn) {
- ul(bn)
- }
- o[Ye >> 2] = 2732
- bn = o[(Ye + 32) >> 2]
- if (bn) {
- o[(Ye + 36) >> 2] = bn
- ul(bn)
- }
- return Ye | 0
- }
- function bf(Ye) {
- Ye = Ye | 0
- var ln = 0
- o[Ye >> 2] = 4560
- ln = o[(Ye + 76) >> 2]
- if (ln) {
- ul(ln)
- }
- o[Ye >> 2] = 2732
- ln = o[(Ye + 32) >> 2]
- if (ln) {
- o[(Ye + 36) >> 2] = ln
- ul(ln)
- }
- ul(Ye)
- }
- function cf(Ye, mn, Dn, En, co, eo) {
- Ye = Ye | 0
- mn = mn | 0
- Dn = Dn | 0
- En = En | 0
- co = co | 0
- eo = eo | 0
- var fo = 0,
- go = 0,
- ho = 0,
- io = 0,
- jo = 0,
- ko = 0,
- lo = 0,
- mo = 0,
- no = 0,
- oo = 0,
- po = 0,
- qo = 0
- En = 0
- a: {
- if ((co | 0) != 2) {
- break a
- }
- o[(Ye + 8) >> 2] = 2
- o[(Ye - -64) >> 2] = eo
- En = (Ye + 32) | 0
- co = o[En >> 2]
- eo = (o[(Ye + 36) >> 2] - co) | 0
- fo = eo >> 2
- b: {
- if (fo >>> 0 <= 1) {
- Da(En, (2 - fo) | 0)
- break b
- }
- if ((eo | 0) == 8) {
- break b
- }
- o[(Ye + 36) >> 2] = co + 8
- }
- En = 1
- co = o[(Ye + 56) >> 2]
- eo = o[(co + 4) >> 2]
- co = o[co >> 2]
- fo = (eo - co) | 0
- if ((fo | 0) < 1) {
- break a
- }
- if ((co | 0) != (eo | 0)) {
- no = (Ye + 60) | 0
- oo = fo >> 2
- fo = (Ye + 8) | 0
- jo = (Ye + 16) | 0
- ko = (Ye + 32) | 0
- lo = (Ye + 20) | 0
- mo = (Ye + 12) | 0
- po = (Ye + 56) | 0
- while (1) {
- if (!df(no, o[((ho << 2) + co) >> 2], Dn, ho)) {
- En = 0
- break a
- }
- c: {
- if (o[fo >> 2] < 1) {
- break c
- }
- co = 0
- while (1) {
- En = co << 2
- eo = o[(((En + Ye) | 0) + 68) >> 2]
- go = o[jo >> 2]
- d: {
- if ((eo | 0) > (go | 0)) {
- io = o[ko >> 2]
- o[(En + io) >> 2] = go
- break d
- }
- io = o[ko >> 2]
- En = (En + io) | 0
- go = o[mo >> 2]
- if ((eo | 0) < (go | 0)) {
- o[En >> 2] = go
- break d
- }
- o[En >> 2] = eo
- }
- co = (co + 1) | 0
- En = o[fo >> 2]
- if ((co | 0) < (En | 0)) {
- continue
- }
- break
- }
- eo = 0
- if ((En | 0) < 1) {
- break c
- }
- En = ho << 3
- go = (En + Dn) | 0
- qo = (mn + En) | 0
- while (1) {
- co = eo << 2
- En = (co + go) | 0
- co = (o[(co + qo) >> 2] + o[(co + io) >> 2]) | 0
- o[En >> 2] = co
- e: {
- if ((co | 0) > o[jo >> 2]) {
- co = (co - o[lo >> 2]) | 0
- } else {
- if ((co | 0) >= o[mo >> 2]) {
- break e
- }
- co = (co + o[lo >> 2]) | 0
- }
- o[En >> 2] = co
- }
- eo = (eo + 1) | 0
- if ((eo | 0) < o[fo >> 2]) {
- continue
- }
- break
- }
- }
- En = 1
- ho = (ho + 1) | 0
- if ((ho | 0) >= (oo | 0)) {
- break a
- }
- En = o[po >> 2]
- co = o[En >> 2]
- if (((o[(En + 4) >> 2] - co) >> 2) >>> 0 > ho >>> 0) {
- continue
- }
- break
- }
- }
- Zk()
- D()
- }
- return En | 0
- }
- function df(Ye, mn, Dn, En) {
- var co = 0,
- eo = 0,
- ro = 0,
- so = 0,
- to = 0,
- uo = 0,
- vo = 0,
- wo = 0,
- xo = 0,
- yo = 0,
- zo = 0,
- Ao = 0,
- Bo = 0,
- Co = 0,
- Do = 0,
- Eo = 0,
- Fo = 0,
- Go = 0,
- Ho = 0,
- Io = 0,
- Jo = 0,
- Ko = 0,
- Lo = 0,
- Mo = 0,
- No = 0
- ro = (R - 80) | 0
- R = ro
- co = -1
- eo = -1
- a: {
- if ((mn | 0) == -1) {
- break a
- }
- so = (((mn >>> 0) % 3 | 0 ? -1 : 2) + mn) | 0
- to = o[(Ye + 32) >> 2]
- vo = (mn + 1) | 0
- mn = (vo >>> 0) % 3 | 0 ? vo : (mn + -2) | 0
- if ((mn | 0) != -1) {
- co = o[(o[to >> 2] + (mn << 2)) >> 2]
- }
- if ((so | 0) == -1) {
- break a
- }
- eo = o[(o[to >> 2] + (so << 2)) >> 2]
- }
- so = o[(Ye + 36) >> 2]
- mn = o[so >> 2]
- b: {
- c: {
- d: {
- e: {
- so = (o[(so + 4) >> 2] - mn) >> 2
- if (!((so >>> 0 <= co >>> 0) | (so >>> 0 <= eo >>> 0))) {
- f: {
- g: {
- yo = o[(mn + (co << 2)) >> 2]
- Ao = (yo | 0) >= (En | 0)
- if (Ao) {
- break g
- }
- eo = o[(mn + (eo << 2)) >> 2]
- if ((eo | 0) >= (En | 0)) {
- break g
- }
- mn = eo << 3
- Fo = o[((mn | 4) + Dn) >> 2]
- co = yo << 3
- vo = o[((co | 4) + Dn) >> 2]
- Co = o[(mn + Dn) >> 2]
- Eo = o[(Dn + co) >> 2]
- if (!(((Co | 0) != (Eo | 0)) | ((vo | 0) != (Fo | 0)))) {
- o[(Ye + 8) >> 2] = Eo
- o[(Ye + 12) >> 2] = vo
- break f
- }
- mn = o[(o[(Ye + 4) >> 2] + (En << 2)) >> 2]
- o[(ro + 72) >> 2] = 0
- o[(ro + 76) >> 2] = 0
- co = (ro - -64) | 0
- o[co >> 2] = 0
- o[(co + 4) >> 2] = 0
- o[(ro + 56) >> 2] = 0
- o[(ro + 60) >> 2] = 0
- co = o[Ye >> 2]
- if (!p[(co + 84) | 0]) {
- mn = o[(o[(co + 68) >> 2] + (mn << 2)) >> 2]
- }
- Me(co, mn, m[(co + 24) | 0], (ro + 56) | 0)
- mn = o[(o[(Ye + 4) >> 2] + (yo << 2)) >> 2]
- o[(ro + 48) >> 2] = 0
- o[(ro + 52) >> 2] = 0
- o[(ro + 40) >> 2] = 0
- o[(ro + 44) >> 2] = 0
- o[(ro + 32) >> 2] = 0
- o[(ro + 36) >> 2] = 0
- co = o[Ye >> 2]
- if (!p[(co + 84) | 0]) {
- mn = o[(o[(co + 68) >> 2] + (mn << 2)) >> 2]
- }
- Me(co, mn, m[(co + 24) | 0], (ro + 32) | 0)
- mn = o[(o[(Ye + 4) >> 2] + (eo << 2)) >> 2]
- o[(ro + 24) >> 2] = 0
- o[(ro + 28) >> 2] = 0
- o[(ro + 16) >> 2] = 0
- o[(ro + 20) >> 2] = 0
- o[(ro + 8) >> 2] = 0
- o[(ro + 12) >> 2] = 0
- co = o[Ye >> 2]
- if (!p[(co + 84) | 0]) {
- mn = o[(o[(co + 68) >> 2] + (mn << 2)) >> 2]
- }
- Me(co, mn, m[(co + 24) | 0], (ro + 8) | 0)
- Go = o[(ro + 44) >> 2]
- mn = o[(ro + 16) >> 2]
- uo = o[(ro + 40) >> 2]
- co = uo
- eo = (o[(ro + 20) >> 2] - ((Go + (mn >>> 0 < co >>> 0)) | 0)) | 0
- Io = (mn - co) | 0
- mn = Vl(Io, eo, Io, eo)
- co = T
- xo = mn
- Ho = o[(ro + 36) >> 2]
- mn = o[(ro + 8) >> 2]
- wo = o[(ro + 32) >> 2]
- to = wo
- so = (o[(ro + 12) >> 2] - ((Ho + (mn >>> 0 < to >>> 0)) | 0)) | 0
- Jo = (mn - to) | 0
- to = Vl(Jo, so, Jo, so)
- mn = (xo + to) | 0
- co = (T + co) | 0
- co = mn >>> 0 < to >>> 0 ? (co + 1) | 0 : co
- Bo = mn
- Lo = o[(ro + 52) >> 2]
- mn = o[(ro + 24) >> 2]
- xo = o[(ro + 48) >> 2]
- to = xo
- zo = (o[(ro + 28) >> 2] - ((Lo + (mn >>> 0 < to >>> 0)) | 0)) | 0
- Ko = (mn - to) | 0
- to = Vl(Ko, zo, Ko, zo)
- mn = (Bo + to) | 0
- co = (T + co) | 0
- Do = mn
- to = mn >>> 0 < to >>> 0 ? (co + 1) | 0 : co
- if (!(mn | to)) {
- break g
- }
- En = 1
- mn = 0
- co = o[(ro + 64) >> 2]
- Dn = (o[(ro + 68) >> 2] - (((co >>> 0 < uo >>> 0) + Go) | 0)) | 0
- co = (co - uo) | 0
- yo = co
- Ao = Dn
- Dn = Vl(Io, eo, co, Dn)
- co = T
- Bo = Dn
- uo = o[(ro + 56) >> 2]
- Dn = (uo - wo) | 0
- Go = (o[(ro + 60) >> 2] - (((uo >>> 0 < wo >>> 0) + Ho) | 0)) | 0
- wo = Vl(Dn, Go, Jo, so)
- uo = (Bo + wo) | 0
- co = (T + co) | 0
- co = uo >>> 0 < wo >>> 0 ? (co + 1) | 0 : co
- Bo = uo
- uo = o[(ro + 72) >> 2]
- wo = (uo - xo) | 0
- Ho = (o[(ro + 76) >> 2] - (((uo >>> 0 < xo >>> 0) + Lo) | 0)) | 0
- xo = Vl(wo, Ho, Ko, zo)
- uo = (Bo + xo) | 0
- co = (T + co) | 0
- co = uo >>> 0 < xo >>> 0 ? (co + 1) | 0 : co
- xo = uo
- uo = co
- eo = Wl(Vl(xo, co, Io, eo), T, Do, to)
- Ao = (Ao - ((T + (yo >>> 0 < eo >>> 0)) | 0)) | 0
- eo = (yo - eo) | 0
- eo = Vl(eo, Ao, eo, Ao)
- yo = T
- Bo = eo
- co = Wl(Vl(Jo, so, xo, co), T, Do, to)
- eo = (Go - ((T + (Dn >>> 0 < co >>> 0)) | 0)) | 0
- Dn = (Dn - co) | 0
- eo = Vl(Dn, eo, Dn, eo)
- Dn = (Bo + eo) | 0
- co = (T + yo) | 0
- co = Dn >>> 0 < eo >>> 0 ? (co + 1) | 0 : co
- so = Dn
- Dn = Wl(Vl(xo, uo, Ko, zo), T, Do, to)
- eo = (Ho - ((T + (wo >>> 0 < Dn >>> 0)) | 0)) | 0
- Dn = (wo - Dn) | 0
- eo = Vl(Dn, eo, Dn, eo)
- Dn = (so + eo) | 0
- co = (T + co) | 0
- eo = Vl(Dn, Dn >>> 0 < eo >>> 0 ? (co + 1) | 0 : co, Do, to)
- Dn = T
- so = Dn
- if ((!Dn & (eo >>> 0 <= 1)) | (Dn >>> 0 < 0)) {
- break e
- }
- zo = eo
- Dn = so
- while (1) {
- co = (mn << 1) | (En >>> 31)
- En = En << 1
- mn = co
- wo = (!Dn & (zo >>> 0 > 7)) | (Dn >>> 0 > 0)
- zo = ((Dn & 3) << 30) | (zo >>> 2)
- Dn = Dn >>> 2
- if (wo) {
- continue
- }
- break
- }
- break d
- }
- co = Ye
- if (Ao) {
- if ((En | 0) <= 0) {
- o[(Ye + 8) >> 2] = 0
- o[(Ye + 12) >> 2] = 0
- break f
- }
- mn = ((En << 1) + -2) | 0
- } else {
- mn = yo << 1
- }
- mn = ((mn << 2) + Dn) | 0
- o[(co + 8) >> 2] = o[mn >> 2]
- o[(Ye + 12) >> 2] = o[(mn + 4) >> 2]
- }
- Dn = 1
- break b
- }
- Zk()
- D()
- }
- En = eo
- mn = so
- if (eo - 1) {
- break c
- }
- }
- while (1) {
- Dn = (Xl(eo, so, En, mn) + En) | 0
- co = (mn + T) | 0
- co = Dn >>> 0 < En >>> 0 ? (co + 1) | 0 : co
- En = ((co & 1) << 31) | (Dn >>> 1)
- mn = co >>> 1
- Dn = Vl(En, mn, En, mn)
- co = T
- if ((((so | 0) == (co | 0)) & (Dn >>> 0 > eo >>> 0)) | (co >>> 0 > so >>> 0)) {
- continue
- }
- break
- }
- }
- co = o[(Ye + 20) >> 2]
- Dn = 0
- if (!co) {
- break b
- }
- so = (co + -1) | 0
- zo = o[(o[(Ye + 16) >> 2] + ((so >>> 3) & 536870908)) >> 2]
- o[(Ye + 20) >> 2] = so
- Dn = Fo
- co = vo
- wo = (Dn - co) | 0
- vo = co >> 31
- Fo = ((Dn >> 31) - ((vo + (Dn >>> 0 < co >>> 0)) | 0)) | 0
- Dn = Vl(xo, uo, wo, Fo)
- eo = T
- vo = Vl(co, vo, Do, to)
- Dn = (vo + Dn) | 0
- co = (T + eo) | 0
- co = Dn >>> 0 < vo >>> 0 ? (co + 1) | 0 : co
- Bo = Dn
- Dn = Co
- eo = Eo
- yo = (Dn - eo) | 0
- Eo = eo >> 31
- vo = ((Dn >> 31) - ((Eo + (Dn >>> 0 < eo >>> 0)) | 0)) | 0
- Dn = Vl(En, mn, yo, vo)
- Co = Dn
- Dn = (zo >>> (so & 31)) & 1
- Ao = Dn ? (0 - Co) | 0 : Co
- so = (Bo + Ao) | 0
- zo = co
- co = T
- co = (zo + (Dn ? (0 - ((co + (0 < Co >>> 0)) | 0)) | 0 : co)) | 0
- ;(Mo = Ye), (No = Wl(so, so >>> 0 < Ao >>> 0 ? (co + 1) | 0 : co, Do, to)), (o[(Mo + 12) >> 2] = No)
- co = Vl(xo, uo, yo, vo)
- so = T
- Co = Ye
- eo = Vl(eo, Eo, Do, to)
- Ye = (eo + co) | 0
- co = (T + so) | 0
- co = Ye >>> 0 < eo >>> 0 ? (co + 1) | 0 : co
- uo = Ye
- Ye = Vl(En, mn, wo, Fo)
- En = Dn ? Ye : (0 - Ye) | 0
- mn = (uo + En) | 0
- uo = co
- co = T
- Ye = (uo + (Dn ? co : (0 - (((0 < Ye >>> 0) + co) | 0)) | 0)) | 0
- ;(Mo = Co), (No = Wl(mn, mn >>> 0 < En >>> 0 ? (Ye + 1) | 0 : Ye, Do, to)), (o[(Mo + 8) >> 2] = No)
- Dn = 1
- }
- R = (ro + 80) | 0
- return Dn
- }
- function ef(Ye) {
- Ye = Ye | 0
- var mn = 0
- o[Ye >> 2] = 4784
- o[Ye >> 2] = 2732
- mn = o[(Ye + 32) >> 2]
- if (mn) {
- o[(Ye + 36) >> 2] = mn
- ul(mn)
- }
- return Ye | 0
- }
- function ff(Ye) {
- Ye = Ye | 0
- var Dn = 0
- o[Ye >> 2] = 4784
- o[Ye >> 2] = 2732
- Dn = o[(Ye + 32) >> 2]
- if (Dn) {
- o[(Ye + 36) >> 2] = Dn
- ul(Dn)
- }
- ul(Ye)
- }
- function gf(Ye, En, Oo, Po, Qo, Ro) {
- Ye = Ye | 0
- En = En | 0
- Oo = Oo | 0
- Po = Po | 0
- Qo = Qo | 0
- Ro = Ro | 0
- var So = 0,
- To = 0,
- Uo = 0,
- Vo = 0,
- Wo = 0,
- Xo = 0,
- Yo = 0,
- Zo = 0,
- _o = 0,
- $o = 0,
- ap = 0,
- bp = 0,
- cp = 0,
- dp = 0,
- ep = 0
- To = (R - 32) | 0
- R = To
- o[(Ye + 68) >> 2] = Ro
- Po = o[(Ye + 56) >> 2]
- Qo = o[Po >> 2]
- Ro = (Po + 4) | 0
- So = o[Ro >> 2]
- o[(To + 24) >> 2] = 0
- o[(To + 16) >> 2] = 0
- o[(To + 20) >> 2] = 0
- a: {
- Qo = (So - Qo) | 0
- if ((Qo | 0) < 1) {
- break a
- }
- Po = o[Po >> 2]
- if ((Po | 0) != o[Ro >> 2]) {
- bp = Qo >> 2
- cp = (Ye + 60) | 0
- dp = (Ye + 108) | 0
- Yo = (Ye + 8) | 0
- Zo = (Ye + 16) | 0
- _o = (Ye + 32) | 0
- $o = (Ye + 20) | 0
- ap = (Ye + 12) | 0
- ep = (Ye + 56) | 0
- while (1) {
- hf(cp, o[((Wo << 2) + Po) >> 2], (To + 16) | 0)
- Qo = o[(To + 20) >> 2]
- So = Qo >> 31
- Ro = o[(To + 16) >> 2]
- Uo = Ro >> 31
- Xo = o[(To + 24) >> 2]
- Vo = Xo >> 31
- Po = 0
- Vo = Vo ^ (Vo + Xo)
- So = (Vo + (((So ^ (Qo + So)) + (Uo ^ (Ro + Uo))) | 0)) | 0
- if (So >>> 0 < Vo >>> 0) {
- Po = 1
- }
- b: {
- if (!(Po | So)) {
- o[(To + 16) >> 2] = o[(Ye + 104) >> 2]
- break b
- }
- Uo = o[(Ye + 104) >> 2]
- Vo = Uo >> 31
- Qo = Wl(Vl(Uo, Vo, Qo, Qo >> 31), T, So, Po)
- o[(To + 20) >> 2] = Qo
- Po = Wl(Vl(Uo, Vo, Ro, Ro >> 31), T, So, Po)
- o[(To + 16) >> 2] = Po
- Ro = Po
- Po = Po >> 31
- Po = (((Uo - ((Ro + Po) ^ Po)) | 0) + ((Qo | 0) < 0 ? Qo : (0 - Qo) | 0)) | 0
- if ((Xo | 0) >= 0) {
- o[(To + 24) >> 2] = Po
- break b
- }
- o[(To + 24) >> 2] = 0 - Po
- }
- Po = Pf(dp)
- Ro = o[(To + 16) >> 2]
- c: {
- if (!Po) {
- Qo = o[(To + 20) >> 2]
- break c
- }
- o[(To + 24) >> 2] = 0 - o[(To + 24) >> 2]
- Qo = (0 - o[(To + 20) >> 2]) | 0
- o[(To + 20) >> 2] = Qo
- Ro = (0 - Ro) | 0
- o[(To + 16) >> 2] = Ro
- }
- d: {
- if ((Ro | 0) >= 0) {
- Po = o[(Ye + 104) >> 2]
- Ro = (Po + o[(To + 24) >> 2]) | 0
- Po = (Po + Qo) | 0
- break d
- }
- e: {
- if ((Qo | 0) <= -1) {
- Ro = o[(To + 24) >> 2]
- Po = Ro >> 31
- Po = Po ^ (Po + Ro)
- break e
- }
- Ro = o[(To + 24) >> 2]
- Po = Ro >> 31
- Po = (o[(Ye + 100) >> 2] - (Po ^ (Po + Ro))) | 0
- }
- if ((Ro | 0) <= -1) {
- Ro = Qo
- Qo = Qo >> 31
- Ro = (Ro + Qo) ^ Qo
- break d
- }
- Ro = Qo
- Qo = Qo >> 31
- Ro = (o[(Ye + 100) >> 2] - ((Ro + Qo) ^ Qo)) | 0
- }
- Qo = o[(Ye + 100) >> 2]
- f: {
- if (!(Po | Ro)) {
- Ro = Qo
- Po = Qo
- break f
- }
- if (!(((Qo | 0) != (Ro | 0)) | Po)) {
- Po = Ro
- break f
- }
- if (!(((Po | 0) != (Qo | 0)) | Ro)) {
- Ro = Po
- break f
- }
- g: {
- if (Po) {
- break g
- }
- So = o[(Ye + 104) >> 2]
- if ((So | 0) >= (Ro | 0)) {
- break g
- }
- Ro = ((So << 1) - Ro) | 0
- Po = 0
- break f
- }
- h: {
- if ((Po | 0) != (Qo | 0)) {
- break h
- }
- So = o[(Ye + 104) >> 2]
- if ((So | 0) <= (Ro | 0)) {
- break h
- }
- Ro = ((So << 1) - Ro) | 0
- break f
- }
- i: {
- if ((Qo | 0) != (Ro | 0)) {
- break i
- }
- Qo = o[(Ye + 104) >> 2]
- if ((Qo | 0) <= (Po | 0)) {
- break i
- }
- Po = ((Qo << 1) - Po) | 0
- break f
- }
- if (Ro) {
- break f
- }
- Ro = 0
- Qo = o[(Ye + 104) >> 2]
- if ((Qo | 0) >= (Po | 0)) {
- break f
- }
- Po = ((Qo << 1) - Po) | 0
- }
- o[(To + 12) >> 2] = Ro
- o[(To + 8) >> 2] = Po
- j: {
- if (o[Yo >> 2] < 1) {
- break j
- }
- Ro = 0
- while (1) {
- So = o[Zo >> 2]
- k: {
- if ((Po | 0) > (So | 0)) {
- Qo = o[_o >> 2]
- o[(Qo + (Ro << 2)) >> 2] = So
- break k
- }
- Qo = o[_o >> 2]
- So = (Qo + (Ro << 2)) | 0
- Uo = o[ap >> 2]
- if ((Po | 0) < (Uo | 0)) {
- o[So >> 2] = Uo
- break k
- }
- o[So >> 2] = Po
- }
- Ro = (Ro + 1) | 0
- So = o[Yo >> 2]
- if ((Ro | 0) < (So | 0)) {
- Po = o[(((To + 8) | 0) + (Ro << 2)) >> 2]
- continue
- }
- break
- }
- Po = 0
- if ((So | 0) < 1) {
- break j
- }
- Ro = Wo << 3
- Uo = (Ro + Oo) | 0
- Xo = (En + Ro) | 0
- while (1) {
- So = Po << 2
- Ro = (So + Uo) | 0
- So = (o[(So + Xo) >> 2] + o[(Qo + So) >> 2]) | 0
- o[Ro >> 2] = So
- l: {
- if ((So | 0) > o[Zo >> 2]) {
- Vo = (So - o[$o >> 2]) | 0
- } else {
- if ((So | 0) >= o[ap >> 2]) {
- break l
- }
- Vo = (So + o[$o >> 2]) | 0
- }
- o[Ro >> 2] = Vo
- }
- Po = (Po + 1) | 0
- if ((Po | 0) < o[Yo >> 2]) {
- continue
- }
- break
- }
- }
- Wo = (Wo + 1) | 0
- if ((Wo | 0) >= (bp | 0)) {
- break a
- }
- Qo = o[ep >> 2]
- Po = o[Qo >> 2]
- if (((o[(Qo + 4) >> 2] - Po) >> 2) >>> 0 > Wo >>> 0) {
- continue
- }
- break
- }
- }
- Zk()
- D()
- }
- R = (To + 32) | 0
- return 1
- }
- function hf(Ye, En, Oo) {
- Ye = Ye | 0
- En = En | 0
- Oo = Oo | 0
- var Po = 0,
- Qo = 0,
- Ro = 0,
- fp = 0,
- gp = 0,
- hp = 0,
- ip = 0,
- jp = 0,
- kp = 0,
- lp = 0,
- mp = 0,
- np = 0,
- op = 0,
- pp = 0,
- qp = 0,
- rp = 0,
- sp = 0,
- tp = 0,
- up = 0,
- vp = 0,
- wp = 0,
- xp = 0,
- yp = 0,
- zp = 0,
- Ap = 0,
- Bp = 0
- Ro = (R - 96) | 0
- R = Ro
- Qo = o[(Ye + 16) >> 2]
- m[(Ro + 92) | 0] = 1
- o[(Ro + 88) >> 2] = En
- o[(Ro + 84) >> 2] = En
- o[(Ro + 80) >> 2] = Qo
- Po = -1
- Po = (En | 0) != -1 ? o[(o[Qo >> 2] + (En << 2)) >> 2] : Po
- fp = o[(Ye + 20) >> 2]
- Qo = o[fp >> 2]
- a: {
- b: {
- c: {
- d: {
- if (((o[(fp + 4) >> 2] - Qo) >> 2) >>> 0 > Po >>> 0) {
- Qo = o[(o[(Ye + 8) >> 2] + (o[(Qo + (Po << 2)) >> 2] << 2)) >> 2]
- Po = o[(Ye + 4) >> 2]
- if (!p[(Po + 84) | 0]) {
- Qo = o[(o[(Po + 68) >> 2] + (Qo << 2)) >> 2]
- }
- o[(Ro + 72) >> 2] = 0
- o[(Ro + 76) >> 2] = 0
- fp = (Ro - -64) | 0
- o[fp >> 2] = 0
- o[(fp + 4) >> 2] = 0
- o[(Ro + 56) >> 2] = 0
- o[(Ro + 60) >> 2] = 0
- Me(Po, Qo, m[(Po + 24) | 0], (Ro + 56) | 0)
- if ((En | 0) == -1) {
- break a
- }
- Po = (En + 1) | 0
- fp = (Po >>> 0) % 3 | 0 ? Po : (En + -2) | 0
- pp = (((En >>> 0) % 3 | 0 ? -1 : 2) + En) | 0
- wp = (Ye + 28) | 0
- gp = !o[wp >> 2]
- xp = (Ye + 20) | 0
- yp = (Ye + 8) | 0
- zp = (Ro + 48) | 0
- while (1) {
- Qo = fp
- Po = pp
- e: {
- if (gp) {
- break e
- }
- Po = (En + 1) | 0
- Qo = (Po >>> 0) % 3 | 0 ? Po : (En + -2) | 0
- Po = (En + -1) | 0
- if ((En >>> 0) % 3) {
- break e
- }
- Po = (En + 2) | 0
- }
- En = -1
- En = (Qo | 0) != -1 ? o[(o[o[(Ye + 16) >> 2] >> 2] + (Qo << 2)) >> 2] : En
- gp = o[xp >> 2]
- Qo = o[gp >> 2]
- if (((o[(gp + 4) >> 2] - Qo) >> 2) >>> 0 <= En >>> 0) {
- break d
- }
- Qo = o[(o[yp >> 2] + (o[(Qo + (En << 2)) >> 2] << 2)) >> 2]
- gp = (Ye + 4) | 0
- En = o[gp >> 2]
- if (!p[(En + 84) | 0]) {
- Qo = o[(o[(En + 68) >> 2] + (Qo << 2)) >> 2]
- }
- o[zp >> 2] = 0
- o[(zp + 4) >> 2] = 0
- o[(Ro + 40) >> 2] = 0
- o[(Ro + 44) >> 2] = 0
- o[(Ro + 32) >> 2] = 0
- o[(Ro + 36) >> 2] = 0
- Me(En, Qo, m[(En + 24) | 0], (Ro + 32) | 0)
- En = -1
- En = (Po | 0) != -1 ? o[(o[o[(Ye + 16) >> 2] >> 2] + (Po << 2)) >> 2] : En
- Qo = o[xp >> 2]
- Po = o[Qo >> 2]
- if (((o[(Qo + 4) >> 2] - Po) >> 2) >>> 0 <= En >>> 0) {
- break c
- }
- Po = o[(o[yp >> 2] + (o[(Po + (En << 2)) >> 2] << 2)) >> 2]
- En = o[gp >> 2]
- if (!p[(En + 84) | 0]) {
- Po = o[(o[(En + 68) >> 2] + (Po << 2)) >> 2]
- }
- Qo = (Ro + 24) | 0
- o[Qo >> 2] = 0
- o[(Qo + 4) >> 2] = 0
- gp = (Ro + 16) | 0
- o[gp >> 2] = 0
- o[(gp + 4) >> 2] = 0
- o[(Ro + 8) >> 2] = 0
- o[(Ro + 12) >> 2] = 0
- Me(En, Po, m[(En + 24) | 0], (Ro + 8) | 0)
- Po = o[(Ro + 8) >> 2]
- En = o[(Ro + 56) >> 2]
- qp = (Po - En) | 0
- rp = o[(Ro + 60) >> 2]
- jp = (o[(Ro + 12) >> 2] - ((rp + (Po >>> 0 < En >>> 0)) | 0)) | 0
- sp = o[(Ro + 40) >> 2]
- Po = o[(Ro + 64) >> 2]
- Ap = (sp - Po) | 0
- tp = o[(Ro + 68) >> 2]
- sp = (o[(Ro + 44) >> 2] - ((tp + (sp >>> 0 < Po >>> 0)) | 0)) | 0
- up = Vl(qp, jp, Ap, sp)
- vp = (hp - up) | 0
- kp = (kp - ((T + (hp >>> 0 < up >>> 0)) | 0)) | 0
- hp = o[gp >> 2]
- up = (hp - Po) | 0
- gp = (o[(gp + 4) >> 2] - (((hp >>> 0 < Po >>> 0) + tp) | 0)) | 0
- hp = o[(Ro + 32) >> 2]
- tp = (hp - En) | 0
- rp = (o[(Ro + 36) >> 2] - (((hp >>> 0 < En >>> 0) + rp) | 0)) | 0
- Po = Vl(up, gp, tp, rp)
- hp = (Po + vp) | 0
- En = (T + kp) | 0
- En = hp >>> 0 < Po >>> 0 ? (En + 1) | 0 : En
- kp = En
- Po = ip
- mp = qp
- Bp = jp
- ip = o[(Ro + 48) >> 2]
- En = o[(Ro + 72) >> 2]
- jp = (ip - En) | 0
- qp = o[(Ro + 76) >> 2]
- vp = (o[(Ro + 52) >> 2] - ((qp + (ip >>> 0 < En >>> 0)) | 0)) | 0
- mp = Vl(mp, Bp, jp, vp)
- ip = (Po + mp) | 0
- Po = (T + np) | 0
- Po = ip >>> 0 < mp >>> 0 ? (Po + 1) | 0 : Po
- np = ip
- ip = o[Qo >> 2]
- mp = (ip - En) | 0
- En = (o[(Qo + 4) >> 2] - (((ip >>> 0 < En >>> 0) + qp) | 0)) | 0
- Qo = Vl(mp, En, tp, rp)
- ip = (np - Qo) | 0
- np = (Po - ((T + (np >>> 0 < Qo >>> 0)) | 0)) | 0
- Po = Vl(up, gp, jp, vp)
- Qo = (lp - Po) | 0
- op = (op - ((T + (lp >>> 0 < Po >>> 0)) | 0)) | 0
- Po = Vl(mp, En, Ap, sp)
- lp = (Po + Qo) | 0
- En = (T + op) | 0
- En = lp >>> 0 < Po >>> 0 ? (En + 1) | 0 : En
- op = En
- jf((Ro + 80) | 0)
- jp = o[wp >> 2]
- gp = !jp
- En = o[(Ro + 88) >> 2]
- if ((En | 0) != -1) {
- continue
- }
- break
- }
- En = np
- Po = En >> 31
- Ye = En >> 31
- En = (Ye + En) | 0
- fp = (Po + ip) | 0
- if (fp >>> 0 < Po >>> 0) {
- En = (En + 1) | 0
- }
- Po = Po ^ fp
- gp = Ye ^ En
- En = op
- Ye = En >> 31
- En = En >> 31
- fp = Ye
- pp = (op + Ye) | 0
- Qo = (En + lp) | 0
- if (Qo >>> 0 < En >>> 0) {
- pp = (pp + 1) | 0
- }
- Ye = En ^ Qo
- Qo = fp ^ pp
- f: {
- if ((kp | 0) < -1 ? 1 : (kp | 0) <= -1 ? (hp >>> 0 > 4294967295 ? 0 : 1) : 0) {
- En = hp
- fp = (Ye + ((Po - En) | 0)) | 0
- En = (Qo + ((gp - (((Po >>> 0 < En >>> 0) + kp) | 0)) | 0)) | 0
- Po = fp
- Ye = Po >>> 0 < Ye >>> 0 ? (En + 1) | 0 : En
- if (!jp) {
- break f
- }
- break b
- }
- En = (gp + kp) | 0
- fp = Po
- Po = hp
- fp = (fp + Po) | 0
- if (fp >>> 0 < Po >>> 0) {
- En = (En + 1) | 0
- }
- Po = Ye
- fp = (Po + fp) | 0
- Ye = (En + Qo) | 0
- Ye = fp >>> 0 < Po >>> 0 ? (Ye + 1) | 0 : Ye
- Po = fp
- if (jp) {
- break b
- }
- }
- if ((Po | 0) < 536870913) {
- break a
- }
- Ye = (((Ye & 536870911) << 3) | (Po >>> 29)) & 7
- En = 0
- hp = Wl(hp, kp, Ye, En)
- ip = Wl(ip, np, Ye, En)
- lp = Wl(lp, op, Ye, En)
- break a
- }
- Zk()
- D()
- }
- Zk()
- D()
- }
- Zk()
- D()
- }
- if ((Ye | 0) < 0 ? 1 : (Ye | 0) <= 0 ? (Po >>> 0 >= 536870913 ? 0 : 1) : 0) {
- break a
- }
- En = Ye >>> 29
- Ye = ((Ye & 536870911) << 3) | (Po >>> 29)
- hp = Wl(hp, kp, Ye, En)
- ip = Wl(ip, np, Ye, En)
- lp = Wl(lp, op, Ye, En)
- }
- o[(Oo + 8) >> 2] = hp
- o[(Oo + 4) >> 2] = ip
- o[Oo >> 2] = lp
- R = (Ro + 96) | 0
- }
- function jf(Ye) {
- var En = 0,
- Oo = 0,
- Cp = 0
- En = o[(Ye + 8) >> 2]
- Cp = o[Ye >> 2]
- a: {
- if (p[(Ye + 12) | 0]) {
- b: {
- c: {
- d: {
- e: {
- if ((En | 0) == -1) {
- break e
- }
- Oo = (En + 1) | 0
- En = (Oo >>> 0) % 3 | 0 ? Oo : (En + -2) | 0
- if ((En | 0) == -1) {
- break e
- }
- En = o[(o[(Cp + 12) >> 2] + (En << 2)) >> 2]
- if ((En | 0) != -1) {
- break d
- }
- }
- o[(Ye + 8) >> 2] = -1
- break c
- }
- Oo = (En + 1) | 0
- En = (Oo >>> 0) % 3 | 0 ? Oo : (En + -2) | 0
- o[(Ye + 8) >> 2] = En
- if ((En | 0) != -1) {
- break b
- }
- }
- Oo = o[(Ye + 4) >> 2]
- En = -1
- f: {
- if ((Oo | 0) == -1) {
- break f
- }
- Oo = (Oo + ((Oo >>> 0) % 3 | 0 ? -1 : 2)) | 0
- En = -1
- if ((Oo | 0) == -1) {
- break f
- }
- Oo = o[(o[(Cp + 12) >> 2] + (Oo << 2)) >> 2]
- En = -1
- if ((Oo | 0) == -1) {
- break f
- }
- En = (Oo + -1) | 0
- if ((Oo >>> 0) % 3) {
- break f
- }
- En = (Oo + 2) | 0
- }
- m[(Ye + 12) | 0] = 0
- o[(Ye + 8) >> 2] = En
- return
- }
- if ((En | 0) != o[(Ye + 4) >> 2]) {
- break a
- }
- o[(Ye + 8) >> 2] = -1
- return
- }
- Oo = -1
- g: {
- if ((En | 0) == -1) {
- break g
- }
- En = (En + ((En >>> 0) % 3 | 0 ? -1 : 2)) | 0
- Oo = -1
- if ((En | 0) == -1) {
- break g
- }
- En = o[(o[(Cp + 12) >> 2] + (En << 2)) >> 2]
- Oo = -1
- if ((En | 0) == -1) {
- break g
- }
- Oo = (En + -1) | 0
- if ((En >>> 0) % 3) {
- break g
- }
- Oo = (En + 2) | 0
- }
- o[(Ye + 8) >> 2] = Oo
- }
- }
- function kf(Ye, Dp, Ep, Fp, Gp, Hp) {
- Ye = Ye | 0
- Dp = Dp | 0
- Ep = Ep | 0
- Fp = Fp | 0
- Gp = Gp | 0
- Hp = Hp | 0
- var Ip = 0,
- Jp = 0,
- Kp = 0,
- Lp = 0,
- Mp = 0,
- Np = 0,
- Op = 0,
- Pp = 0,
- Qp = 0,
- Rp = 0,
- Sp = 0,
- Tp = 0,
- Up = 0,
- Vp = 0
- o[(Ye + 8) >> 2] = Gp
- Jp = (Ye + 32) | 0
- Ip = o[Jp >> 2]
- Hp = (o[(Ye + 36) >> 2] - Ip) >> 2
- a: {
- if (Hp >>> 0 < Gp >>> 0) {
- Da(Jp, (Gp - Hp) | 0)
- break a
- }
- if (Hp >>> 0 <= Gp >>> 0) {
- break a
- }
- o[(Ye + 36) >> 2] = Ip + (Gp << 2)
- }
- Jp = 0
- Hp = (Gp & 1073741823) != (Gp | 0) ? -1 : Gp << 2
- Sp = xl(Hk(Hp), 0, Hp)
- Mp = (Ye + 8) | 0
- Ip = o[Mp >> 2]
- b: {
- if ((Ip | 0) < 1) {
- break b
- }
- Op = (Ye + 16) | 0
- Hp = (Ye + 32) | 0
- Pp = (Ye + 12) | 0
- while (1) {
- Ip = Jp << 2
- Lp = o[(Ip + Sp) >> 2]
- Kp = o[Op >> 2]
- c: {
- if ((Lp | 0) > (Kp | 0)) {
- Np = o[Hp >> 2]
- o[(Ip + Np) >> 2] = Kp
- break c
- }
- Np = o[Hp >> 2]
- Ip = (Ip + Np) | 0
- Kp = o[Pp >> 2]
- if ((Lp | 0) < (Kp | 0)) {
- o[Ip >> 2] = Kp
- break c
- }
- o[Ip >> 2] = Lp
- }
- Jp = (Jp + 1) | 0
- Ip = o[Mp >> 2]
- if ((Jp | 0) < (Ip | 0)) {
- continue
- }
- break
- }
- if ((Ip | 0) < 1) {
- break b
- }
- Jp = 0
- Mp = (Ye + 16) | 0
- Lp = (Ye + 20) | 0
- Op = (Ye + 8) | 0
- Pp = (Ye + 12) | 0
- while (1) {
- Ip = Jp << 2
- Hp = (Ip + Ep) | 0
- Ip = (o[(Dp + Ip) >> 2] + o[(Ip + Np) >> 2]) | 0
- o[Hp >> 2] = Ip
- d: {
- if ((Ip | 0) > o[Mp >> 2]) {
- Ip = (Ip - o[Lp >> 2]) | 0
- } else {
- if ((Ip | 0) >= o[Pp >> 2]) {
- break d
- }
- Ip = (Ip + o[Lp >> 2]) | 0
- }
- o[Hp >> 2] = Ip
- }
- Jp = (Jp + 1) | 0
- Ip = o[Op >> 2]
- if ((Jp | 0) < (Ip | 0)) {
- continue
- }
- break
- }
- }
- if ((Gp | 0) < (Fp | 0)) {
- Up = (0 - Gp) << 2
- Lp = (Ye + 16) | 0
- Np = (Ye + 32) | 0
- Mp = (Ye + 8) | 0
- Op = (Ye + 20) | 0
- Pp = (Ye + 12) | 0
- Hp = Gp
- while (1) {
- e: {
- if ((Ip | 0) < 1) {
- break e
- }
- Rp = Hp << 2
- Tp = (Rp + Ep) | 0
- Vp = (Tp + Up) | 0
- Jp = 0
- while (1) {
- Ye = Jp << 2
- Ip = o[(Ye + Vp) >> 2]
- Qp = o[Lp >> 2]
- f: {
- if ((Ip | 0) > (Qp | 0)) {
- Kp = o[Np >> 2]
- o[(Ye + Kp) >> 2] = Qp
- break f
- }
- Kp = o[Np >> 2]
- Ye = (Ye + Kp) | 0
- Qp = o[Pp >> 2]
- if ((Ip | 0) < (Qp | 0)) {
- o[Ye >> 2] = Qp
- break f
- }
- o[Ye >> 2] = Ip
- }
- Jp = (Jp + 1) | 0
- Ip = o[Mp >> 2]
- if ((Jp | 0) < (Ip | 0)) {
- continue
- }
- break
- }
- Jp = 0
- if ((Ip | 0) < 1) {
- break e
- }
- Rp = (Dp + Rp) | 0
- while (1) {
- Ip = Jp << 2
- Ye = (Ip + Tp) | 0
- Ip = (o[(Ip + Rp) >> 2] + o[(Ip + Kp) >> 2]) | 0
- o[Ye >> 2] = Ip
- g: {
- if ((Ip | 0) > o[Lp >> 2]) {
- Ip = (Ip - o[Op >> 2]) | 0
- } else {
- if ((Ip | 0) >= o[Pp >> 2]) {
- break g
- }
- Ip = (Ip + o[Op >> 2]) | 0
- }
- o[Ye >> 2] = Ip
- }
- Jp = (Jp + 1) | 0
- Ip = o[Mp >> 2]
- if ((Jp | 0) < (Ip | 0)) {
- continue
- }
- break
- }
- }
- Hp = (Gp + Hp) | 0
- if ((Hp | 0) < (Fp | 0)) {
- continue
- }
- break
- }
- }
- ul(Sp)
- return 1
- }
- function lf(Ye, Dp, Ep) {
- Ye = Ye | 0
- Dp = Dp | 0
- Ep = Ep | 0
- var Fp = 0
- a: {
- if (!ae(Ye, Dp, Ep)) {
- break a
- }
- Ye = o[(Ye + 8) >> 2]
- if (p[(Ye + 24) | 0] != 3) {
- break a
- }
- Fp = o[(Ye + 28) >> 2] == 9
- }
- return Fp | 0
- }
- function mf(o, Ye, Dp) {
- o = o | 0
- Ye = Ye | 0
- Dp = Dp | 0
- return fe(o, Ye, Dp) | 0
- }
- function nf(Ye, Dp, Ep) {
- Ye = Ye | 0
- Dp = Dp | 0
- Ep = Ep | 0
- var Gp = 0,
- Hp = 0,
- Wp = 0,
- Xp = 0,
- Yp = 0
- Gp = (R - 16) | 0
- R = Gp
- a: {
- b: {
- if (p[(o[(Ye + 4) >> 2] + 36) | 0] <= 1) {
- Dp = o[(Ye + 24) >> 2]
- break b
- }
- Xp = o[(Ep + 16) >> 2]
- Hp = o[(Ep + 12) >> 2]
- Wp = o[(Ep + 20) >> 2]
- Dp = Wp
- Yp = 0
- if ((Hp | 0) < (Dp | 0) ? 1 : (Hp | 0) <= (Dp | 0) ? (r[(Ep + 8) >> 2] > Xp >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Dp = p[(Xp + o[Ep >> 2]) | 0]
- Hp = (Xp + 1) | 0
- if (Hp >>> 0 < 1) {
- Wp = (Wp + 1) | 0
- }
- o[(Ep + 16) >> 2] = Hp
- o[(Ep + 20) >> 2] = Wp
- o[(Ye + 24) >> 2] = Dp
- }
- o[(Gp + 12) >> 2] = -1
- o[(Gp + 8) >> 2] = 1116
- o[(((Gp + 8) | 0) + 4) >> 2] = Dp
- Yp = jd((Gp + 8) | 0, o[(Ye + 16) >> 2])
- }
- Ye = Yp
- R = (Gp + 16) | 0
- return Ye | 0
- }
- function of(Ye, Dp) {
- Ye = Ye | 0
- Dp = Dp | 0
- var Ep = 0,
- Zp = 0,
- _p = 0,
- $p = 0,
- aq = 0,
- bq = v(0),
- cq = 0,
- dq = 0
- Zp = (R - 32) | 0
- R = Zp
- $p = m[(o[(Ye + 8) >> 2] + 24) | 0]
- Ep = o[(Ye + 16) >> 2]
- if (o[(Ep + 80) >> 2]) {
- aq = (o[o[Ep >> 2] >> 2] + o[(Ep + 48) >> 2]) | 0
- }
- o[(Zp + 8) >> 2] = -1
- o[(Zp + 12) >> 2] = -1
- o[Zp >> 2] = -1
- o[(Zp + 4) >> 2] = -1
- a: {
- Ep = o[(Ye + 24) >> 2]
- if ((Ep + -2) >>> 0 > 28) {
- break a
- }
- o[Zp >> 2] = Ep
- Ep = -1 << Ep
- _p = (-2 - Ep) | 0
- o[(Zp + 8) >> 2] = _p
- o[(Zp + 4) >> 2] = Ep ^ -1
- o[(Zp + 12) >> 2] = (_p | 0) / 2
- if (!Dp) {
- _p = 1
- break a
- }
- $p = $p << 2
- Ep = 0
- dq = (Ye + 8) | 0
- Ye = 0
- while (1) {
- bq = v(v(1) / v(_p | 0))
- _p = Ep << 2
- pf(v(bq * v(o[(_p + aq) >> 2])), v(bq * v(o[((_p | 4) + aq) >> 2])), (Zp + 20) | 0)
- wl((o[o[(o[dq >> 2] - -64) >> 2] >> 2] + Ye) | 0, (Zp + 20) | 0, $p)
- _p = 1
- cq = (cq + 1) | 0
- if ((cq | 0) == (Dp | 0)) {
- break a
- }
- Ep = (Ep + 2) | 0
- Ye = (Ye + $p) | 0
- _p = o[(Zp + 8) >> 2]
- continue
- }
- }
- R = (Zp + 32) | 0
- return _p | 0
- }
- function pf(Ye, Dp, eq) {
- var fq = 0,
- gq = 0,
- hq = v(0),
- iq = v(0),
- jq = v(0),
- kq = 0,
- lq = 0
- hq = v(Ye + Dp)
- a: {
- b: {
- jq = v(Ye - Dp)
- if (((jq <= v(0.5)) ^ 1) | ((jq >= v(-0.5)) ^ 1) | ((hq >= v(0.5)) ^ 1)) {
- break b
- }
- gq = 1
- if (!(hq <= v(1.5))) {
- break b
- }
- iq = Dp
- break a
- }
- c: {
- if (!!(hq <= v(0.5))) {
- iq = v(v(0.5) - Ye)
- Ye = v(v(0.5) - Dp)
- break c
- }
- if (!!(hq >= v(1.5))) {
- iq = v(v(1.5) - Ye)
- Ye = v(v(1.5) - Dp)
- break c
- }
- if (!!(jq <= v(-0.5))) {
- iq = v(Ye + v(0.5))
- Ye = v(Dp + v(-0.5))
- break c
- }
- iq = v(Ye + v(-0.5))
- Ye = v(Dp + v(0.5))
- }
- jq = v(Ye - iq)
- hq = v(iq + Ye)
- gq = -1
- }
- fq = +iq
- Dp = v(fq + fq + -1)
- fq = +Ye
- Ye = v(fq + fq + -1)
- lq = gq
- gq = +jq
- gq = gq + gq
- fq = 1 - gq
- gq = gq + 1
- gq = fq < gq ? fq : gq
- fq = +hq
- fq = fq + fq
- kq = 3 - fq
- fq = fq + -1
- fq = kq < fq ? kq : fq
- iq = v(lq * (gq < fq ? gq : fq))
- hq = v(v(Dp * Dp) + v(v(Ye * Ye) + v(iq * iq)))
- d: {
- if (!!(+hq < 1e-6)) {
- o[eq >> 2] = 0
- hq = v(0)
- Ye = v(0)
- break d
- }
- jq = v(v(1) / v(C(hq)))
- s[eq >> 2] = jq * iq
- hq = v(jq * Dp)
- Ye = v(jq * Ye)
- }
- s[(eq + 8) >> 2] = hq
- s[(eq + 4) >> 2] = Ye
- }
- function qf(Ye, Dp, eq, mq) {
- Ye = Ye | 0
- Dp = Dp | 0
- eq = eq | 0
- mq = mq | 0
- var nq = 0,
- oq = 0,
- pq = 0
- nq = (R - 32) | 0
- R = nq
- a: {
- if ((mq | 0) == 3) {
- mq = o[(Dp + 4) >> 2]
- Dp = o[(Dp + 12) >> 2]
- o[(nq + 24) >> 2] = -1
- o[(nq + 28) >> 2] = -1
- o[(nq + 16) >> 2] = -1
- o[(nq + 20) >> 2] = -1
- if ((eq | 0) == -2) {
- o[(nq + 8) >> 2] = 0
- o[Ye >> 2] = 0
- break a
- }
- oq = o[(o[(o[(mq + 4) >> 2] + 8) >> 2] + (Dp << 2)) >> 2]
- if ((l[o[(o[mq >> 2] + 8) >> 2]](mq) | 0) == 1) {
- pq = Dp
- Dp = q[(mq + 36) >> 1]
- rf((nq + 8) | 0, mq, eq, pq, (nq + 16) | 0, ((Dp << 24) | ((Dp << 8) & 16711680)) >>> 16)
- Dp = o[(nq + 8) >> 2]
- if (Dp) {
- o[Ye >> 2] = Dp
- break a
- }
- o[(nq + 8) >> 2] = 0
- }
- Dp = Hk(24)
- o[(Dp + 4) >> 2] = oq
- eq = o[(nq + 20) >> 2]
- o[(Dp + 8) >> 2] = o[(nq + 16) >> 2]
- o[(Dp + 12) >> 2] = eq
- eq = o[(nq + 28) >> 2]
- o[(Dp + 16) >> 2] = o[(nq + 24) >> 2]
- o[(Dp + 20) >> 2] = eq
- o[Dp >> 2] = 7480
- o[(nq + 8) >> 2] = Dp
- o[Ye >> 2] = Dp
- break a
- }
- o[Ye >> 2] = 0
- }
- R = (nq + 32) | 0
- }
- function rf(Ye, Dp, eq, mq, qq, rq) {
- var sq = 0,
- tq = 0,
- uq = 0,
- vq = 0
- vq = o[(o[(o[(Dp + 4) >> 2] + 8) >> 2] + (mq << 2)) >> 2]
- a: {
- b: {
- if (((l[o[(o[Dp >> 2] + 8) >> 2]](Dp) | 0) != 1) | ((eq + -1) >>> 0 > 5)) {
- break b
- }
- tq = l[o[(o[Dp >> 2] + 36) >> 2]](Dp) | 0
- rq = l[o[(o[Dp >> 2] + 44) >> 2]](Dp, mq) | 0
- if (!tq | !rq) {
- break b
- }
- uq = l[o[(o[Dp >> 2] + 40) >> 2]](Dp, mq) | 0
- mq = (rq + 12) | 0
- sq = o[(Dp + 44) >> 2]
- c: {
- if (uq) {
- if ((eq | 0) != 6) {
- break c
- }
- Dp = Hk(104)
- o[(Dp + 4) >> 2] = vq
- eq = o[(qq + 4) >> 2]
- o[(Dp + 8) >> 2] = o[qq >> 2]
- o[(Dp + 12) >> 2] = eq
- eq = o[(qq + 12) >> 2]
- o[(Dp + 16) >> 2] = o[(qq + 8) >> 2]
- o[(Dp + 20) >> 2] = eq
- o[(Dp + 36) >> 2] = rq
- o[(Dp + 32) >> 2] = mq
- o[(Dp + 28) >> 2] = uq
- o[(Dp + 24) >> 2] = sq
- o[(Dp + 64) >> 2] = rq
- o[(Dp + 60) >> 2] = mq
- o[(Dp + 56) >> 2] = uq
- o[(Dp + 52) >> 2] = sq
- o[(Dp + 44) >> 2] = 0
- o[(Dp + 48) >> 2] = 0
- o[Dp >> 2] = 5644
- o[(Dp + 72) >> 2] = -1
- o[(Dp + 76) >> 2] = -1
- o[(Dp + 68) >> 2] = 1
- o[(Dp + 40) >> 2] = 6208
- break a
- }
- if ((eq | 0) != 6) {
- break c
- }
- Dp = Hk(104)
- o[(Dp + 4) >> 2] = vq
- eq = o[(qq + 4) >> 2]
- o[(Dp + 8) >> 2] = o[qq >> 2]
- o[(Dp + 12) >> 2] = eq
- eq = o[(qq + 12) >> 2]
- o[(Dp + 16) >> 2] = o[(qq + 8) >> 2]
- o[(Dp + 20) >> 2] = eq
- o[(Dp + 36) >> 2] = rq
- o[(Dp + 32) >> 2] = mq
- o[(Dp + 28) >> 2] = tq
- o[(Dp + 24) >> 2] = sq
- o[(Dp + 64) >> 2] = rq
- o[(Dp + 60) >> 2] = mq
- o[(Dp + 56) >> 2] = tq
- o[(Dp + 52) >> 2] = sq
- o[(Dp + 44) >> 2] = 0
- o[(Dp + 48) >> 2] = 0
- o[Dp >> 2] = 6648
- o[(Dp + 72) >> 2] = -1
- o[(Dp + 76) >> 2] = -1
- o[(Dp + 68) >> 2] = 1
- o[(Dp + 40) >> 2] = 7068
- break a
- }
- o[Ye >> 2] = 0
- }
- o[Ye >> 2] = 0
- return
- }
- o[(Dp + 80) >> 2] = -1
- o[(Dp + 84) >> 2] = -1
- Mf((Dp + 88) | 0)
- o[Ye >> 2] = Dp
- }
- function sf(Ye) {
- Ye = Ye | 0
- o[Ye >> 2] = 5644
- return Ye | 0
- }
- function tf(Ye) {
- Ye = Ye | 0
- o[Ye >> 2] = 5644
- ul(Ye)
- }
- function uf(Ye) {
- Ye = Ye | 0
- var Dp = 0
- a: {
- if (!o[(Ye + 44) >> 2] | !o[(Ye + 48) >> 2] | (!o[(Ye + 24) >> 2] | !o[(Ye + 28) >> 2])) {
- break a
- }
- if (!o[(Ye + 32) >> 2] | !o[(Ye + 36) >> 2]) {
- break a
- }
- Dp = o[(Ye + 72) >> 2] != -1
- }
- return Dp | 0
- }
- function vf(Ye, eq) {
- Ye = Ye | 0
- eq = eq | 0
- var mq = 0
- if (!(o[(eq + 56) >> 2] | (p[(eq + 24) | 0] != 3))) {
- o[(Ye + 44) >> 2] = eq
- mq = 1
- }
- return mq | 0
- }
- function wf(o) {
- o = o | 0
- return 3
- }
- function xf(Ye, eq) {
- Ye = Ye | 0
- eq = eq | 0
- var qq = 0,
- rq = 0,
- wq = 0,
- xq = 0,
- yq = 0,
- zq = 0,
- Aq = 0,
- Bq = 0,
- Cq = 0
- qq = o[(eq + 12) >> 2]
- zq = qq
- wq = qq
- qq = o[(eq + 20) >> 2]
- xq = qq
- yq = o[(eq + 16) >> 2]
- rq = (yq + 4) | 0
- if (rq >>> 0 < 4) {
- qq = (qq + 1) | 0
- }
- Aq = o[(eq + 8) >> 2]
- Bq = rq
- rq = qq
- a: {
- if ((wq | 0) < (qq | 0) ? 1 : (wq | 0) <= (qq | 0) ? (Aq >>> 0 >= Bq >>> 0 ? 0 : 1) : 0) {
- break a
- }
- qq = (yq + o[eq >> 2]) | 0
- wq = p[qq | 0] | (p[(qq + 1) | 0] << 8) | ((p[(qq + 2) | 0] << 16) | (p[(qq + 3) | 0] << 24))
- o[(eq + 16) >> 2] = Bq
- o[(eq + 20) >> 2] = rq
- qq = xq
- rq = (yq + 8) | 0
- if (rq >>> 0 < 8) {
- qq = (qq + 1) | 0
- }
- xq = rq
- rq = qq
- if ((zq | 0) < (qq | 0) ? 1 : (zq | 0) <= (qq | 0) ? (Aq >>> 0 >= xq >>> 0 ? 0 : 1) : 0) {
- break a
- }
- o[(eq + 16) >> 2] = xq
- o[(eq + 20) >> 2] = rq
- if (!(wq & 1)) {
- break a
- }
- qq = x(wq) ^ 31
- if ((qq + -1) >>> 0 > 28) {
- break a
- }
- o[(Ye + 8) >> 2] = qq + 1
- rq = -2 << qq
- qq = (-2 - rq) | 0
- o[(Ye + 16) >> 2] = qq
- o[(Ye + 12) >> 2] = rq ^ -1
- o[(Ye + 20) >> 2] = (qq | 0) / 2
- Cq = Nf((Ye + 88) | 0, eq)
- }
- return Cq | 0
- }
- function yf(Ye, eq, Dq, Eq, Fq, Gq) {
- Ye = Ye | 0
- eq = eq | 0
- Dq = Dq | 0
- Eq = Eq | 0
- Fq = Fq | 0
- Gq = Gq | 0
- var Hq = 0,
- Iq = 0,
- Jq = 0,
- Kq = 0,
- Lq = 0,
- Mq = 0,
- Nq = 0,
- Oq = 0,
- Pq = 0,
- Qq = 0,
- Rq = 0
- Hq = (R - 48) | 0
- R = Hq
- Nq = (Ye + 8) | 0
- Eq = o[Nq >> 2]
- if ((Eq + -2) >>> 0 <= 28) {
- o[(Ye + 72) >> 2] = Eq
- Eq = -1 << Eq
- Fq = (-2 - Eq) | 0
- o[(Ye + 80) >> 2] = Fq
- o[(Ye + 76) >> 2] = Eq ^ -1
- o[(Ye + 84) >> 2] = (Fq | 0) / 2
- }
- o[(Ye + 48) >> 2] = Gq
- Eq = o[(Ye + 36) >> 2]
- Fq = o[Eq >> 2]
- Gq = (Eq + 4) | 0
- Iq = o[Gq >> 2]
- o[(Hq + 16) >> 2] = 0
- o[(Hq + 8) >> 2] = 0
- o[(Hq + 12) >> 2] = 0
- a: {
- Fq = (Iq - Fq) | 0
- if ((Fq | 0) < 1) {
- break a
- }
- Eq = o[Eq >> 2]
- if ((Eq | 0) != o[Gq >> 2]) {
- Oq = Fq >> 2
- Pq = (Ye + 40) | 0
- Qq = (Ye + 88) | 0
- Rq = (Ye + 36) | 0
- while (1) {
- Ue(Pq, o[((Lq << 2) + Eq) >> 2], (Hq + 8) | 0)
- Fq = o[(Hq + 12) >> 2]
- Iq = Fq >> 31
- Gq = o[(Hq + 8) >> 2]
- Kq = Gq >> 31
- Mq = o[(Hq + 16) >> 2]
- Jq = Mq >> 31
- Eq = 0
- Jq = Jq ^ (Jq + Mq)
- Iq = (Jq + (((Iq ^ (Fq + Iq)) + (Kq ^ (Gq + Kq))) | 0)) | 0
- if (Iq >>> 0 < Jq >>> 0) {
- Eq = 1
- }
- b: {
- if (!(Eq | Iq)) {
- o[(Hq + 8) >> 2] = o[(Ye + 84) >> 2]
- break b
- }
- Kq = o[(Ye + 84) >> 2]
- Jq = Kq
- Jq = Jq >> 31
- Fq = Wl(Vl(Kq, Jq, Fq, Fq >> 31), T, Iq, Eq)
- o[(Hq + 12) >> 2] = Fq
- Eq = Wl(Vl(Kq, Jq, Gq, Gq >> 31), T, Iq, Eq)
- o[(Hq + 8) >> 2] = Eq
- Gq = Eq
- Eq = Eq >> 31
- Eq = (((Kq - ((Gq + Eq) ^ Eq)) | 0) + ((Fq | 0) < 0 ? Fq : (0 - Fq) | 0)) | 0
- if ((Mq | 0) >= 0) {
- o[(Hq + 16) >> 2] = Eq
- break b
- }
- o[(Hq + 16) >> 2] = 0 - Eq
- }
- Eq = Pf(Qq)
- Gq = o[(Hq + 8) >> 2]
- c: {
- if (!Eq) {
- Fq = o[(Hq + 12) >> 2]
- break c
- }
- o[(Hq + 16) >> 2] = 0 - o[(Hq + 16) >> 2]
- Fq = (0 - o[(Hq + 12) >> 2]) | 0
- o[(Hq + 12) >> 2] = Fq
- Gq = (0 - Gq) | 0
- o[(Hq + 8) >> 2] = Gq
- }
- d: {
- if ((Gq | 0) >= 0) {
- Gq = o[(Ye + 84) >> 2]
- Eq = (Gq + o[(Hq + 16) >> 2]) | 0
- Gq = (Fq + Gq) | 0
- break d
- }
- e: {
- if ((Fq | 0) <= -1) {
- Eq = o[(Hq + 16) >> 2]
- Gq = Eq >> 31
- Gq = Gq ^ (Eq + Gq)
- break e
- }
- Eq = o[(Hq + 16) >> 2]
- Gq = Eq >> 31
- Gq = (o[(Ye + 80) >> 2] - (Gq ^ (Eq + Gq))) | 0
- }
- if ((Eq | 0) <= -1) {
- Eq = Fq >> 31
- Eq = (Eq + Fq) ^ Eq
- break d
- }
- Eq = Fq >> 31
- Eq = (o[(Ye + 80) >> 2] - ((Eq + Fq) ^ Eq)) | 0
- }
- Fq = o[(Ye + 80) >> 2]
- f: {
- if (!(Eq | Gq)) {
- Eq = Fq
- Gq = Eq
- break f
- }
- if (!(((Eq | 0) != (Fq | 0)) | Gq)) {
- Gq = Eq
- break f
- }
- if (!(((Fq | 0) != (Gq | 0)) | Eq)) {
- Eq = Gq
- break f
- }
- g: {
- if (Gq) {
- break g
- }
- Iq = o[(Ye + 84) >> 2]
- if ((Iq | 0) >= (Eq | 0)) {
- break g
- }
- Eq = ((Iq << 1) - Eq) | 0
- Gq = 0
- break f
- }
- h: {
- if ((Fq | 0) != (Gq | 0)) {
- break h
- }
- Iq = o[(Ye + 84) >> 2]
- if ((Iq | 0) <= (Eq | 0)) {
- break h
- }
- Eq = ((Iq << 1) - Eq) | 0
- break f
- }
- i: {
- if ((Eq | 0) != (Fq | 0)) {
- break i
- }
- Fq = o[(Ye + 84) >> 2]
- if ((Fq | 0) <= (Gq | 0)) {
- break i
- }
- Gq = ((Fq << 1) - Gq) | 0
- break f
- }
- if (Eq) {
- break f
- }
- Eq = 0
- Fq = o[(Ye + 84) >> 2]
- if ((Fq | 0) >= (Gq | 0)) {
- break f
- }
- Gq = ((Fq << 1) - Gq) | 0
- }
- Fq = Lq << 3
- Iq = (Fq + eq) | 0
- Kq = o[(Iq + 4) >> 2]
- Iq = o[Iq >> 2]
- o[(Hq + 36) >> 2] = Eq
- o[(Hq + 32) >> 2] = Gq
- o[(Hq + 24) >> 2] = Iq
- o[(Hq + 28) >> 2] = Kq
- zf((Hq + 40) | 0, Nq, (Hq + 32) | 0, (Hq + 24) | 0)
- Eq = (Dq + Fq) | 0
- o[Eq >> 2] = o[(Hq + 40) >> 2]
- o[(Eq + 4) >> 2] = o[(Hq + 44) >> 2]
- Lq = (Lq + 1) | 0
- if ((Lq | 0) >= (Oq | 0)) {
- break a
- }
- Fq = o[Rq >> 2]
- Eq = o[Fq >> 2]
- if (((o[(Fq + 4) >> 2] - Eq) >> 2) >>> 0 > Lq >>> 0) {
- continue
- }
- break
- }
- }
- Zk()
- D()
- }
- R = (Hq + 48) | 0
- return 1
- }
- function zf(Ye, eq, Dq, Eq) {
- var Fq = 0,
- Gq = 0,
- Sq = 0,
- Tq = 0,
- Uq = 0,
- Vq = 0,
- Wq = 0,
- Xq = 0
- Tq = (eq + 12) | 0
- Wq = o[Tq >> 2]
- Gq = (o[(Dq + 4) >> 2] - Wq) | 0
- Fq = (o[Dq >> 2] - Wq) | 0
- o[Dq >> 2] = Fq
- o[(Dq + 4) >> 2] = Gq
- Sq = Gq >> 31
- Uq = (Sq + Gq) ^ Sq
- Sq = Fq >> 31
- Tq = o[Tq >> 2]
- Xq = ((Uq + ((Sq + Fq) ^ Sq)) | 0) <= (Tq | 0)
- if (!Xq) {
- a: {
- b: {
- if ((Fq | 0) >= 0) {
- Sq = 1
- Vq = 1
- if ((Gq | 0) > -1) {
- break a
- }
- Uq = 1
- Sq = -1
- Vq = -1
- if ((Fq | 0) >= 1) {
- break b
- }
- break a
- }
- Uq = -1
- Sq = -1
- Vq = -1
- if ((Gq | 0) < 1) {
- break a
- }
- }
- Sq = (Gq | 0) < 1 ? -1 : 1
- Vq = Uq
- }
- Uq = Gq << 1
- Gq = u(Sq, Tq)
- Uq = (Uq - Gq) | 0
- o[(Dq + 4) >> 2] = Uq
- Tq = u(Tq, Vq)
- Fq = ((Fq << 1) - Tq) | 0
- o[Dq >> 2] = Fq
- c: {
- if ((u(Sq, Vq) | 0) >= 0) {
- Uq = (0 - Uq) | 0
- o[Dq >> 2] = Uq
- Fq = (0 - Fq) | 0
- break c
- }
- o[Dq >> 2] = Uq
- }
- Gq = (((Fq + Gq) | 0) / 2) | 0
- o[(Dq + 4) >> 2] = Gq
- Fq = (((Tq + Uq) | 0) / 2) | 0
- o[Dq >> 2] = Fq
- }
- d: {
- e: {
- f: {
- g: {
- h: {
- i: {
- j: {
- k: {
- if (!Fq) {
- if (Gq) {
- break j
- }
- Tq = 1
- Vq = 0
- break k
- }
- Tq = 1
- Sq = ((Fq | 0) < 0) & ((Gq | 0) < 1)
- if ((Fq | 0) >= 1) {
- Vq = (Gq | 0) > -1 ? 2 : 1
- if (Sq) {
- break k
- }
- break i
- }
- Vq = (Gq | 0) > 0 ? 3 : 0
- if (!Sq) {
- break i
- }
- }
- Sq = Gq
- Uq = Fq
- break d
- }
- if ((Gq | 0) >= 1) {
- break f
- }
- break h
- }
- Sq = (Vq + -1) | 0
- if (Sq >>> 0 > 2) {
- Sq = Gq
- Gq = Fq
- Vq = 0
- break e
- }
- switch ((Sq - 1) | 0) {
- case 0:
- break g
- case 1:
- break f
- default:
- break h
- }
- }
- Sq = (0 - Fq) | 0
- Vq = 1
- break e
- }
- Sq = (0 - Gq) | 0
- Gq = (0 - Fq) | 0
- Vq = 2
- break e
- }
- Sq = Fq
- Gq = (0 - Gq) | 0
- Vq = 3
- }
- Fq = Dq
- Uq = Gq
- o[Fq >> 2] = Gq
- o[(Fq + 4) >> 2] = Sq
- Tq = 0
- }
- Gq = (o[Eq >> 2] + Uq) | 0
- o[Ye >> 2] = Gq
- Fq = (o[(Eq + 4) >> 2] + Sq) | 0
- o[(Ye + 4) >> 2] = Fq
- Sq = o[(eq + 12) >> 2]
- l: {
- if ((Sq | 0) < (Gq | 0)) {
- Gq = (Gq - o[(eq + 4) >> 2]) | 0
- break l
- }
- if ((Gq | 0) >= ((0 - Sq) | 0)) {
- break l
- }
- Gq = (o[(eq + 4) >> 2] + Gq) | 0
- }
- o[Ye >> 2] = Gq
- m: {
- if ((Sq | 0) < (Fq | 0)) {
- Fq = (Fq - o[(eq + 4) >> 2]) | 0
- break m
- }
- if ((Fq | 0) >= ((0 - Sq) | 0)) {
- break m
- }
- Fq = (o[(eq + 4) >> 2] + Fq) | 0
- }
- o[(Ye + 4) >> 2] = Fq
- n: {
- if (Tq) {
- Dq = Fq
- Fq = Gq
- break n
- }
- eq = (((4 - Vq) & 3) + -1) | 0
- o: {
- if (eq >>> 0 > 2) {
- Dq = Fq
- Fq = Gq
- break o
- }
- p: {
- switch ((eq - 1) | 0) {
- default:
- Dq = (0 - Gq) | 0
- break o
- case 0:
- Dq = (0 - Fq) | 0
- Fq = (0 - Gq) | 0
- break o
- case 1:
- break p
- }
- }
- Fq = (0 - Fq) | 0
- Dq = Gq
- }
- o[Ye >> 2] = Fq
- o[(Ye + 4) >> 2] = Dq
- }
- if (!Xq) {
- q: {
- r: {
- if ((Fq | 0) >= 0) {
- eq = 1
- Tq = 1
- if ((Dq | 0) > -1) {
- break q
- }
- Gq = 1
- eq = -1
- Tq = -1
- if ((Fq | 0) >= 1) {
- break r
- }
- break q
- }
- Gq = -1
- eq = -1
- Tq = -1
- if ((Dq | 0) < 1) {
- break q
- }
- }
- eq = (Dq | 0) < 1 ? -1 : 1
- Tq = Gq
- }
- Eq = Dq << 1
- Dq = u(eq, Sq)
- Gq = (Eq - Dq) | 0
- o[(Ye + 4) >> 2] = Gq
- Eq = u(Sq, Tq)
- Fq = ((Fq << 1) - Eq) | 0
- o[Ye >> 2] = Fq
- s: {
- if ((u(eq, Tq) | 0) >= 0) {
- Gq = (0 - Gq) | 0
- o[Ye >> 2] = Gq
- Fq = (0 - Fq) | 0
- break s
- }
- o[Ye >> 2] = Gq
- }
- Dq = (((Dq + Fq) | 0) / 2) | 0
- o[(Ye + 4) >> 2] = Dq
- Fq = (((Eq + Gq) | 0) / 2) | 0
- o[Ye >> 2] = Fq
- }
- o[Ye >> 2] = Fq + Wq
- o[(Ye + 4) >> 2] = Dq + Wq
- }
- function Af(Ye, eq) {
- Ye = Ye | 0
- eq = eq | 0
- var Dq = 0,
- Eq = 0,
- Yq = 0,
- Zq = 0,
- _q = 0,
- $q = 0,
- ar = 0,
- br = 0,
- cr = 0
- Dq = o[(eq + 12) >> 2]
- $q = Dq
- Yq = Dq
- Dq = o[(eq + 20) >> 2]
- Zq = Dq
- _q = o[(eq + 16) >> 2]
- Eq = (_q + 4) | 0
- if (Eq >>> 0 < 4) {
- Dq = (Dq + 1) | 0
- }
- ar = o[(eq + 8) >> 2]
- br = Eq
- Eq = Dq
- a: {
- if ((Yq | 0) < (Dq | 0) ? 1 : (Yq | 0) <= (Dq | 0) ? (ar >>> 0 >= br >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Dq = (_q + o[eq >> 2]) | 0
- Yq = p[Dq | 0] | (p[(Dq + 1) | 0] << 8) | ((p[(Dq + 2) | 0] << 16) | (p[(Dq + 3) | 0] << 24))
- o[(eq + 16) >> 2] = br
- o[(eq + 20) >> 2] = Eq
- Dq = Zq
- Eq = (_q + 8) | 0
- if (Eq >>> 0 < 8) {
- Dq = (Dq + 1) | 0
- }
- Zq = Eq
- Eq = Dq
- if (($q | 0) < (Dq | 0) ? 1 : ($q | 0) <= (Dq | 0) ? (ar >>> 0 >= Zq >>> 0 ? 0 : 1) : 0) {
- break a
- }
- o[(eq + 16) >> 2] = Zq
- o[(eq + 20) >> 2] = Eq
- if (!(Yq & 1)) {
- break a
- }
- eq = x(Yq) ^ 31
- if ((eq + -1) >>> 0 > 28) {
- break a
- }
- cr = 1
- o[(Ye + 8) >> 2] = eq + 1
- Dq = -2 << eq
- eq = (-2 - Dq) | 0
- o[(Ye + 16) >> 2] = eq
- o[(Ye + 12) >> 2] = Dq ^ -1
- o[(Ye + 20) >> 2] = (eq | 0) / 2
- }
- return cr | 0
- }
- function Bf(Ye) {
- Ye = Ye | 0
- o[Ye >> 2] = 6648
- return Ye | 0
- }
- function Cf(Ye) {
- Ye = Ye | 0
- o[Ye >> 2] = 6648
- ul(Ye)
- }
- function Df(Ye, eq, dr, er, fr, gr) {
- Ye = Ye | 0
- eq = eq | 0
- dr = dr | 0
- er = er | 0
- fr = fr | 0
- gr = gr | 0
- var hr = 0,
- ir = 0,
- jr = 0,
- kr = 0,
- lr = 0,
- mr = 0,
- nr = 0,
- or = 0,
- pr = 0,
- qr = 0,
- rr = 0
- hr = (R - 48) | 0
- R = hr
- nr = (Ye + 8) | 0
- er = o[nr >> 2]
- if ((er + -2) >>> 0 <= 28) {
- o[(Ye + 72) >> 2] = er
- er = -1 << er
- fr = (-2 - er) | 0
- o[(Ye + 80) >> 2] = fr
- o[(Ye + 76) >> 2] = er ^ -1
- o[(Ye + 84) >> 2] = (fr | 0) / 2
- }
- o[(Ye + 48) >> 2] = gr
- er = o[(Ye + 36) >> 2]
- fr = o[er >> 2]
- gr = (er + 4) | 0
- ir = o[gr >> 2]
- o[(hr + 16) >> 2] = 0
- o[(hr + 8) >> 2] = 0
- o[(hr + 12) >> 2] = 0
- a: {
- fr = (ir - fr) | 0
- if ((fr | 0) < 1) {
- break a
- }
- er = o[er >> 2]
- if ((er | 0) != o[gr >> 2]) {
- or = fr >> 2
- pr = (Ye + 40) | 0
- qr = (Ye + 88) | 0
- rr = (Ye + 36) | 0
- while (1) {
- hf(pr, o[((lr << 2) + er) >> 2], (hr + 8) | 0)
- fr = o[(hr + 12) >> 2]
- ir = fr >> 31
- gr = o[(hr + 8) >> 2]
- kr = gr >> 31
- mr = o[(hr + 16) >> 2]
- jr = mr >> 31
- er = 0
- jr = jr ^ (jr + mr)
- ir = (jr + (((ir ^ (fr + ir)) + (kr ^ (gr + kr))) | 0)) | 0
- if (ir >>> 0 < jr >>> 0) {
- er = 1
- }
- b: {
- if (!(er | ir)) {
- o[(hr + 8) >> 2] = o[(Ye + 84) >> 2]
- break b
- }
- kr = o[(Ye + 84) >> 2]
- jr = kr
- jr = jr >> 31
- fr = Wl(Vl(kr, jr, fr, fr >> 31), T, ir, er)
- o[(hr + 12) >> 2] = fr
- er = Wl(Vl(kr, jr, gr, gr >> 31), T, ir, er)
- o[(hr + 8) >> 2] = er
- gr = er
- er = er >> 31
- er = (((kr - ((gr + er) ^ er)) | 0) + ((fr | 0) < 0 ? fr : (0 - fr) | 0)) | 0
- if ((mr | 0) >= 0) {
- o[(hr + 16) >> 2] = er
- break b
- }
- o[(hr + 16) >> 2] = 0 - er
- }
- er = Pf(qr)
- gr = o[(hr + 8) >> 2]
- c: {
- if (!er) {
- fr = o[(hr + 12) >> 2]
- break c
- }
- o[(hr + 16) >> 2] = 0 - o[(hr + 16) >> 2]
- fr = (0 - o[(hr + 12) >> 2]) | 0
- o[(hr + 12) >> 2] = fr
- gr = (0 - gr) | 0
- o[(hr + 8) >> 2] = gr
- }
- d: {
- if ((gr | 0) >= 0) {
- gr = o[(Ye + 84) >> 2]
- er = (gr + o[(hr + 16) >> 2]) | 0
- gr = (fr + gr) | 0
- break d
- }
- e: {
- if ((fr | 0) <= -1) {
- er = o[(hr + 16) >> 2]
- gr = er >> 31
- gr = gr ^ (er + gr)
- break e
- }
- er = o[(hr + 16) >> 2]
- gr = er >> 31
- gr = (o[(Ye + 80) >> 2] - (gr ^ (er + gr))) | 0
- }
- if ((er | 0) <= -1) {
- er = fr >> 31
- er = (er + fr) ^ er
- break d
- }
- er = fr >> 31
- er = (o[(Ye + 80) >> 2] - ((er + fr) ^ er)) | 0
- }
- fr = o[(Ye + 80) >> 2]
- f: {
- if (!(er | gr)) {
- er = fr
- gr = er
- break f
- }
- if (!(((er | 0) != (fr | 0)) | gr)) {
- gr = er
- break f
- }
- if (!(((fr | 0) != (gr | 0)) | er)) {
- er = gr
- break f
- }
- g: {
- if (gr) {
- break g
- }
- ir = o[(Ye + 84) >> 2]
- if ((ir | 0) >= (er | 0)) {
- break g
- }
- er = ((ir << 1) - er) | 0
- gr = 0
- break f
- }
- h: {
- if ((fr | 0) != (gr | 0)) {
- break h
- }
- ir = o[(Ye + 84) >> 2]
- if ((ir | 0) <= (er | 0)) {
- break h
- }
- er = ((ir << 1) - er) | 0
- break f
- }
- i: {
- if ((er | 0) != (fr | 0)) {
- break i
- }
- fr = o[(Ye + 84) >> 2]
- if ((fr | 0) <= (gr | 0)) {
- break i
- }
- gr = ((fr << 1) - gr) | 0
- break f
- }
- if (er) {
- break f
- }
- er = 0
- fr = o[(Ye + 84) >> 2]
- if ((fr | 0) >= (gr | 0)) {
- break f
- }
- gr = ((fr << 1) - gr) | 0
- }
- fr = lr << 3
- ir = (fr + eq) | 0
- kr = o[(ir + 4) >> 2]
- ir = o[ir >> 2]
- o[(hr + 36) >> 2] = er
- o[(hr + 32) >> 2] = gr
- o[(hr + 24) >> 2] = ir
- o[(hr + 28) >> 2] = kr
- zf((hr + 40) | 0, nr, (hr + 32) | 0, (hr + 24) | 0)
- er = (dr + fr) | 0
- o[er >> 2] = o[(hr + 40) >> 2]
- o[(er + 4) >> 2] = o[(hr + 44) >> 2]
- lr = (lr + 1) | 0
- if ((lr | 0) >= (or | 0)) {
- break a
- }
- fr = o[rr >> 2]
- er = o[fr >> 2]
- if (((o[(fr + 4) >> 2] - er) >> 2) >>> 0 > lr >>> 0) {
- continue
- }
- break
- }
- }
- Zk()
- D()
- }
- R = (hr + 48) | 0
- return 1
- }
- function Ef(Ye, eq, dr, er, fr, gr) {
- Ye = Ye | 0
- eq = eq | 0
- dr = dr | 0
- er = er | 0
- fr = fr | 0
- gr = gr | 0
- var sr = 0,
- tr = 0,
- ur = 0,
- vr = 0,
- wr = 0,
- xr = 0,
- yr = 0,
- zr = 0
- gr = (R - 32) | 0
- R = gr
- tr = (fr & 1073741823) != (fr | 0) ? -1 : fr << 2
- tr = xl(Hk(tr), 0, tr)
- sr = o[eq >> 2]
- ur = o[(eq + 4) >> 2]
- wr = o[(tr + 4) >> 2]
- o[(gr + 16) >> 2] = o[tr >> 2]
- o[(gr + 20) >> 2] = wr
- o[(gr + 8) >> 2] = sr
- o[(gr + 12) >> 2] = ur
- ur = (Ye + 8) | 0
- zf((gr + 24) | 0, ur, (gr + 16) | 0, (gr + 8) | 0)
- o[dr >> 2] = o[(gr + 24) >> 2]
- o[(dr + 4) >> 2] = o[(gr + 28) >> 2]
- if ((fr | 0) < (er | 0)) {
- wr = (0 - fr) << 2
- Ye = fr
- while (1) {
- sr = Ye << 2
- vr = (sr + eq) | 0
- yr = o[vr >> 2]
- vr = o[(vr + 4) >> 2]
- sr = (dr + sr) | 0
- xr = (sr + wr) | 0
- zr = o[(xr + 4) >> 2]
- o[(gr + 16) >> 2] = o[xr >> 2]
- o[(gr + 20) >> 2] = zr
- o[(gr + 8) >> 2] = yr
- o[(gr + 12) >> 2] = vr
- zf((gr + 24) | 0, ur, (gr + 16) | 0, (gr + 8) | 0)
- o[sr >> 2] = o[(gr + 24) >> 2]
- o[(sr + 4) >> 2] = o[(gr + 28) >> 2]
- Ye = (Ye + fr) | 0
- if ((Ye | 0) < (er | 0)) {
- continue
- }
- break
- }
- }
- ul(tr)
- R = (gr + 32) | 0
- return 1
- }
- function Ff(Ye, eq, dr) {
- Ye = Ye | 0
- eq = eq | 0
- dr = dr | 0
- if (ae(Ye, eq, dr)) {
- Ye = o[(o[(o[(o[(eq + 4) >> 2] + 8) >> 2] + (dr << 2)) >> 2] + 28) >> 2] == 9
- } else {
- Ye = 0
- }
- return Ye | 0
- }
- function Gf(Ye, eq, dr) {
- Ye = Ye | 0
- eq = eq | 0
- dr = dr | 0
- eq = (R - 32) | 0
- R = eq
- a: {
- if (p[(o[(Ye + 4) >> 2] + 36) | 0] >= 2) {
- dr = 0
- if (!l[o[(o[Ye >> 2] + 52) >> 2]](Ye)) {
- break a
- }
- }
- o[(eq + 24) >> 2] = 0
- o[(eq + 28) >> 2] = 0
- o[(eq + 16) >> 2] = 0
- o[(eq + 20) >> 2] = 0
- o[(eq + 12) >> 2] = -1
- o[(eq + 8) >> 2] = 1232
- ed((eq + 8) | 0, o[(Ye + 24) >> 2], o[(Ye + 28) >> 2], m[(o[(Ye + 8) >> 2] + 24) | 0], s[(Ye + 32) >> 2])
- dr = jd((eq + 8) | 0, o[(Ye + 16) >> 2])
- o[(eq + 8) >> 2] = 1232
- Ye = o[(eq + 16) >> 2]
- if (!Ye) {
- break a
- }
- o[(eq + 20) >> 2] = Ye
- ul(Ye)
- }
- R = (eq + 32) | 0
- return dr | 0
- }
- function Hf(Ye, eq) {
- Ye = Ye | 0
- eq = eq | 0
- return l[o[(o[Ye >> 2] + 56) >> 2]](Ye, eq) | 0
- }
- function If(Ye) {
- Ye = Ye | 0
- var eq = 0,
- dr = 0,
- er = 0,
- fr = 0,
- gr = 0,
- Ar = 0,
- Br = 0,
- Cr = 0,
- Dr = 0,
- Er = 0
- eq = m[(o[(Ye + 8) >> 2] + 24) | 0]
- er = eq << 2
- eq = Hk((eq | 0) != (eq & 1073741823) ? -1 : er)
- dr = o[(Ye + 28) >> 2]
- o[(Ye + 28) >> 2] = eq
- if (dr) {
- ul(dr)
- }
- Cr = (Ye + 4) | 0
- dr = o[(o[Cr >> 2] + 32) >> 2]
- eq = o[(dr + 8) >> 2]
- Dr = o[(dr + 12) >> 2]
- Ar = eq
- gr = o[(dr + 20) >> 2]
- Br = o[(dr + 16) >> 2]
- eq = er
- fr = (Br + eq) | 0
- if (fr >>> 0 < eq >>> 0) {
- gr = (gr + 1) | 0
- }
- a: {
- if ((Dr | 0) < (gr | 0) ? 1 : (Dr | 0) <= (gr | 0) ? (Ar >>> 0 >= fr >>> 0 ? 0 : 1) : 0) {
- break a
- }
- wl(o[(Ye + 28) >> 2], (Br + o[dr >> 2]) | 0, er)
- er = dr
- Ar = dr
- fr = o[(dr + 20) >> 2]
- dr = (eq + o[(dr + 16) >> 2]) | 0
- if (dr >>> 0 < eq >>> 0) {
- fr = (fr + 1) | 0
- }
- o[(Ar + 16) >> 2] = dr
- o[(er + 20) >> 2] = fr
- fr = o[Cr >> 2]
- er = o[(fr + 32) >> 2]
- eq = o[(er + 8) >> 2]
- gr = o[(er + 12) >> 2]
- Ar = eq
- Br = o[(er + 20) >> 2]
- dr = o[(er + 16) >> 2]
- eq = (dr + 4) | 0
- if (eq >>> 0 < 4) {
- Br = (Br + 1) | 0
- }
- if ((gr | 0) < (Br | 0) ? 1 : (gr | 0) <= (Br | 0) ? (Ar >>> 0 >= eq >>> 0 ? 0 : 1) : 0) {
- break a
- }
- eq = (dr + o[er >> 2]) | 0
- o[(Ye + 32) >> 2] = p[eq | 0] | (p[(eq + 1) | 0] << 8) | ((p[(eq + 2) | 0] << 16) | (p[(eq + 3) | 0] << 24))
- eq = er
- Ar = eq
- dr = o[(eq + 20) >> 2]
- er = (o[(eq + 16) >> 2] + 4) | 0
- if (er >>> 0 < 4) {
- dr = (dr + 1) | 0
- }
- o[(Ar + 16) >> 2] = er
- o[(eq + 20) >> 2] = dr
- eq = o[(fr + 32) >> 2]
- gr = o[(eq + 16) >> 2]
- fr = o[(eq + 12) >> 2]
- er = o[(eq + 20) >> 2]
- dr = er
- if ((fr | 0) < (dr | 0) ? 1 : (fr | 0) <= (dr | 0) ? (r[(eq + 8) >> 2] > gr >>> 0 ? 0 : 1) : 0) {
- break a
- }
- fr = p[(gr + o[eq >> 2]) | 0]
- dr = (gr + 1) | 0
- if (dr >>> 0 < 1) {
- er = (er + 1) | 0
- }
- o[(eq + 16) >> 2] = dr
- o[(eq + 20) >> 2] = er
- if (fr >>> 0 > 31) {
- break a
- }
- o[(Ye + 24) >> 2] = fr
- Er = 1
- }
- return Er | 0
- }
- function Jf(Ye, Fr) {
- Ye = Ye | 0
- Fr = Fr | 0
- var Gr = 0,
- Hr = 0,
- Ir = 0,
- Jr = 0,
- Kr = 0,
- Lr = 0,
- Mr = 0,
- Nr = 0,
- Or = 0,
- Pr = 0,
- Qr = 0,
- Rr = 0,
- Sr = 0,
- Tr = 0,
- Ur = v(0)
- Kr = (R - 16) | 0
- R = Kr
- Ir = o[(Ye + 24) >> 2]
- Jr = m[(o[(Ye + 8) >> 2] + 24) | 0]
- Lr = Jr << 2
- Mr = Hk((Jr & 1073741823) != (Jr | 0) ? -1 : Lr)
- Nr = (Kr + 8) | 0
- o[Nr >> 2] = 1065353216
- Ir = (-1 << Ir) ^ -1
- Hr = 0
- a: {
- if ((Ir | 0) < 1) {
- break a
- }
- s[Nr >> 2] = s[(Ye + 32) >> 2] / v(Ir | 0)
- Hr = 1
- }
- b: {
- if (!Hr) {
- break b
- }
- Gr = o[(Ye + 16) >> 2]
- Hr = 0
- c: {
- if (!o[(Gr + 80) >> 2]) {
- break c
- }
- Hr = (o[o[Gr >> 2] >> 2] + o[(Gr + 48) >> 2]) | 0
- }
- if (!Fr) {
- Gr = 1
- break b
- }
- Ir = (Jr | 0) < 1
- Rr = (Ye + 28) | 0
- Sr = (Ye + 8) | 0
- Ye = 0
- while (1) {
- if (!Ir) {
- Tr = o[Rr >> 2]
- Ur = s[Nr >> 2]
- Gr = 0
- while (1) {
- Or = Gr << 2
- s[(Or + Mr) >> 2] = v(Ur * v(o[(Hr + (Ye << 2)) >> 2])) + s[(Tr + Or) >> 2]
- Ye = (Ye + 1) | 0
- Gr = (Gr + 1) | 0
- if ((Jr | 0) != (Gr | 0)) {
- continue
- }
- break
- }
- }
- wl((o[o[(o[Sr >> 2] - -64) >> 2] >> 2] + Pr) | 0, Mr, Lr)
- Pr = (Lr + Pr) | 0
- Gr = 1
- Qr = (Qr + 1) | 0
- if ((Qr | 0) != (Fr | 0)) {
- continue
- }
- break
- }
- }
- ul(Mr)
- R = (Kr + 16) | 0
- return Gr | 0
- }
- function Kf(Ye) {
- Ye = Ye | 0
- var Fr = 0,
- Vr = 0
- o[Ye >> 2] = 7664
- Vr = (Ye + 28) | 0
- Fr = o[Vr >> 2]
- o[Vr >> 2] = 0
- if (Fr) {
- ul(Fr)
- }
- o[Ye >> 2] = 1908
- Vr = (Ye + 20) | 0
- Fr = o[Vr >> 2]
- o[Vr >> 2] = 0
- if (Fr) {
- l[o[(o[Fr >> 2] + 4) >> 2]](Fr)
- }
- o[Ye >> 2] = 1596
- Vr = (Ye + 16) | 0
- Fr = o[Vr >> 2]
- o[Vr >> 2] = 0
- if (Fr) {
- Fb(Fr)
- }
- return Ye | 0
- }
- function Lf(Ye) {
- Ye = Ye | 0
- var Wr = 0,
- Xr = 0
- o[Ye >> 2] = 7664
- Xr = (Ye + 28) | 0
- Wr = o[Xr >> 2]
- o[Xr >> 2] = 0
- if (Wr) {
- ul(Wr)
- }
- o[Ye >> 2] = 1908
- Xr = (Ye + 20) | 0
- Wr = o[Xr >> 2]
- o[Xr >> 2] = 0
- if (Wr) {
- l[o[(o[Wr >> 2] + 4) >> 2]](Wr)
- }
- o[Ye >> 2] = 1596
- Xr = (Ye + 16) | 0
- Wr = o[Xr >> 2]
- o[Xr >> 2] = 0
- if (Wr) {
- Fb(Wr)
- }
- ul(Ye)
- }
- function Mf(Ye) {
- o[Ye >> 2] = 0
- o[(Ye + 4) >> 2] = 0
- m[(Ye + 5) | 0] = 0
- m[(Ye + 6) | 0] = 0
- m[(Ye + 7) | 0] = 0
- m[(Ye + 8) | 0] = 0
- m[(Ye + 9) | 0] = 0
- m[(Ye + 10) | 0] = 0
- m[(Ye + 11) | 0] = 0
- m[(Ye + 12) | 0] = 0
- return Ye
- }
- function Nf(Ye, Yr) {
- var Zr = 0,
- _r = 0,
- $r = 0,
- as = 0,
- bs = 0,
- cs = 0,
- ds = 0,
- es = 0,
- fs = 0,
- gs = 0,
- hs = 0
- bs = (R - 16) | 0
- R = bs
- as = o[(Yr + 16) >> 2]
- _r = o[(Yr + 12) >> 2]
- Zr = o[(Yr + 20) >> 2]
- a: {
- if ((_r | 0) < (Zr | 0) ? 1 : (_r | 0) <= (Zr | 0) ? (r[(Yr + 8) >> 2] > as >>> 0 ? 0 : 1) : 0) {
- break a
- }
- m[(Ye + 12) | 0] = p[(as + o[Yr >> 2]) | 0]
- _r = o[(Yr + 20) >> 2]
- Zr = (o[(Yr + 16) >> 2] + 1) | 0
- if (Zr >>> 0 < 1) {
- _r = (_r + 1) | 0
- }
- o[(Yr + 16) >> 2] = Zr
- o[(Yr + 20) >> 2] = _r
- if (!Of(1, (bs + 12) | 0, Yr)) {
- break a
- }
- _r = o[(Yr + 8) >> 2]
- cs = o[(Yr + 16) >> 2]
- Zr = cs
- $r = o[(bs + 12) >> 2]
- as = $r
- ds = (_r - Zr) >>> 0 >= $r >>> 0 ? 0 : 1
- Zr = _r >>> 0 < Zr >>> 0
- _r = o[(Yr + 20) >> 2]
- Zr = (o[(Yr + 12) >> 2] - ((Zr + _r) | 0)) | 0
- if (((Zr | 0) < 0 ? 1 : (Zr | 0) <= 0 ? ds : 0) | (($r | 0) < 1)) {
- break a
- }
- Zr = (cs + o[Yr >> 2]) | 0
- o[Ye >> 2] = Zr
- es = ($r + -1) | 0
- fs = (es + Zr) | 0
- gs = p[fs | 0] >>> 6
- if ((gs | 0) == 3) {
- break a
- }
- ds = Ye
- b: {
- c: {
- switch ((gs - 1) | 0) {
- default:
- o[(Ye + 4) >> 2] = es
- Ye = p[fs | 0] & 63
- break b
- case 0:
- if (($r | 0) < 2) {
- break a
- }
- o[(Ye + 4) >> 2] = $r + -2
- Ye = (((Zr + $r) | 0) + -2) | 0
- Ye = ((p[(Ye + 1) | 0] << 8) & 16128) | p[Ye | 0]
- break b
- case 1:
- break c
- }
- }
- if (($r | 0) < 3) {
- break a
- }
- o[(Ye + 4) >> 2] = $r + -3
- Ye = (((Zr + $r) | 0) + -3) | 0
- Ye = (p[(Ye + 1) | 0] << 8) | ((p[(Ye + 2) | 0] << 16) & 4128768) | p[Ye | 0]
- }
- Ye = (Ye + 4096) | 0
- o[(ds + 8) >> 2] = Ye
- if (Ye >>> 0 > 1048575) {
- break a
- }
- Ye = _r
- _r = (as + cs) | 0
- if (_r >>> 0 < as >>> 0) {
- Ye = (Ye + 1) | 0
- }
- o[(Yr + 16) >> 2] = _r
- o[(Yr + 20) >> 2] = Ye
- hs = 1
- }
- R = (bs + 16) | 0
- return hs
- }
- function Of(Ye, Yr, is) {
- var js = 0,
- ks = 0,
- ls = 0,
- ms = 0
- a: {
- if (Ye >>> 0 > 5) {
- break a
- }
- ls = o[(is + 16) >> 2]
- js = o[(is + 12) >> 2]
- ks = o[(is + 20) >> 2]
- if ((js | 0) < (ks | 0) ? 1 : (js | 0) <= (ks | 0) ? (r[(is + 8) >> 2] > ls >>> 0 ? 0 : 1) : 0) {
- break a
- }
- js = p[(ls + o[is >> 2]) | 0]
- ls = (ls + 1) | 0
- if (ls >>> 0 < 1) {
- ks = (ks + 1) | 0
- }
- o[(is + 16) >> 2] = ls
- o[(is + 20) >> 2] = ks
- ks = Yr
- if (js & 128) {
- if (!Of((Ye + 1) | 0, Yr, is)) {
- break a
- }
- Ye = o[Yr >> 2] << 7
- o[Yr >> 2] = Ye
- js = Ye | (js & 127)
- }
- o[ks >> 2] = js
- ms = 1
- }
- return ms
- }
- function Pf(Ye) {
- var Yr = 0,
- is = 0,
- ns = 0,
- os = 0,
- ps = 0
- ns = (0 - p[(Ye + 12) | 0]) | 0
- is = o[(Ye + 8) >> 2]
- a: {
- if (is >>> 0 > 4095) {
- break a
- }
- Yr = o[(Ye + 4) >> 2]
- if ((Yr | 0) < 1) {
- break a
- }
- Yr = (Yr + -1) | 0
- o[(Ye + 4) >> 2] = Yr
- is = p[(Yr + o[Ye >> 2]) | 0] | (is << 8)
- o[(Ye + 8) >> 2] = is
- }
- ns = ns & 255
- Yr = u(ns, is >>> 8)
- os = is & 255
- ps = os >>> 0 < ns >>> 0
- o[(Ye + 8) >> 2] = ps ? (Yr + os) | 0 : (((is - ns) | 0) - Yr) | 0
- return ps
- }
- function Qf(Ye, qs) {
- var rs = 0,
- ss = 0,
- ts = 0
- ts = (R - 32) | 0
- R = ts
- a: {
- if (qs >>> 0 <= 1) {
- if (qs - 1) {
- qs = Hk(48)
- ug(qs)
- o[qs >> 2] = 9816
- o[(Ye + 8) >> 2] = 0
- o[(Ye + 12) >> 2] = 0
- o[Ye >> 2] = 0
- o[(Ye + 4) >> 2] = 0
- o[(Ye + 16) >> 2] = qs
- break a
- }
- qs = Hk(52)
- ug(qs)
- o[(qs + 48) >> 2] = 0
- o[qs >> 2] = 8064
- o[(Ye + 8) >> 2] = 0
- o[(Ye + 12) >> 2] = 0
- o[Ye >> 2] = 0
- o[(Ye + 4) >> 2] = 0
- o[(Ye + 16) >> 2] = qs
- break a
- }
- qs = Hk(32)
- o[ts >> 2] = qs
- o[(ts + 4) >> 2] = 28
- o[(ts + 8) >> 2] = -2147483616
- m[(qs + 28) | 0] = 0
- rs = p[7812] | (p[7813] << 8) | ((p[7814] << 16) | (p[7815] << 24))
- m[(qs + 24) | 0] = rs
- m[(qs + 25) | 0] = rs >>> 8
- m[(qs + 26) | 0] = rs >>> 16
- m[(qs + 27) | 0] = rs >>> 24
- rs = p[7808] | (p[7809] << 8) | ((p[7810] << 16) | (p[7811] << 24))
- ss = p[7804] | (p[7805] << 8) | ((p[7806] << 16) | (p[7807] << 24))
- m[(qs + 16) | 0] = ss
- m[(qs + 17) | 0] = ss >>> 8
- m[(qs + 18) | 0] = ss >>> 16
- m[(qs + 19) | 0] = ss >>> 24
- m[(qs + 20) | 0] = rs
- m[(qs + 21) | 0] = rs >>> 8
- m[(qs + 22) | 0] = rs >>> 16
- m[(qs + 23) | 0] = rs >>> 24
- rs = p[7800] | (p[7801] << 8) | ((p[7802] << 16) | (p[7803] << 24))
- ss = p[7796] | (p[7797] << 8) | ((p[7798] << 16) | (p[7799] << 24))
- m[(qs + 8) | 0] = ss
- m[(qs + 9) | 0] = ss >>> 8
- m[(qs + 10) | 0] = ss >>> 16
- m[(qs + 11) | 0] = ss >>> 24
- m[(qs + 12) | 0] = rs
- m[(qs + 13) | 0] = rs >>> 8
- m[(qs + 14) | 0] = rs >>> 16
- m[(qs + 15) | 0] = rs >>> 24
- rs = p[7792] | (p[7793] << 8) | ((p[7794] << 16) | (p[7795] << 24))
- ss = p[7788] | (p[7789] << 8) | ((p[7790] << 16) | (p[7791] << 24))
- m[qs | 0] = ss
- m[(qs + 1) | 0] = ss >>> 8
- m[(qs + 2) | 0] = ss >>> 16
- m[(qs + 3) | 0] = ss >>> 24
- m[(qs + 4) | 0] = rs
- m[(qs + 5) | 0] = rs >>> 8
- m[(qs + 6) | 0] = rs >>> 16
- m[(qs + 7) | 0] = rs >>> 24
- o[(ts + 16) >> 2] = -1
- qs = Mk((ts + 16) | 4, ts)
- o[Ye >> 2] = o[(ts + 16) >> 2]
- Mk((Ye + 4) | 0, qs)
- o[(Ye + 16) >> 2] = 0
- if (m[(qs + 11) | 0] <= -1) {
- ul(o[qs >> 2])
- }
- if (m[(ts + 11) | 0] > -1) {
- break a
- }
- ul(o[ts >> 2])
- }
- R = (ts + 32) | 0
- }
- function Rf(Ye, qs) {
- var us = 0,
- vs = 0,
- ws = 0
- us = (R - 80) | 0
- R = us
- vs = o[(qs + 36) >> 2]
- o[(us + 72) >> 2] = o[(qs + 32) >> 2]
- o[(us + 76) >> 2] = vs
- ws = o[(qs + 28) >> 2]
- vs = (us - -64) | 0
- o[vs >> 2] = o[(qs + 24) >> 2]
- o[(vs + 4) >> 2] = ws
- vs = o[(qs + 20) >> 2]
- o[(us + 56) >> 2] = o[(qs + 16) >> 2]
- o[(us + 60) >> 2] = vs
- vs = o[(qs + 12) >> 2]
- o[(us + 48) >> 2] = o[(qs + 8) >> 2]
- o[(us + 52) >> 2] = vs
- vs = o[(qs + 4) >> 2]
- o[(us + 40) >> 2] = o[qs >> 2]
- o[(us + 44) >> 2] = vs
- ci((us + 8) | 0, (us + 40) | 0, (us + 24) | 0)
- qs = o[(us + 8) >> 2]
- a: {
- if (qs) {
- o[Ye >> 2] = qs
- Mk((Ye + 4) | 0, (us + 8) | 4)
- if (m[(us + 23) | 0] >= 0) {
- break a
- }
- ul(o[(us + 12) >> 2])
- break a
- }
- if (m[(us + 23) | 0] <= -1) {
- ul(o[(us + 12) >> 2])
- }
- qs = p[(us + 31) | 0]
- o[Ye >> 2] = 0
- o[(Ye + 4) >> 2] = 0
- o[(Ye + 16) >> 2] = qs
- o[(Ye + 8) >> 2] = 0
- o[(Ye + 12) >> 2] = 0
- }
- R = (us + 80) | 0
- }
- function Sf(Ye, qs, xs, ys) {
- var zs = 0,
- As = 0,
- Bs = 0
- zs = (R - 80) | 0
- R = zs
- As = o[(xs + 36) >> 2]
- o[(zs + 72) >> 2] = o[(xs + 32) >> 2]
- o[(zs + 76) >> 2] = As
- Bs = o[(xs + 28) >> 2]
- As = (zs - -64) | 0
- o[As >> 2] = o[(xs + 24) >> 2]
- o[(As + 4) >> 2] = Bs
- As = o[(xs + 20) >> 2]
- o[(zs + 56) >> 2] = o[(xs + 16) >> 2]
- o[(zs + 60) >> 2] = As
- As = o[(xs + 12) >> 2]
- o[(zs + 48) >> 2] = o[(xs + 8) >> 2]
- o[(zs + 52) >> 2] = As
- As = o[(xs + 4) >> 2]
- o[(zs + 40) >> 2] = o[xs >> 2]
- o[(zs + 44) >> 2] = As
- ci(Ye, (zs + 40) | 0, (zs + 24) | 0)
- a: {
- if (o[Ye >> 2]) {
- break a
- }
- As = (Ye + 4) | 0
- if (m[(Ye + 15) | 0] <= -1) {
- ul(o[As >> 2])
- }
- if (p[(zs + 31) | 0] != 1) {
- o[(zs + 8) >> 2] = 0
- o[zs >> 2] = 0
- o[(zs + 4) >> 2] = 0
- qs = Hk(32)
- o[zs >> 2] = qs
- o[(zs + 4) >> 2] = 20
- o[(zs + 8) >> 2] = -2147483616
- m[(qs + 20) | 0] = 0
- xs = p[7860] | (p[7861] << 8) | ((p[7862] << 16) | (p[7863] << 24))
- m[(qs + 16) | 0] = xs
- m[(qs + 17) | 0] = xs >>> 8
- m[(qs + 18) | 0] = xs >>> 16
- m[(qs + 19) | 0] = xs >>> 24
- xs = p[7856] | (p[7857] << 8) | ((p[7858] << 16) | (p[7859] << 24))
- ys = p[7852] | (p[7853] << 8) | ((p[7854] << 16) | (p[7855] << 24))
- m[(qs + 8) | 0] = ys
- m[(qs + 9) | 0] = ys >>> 8
- m[(qs + 10) | 0] = ys >>> 16
- m[(qs + 11) | 0] = ys >>> 24
- m[(qs + 12) | 0] = xs
- m[(qs + 13) | 0] = xs >>> 8
- m[(qs + 14) | 0] = xs >>> 16
- m[(qs + 15) | 0] = xs >>> 24
- xs = p[7848] | (p[7849] << 8) | ((p[7850] << 16) | (p[7851] << 24))
- ys = p[7844] | (p[7845] << 8) | ((p[7846] << 16) | (p[7847] << 24))
- m[qs | 0] = ys
- m[(qs + 1) | 0] = ys >>> 8
- m[(qs + 2) | 0] = ys >>> 16
- m[(qs + 3) | 0] = ys >>> 24
- m[(qs + 4) | 0] = xs
- m[(qs + 5) | 0] = xs >>> 8
- m[(qs + 6) | 0] = xs >>> 16
- m[(qs + 7) | 0] = xs >>> 24
- o[Ye >> 2] = -1
- Mk(As, zs)
- if (m[(zs + 11) | 0] > -1) {
- break a
- }
- ul(o[zs >> 2])
- break a
- }
- Qf(zs, p[(zs + 32) | 0])
- Bs = o[zs >> 2]
- b: {
- if (Bs) {
- o[Ye >> 2] = Bs
- Mk(As, zs | 4)
- break b
- }
- Bs = o[(zs + 16) >> 2]
- o[(zs + 16) >> 2] = 0
- o[(Bs + 44) >> 2] = ys
- fi(Ye, Bs, qs, xs, ys)
- if (!o[Ye >> 2]) {
- if (m[(As + 11) | 0] <= -1) {
- ul(o[As >> 2])
- }
- o[Ye >> 2] = 0
- o[(Ye + 4) >> 2] = 0
- o[(Ye + 8) >> 2] = 0
- o[(Ye + 12) >> 2] = 0
- }
- if (!Bs) {
- break b
- }
- l[o[(o[Bs >> 2] + 4) >> 2]](Bs)
- }
- Ye = o[(zs + 16) >> 2]
- o[(zs + 16) >> 2] = 0
- if (Ye) {
- l[o[(o[Ye >> 2] + 4) >> 2]](Ye)
- }
- if (m[(zs + 15) | 0] > -1) {
- break a
- }
- ul(o[(zs + 4) >> 2])
- }
- R = (zs + 80) | 0
- }
- function Tf(Ye) {
- var qs = 0,
- xs = 0,
- ys = 0,
- Cs = 0
- Cs = (R - 16) | 0
- R = Cs
- qs = Hk(32)
- o[Cs >> 2] = qs
- o[(Cs + 4) >> 2] = 26
- o[(Cs + 8) >> 2] = -2147483616
- m[(qs + 26) | 0] = 0
- xs = p[7841] | (p[7842] << 8)
- m[(qs + 24) | 0] = xs
- m[(qs + 25) | 0] = xs >>> 8
- ys = p[7837] | (p[7838] << 8) | ((p[7839] << 16) | (p[7840] << 24))
- xs = p[7833] | (p[7834] << 8) | ((p[7835] << 16) | (p[7836] << 24))
- m[(qs + 16) | 0] = xs
- m[(qs + 17) | 0] = xs >>> 8
- m[(qs + 18) | 0] = xs >>> 16
- m[(qs + 19) | 0] = xs >>> 24
- m[(qs + 20) | 0] = ys
- m[(qs + 21) | 0] = ys >>> 8
- m[(qs + 22) | 0] = ys >>> 16
- m[(qs + 23) | 0] = ys >>> 24
- ys = p[7829] | (p[7830] << 8) | ((p[7831] << 16) | (p[7832] << 24))
- xs = p[7825] | (p[7826] << 8) | ((p[7827] << 16) | (p[7828] << 24))
- m[(qs + 8) | 0] = xs
- m[(qs + 9) | 0] = xs >>> 8
- m[(qs + 10) | 0] = xs >>> 16
- m[(qs + 11) | 0] = xs >>> 24
- m[(qs + 12) | 0] = ys
- m[(qs + 13) | 0] = ys >>> 8
- m[(qs + 14) | 0] = ys >>> 16
- m[(qs + 15) | 0] = ys >>> 24
- ys = p[7821] | (p[7822] << 8) | ((p[7823] << 16) | (p[7824] << 24))
- xs = p[7817] | (p[7818] << 8) | ((p[7819] << 16) | (p[7820] << 24))
- m[qs | 0] = xs
- m[(qs + 1) | 0] = xs >>> 8
- m[(qs + 2) | 0] = xs >>> 16
- m[(qs + 3) | 0] = xs >>> 24
- m[(qs + 4) | 0] = ys
- m[(qs + 5) | 0] = ys >>> 8
- m[(qs + 6) | 0] = ys >>> 16
- m[(qs + 7) | 0] = ys >>> 24
- o[Ye >> 2] = -1
- Mk((Ye + 4) | 0, Cs)
- if (m[(Cs + 11) | 0] <= -1) {
- ul(o[Cs >> 2])
- }
- R = (Cs + 16) | 0
- }
- function Uf(Ye, Ds) {
- var Es = 0,
- Fs = 0,
- Gs = 0
- Gs = (R - 16) | 0
- R = Gs
- o[(Gs + 12) >> 2] = Ds
- Ds = Hk(32)
- o[Gs >> 2] = Ds
- o[(Gs + 4) >> 2] = 24
- o[(Gs + 8) >> 2] = -2147483616
- m[(Ds + 24) | 0] = 0
- Es = p[7885] | (p[7886] << 8) | ((p[7887] << 16) | (p[7888] << 24))
- Fs = p[7881] | (p[7882] << 8) | ((p[7883] << 16) | (p[7884] << 24))
- m[(Ds + 16) | 0] = Fs
- m[(Ds + 17) | 0] = Fs >>> 8
- m[(Ds + 18) | 0] = Fs >>> 16
- m[(Ds + 19) | 0] = Fs >>> 24
- m[(Ds + 20) | 0] = Es
- m[(Ds + 21) | 0] = Es >>> 8
- m[(Ds + 22) | 0] = Es >>> 16
- m[(Ds + 23) | 0] = Es >>> 24
- Es = p[7877] | (p[7878] << 8) | ((p[7879] << 16) | (p[7880] << 24))
- Fs = p[7873] | (p[7874] << 8) | ((p[7875] << 16) | (p[7876] << 24))
- m[(Ds + 8) | 0] = Fs
- m[(Ds + 9) | 0] = Fs >>> 8
- m[(Ds + 10) | 0] = Fs >>> 16
- m[(Ds + 11) | 0] = Fs >>> 24
- m[(Ds + 12) | 0] = Es
- m[(Ds + 13) | 0] = Es >>> 8
- m[(Ds + 14) | 0] = Es >>> 16
- m[(Ds + 15) | 0] = Es >>> 24
- Es = p[7869] | (p[7870] << 8) | ((p[7871] << 16) | (p[7872] << 24))
- Fs = p[7865] | (p[7866] << 8) | ((p[7867] << 16) | (p[7868] << 24))
- m[Ds | 0] = Fs
- m[(Ds + 1) | 0] = Fs >>> 8
- m[(Ds + 2) | 0] = Fs >>> 16
- m[(Ds + 3) | 0] = Fs >>> 24
- m[(Ds + 4) | 0] = Es
- m[(Ds + 5) | 0] = Es >>> 8
- m[(Ds + 6) | 0] = Es >>> 16
- m[(Ds + 7) | 0] = Es >>> 24
- wi(Vf(Ye, (Gs + 12) | 0), Gs)
- if (m[(Gs + 11) | 0] <= -1) {
- ul(o[Gs >> 2])
- }
- R = (Gs + 16) | 0
- }
- function Vf(Ye, Ds) {
- var Hs = 0,
- Is = 0,
- Js = 0,
- Ks = 0,
- Ls = 0,
- Ms = 0,
- Ns = 0,
- Os = 0
- Js = (R - 32) | 0
- R = Js
- Ks = (Ye + 16) | 0
- Is = o[Ks >> 2]
- a: {
- b: {
- if (!Is) {
- break b
- }
- Ms = o[Ds >> 2]
- Hs = Ks
- while (1) {
- Ls = o[(Is + 16) >> 2] < (Ms | 0)
- Hs = Ls ? Hs : Is
- Is = o[((Ls << 2) + Is) >> 2]
- if (Is) {
- continue
- }
- break
- }
- if ((Hs | 0) == (Ks | 0)) {
- break b
- }
- if ((Ms | 0) >= o[(Hs + 16) >> 2]) {
- break a
- }
- }
- Ms = ui((Js + 16) | 0)
- Ds = o[Ds >> 2]
- Ls = (Js + 8) | 0
- o[Ls >> 2] = 0
- o[(Ls + 4) >> 2] = 0
- o[Js >> 2] = Ds
- o[(Js + 4) >> 2] = Ls
- Hs = o[Ms >> 2]
- Ns = (Ms + 4) | 0
- if ((Hs | 0) != (Ns | 0)) {
- Os = Js | 4
- while (1) {
- Ds = Hs
- Is = (Hs + 16) | 0
- Wf(Os, Ls, Is, Is)
- Is = o[(Hs + 4) >> 2]
- c: {
- if (!Is) {
- Hs = o[(Ds + 8) >> 2]
- if ((Ds | 0) == o[Hs >> 2]) {
- break c
- }
- Ds = (Ds + 8) | 0
- while (1) {
- Is = o[Ds >> 2]
- Ds = (Is + 8) | 0
- Hs = o[(Is + 8) >> 2]
- if ((Is | 0) != o[Hs >> 2]) {
- continue
- }
- break
- }
- break c
- }
- while (1) {
- Hs = Is
- Is = o[Hs >> 2]
- if (Is) {
- continue
- }
- break
- }
- }
- if ((Hs | 0) != (Ns | 0)) {
- continue
- }
- break
- }
- }
- Ds = (Ye + 16) | 0
- Is = o[Ds >> 2]
- d: {
- if (Is) {
- Ks = o[Js >> 2]
- while (1) {
- Hs = o[(Is + 16) >> 2]
- e: {
- if ((Ks | 0) < (Hs | 0)) {
- Hs = o[Is >> 2]
- if (Hs) {
- break e
- }
- Ds = Is
- break d
- }
- if ((Hs | 0) >= (Ks | 0)) {
- break d
- }
- Ds = (Is + 4) | 0
- Hs = o[(Is + 4) >> 2]
- if (!Hs) {
- break d
- }
- Is = Ds
- }
- Ds = Is
- Is = Hs
- continue
- }
- }
- Is = Ks
- Ds = Is
- }
- Hs = o[Ds >> 2]
- if (!Hs) {
- Hs = Hk(32)
- o[(Hs + 16) >> 2] = o[Js >> 2]
- o[(Hs + 20) >> 2] = o[(Js + 4) >> 2]
- Ks = (Hs + 24) | 0
- Ns = o[(Js + 8) >> 2]
- o[Ks >> 2] = Ns
- Os = o[(Js + 12) >> 2]
- o[(Hs + 28) >> 2] = Os
- f: {
- if (!Os) {
- o[(Hs + 20) >> 2] = Ks
- break f
- }
- o[(Ns + 8) >> 2] = Ks
- o[(Js + 8) >> 2] = 0
- o[(Js + 12) >> 2] = 0
- o[(Js + 4) >> 2] = Ls
- }
- o[(Hs + 8) >> 2] = Is
- o[Hs >> 2] = 0
- o[(Hs + 4) >> 2] = 0
- o[Ds >> 2] = Hs
- Ks = o[o[(Ye + 12) >> 2] >> 2]
- Is = Hs
- g: {
- if (!Ks) {
- break g
- }
- o[(Ye + 12) >> 2] = Ks
- Is = o[Ds >> 2]
- }
- Xf(o[(Ye + 16) >> 2], Is)
- Ye = (Ye + 20) | 0
- o[Ye >> 2] = o[Ye >> 2] + 1
- }
- Ac(Js | 4, o[(Js + 8) >> 2])
- Ac(Ms, o[(Ms + 4) >> 2])
- }
- R = (Js + 32) | 0
- return (Hs + 20) | 0
- }
- function Wf(Ye, Ds, Ps, Qs) {
- var Rs = 0
- Rs = (R - 16) | 0
- R = Rs
- Ps = Yf(Ye, Ds, (Rs + 12) | 0, (Rs + 8) | 0, Ps)
- if (!o[Ps >> 2]) {
- Ds = Hk(40)
- Mk((Ds + 16) | 0, Qs)
- Mk((Ds + 28) | 0, (Qs + 12) | 0)
- o[(Ds + 8) >> 2] = o[(Rs + 12) >> 2]
- o[Ds >> 2] = 0
- o[(Ds + 4) >> 2] = 0
- o[Ps >> 2] = Ds
- Qs = Ds
- Ds = o[o[Ye >> 2] >> 2]
- if (Ds) {
- o[Ye >> 2] = Ds
- Qs = o[Ps >> 2]
- }
- Xf(o[(Ye + 4) >> 2], Qs)
- Ye = (Ye + 8) | 0
- o[Ye >> 2] = o[Ye >> 2] + 1
- }
- R = (Rs + 16) | 0
- }
- function Xf(Ye, Ds) {
- var Ps = 0,
- Qs = 0,
- Ss = 0
- Ps = (Ye | 0) == (Ds | 0)
- m[(Ds + 12) | 0] = Ps
- a: {
- if (Ps) {
- break a
- }
- while (1) {
- Qs = o[(Ds + 8) >> 2]
- if (p[(Qs + 12) | 0]) {
- break a
- }
- b: {
- Ps = o[(Qs + 8) >> 2]
- Ss = o[Ps >> 2]
- if ((Ss | 0) == (Qs | 0)) {
- Ss = o[(Ps + 4) >> 2]
- if (!(!Ss | p[(Ss + 12) | 0])) {
- break b
- }
- c: {
- if (o[Qs >> 2] == (Ds | 0)) {
- Ds = Qs
- break c
- }
- Ds = o[(Qs + 4) >> 2]
- Ss = o[Ds >> 2]
- o[(Qs + 4) >> 2] = Ss
- Ye = Ds
- if (Ss) {
- o[(Ss + 8) >> 2] = Qs
- Ps = o[(Qs + 8) >> 2]
- }
- o[(Ye + 8) >> 2] = Ps
- Ye = o[(Qs + 8) >> 2]
- o[((Qs | 0) == o[Ye >> 2] ? Ye : (Ye + 4) | 0) >> 2] = Ds
- o[Ds >> 2] = Qs
- o[(Qs + 8) >> 2] = Ds
- Ps = o[(Ds + 8) >> 2]
- }
- m[(Ds + 12) | 0] = 1
- m[(Ps + 12) | 0] = 0
- Ye = o[Ps >> 2]
- Ds = o[(Ye + 4) >> 2]
- o[Ps >> 2] = Ds
- if (Ds) {
- o[(Ds + 8) >> 2] = Ps
- }
- o[(Ye + 8) >> 2] = o[(Ps + 8) >> 2]
- Ds = o[(Ps + 8) >> 2]
- o[(o[Ds >> 2] == (Ps | 0) ? Ds : (Ds + 4) | 0) >> 2] = Ye
- o[(Ye + 4) >> 2] = Ps
- o[(Ps + 8) >> 2] = Ye
- return
- }
- if (!(p[(Ss + 12) | 0] | !Ss)) {
- break b
- }
- d: {
- if (o[Qs >> 2] != (Ds | 0)) {
- Ds = Qs
- break d
- }
- Ss = o[(Ds + 4) >> 2]
- o[Qs >> 2] = Ss
- Ye = Ds
- if (Ss) {
- o[(Ss + 8) >> 2] = Qs
- Ps = o[(Qs + 8) >> 2]
- }
- o[(Ye + 8) >> 2] = Ps
- Ye = o[(Qs + 8) >> 2]
- o[((Qs | 0) == o[Ye >> 2] ? Ye : (Ye + 4) | 0) >> 2] = Ds
- o[(Ds + 4) >> 2] = Qs
- o[(Qs + 8) >> 2] = Ds
- Ps = o[(Ds + 8) >> 2]
- }
- m[(Ds + 12) | 0] = 1
- m[(Ps + 12) | 0] = 0
- Ye = o[(Ps + 4) >> 2]
- Ds = o[Ye >> 2]
- o[(Ps + 4) >> 2] = Ds
- if (Ds) {
- o[(Ds + 8) >> 2] = Ps
- }
- o[(Ye + 8) >> 2] = o[(Ps + 8) >> 2]
- Ds = o[(Ps + 8) >> 2]
- o[(o[Ds >> 2] == (Ps | 0) ? Ds : (Ds + 4) | 0) >> 2] = Ye
- o[Ye >> 2] = Ps
- o[(Ps + 8) >> 2] = Ye
- break a
- }
- Ds = (Ss + 12) | 0
- m[(Qs + 12) | 0] = 1
- m[(Ps + 12) | 0] = (Ye | 0) == (Ps | 0)
- m[Ds | 0] = 1
- Ds = Ps
- if ((Ds | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- }
- function Yf(Ye, Ds, Ts, Us, Vs) {
- var Ws = 0,
- Xs = 0,
- Ys = 0,
- Zs = 0,
- _s = 0,
- $s = 0,
- at = 0,
- bt = 0,
- ct = 0,
- dt = 0,
- et = 0
- a: {
- b: {
- c: {
- d: {
- e: {
- ct = (Ye + 4) | 0
- f: {
- if ((ct | 0) == (Ds | 0)) {
- break f
- }
- Ws = (Ds + 16) | 0
- Ys = p[(Ds + 27) | 0]
- dt = (Ys << 24) >> 24
- Xs = (dt | 0) < 0
- Zs = p[(Vs + 11) | 0]
- _s = (Zs << 24) >> 24
- $s = (_s | 0) < 0
- at = Xs ? o[(Ds + 20) >> 2] : Ys
- Zs = $s ? o[(Vs + 4) >> 2] : Zs
- bt = at >>> 0 < Zs >>> 0
- g: {
- Ys = bt ? at : Zs
- if (Ys) {
- $s = $s ? o[Vs >> 2] : Vs
- Xs = Xs ? o[Ws >> 2] : Ws
- et = Zj($s, Xs, Ys)
- if (et) {
- break g
- }
- }
- if (Zs >>> 0 < at >>> 0) {
- break f
- }
- if (!Ys) {
- break d
- }
- $s = (_s | 0) < 0 ? o[Vs >> 2] : Vs
- Xs = (dt | 0) < 0 ? o[Ws >> 2] : Ws
- break e
- }
- if ((et | 0) > -1) {
- break e
- }
- }
- Ys = o[Ds >> 2]
- h: {
- i: {
- if (o[Ye >> 2] == (Ds | 0)) {
- Ws = Ds
- break i
- }
- j: {
- if (!Ys) {
- Us = Ds
- while (1) {
- Ws = o[(Us + 8) >> 2]
- Zs = o[Ws >> 2] == (Us | 0)
- Us = Ws
- if (Zs) {
- continue
- }
- break
- }
- break j
- }
- Us = Ys
- while (1) {
- Ws = Us
- Us = o[(Ws + 4) >> 2]
- if (Us) {
- continue
- }
- break
- }
- }
- Xs = p[(Vs + 11) | 0]
- Us = (Xs << 24) >> 24 < 0
- _s = p[(Ws + 27) | 0]
- Zs = (_s << 24) >> 24 < 0
- k: {
- Xs = Us ? o[(Vs + 4) >> 2] : Xs
- _s = Zs ? o[(Ws + 20) >> 2] : _s
- $s = Xs >>> 0 < _s >>> 0 ? Xs : _s
- if ($s) {
- at = (Ws + 16) | 0
- Us = Zj(Zs ? o[at >> 2] : at, Us ? o[Vs >> 2] : Vs, $s)
- if (Us) {
- break k
- }
- }
- if (_s >>> 0 < Xs >>> 0) {
- break i
- }
- break h
- }
- if ((Us | 0) > -1) {
- break h
- }
- }
- if (!Ys) {
- o[Ts >> 2] = Ds
- return Ds
- }
- o[Ts >> 2] = Ws
- return (Ws + 4) | 0
- }
- return Zf(Ye, Ts, Vs)
- }
- Ws = Zj(Xs, $s, Ys)
- if (Ws) {
- break c
- }
- }
- if (bt) {
- break b
- }
- break a
- }
- if ((Ws | 0) > -1) {
- break a
- }
- }
- $s = (Ds + 4) | 0
- Ys = o[$s >> 2]
- l: {
- if (Ys) {
- Ws = Ys
- while (1) {
- Us = Ws
- Ws = o[Ws >> 2]
- if (Ws) {
- continue
- }
- break
- }
- break l
- }
- Us = o[(Ds + 8) >> 2]
- if (o[Us >> 2] == (Ds | 0)) {
- break l
- }
- Ws = (Ds + 8) | 0
- while (1) {
- Xs = o[Ws >> 2]
- Ws = (Xs + 8) | 0
- Us = o[(Xs + 8) >> 2]
- if ((Xs | 0) != o[Us >> 2]) {
- continue
- }
- break
- }
- }
- m: {
- n: {
- if ((Us | 0) == (ct | 0)) {
- break n
- }
- Xs = p[(Us + 27) | 0]
- Ws = (Xs << 24) >> 24 < 0
- o: {
- Xs = Ws ? o[(Us + 20) >> 2] : Xs
- at = Xs >>> 0 < Zs >>> 0 ? Xs : Zs
- if (at) {
- bt = (_s | 0) < 0 ? o[Vs >> 2] : Vs
- _s = (Us + 16) | 0
- Ws = Zj(bt, Ws ? o[_s >> 2] : _s, at)
- if (Ws) {
- break o
- }
- }
- if (Zs >>> 0 < Xs >>> 0) {
- break n
- }
- break m
- }
- if ((Ws | 0) > -1) {
- break m
- }
- }
- if (!Ys) {
- o[Ts >> 2] = Ds
- return $s
- }
- o[Ts >> 2] = Us
- return Us
- }
- return Zf(Ye, Ts, Vs)
- }
- o[Ts >> 2] = Ds
- o[Us >> 2] = Ds
- return Us
- }
- function Zf(Ye, Ds, Ts) {
- var Us = 0,
- Vs = 0,
- ft = 0,
- gt = 0,
- ht = 0,
- it = 0,
- jt = 0,
- kt = 0,
- lt = 0
- a: {
- Us = (Ye + 4) | 0
- Ye = o[Us >> 2]
- if (Ye) {
- ft = p[(Ts + 11) | 0]
- gt = (ft << 24) >> 24 < 0
- ft = gt ? o[(Ts + 4) >> 2] : ft
- jt = gt ? o[Ts >> 2] : Ts
- while (1) {
- Ts = (Ye + 16) | 0
- Vs = p[(Ye + 27) | 0]
- gt = (Vs << 24) >> 24 < 0
- ht = gt ? o[(Ye + 20) >> 2] : Vs
- kt = ht >>> 0 < ft >>> 0
- b: {
- c: {
- d: {
- e: {
- f: {
- g: {
- h: {
- Vs = kt ? ht : ft
- if (Vs) {
- it = gt ? o[Ts >> 2] : Ts
- lt = Zj(jt, it, Vs)
- if (lt) {
- break h
- }
- }
- if (ft >>> 0 < ht >>> 0) {
- break g
- }
- if (!Vs) {
- break e
- }
- it = gt ? o[Ts >> 2] : Ts
- break f
- }
- if ((lt | 0) > -1) {
- break f
- }
- }
- Ts = o[Ye >> 2]
- if (Ts) {
- break b
- }
- o[Ds >> 2] = Ye
- return Ye
- }
- Ts = Zj(it, jt, Vs)
- if (Ts) {
- break d
- }
- }
- if (kt) {
- break c
- }
- break a
- }
- if ((Ts | 0) > -1) {
- break a
- }
- }
- Us = (Ye + 4) | 0
- Ts = o[(Ye + 4) >> 2]
- if (!Ts) {
- break a
- }
- Ye = Us
- }
- Us = Ye
- Ye = Ts
- continue
- }
- }
- o[Ds >> 2] = Us
- return Us
- }
- o[Ds >> 2] = Ye
- return Us
- }
- function _f(Ye, Ds, Ts, mt) {
- var nt = 0,
- ot = 0,
- pt = 0,
- qt = 0,
- rt = 0
- if (!Ye) {
- return 1
- }
- nt = o[(Ts + 16) >> 2]
- qt = o[(Ts + 12) >> 2]
- pt = o[(Ts + 20) >> 2]
- ot = pt
- a: {
- if ((qt | 0) < (ot | 0) ? 1 : (qt | 0) <= (ot | 0) ? (r[(Ts + 8) >> 2] > nt >>> 0 ? 0 : 1) : 0) {
- break a
- }
- ot = p[(nt + o[Ts >> 2]) | 0]
- nt = (nt + 1) | 0
- if (nt >>> 0 < 1) {
- pt = (pt + 1) | 0
- }
- o[(Ts + 16) >> 2] = nt
- o[(Ts + 20) >> 2] = pt
- if (ot >>> 0 > 1) {
- break a
- }
- if (ot - 1) {
- return $f(Ye, Ds, Ts, mt)
- }
- rt = ag(Ye, Ts, mt)
- }
- return rt
- }
- function $f(Ye, Ds, Ts, mt) {
- var st = 0,
- tt = 0,
- ut = 0,
- vt = 0,
- wt = 0,
- xt = 0,
- yt = 0,
- zt = 0,
- At = 0,
- Bt = 0,
- Ct = 0,
- Dt = 0,
- Et = 0,
- Ft = 0,
- Gt = 0,
- Ht = 0
- st = (R + -64) | 0
- R = st
- o[(st + 56) >> 2] = 0
- o[(st + 48) >> 2] = 0
- o[(st + 52) >> 2] = 0
- o[(st + 40) >> 2] = 0
- o[(st + 44) >> 2] = 0
- o[(st + 32) >> 2] = 0
- o[(st + 36) >> 2] = 0
- o[(st + 24) >> 2] = 0
- o[(st + 28) >> 2] = 0
- o[(st + 16) >> 2] = 0
- o[(st + 20) >> 2] = 0
- o[(st + 8) >> 2] = 0
- o[(st + 12) >> 2] = 0
- a: {
- if (!bg((st + 8) | 0, Ts)) {
- break a
- }
- if (!cg((st + 8) | 0, Ts) | (o[(st + 20) >> 2] ? 0 : Ye)) {
- break a
- }
- qi(Ts, 0, 0)
- if (Ye) {
- vt = o[(st + 56) >> 2]
- Dt = o[(st + 36) >> 2]
- Et = o[(st + 48) >> 2]
- Ft = o[(st + 24) >> 2]
- while (1) {
- b: {
- if (vt >>> 0 > 16383) {
- break b
- }
- tt = o[(st + 52) >> 2]
- while (1) {
- if ((tt | 0) < 1) {
- break b
- }
- tt = (tt + -1) | 0
- o[(st + 52) >> 2] = tt
- vt = p[(tt + Et) | 0] | (vt << 8)
- o[(st + 56) >> 2] = vt
- if (vt >>> 0 < 16384) {
- continue
- }
- break
- }
- }
- ut = vt & 4095
- Bt = o[((ut << 2) + Ft) >> 2]
- wt = ((Bt << 3) + Dt) | 0
- vt = (((u(o[wt >> 2], vt >>> 12) + ut) | 0) - o[(wt + 4) >> 2]) | 0
- o[(st + 56) >> 2] = vt
- if ((Ds | 0) >= 1) {
- if (!p[(Ts + 36) | 0]) {
- ut = 0
- break a
- }
- wt = (Ds + xt) | 0
- while (1) {
- c: {
- if ((Bt | 0) < 1) {
- zt = 0
- break c
- }
- ut = o[(Ts + 32) >> 2]
- Gt = o[(Ts + 28) >> 2]
- Ht = o[(Ts + 24) >> 2]
- tt = 0
- zt = 0
- while (1) {
- yt = ((ut >>> 3) + Ht) | 0
- d: {
- if (yt >>> 0 >= Gt >>> 0) {
- At = 0
- break d
- }
- At = p[yt | 0]
- yt = (ut + 1) | 0
- o[(Ts + 32) >> 2] = yt
- At = (At >>> (ut & 7)) & 1
- ut = yt
- }
- zt = (At << tt) | zt
- tt = (tt + 1) | 0
- if ((Bt | 0) != (tt | 0)) {
- continue
- }
- break
- }
- }
- o[((xt << 2) + mt) >> 2] = zt
- xt = (xt + 1) | 0
- if ((wt | 0) != (xt | 0)) {
- continue
- }
- break
- }
- xt = wt
- }
- Ct = (Ds + Ct) | 0
- if (Ct >>> 0 < Ye >>> 0) {
- continue
- }
- break
- }
- }
- si(Ts)
- ut = 1
- }
- Ye = o[(st + 36) >> 2]
- if (Ye) {
- o[(st + 40) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(st + 24) >> 2]
- if (Ye) {
- o[(st + 28) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(st + 8) >> 2]
- if (Ye) {
- o[(st + 12) >> 2] = Ye
- ul(Ye)
- }
- R = (st - -64) | 0
- return ut
- }
- function ag(Ye, Ds, Ts) {
- var mt = 0,
- It = 0,
- Jt = 0,
- Kt = 0
- a: {
- b: {
- It = o[(Ds + 16) >> 2]
- Jt = o[(Ds + 12) >> 2]
- mt = o[(Ds + 20) >> 2]
- c: {
- if ((Jt | 0) < (mt | 0) ? 1 : (Jt | 0) <= (mt | 0) ? (r[(Ds + 8) >> 2] > It >>> 0 ? 0 : 1) : 0) {
- break c
- }
- Jt = p[(It + o[Ds >> 2]) | 0]
- It = (It + 1) | 0
- if (It >>> 0 < 1) {
- mt = (mt + 1) | 0
- }
- o[(Ds + 16) >> 2] = It
- o[(Ds + 20) >> 2] = mt
- mt = (Jt + -1) | 0
- if (mt >>> 0 > 17) {
- break c
- }
- d: {
- e: {
- f: {
- g: {
- h: {
- i: {
- j: {
- switch ((mt - 1) | 0) {
- case 12:
- case 13:
- case 14:
- case 15:
- break a
- case 8:
- break h
- case 7:
- break i
- case 3:
- break j
- case 16:
- break d
- case 11:
- break e
- case 10:
- break f
- case 9:
- break g
- default:
- break b
- }
- }
- return eg(Ye, Ds, Ts)
- }
- return fg(Ye, Ds, Ts)
- }
- return gg(Ye, Ds, Ts)
- }
- return hg(Ye, Ds, Ts)
- }
- return ig(Ye, Ds, Ts)
- }
- return jg(Ye, Ds, Ts)
- }
- Kt = kg(Ye, Ds, Ts)
- }
- return Kt
- }
- return dg(Ye, Ds, Ts)
- }
- return kg(Ye, Ds, Ts)
- }
- function bg(Ye, Ds) {
- var Ts = 0,
- Lt = 0,
- Mt = 0,
- Nt = 0,
- Ot = 0,
- Pt = 0,
- Qt = 0,
- Rt = 0,
- St = 0,
- Tt = 0,
- Ut = 0,
- Vt = 0,
- Wt = 0
- a: {
- if (!q[(Ds + 38) >> 1]) {
- break a
- }
- Tt = (Ye + 12) | 0
- if (!lg(1, Tt, Ds)) {
- break a
- }
- Nt = o[(Ye + 12) >> 2]
- Ts = o[Ye >> 2]
- Lt = (o[(Ye + 4) >> 2] - Ts) >> 2
- b: {
- if (Nt >>> 0 > Lt >>> 0) {
- Da(Ye, (Nt - Lt) | 0)
- Nt = o[(Ye + 12) >> 2]
- break b
- }
- if (Nt >>> 0 >= Lt >>> 0) {
- break b
- }
- o[(Ye + 4) >> 2] = Ts + (Nt << 2)
- }
- if (!Nt) {
- Wt = 1
- break a
- }
- Ut = o[(Ds + 8) >> 2]
- Qt = o[(Ds + 12) >> 2]
- while (1) {
- Mt = o[(Ds + 16) >> 2]
- Lt = o[(Ds + 20) >> 2]
- Ts = Lt
- if ((Qt | 0) < (Ts | 0) ? 1 : (Qt | 0) <= (Ts | 0) ? (Ut >>> 0 > Mt >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Vt = o[Ds >> 2]
- Rt = p[(Vt + Mt) | 0]
- Mt = (Mt + 1) | 0
- if (Mt >>> 0 < 1) {
- Lt = (Lt + 1) | 0
- }
- Ts = Ds
- Pt = Mt
- o[(Ts + 16) >> 2] = Mt
- o[(Ts + 20) >> 2] = Lt
- Mt = Rt >>> 2
- c: {
- d: {
- e: {
- St = Rt & 3
- if (St >>> 0 > 3) {
- Ts = 0
- break e
- }
- Ts = 0
- f: {
- switch ((St - 1) | 0) {
- case 2:
- break f
- case 0:
- case 1:
- break e
- default:
- break d
- }
- }
- Lt = (Mt + Ot) | 0
- if (Lt >>> 0 >= Nt >>> 0) {
- return 0
- }
- xl((o[Ye >> 2] + (Ot << 2)) | 0, 0, ((Rt & 252) + 4) | 0)
- Ot = Lt
- break c
- }
- while (1) {
- if ((Qt | 0) < (Lt | 0) ? 1 : (Qt | 0) <= (Lt | 0) ? (Ut >>> 0 > Pt >>> 0 ? 0 : 1) : 0) {
- return 0
- }
- Rt = p[(Pt + Vt) | 0]
- Pt = (Pt + 1) | 0
- if (Pt >>> 0 < 1) {
- Lt = (Lt + 1) | 0
- }
- Nt = Ds
- o[(Nt + 16) >> 2] = Pt
- o[(Nt + 20) >> 2] = Lt
- Mt = (Rt << ((Ts << 3) | 6)) | Mt
- Ts = (Ts + 1) | 0
- if ((St | 0) != (Ts | 0)) {
- continue
- }
- break
- }
- }
- o[(o[Ye >> 2] + (Ot << 2)) >> 2] = Mt
- }
- Ot = (Ot + 1) | 0
- Nt = o[Tt >> 2]
- if (Ot >>> 0 < Nt >>> 0) {
- continue
- }
- break
- }
- Lt = (Ye + 16) | 0
- Qt = o[Ye >> 2]
- Ds = o[(Ye + 16) >> 2]
- Ts = (o[(Ye + 20) >> 2] - Ds) | 0
- Ot = Ts >> 2
- g: {
- if (Ot >>> 0 <= 4095) {
- Da(Lt, (4096 - Ot) | 0)
- break g
- }
- if ((Ts | 0) == 16384) {
- break g
- }
- o[(Ye + 20) >> 2] = Ds + 16384
- }
- h: {
- Ts = (Ye + 28) | 0
- Ds = o[Ts >> 2]
- Ot = (o[(Ye + 32) >> 2] - Ds) >> 3
- if (Nt >>> 0 > Ot >>> 0) {
- mg(Ts, (Nt - Ot) | 0)
- Ds = o[Ts >> 2]
- break h
- }
- if (Nt >>> 0 < Ot >>> 0) {
- o[(Ye + 32) >> 2] = (Nt << 3) + Ds
- }
- if (Nt) {
- break h
- }
- return 0
- }
- Mt = 0
- Ts = 0
- while (1) {
- Ye = (Qt + (Mt << 2)) | 0
- Ot = o[Ye >> 2]
- Pt = ((Mt << 3) + Ds) | 0
- o[(Pt + 4) >> 2] = Ts
- o[Pt >> 2] = Ot
- Ye = (o[Ye >> 2] + Ts) | 0
- if (Ye >>> 0 > 4096) {
- break a
- }
- if (Ts >>> 0 < Ye >>> 0) {
- Ot = o[Lt >> 2]
- while (1) {
- o[(Ot + (Ts << 2)) >> 2] = Mt
- Ts = (Ts + 1) | 0
- if ((Ye | 0) != (Ts | 0)) {
- continue
- }
- break
- }
- }
- Ts = Ye
- Mt = (Mt + 1) | 0
- if ((Nt | 0) != (Mt | 0)) {
- continue
- }
- break
- }
- return (Ye | 0) == 4096
- }
- return Wt
- }
- function cg(Ye, Ds) {
- var Xt = 0,
- Yt = 0,
- Zt = 0,
- _t = 0,
- $t = 0,
- au = 0,
- bu = 0,
- cu = 0
- $t = (R - 16) | 0
- R = $t
- a: {
- if (!ng(1, ($t + 8) | 0, Ds)) {
- break a
- }
- Xt = o[(Ds + 8) >> 2]
- Yt = o[(Ds + 16) >> 2]
- au = (Xt - Yt) | 0
- Zt = o[($t + 12) >> 2]
- bu = o[(Ds + 20) >> 2]
- _t = (o[(Ds + 12) >> 2] - ((bu + (Xt >>> 0 < Yt >>> 0)) | 0)) | 0
- Xt = o[($t + 8) >> 2]
- if ((((Zt | 0) == (_t | 0)) & (Xt >>> 0 > au >>> 0)) | (Zt >>> 0 > _t >>> 0)) {
- break a
- }
- Zt = (Zt + bu) | 0
- _t = (Xt + Yt) | 0
- if (_t >>> 0 < Yt >>> 0) {
- Zt = (Zt + 1) | 0
- }
- o[(Ds + 16) >> 2] = _t
- o[(Ds + 20) >> 2] = Zt
- if ((Xt | 0) < 1) {
- break a
- }
- Yt = (Yt + o[Ds >> 2]) | 0
- o[(Ye + 40) >> 2] = Yt
- Ds = Ye
- b: {
- c: {
- d: {
- e: {
- f: {
- _t = (Xt + -1) | 0
- au = (Yt + _t) | 0
- switch (((p[au | 0] >>> 6) - 1) | 0) {
- case 2:
- break c
- case 1:
- break d
- case 0:
- break e
- default:
- break f
- }
- }
- o[(Ye + 44) >> 2] = _t
- Ye = p[au | 0] & 63
- break b
- }
- if ((Xt | 0) < 2) {
- break a
- }
- o[(Ye + 44) >> 2] = Xt + -2
- Ye = (((Xt + Yt) | 0) + -2) | 0
- Ye = ((p[(Ye + 1) | 0] << 8) & 16128) | p[Ye | 0]
- break b
- }
- if ((Xt | 0) < 3) {
- break a
- }
- o[(Ye + 44) >> 2] = Xt + -3
- Ye = (((Xt + Yt) | 0) + -3) | 0
- Ye = (p[(Ye + 1) | 0] << 8) | ((p[(Ye + 2) | 0] << 16) & 4128768) | p[Ye | 0]
- break b
- }
- o[(Ye + 44) >> 2] = Xt + -4
- Ye = (((Xt + Yt) | 0) + -4) | 0
- Ye = (p[(Ye + 2) | 0] << 16) | ((p[(Ye + 3) | 0] << 24) & 1056964608) | (p[(Ye + 1) | 0] << 8) | p[Ye | 0]
- }
- Ye = (Ye + 16384) | 0
- o[(Ds + 48) >> 2] = Ye
- cu = Ye >>> 0 < 4194304
- }
- R = ($t + 16) | 0
- return cu
- }
- function dg(Ye, Ds, du) {
- var eu = 0,
- fu = 0,
- gu = 0,
- hu = 0,
- iu = 0,
- ju = 0,
- ku = 0,
- lu = 0,
- mu = 0,
- nu = 0
- eu = (R + -64) | 0
- R = eu
- o[(eu + 48) >> 2] = 0
- o[(eu + 40) >> 2] = 0
- o[(eu + 44) >> 2] = 0
- o[(eu + 32) >> 2] = 0
- o[(eu + 36) >> 2] = 0
- o[(eu + 24) >> 2] = 0
- o[(eu + 28) >> 2] = 0
- o[(eu + 16) >> 2] = 0
- o[(eu + 20) >> 2] = 0
- o[(eu + 8) >> 2] = 0
- o[(eu + 12) >> 2] = 0
- o[eu >> 2] = 0
- o[(eu + 4) >> 2] = 0
- a: {
- if (!bg(eu, Ds) | (o[(eu + 12) >> 2] ? 0 : Ye)) {
- break a
- }
- if (!ng(1, (eu + 56) | 0, Ds)) {
- break a
- }
- gu = o[(Ds + 8) >> 2]
- mu = o[(Ds + 16) >> 2]
- hu = mu
- ku = (gu - hu) | 0
- ju = o[(eu + 60) >> 2]
- fu = ju
- lu = o[(Ds + 20) >> 2]
- hu = (o[(Ds + 12) >> 2] - ((lu + (gu >>> 0 < hu >>> 0)) | 0)) | 0
- gu = o[(eu + 56) >> 2]
- if ((((fu | 0) == (hu | 0)) & (gu >>> 0 > ku >>> 0)) | (fu >>> 0 > hu >>> 0)) {
- break a
- }
- ju = (ju + lu) | 0
- hu = mu
- lu = (hu + gu) | 0
- if (lu >>> 0 < hu >>> 0) {
- ju = (ju + 1) | 0
- }
- o[(Ds + 16) >> 2] = lu
- o[(Ds + 20) >> 2] = ju
- if ((gu | 0) < 1) {
- break a
- }
- ku = (mu + o[Ds >> 2]) | 0
- o[(eu + 40) >> 2] = ku
- hu = eu
- b: {
- c: {
- d: {
- e: {
- f: {
- Ds = (gu + -1) | 0
- fu = (ku + Ds) | 0
- switch (((p[fu | 0] >>> 6) - 1) | 0) {
- case 2:
- break d
- case 1:
- break e
- case 0:
- break f
- default:
- break c
- }
- }
- if ((gu | 0) < 2) {
- break a
- }
- Ds = (gu + -2) | 0
- o[(eu + 44) >> 2] = Ds
- fu = (((gu + ku) | 0) + -2) | 0
- fu = ((p[(fu + 1) | 0] << 8) & 16128) | p[fu | 0]
- break b
- }
- if ((gu | 0) < 3) {
- break a
- }
- Ds = (gu + -3) | 0
- o[(eu + 44) >> 2] = Ds
- fu = (((gu + ku) | 0) + -3) | 0
- fu = (p[(fu + 1) | 0] << 8) | ((p[(fu + 2) | 0] << 16) & 4128768) | p[fu | 0]
- break b
- }
- Ds = (gu + -4) | 0
- o[(eu + 44) >> 2] = Ds
- fu = (((gu + ku) | 0) + -4) | 0
- fu = (p[(fu + 2) | 0] << 16) | ((p[(fu + 3) | 0] << 24) & 1056964608) | (p[(fu + 1) | 0] << 8) | p[fu | 0]
- break b
- }
- o[(eu + 44) >> 2] = Ds
- fu = p[fu | 0] & 63
- }
- iu = (fu + 16384) | 0
- o[(hu + 48) >> 2] = iu
- nu = iu >>> 0 < 4194304
- if (!Ye | (iu >>> 0 > 4194303)) {
- break a
- }
- lu = o[(eu + 28) >> 2]
- ju = 0
- mu = o[(eu + 16) >> 2]
- while (1) {
- g: {
- if (iu >>> 0 > 16383) {
- break g
- }
- while (1) {
- if ((Ds | 0) < 1) {
- break g
- }
- Ds = (Ds + -1) | 0
- o[(eu + 44) >> 2] = Ds
- iu = p[(Ds + ku) | 0] | (iu << 8)
- o[(eu + 48) >> 2] = iu
- if (iu >>> 0 < 16384) {
- continue
- }
- break
- }
- }
- gu = iu & 4095
- fu = o[((gu << 2) + mu) >> 2]
- hu = ((fu << 3) + lu) | 0
- iu = (((u(o[hu >> 2], iu >>> 12) + gu) | 0) - o[(hu + 4) >> 2]) | 0
- o[(eu + 48) >> 2] = iu
- o[((ju << 2) + du) >> 2] = fu
- nu = 1
- ju = (ju + 1) | 0
- if ((ju | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- Ye = o[(eu + 28) >> 2]
- if (Ye) {
- o[(eu + 32) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(eu + 16) >> 2]
- if (Ye) {
- o[(eu + 20) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[eu >> 2]
- if (Ye) {
- o[(eu + 4) >> 2] = Ye
- ul(Ye)
- }
- R = (eu - -64) | 0
- return nu
- }
- function eg(Ye, Ds, du) {
- var ou = 0,
- pu = 0,
- qu = 0,
- ru = 0,
- su = 0,
- tu = 0,
- uu = 0,
- vu = 0
- ou = (R + -64) | 0
- R = ou
- o[(ou + 56) >> 2] = 0
- o[(ou + 48) >> 2] = 0
- o[(ou + 52) >> 2] = 0
- o[(ou + 40) >> 2] = 0
- o[(ou + 44) >> 2] = 0
- o[(ou + 32) >> 2] = 0
- o[(ou + 36) >> 2] = 0
- o[(ou + 24) >> 2] = 0
- o[(ou + 28) >> 2] = 0
- o[(ou + 16) >> 2] = 0
- o[(ou + 20) >> 2] = 0
- o[(ou + 8) >> 2] = 0
- o[(ou + 12) >> 2] = 0
- a: {
- if (!bg((ou + 8) | 0, Ds) | (o[(ou + 20) >> 2] ? 0 : Ye)) {
- break a
- }
- pu = cg((ou + 8) | 0, Ds)
- if (!Ye | !pu) {
- break a
- }
- Ds = o[(ou + 56) >> 2]
- tu = o[(ou + 36) >> 2]
- uu = o[(ou + 48) >> 2]
- vu = o[(ou + 24) >> 2]
- while (1) {
- b: {
- if (Ds >>> 0 > 16383) {
- break b
- }
- pu = o[(ou + 52) >> 2]
- while (1) {
- if ((pu | 0) < 1) {
- break b
- }
- pu = (pu + -1) | 0
- o[(ou + 52) >> 2] = pu
- Ds = p[(pu + uu) | 0] | (Ds << 8)
- o[(ou + 56) >> 2] = Ds
- if (Ds >>> 0 < 16384) {
- continue
- }
- break
- }
- }
- pu = Ds & 4095
- ru = o[((pu << 2) + vu) >> 2]
- su = ((ru << 3) + tu) | 0
- Ds = (((u(o[su >> 2], Ds >>> 12) + pu) | 0) - o[(su + 4) >> 2]) | 0
- o[(ou + 56) >> 2] = Ds
- o[((qu << 2) + du) >> 2] = ru
- pu = 1
- qu = (qu + 1) | 0
- if ((qu | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- Ye = o[(ou + 36) >> 2]
- if (Ye) {
- o[(ou + 40) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(ou + 24) >> 2]
- if (Ye) {
- o[(ou + 28) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(ou + 8) >> 2]
- if (Ye) {
- o[(ou + 12) >> 2] = Ye
- ul(Ye)
- }
- R = (ou - -64) | 0
- return pu
- }
- function fg(Ye, Ds, du) {
- var wu = 0,
- xu = 0,
- yu = 0,
- zu = 0,
- Au = 0,
- Bu = 0,
- Cu = 0,
- Du = 0,
- Eu = 0,
- Fu = 0
- wu = (R + -64) | 0
- R = wu
- o[(wu + 48) >> 2] = 0
- o[(wu + 40) >> 2] = 0
- o[(wu + 44) >> 2] = 0
- o[(wu + 32) >> 2] = 0
- o[(wu + 36) >> 2] = 0
- o[(wu + 24) >> 2] = 0
- o[(wu + 28) >> 2] = 0
- o[(wu + 16) >> 2] = 0
- o[(wu + 20) >> 2] = 0
- o[(wu + 8) >> 2] = 0
- o[(wu + 12) >> 2] = 0
- o[wu >> 2] = 0
- o[(wu + 4) >> 2] = 0
- a: {
- if (!og(wu, Ds) | (o[(wu + 12) >> 2] ? 0 : Ye)) {
- break a
- }
- if (!ng(1, (wu + 56) | 0, Ds)) {
- break a
- }
- yu = o[(Ds + 8) >> 2]
- Eu = o[(Ds + 16) >> 2]
- zu = Eu
- Cu = (yu - zu) | 0
- Bu = o[(wu + 60) >> 2]
- xu = Bu
- Du = o[(Ds + 20) >> 2]
- zu = (o[(Ds + 12) >> 2] - ((Du + (yu >>> 0 < zu >>> 0)) | 0)) | 0
- yu = o[(wu + 56) >> 2]
- if ((((xu | 0) == (zu | 0)) & (yu >>> 0 > Cu >>> 0)) | (xu >>> 0 > zu >>> 0)) {
- break a
- }
- Bu = (Bu + Du) | 0
- zu = Eu
- Du = (zu + yu) | 0
- if (Du >>> 0 < zu >>> 0) {
- Bu = (Bu + 1) | 0
- }
- o[(Ds + 16) >> 2] = Du
- o[(Ds + 20) >> 2] = Bu
- if ((yu | 0) < 1) {
- break a
- }
- Cu = (Eu + o[Ds >> 2]) | 0
- o[(wu + 40) >> 2] = Cu
- zu = wu
- b: {
- c: {
- d: {
- e: {
- f: {
- Ds = (yu + -1) | 0
- xu = (Cu + Ds) | 0
- switch (((p[xu | 0] >>> 6) - 1) | 0) {
- case 2:
- break d
- case 1:
- break e
- case 0:
- break f
- default:
- break c
- }
- }
- if ((yu | 0) < 2) {
- break a
- }
- Ds = (yu + -2) | 0
- o[(wu + 44) >> 2] = Ds
- xu = (((yu + Cu) | 0) + -2) | 0
- xu = ((p[(xu + 1) | 0] << 8) & 16128) | p[xu | 0]
- break b
- }
- if ((yu | 0) < 3) {
- break a
- }
- Ds = (yu + -3) | 0
- o[(wu + 44) >> 2] = Ds
- xu = (((yu + Cu) | 0) + -3) | 0
- xu = (p[(xu + 1) | 0] << 8) | ((p[(xu + 2) | 0] << 16) & 4128768) | p[xu | 0]
- break b
- }
- Ds = (yu + -4) | 0
- o[(wu + 44) >> 2] = Ds
- xu = (((yu + Cu) | 0) + -4) | 0
- xu = (p[(xu + 2) | 0] << 16) | ((p[(xu + 3) | 0] << 24) & 1056964608) | (p[(xu + 1) | 0] << 8) | p[xu | 0]
- break b
- }
- o[(wu + 44) >> 2] = Ds
- xu = p[xu | 0] & 63
- }
- Au = (xu + 32768) | 0
- o[(zu + 48) >> 2] = Au
- Fu = Au >>> 0 < 8388608
- if (!Ye | (Au >>> 0 > 8388607)) {
- break a
- }
- Du = o[(wu + 28) >> 2]
- Bu = 0
- Eu = o[(wu + 16) >> 2]
- while (1) {
- g: {
- if (Au >>> 0 > 32767) {
- break g
- }
- while (1) {
- if ((Ds | 0) < 1) {
- break g
- }
- Ds = (Ds + -1) | 0
- o[(wu + 44) >> 2] = Ds
- Au = p[(Ds + Cu) | 0] | (Au << 8)
- o[(wu + 48) >> 2] = Au
- if (Au >>> 0 < 32768) {
- continue
- }
- break
- }
- }
- yu = Au & 8191
- xu = o[((yu << 2) + Eu) >> 2]
- zu = ((xu << 3) + Du) | 0
- Au = (((u(o[zu >> 2], Au >>> 13) + yu) | 0) - o[(zu + 4) >> 2]) | 0
- o[(wu + 48) >> 2] = Au
- o[((Bu << 2) + du) >> 2] = xu
- Fu = 1
- Bu = (Bu + 1) | 0
- if ((Bu | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- Ye = o[(wu + 28) >> 2]
- if (Ye) {
- o[(wu + 32) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(wu + 16) >> 2]
- if (Ye) {
- o[(wu + 20) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[wu >> 2]
- if (Ye) {
- o[(wu + 4) >> 2] = Ye
- ul(Ye)
- }
- R = (wu - -64) | 0
- return Fu
- }
- function gg(Ye, Ds, du) {
- var Gu = 0,
- Hu = 0,
- Iu = 0,
- Ju = 0,
- Ku = 0,
- Lu = 0,
- Mu = 0,
- Nu = 0,
- Ou = 0,
- Pu = 0
- Gu = (R + -64) | 0
- R = Gu
- o[(Gu + 48) >> 2] = 0
- o[(Gu + 40) >> 2] = 0
- o[(Gu + 44) >> 2] = 0
- o[(Gu + 32) >> 2] = 0
- o[(Gu + 36) >> 2] = 0
- o[(Gu + 24) >> 2] = 0
- o[(Gu + 28) >> 2] = 0
- o[(Gu + 16) >> 2] = 0
- o[(Gu + 20) >> 2] = 0
- o[(Gu + 8) >> 2] = 0
- o[(Gu + 12) >> 2] = 0
- o[Gu >> 2] = 0
- o[(Gu + 4) >> 2] = 0
- a: {
- if (!pg(Gu, Ds) | (o[(Gu + 12) >> 2] ? 0 : Ye)) {
- break a
- }
- if (!ng(1, (Gu + 56) | 0, Ds)) {
- break a
- }
- Iu = o[(Ds + 8) >> 2]
- Ou = o[(Ds + 16) >> 2]
- Ju = Ou
- Mu = (Iu - Ju) | 0
- Lu = o[(Gu + 60) >> 2]
- Hu = Lu
- Nu = o[(Ds + 20) >> 2]
- Ju = (o[(Ds + 12) >> 2] - ((Nu + (Iu >>> 0 < Ju >>> 0)) | 0)) | 0
- Iu = o[(Gu + 56) >> 2]
- if ((((Hu | 0) == (Ju | 0)) & (Iu >>> 0 > Mu >>> 0)) | (Hu >>> 0 > Ju >>> 0)) {
- break a
- }
- Lu = (Lu + Nu) | 0
- Ju = Ou
- Nu = (Ju + Iu) | 0
- if (Nu >>> 0 < Ju >>> 0) {
- Lu = (Lu + 1) | 0
- }
- o[(Ds + 16) >> 2] = Nu
- o[(Ds + 20) >> 2] = Lu
- if ((Iu | 0) < 1) {
- break a
- }
- Mu = (Ou + o[Ds >> 2]) | 0
- o[(Gu + 40) >> 2] = Mu
- Ju = Gu
- b: {
- c: {
- d: {
- e: {
- f: {
- Ds = (Iu + -1) | 0
- Hu = (Mu + Ds) | 0
- switch (((p[Hu | 0] >>> 6) - 1) | 0) {
- case 2:
- break d
- case 1:
- break e
- case 0:
- break f
- default:
- break c
- }
- }
- if ((Iu | 0) < 2) {
- break a
- }
- Ds = (Iu + -2) | 0
- o[(Gu + 44) >> 2] = Ds
- Hu = (((Iu + Mu) | 0) + -2) | 0
- Hu = ((p[(Hu + 1) | 0] << 8) & 16128) | p[Hu | 0]
- break b
- }
- if ((Iu | 0) < 3) {
- break a
- }
- Ds = (Iu + -3) | 0
- o[(Gu + 44) >> 2] = Ds
- Hu = (((Iu + Mu) | 0) + -3) | 0
- Hu = (p[(Hu + 1) | 0] << 8) | ((p[(Hu + 2) | 0] << 16) & 4128768) | p[Hu | 0]
- break b
- }
- Ds = (Iu + -4) | 0
- o[(Gu + 44) >> 2] = Ds
- Hu = (((Iu + Mu) | 0) + -4) | 0
- Hu = (p[(Hu + 2) | 0] << 16) | ((p[(Hu + 3) | 0] << 24) & 1056964608) | (p[(Hu + 1) | 0] << 8) | p[Hu | 0]
- break b
- }
- o[(Gu + 44) >> 2] = Ds
- Hu = p[Hu | 0] & 63
- }
- Ku = (Hu + 131072) | 0
- o[(Ju + 48) >> 2] = Ku
- Pu = Ku >>> 0 < 33554432
- if (!Ye | (Ku >>> 0 > 33554431)) {
- break a
- }
- Nu = o[(Gu + 28) >> 2]
- Lu = 0
- Ou = o[(Gu + 16) >> 2]
- while (1) {
- g: {
- if (Ku >>> 0 > 131071) {
- break g
- }
- while (1) {
- if ((Ds | 0) < 1) {
- break g
- }
- Ds = (Ds + -1) | 0
- o[(Gu + 44) >> 2] = Ds
- Ku = p[(Ds + Mu) | 0] | (Ku << 8)
- o[(Gu + 48) >> 2] = Ku
- if (Ku >>> 0 < 131072) {
- continue
- }
- break
- }
- }
- Iu = Ku & 32767
- Hu = o[((Iu << 2) + Ou) >> 2]
- Ju = ((Hu << 3) + Nu) | 0
- Ku = (((u(o[Ju >> 2], Ku >>> 15) + Iu) | 0) - o[(Ju + 4) >> 2]) | 0
- o[(Gu + 48) >> 2] = Ku
- o[((Lu << 2) + du) >> 2] = Hu
- Pu = 1
- Lu = (Lu + 1) | 0
- if ((Lu | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- Ye = o[(Gu + 28) >> 2]
- if (Ye) {
- o[(Gu + 32) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(Gu + 16) >> 2]
- if (Ye) {
- o[(Gu + 20) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[Gu >> 2]
- if (Ye) {
- o[(Gu + 4) >> 2] = Ye
- ul(Ye)
- }
- R = (Gu - -64) | 0
- return Pu
- }
- function hg(Ye, Ds, du) {
- var Qu = 0,
- Ru = 0,
- Su = 0,
- Tu = 0,
- Uu = 0,
- Vu = 0,
- Wu = 0,
- Xu = 0,
- Yu = 0,
- Zu = 0
- Qu = (R + -64) | 0
- R = Qu
- o[(Qu + 48) >> 2] = 0
- o[(Qu + 40) >> 2] = 0
- o[(Qu + 44) >> 2] = 0
- o[(Qu + 32) >> 2] = 0
- o[(Qu + 36) >> 2] = 0
- o[(Qu + 24) >> 2] = 0
- o[(Qu + 28) >> 2] = 0
- o[(Qu + 16) >> 2] = 0
- o[(Qu + 20) >> 2] = 0
- o[(Qu + 8) >> 2] = 0
- o[(Qu + 12) >> 2] = 0
- o[Qu >> 2] = 0
- o[(Qu + 4) >> 2] = 0
- a: {
- if (!qg(Qu, Ds) | (o[(Qu + 12) >> 2] ? 0 : Ye)) {
- break a
- }
- if (!ng(1, (Qu + 56) | 0, Ds)) {
- break a
- }
- Su = o[(Ds + 8) >> 2]
- Yu = o[(Ds + 16) >> 2]
- Tu = Yu
- Wu = (Su - Tu) | 0
- Vu = o[(Qu + 60) >> 2]
- Ru = Vu
- Xu = o[(Ds + 20) >> 2]
- Tu = (o[(Ds + 12) >> 2] - ((Xu + (Su >>> 0 < Tu >>> 0)) | 0)) | 0
- Su = o[(Qu + 56) >> 2]
- if ((((Ru | 0) == (Tu | 0)) & (Su >>> 0 > Wu >>> 0)) | (Ru >>> 0 > Tu >>> 0)) {
- break a
- }
- Vu = (Vu + Xu) | 0
- Tu = Yu
- Xu = (Tu + Su) | 0
- if (Xu >>> 0 < Tu >>> 0) {
- Vu = (Vu + 1) | 0
- }
- o[(Ds + 16) >> 2] = Xu
- o[(Ds + 20) >> 2] = Vu
- if ((Su | 0) < 1) {
- break a
- }
- Wu = (Yu + o[Ds >> 2]) | 0
- o[(Qu + 40) >> 2] = Wu
- Tu = Qu
- b: {
- c: {
- d: {
- e: {
- f: {
- Ds = (Su + -1) | 0
- Ru = (Wu + Ds) | 0
- switch (((p[Ru | 0] >>> 6) - 1) | 0) {
- case 2:
- break d
- case 1:
- break e
- case 0:
- break f
- default:
- break c
- }
- }
- if ((Su | 0) < 2) {
- break a
- }
- Ds = (Su + -2) | 0
- o[(Qu + 44) >> 2] = Ds
- Ru = (((Su + Wu) | 0) + -2) | 0
- Ru = ((p[(Ru + 1) | 0] << 8) & 16128) | p[Ru | 0]
- break b
- }
- if ((Su | 0) < 3) {
- break a
- }
- Ds = (Su + -3) | 0
- o[(Qu + 44) >> 2] = Ds
- Ru = (((Su + Wu) | 0) + -3) | 0
- Ru = (p[(Ru + 1) | 0] << 8) | ((p[(Ru + 2) | 0] << 16) & 4128768) | p[Ru | 0]
- break b
- }
- Ds = (Su + -4) | 0
- o[(Qu + 44) >> 2] = Ds
- Ru = (((Su + Wu) | 0) + -4) | 0
- Ru = (p[(Ru + 2) | 0] << 16) | ((p[(Ru + 3) | 0] << 24) & 1056964608) | (p[(Ru + 1) | 0] << 8) | p[Ru | 0]
- break b
- }
- o[(Qu + 44) >> 2] = Ds
- Ru = p[Ru | 0] & 63
- }
- Uu = (Ru + 262144) | 0
- o[(Tu + 48) >> 2] = Uu
- Zu = Uu >>> 0 < 67108864
- if (!Ye | (Uu >>> 0 > 67108863)) {
- break a
- }
- Xu = o[(Qu + 28) >> 2]
- Vu = 0
- Yu = o[(Qu + 16) >> 2]
- while (1) {
- g: {
- if (Uu >>> 0 > 262143) {
- break g
- }
- while (1) {
- if ((Ds | 0) < 1) {
- break g
- }
- Ds = (Ds + -1) | 0
- o[(Qu + 44) >> 2] = Ds
- Uu = p[(Ds + Wu) | 0] | (Uu << 8)
- o[(Qu + 48) >> 2] = Uu
- if (Uu >>> 0 < 262144) {
- continue
- }
- break
- }
- }
- Su = Uu & 65535
- Ru = o[((Su << 2) + Yu) >> 2]
- Tu = ((Ru << 3) + Xu) | 0
- Uu = (((u(o[Tu >> 2], Uu >>> 16) + Su) | 0) - o[(Tu + 4) >> 2]) | 0
- o[(Qu + 48) >> 2] = Uu
- o[((Vu << 2) + du) >> 2] = Ru
- Zu = 1
- Vu = (Vu + 1) | 0
- if ((Vu | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- Ye = o[(Qu + 28) >> 2]
- if (Ye) {
- o[(Qu + 32) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(Qu + 16) >> 2]
- if (Ye) {
- o[(Qu + 20) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[Qu >> 2]
- if (Ye) {
- o[(Qu + 4) >> 2] = Ye
- ul(Ye)
- }
- R = (Qu - -64) | 0
- return Zu
- }
- function ig(Ye, Ds, du) {
- var _u = 0,
- $u = 0,
- av = 0,
- bv = 0,
- cv = 0,
- dv = 0,
- ev = 0,
- fv = 0,
- gv = 0,
- hv = 0
- _u = (R + -64) | 0
- R = _u
- o[(_u + 48) >> 2] = 0
- o[(_u + 40) >> 2] = 0
- o[(_u + 44) >> 2] = 0
- o[(_u + 32) >> 2] = 0
- o[(_u + 36) >> 2] = 0
- o[(_u + 24) >> 2] = 0
- o[(_u + 28) >> 2] = 0
- o[(_u + 16) >> 2] = 0
- o[(_u + 20) >> 2] = 0
- o[(_u + 8) >> 2] = 0
- o[(_u + 12) >> 2] = 0
- o[_u >> 2] = 0
- o[(_u + 4) >> 2] = 0
- a: {
- if (!rg(_u, Ds) | (o[(_u + 12) >> 2] ? 0 : Ye)) {
- break a
- }
- if (!ng(1, (_u + 56) | 0, Ds)) {
- break a
- }
- av = o[(Ds + 8) >> 2]
- gv = o[(Ds + 16) >> 2]
- bv = gv
- ev = (av - bv) | 0
- dv = o[(_u + 60) >> 2]
- $u = dv
- fv = o[(Ds + 20) >> 2]
- bv = (o[(Ds + 12) >> 2] - ((fv + (av >>> 0 < bv >>> 0)) | 0)) | 0
- av = o[(_u + 56) >> 2]
- if (((($u | 0) == (bv | 0)) & (av >>> 0 > ev >>> 0)) | ($u >>> 0 > bv >>> 0)) {
- break a
- }
- dv = (dv + fv) | 0
- bv = gv
- fv = (bv + av) | 0
- if (fv >>> 0 < bv >>> 0) {
- dv = (dv + 1) | 0
- }
- o[(Ds + 16) >> 2] = fv
- o[(Ds + 20) >> 2] = dv
- if ((av | 0) < 1) {
- break a
- }
- ev = (gv + o[Ds >> 2]) | 0
- o[(_u + 40) >> 2] = ev
- bv = _u
- b: {
- c: {
- d: {
- e: {
- f: {
- Ds = (av + -1) | 0
- $u = (ev + Ds) | 0
- switch (((p[$u | 0] >>> 6) - 1) | 0) {
- case 2:
- break d
- case 1:
- break e
- case 0:
- break f
- default:
- break c
- }
- }
- if ((av | 0) < 2) {
- break a
- }
- Ds = (av + -2) | 0
- o[(_u + 44) >> 2] = Ds
- $u = (((av + ev) | 0) + -2) | 0
- $u = ((p[($u + 1) | 0] << 8) & 16128) | p[$u | 0]
- break b
- }
- if ((av | 0) < 3) {
- break a
- }
- Ds = (av + -3) | 0
- o[(_u + 44) >> 2] = Ds
- $u = (((av + ev) | 0) + -3) | 0
- $u = (p[($u + 1) | 0] << 8) | ((p[($u + 2) | 0] << 16) & 4128768) | p[$u | 0]
- break b
- }
- Ds = (av + -4) | 0
- o[(_u + 44) >> 2] = Ds
- $u = (((av + ev) | 0) + -4) | 0
- $u = (p[($u + 2) | 0] << 16) | ((p[($u + 3) | 0] << 24) & 1056964608) | (p[($u + 1) | 0] << 8) | p[$u | 0]
- break b
- }
- o[(_u + 44) >> 2] = Ds
- $u = p[$u | 0] & 63
- }
- cv = ($u - -1048576) | 0
- o[(bv + 48) >> 2] = cv
- hv = cv >>> 0 < 268435456
- if (!Ye | (cv >>> 0 > 268435455)) {
- break a
- }
- fv = o[(_u + 28) >> 2]
- dv = 0
- gv = o[(_u + 16) >> 2]
- while (1) {
- g: {
- if (cv >>> 0 > 1048575) {
- break g
- }
- while (1) {
- if ((Ds | 0) < 1) {
- break g
- }
- Ds = (Ds + -1) | 0
- o[(_u + 44) >> 2] = Ds
- cv = p[(Ds + ev) | 0] | (cv << 8)
- o[(_u + 48) >> 2] = cv
- if (cv >>> 0 < 1048576) {
- continue
- }
- break
- }
- }
- av = cv & 262143
- $u = o[((av << 2) + gv) >> 2]
- bv = (($u << 3) + fv) | 0
- cv = (((u(o[bv >> 2], cv >>> 18) + av) | 0) - o[(bv + 4) >> 2]) | 0
- o[(_u + 48) >> 2] = cv
- o[((dv << 2) + du) >> 2] = $u
- hv = 1
- dv = (dv + 1) | 0
- if ((dv | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- Ye = o[(_u + 28) >> 2]
- if (Ye) {
- o[(_u + 32) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(_u + 16) >> 2]
- if (Ye) {
- o[(_u + 20) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[_u >> 2]
- if (Ye) {
- o[(_u + 4) >> 2] = Ye
- ul(Ye)
- }
- R = (_u - -64) | 0
- return hv
- }
- function jg(Ye, Ds, du) {
- var iv = 0,
- jv = 0,
- kv = 0,
- lv = 0,
- mv = 0,
- nv = 0,
- ov = 0,
- pv = 0,
- qv = 0,
- rv = 0
- iv = (R + -64) | 0
- R = iv
- o[(iv + 48) >> 2] = 0
- o[(iv + 40) >> 2] = 0
- o[(iv + 44) >> 2] = 0
- o[(iv + 32) >> 2] = 0
- o[(iv + 36) >> 2] = 0
- o[(iv + 24) >> 2] = 0
- o[(iv + 28) >> 2] = 0
- o[(iv + 16) >> 2] = 0
- o[(iv + 20) >> 2] = 0
- o[(iv + 8) >> 2] = 0
- o[(iv + 12) >> 2] = 0
- o[iv >> 2] = 0
- o[(iv + 4) >> 2] = 0
- a: {
- if (!sg(iv, Ds) | (o[(iv + 12) >> 2] ? 0 : Ye)) {
- break a
- }
- if (!ng(1, (iv + 56) | 0, Ds)) {
- break a
- }
- kv = o[(Ds + 8) >> 2]
- qv = o[(Ds + 16) >> 2]
- lv = qv
- ov = (kv - lv) | 0
- nv = o[(iv + 60) >> 2]
- jv = nv
- pv = o[(Ds + 20) >> 2]
- lv = (o[(Ds + 12) >> 2] - ((pv + (kv >>> 0 < lv >>> 0)) | 0)) | 0
- kv = o[(iv + 56) >> 2]
- if ((((jv | 0) == (lv | 0)) & (kv >>> 0 > ov >>> 0)) | (jv >>> 0 > lv >>> 0)) {
- break a
- }
- nv = (nv + pv) | 0
- lv = qv
- pv = (lv + kv) | 0
- if (pv >>> 0 < lv >>> 0) {
- nv = (nv + 1) | 0
- }
- o[(Ds + 16) >> 2] = pv
- o[(Ds + 20) >> 2] = nv
- if ((kv | 0) < 1) {
- break a
- }
- ov = (qv + o[Ds >> 2]) | 0
- o[(iv + 40) >> 2] = ov
- lv = iv
- b: {
- c: {
- d: {
- e: {
- f: {
- Ds = (kv + -1) | 0
- jv = (ov + Ds) | 0
- switch (((p[jv | 0] >>> 6) - 1) | 0) {
- case 2:
- break d
- case 1:
- break e
- case 0:
- break f
- default:
- break c
- }
- }
- if ((kv | 0) < 2) {
- break a
- }
- Ds = (kv + -2) | 0
- o[(iv + 44) >> 2] = Ds
- jv = (((kv + ov) | 0) + -2) | 0
- jv = ((p[(jv + 1) | 0] << 8) & 16128) | p[jv | 0]
- break b
- }
- if ((kv | 0) < 3) {
- break a
- }
- Ds = (kv + -3) | 0
- o[(iv + 44) >> 2] = Ds
- jv = (((kv + ov) | 0) + -3) | 0
- jv = (p[(jv + 1) | 0] << 8) | ((p[(jv + 2) | 0] << 16) & 4128768) | p[jv | 0]
- break b
- }
- Ds = (kv + -4) | 0
- o[(iv + 44) >> 2] = Ds
- jv = (((kv + ov) | 0) + -4) | 0
- jv = (p[(jv + 2) | 0] << 16) | ((p[(jv + 3) | 0] << 24) & 1056964608) | (p[(jv + 1) | 0] << 8) | p[jv | 0]
- break b
- }
- o[(iv + 44) >> 2] = Ds
- jv = p[jv | 0] & 63
- }
- mv = (jv + 2097152) | 0
- o[(lv + 48) >> 2] = mv
- rv = mv >>> 0 < 536870912
- if (!Ye | (mv >>> 0 > 536870911)) {
- break a
- }
- pv = o[(iv + 28) >> 2]
- nv = 0
- qv = o[(iv + 16) >> 2]
- while (1) {
- g: {
- if (mv >>> 0 > 2097151) {
- break g
- }
- while (1) {
- if ((Ds | 0) < 1) {
- break g
- }
- Ds = (Ds + -1) | 0
- o[(iv + 44) >> 2] = Ds
- mv = p[(Ds + ov) | 0] | (mv << 8)
- o[(iv + 48) >> 2] = mv
- if (mv >>> 0 < 2097152) {
- continue
- }
- break
- }
- }
- kv = mv & 524287
- jv = o[((kv << 2) + qv) >> 2]
- lv = ((jv << 3) + pv) | 0
- mv = (((u(o[lv >> 2], mv >>> 19) + kv) | 0) - o[(lv + 4) >> 2]) | 0
- o[(iv + 48) >> 2] = mv
- o[((nv << 2) + du) >> 2] = jv
- rv = 1
- nv = (nv + 1) | 0
- if ((nv | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- Ye = o[(iv + 28) >> 2]
- if (Ye) {
- o[(iv + 32) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(iv + 16) >> 2]
- if (Ye) {
- o[(iv + 20) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[iv >> 2]
- if (Ye) {
- o[(iv + 4) >> 2] = Ye
- ul(Ye)
- }
- R = (iv - -64) | 0
- return rv
- }
- function kg(Ye, Ds, du) {
- var sv = 0,
- tv = 0,
- uv = 0,
- vv = 0,
- wv = 0,
- xv = 0,
- yv = 0,
- zv = 0,
- Av = 0,
- Bv = 0
- sv = (R + -64) | 0
- R = sv
- o[(sv + 48) >> 2] = 0
- o[(sv + 40) >> 2] = 0
- o[(sv + 44) >> 2] = 0
- o[(sv + 32) >> 2] = 0
- o[(sv + 36) >> 2] = 0
- o[(sv + 24) >> 2] = 0
- o[(sv + 28) >> 2] = 0
- o[(sv + 16) >> 2] = 0
- o[(sv + 20) >> 2] = 0
- o[(sv + 8) >> 2] = 0
- o[(sv + 12) >> 2] = 0
- o[sv >> 2] = 0
- o[(sv + 4) >> 2] = 0
- a: {
- if (!tg(sv, Ds) | (o[(sv + 12) >> 2] ? 0 : Ye)) {
- break a
- }
- if (!ng(1, (sv + 56) | 0, Ds)) {
- break a
- }
- uv = o[(Ds + 8) >> 2]
- Av = o[(Ds + 16) >> 2]
- vv = Av
- yv = (uv - vv) | 0
- xv = o[(sv + 60) >> 2]
- tv = xv
- zv = o[(Ds + 20) >> 2]
- vv = (o[(Ds + 12) >> 2] - ((zv + (uv >>> 0 < vv >>> 0)) | 0)) | 0
- uv = o[(sv + 56) >> 2]
- if ((((tv | 0) == (vv | 0)) & (uv >>> 0 > yv >>> 0)) | (tv >>> 0 > vv >>> 0)) {
- break a
- }
- xv = (xv + zv) | 0
- vv = Av
- zv = (vv + uv) | 0
- if (zv >>> 0 < vv >>> 0) {
- xv = (xv + 1) | 0
- }
- o[(Ds + 16) >> 2] = zv
- o[(Ds + 20) >> 2] = xv
- if ((uv | 0) < 1) {
- break a
- }
- yv = (Av + o[Ds >> 2]) | 0
- o[(sv + 40) >> 2] = yv
- vv = sv
- b: {
- c: {
- d: {
- e: {
- f: {
- Ds = (uv + -1) | 0
- tv = (yv + Ds) | 0
- switch (((p[tv | 0] >>> 6) - 1) | 0) {
- case 2:
- break d
- case 1:
- break e
- case 0:
- break f
- default:
- break c
- }
- }
- if ((uv | 0) < 2) {
- break a
- }
- Ds = (uv + -2) | 0
- o[(sv + 44) >> 2] = Ds
- tv = (((uv + yv) | 0) + -2) | 0
- tv = ((p[(tv + 1) | 0] << 8) & 16128) | p[tv | 0]
- break b
- }
- if ((uv | 0) < 3) {
- break a
- }
- Ds = (uv + -3) | 0
- o[(sv + 44) >> 2] = Ds
- tv = (((uv + yv) | 0) + -3) | 0
- tv = (p[(tv + 1) | 0] << 8) | ((p[(tv + 2) | 0] << 16) & 4128768) | p[tv | 0]
- break b
- }
- Ds = (uv + -4) | 0
- o[(sv + 44) >> 2] = Ds
- tv = (((uv + yv) | 0) + -4) | 0
- tv = (p[(tv + 2) | 0] << 16) | ((p[(tv + 3) | 0] << 24) & 1056964608) | (p[(tv + 1) | 0] << 8) | p[tv | 0]
- break b
- }
- o[(sv + 44) >> 2] = Ds
- tv = p[tv | 0] & 63
- }
- wv = (tv + 4194304) | 0
- o[(vv + 48) >> 2] = wv
- Bv = wv >>> 0 < 1073741824
- if (!Ye | (wv >>> 0 > 1073741823)) {
- break a
- }
- zv = o[(sv + 28) >> 2]
- xv = 0
- Av = o[(sv + 16) >> 2]
- while (1) {
- g: {
- if (wv >>> 0 > 4194303) {
- break g
- }
- while (1) {
- if ((Ds | 0) < 1) {
- break g
- }
- Ds = (Ds + -1) | 0
- o[(sv + 44) >> 2] = Ds
- wv = p[(Ds + yv) | 0] | (wv << 8)
- o[(sv + 48) >> 2] = wv
- if (wv >>> 0 < 4194304) {
- continue
- }
- break
- }
- }
- uv = wv & 1048575
- tv = o[((uv << 2) + Av) >> 2]
- vv = ((tv << 3) + zv) | 0
- wv = (((u(o[vv >> 2], wv >>> 20) + uv) | 0) - o[(vv + 4) >> 2]) | 0
- o[(sv + 48) >> 2] = wv
- o[((xv << 2) + du) >> 2] = tv
- Bv = 1
- xv = (xv + 1) | 0
- if ((xv | 0) != (Ye | 0)) {
- continue
- }
- break
- }
- }
- Ye = o[(sv + 28) >> 2]
- if (Ye) {
- o[(sv + 32) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[(sv + 16) >> 2]
- if (Ye) {
- o[(sv + 20) >> 2] = Ye
- ul(Ye)
- }
- Ye = o[sv >> 2]
- if (Ye) {
- o[(sv + 4) >> 2] = Ye
- ul(Ye)
- }
- R = (sv - -64) | 0
- return Bv
- }
- function lg(Ye, Ds, du) {
- var Cv = 0,
- Dv = 0,
- Ev = 0,
- Fv = 0
- a: {
- if (Ye >>> 0 > 5) {
- break a
- }
- Ev = o[(du + 16) >> 2]
- Cv = o[(du + 12) >> 2]
- Dv = o[(du + 20) >> 2]
- if ((Cv | 0) < (Dv | 0) ? 1 : (Cv | 0) <= (Dv | 0) ? (r[(du + 8) >> 2] > Ev >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Cv = p[(Ev + o[du >> 2]) | 0]
- Ev = (Ev + 1) | 0
- if (Ev >>> 0 < 1) {
- Dv = (Dv + 1) | 0
- }
- o[(du + 16) >> 2] = Ev
- o[(du + 20) >> 2] = Dv
- Dv = Ds
- if (Cv & 128) {
- if (!lg((Ye + 1) | 0, Ds, du)) {
- break a
- }
- Ye = o[Ds >> 2] << 7
- o[Ds >> 2] = Ye
- Cv = Ye | (Cv & 127)
- }
- o[Dv >> 2] = Cv
- Fv = 1
- }
- return Fv
- }
- function mg(Ye, Ds) {
- var du = 0,
- Gv = 0,
- Hv = 0,
- Iv = 0,
- Jv = 0,
- Kv = 0,
- Lv = 0
- a: {
- b: {
- Hv = o[(Ye + 8) >> 2]
- du = (Ye + 4) | 0
- Gv = o[du >> 2]
- c: {
- if (((Hv - Gv) >> 3) >>> 0 >= Ds >>> 0) {
- while (1) {
- o[Gv >> 2] = 0
- o[(Gv + 4) >> 2] = 0
- Gv = (o[du >> 2] + 8) | 0
- o[du >> 2] = Gv
- Ds = (Ds + -1) | 0
- if (Ds) {
- continue
- }
- break c
- }
- }
- Iv = o[Ye >> 2]
- Jv = (Gv - Iv) | 0
- du = Jv >> 3
- Gv = (du + Ds) | 0
- if (Gv >>> 0 >= 536870912) {
- break b
- }
- Lv = du << 3
- Hv = (Hv - Iv) | 0
- du = Hv >> 2
- Hv = (Hv >> 3) >>> 0 < 268435455 ? (du >>> 0 < Gv >>> 0 ? Gv : du) : 536870911
- du = 0
- d: {
- if (!Hv) {
- break d
- }
- if (Hv >>> 0 >= 536870912) {
- break a
- }
- Kv = Hk(Hv << 3)
- du = Kv
- }
- Gv = (Lv + du) | 0
- xl(Gv, 0, Ds << 3)
- Hv = (du + (Hv << 3)) | 0
- while (1) {
- Gv = (Gv + 8) | 0
- Ds = (Ds + -1) | 0
- if (Ds) {
- continue
- }
- break
- }
- if ((Jv | 0) >= 1) {
- wl(Kv, Iv, Jv)
- }
- o[Ye >> 2] = du
- o[(Ye + 8) >> 2] = Hv
- o[(Ye + 4) >> 2] = Gv
- if (!Iv) {
- break c
- }
- ul(Iv)
- }
- return
- }
- Yk()
- D()
- }
- _a(7890)
- D()
- }
- function ng(Ye, Ds, Mv) {
- var Nv = 0,
- Ov = 0,
- Pv = 0,
- Qv = 0,
- Rv = 0,
- Sv = 0
- a: {
- if (Ye >>> 0 > 10) {
- break a
- }
- Pv = o[(Mv + 16) >> 2]
- Nv = o[(Mv + 12) >> 2]
- Ov = o[(Mv + 20) >> 2]
- Qv = Ov
- if ((Nv | 0) < (Qv | 0) ? 1 : (Nv | 0) <= (Qv | 0) ? (r[(Mv + 8) >> 2] > Pv >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Rv = m[(Pv + o[Mv >> 2]) | 0]
- Nv = (Pv + 1) | 0
- if (Nv >>> 0 < 1) {
- Ov = (Ov + 1) | 0
- }
- o[(Mv + 16) >> 2] = Nv
- o[(Mv + 20) >> 2] = Ov
- Qv = Ds
- Pv = Ds
- Nv = Rv
- b: {
- if ((Nv | 0) <= -1) {
- if (!ng((Ye + 1) | 0, Ds, Mv)) {
- break a
- }
- Ye = Ds
- Mv = o[(Ds + 4) >> 2]
- Ds = o[Ds >> 2]
- Ov = (Mv << 7) | (Ds >>> 25)
- Ds = Ds << 7
- o[Ye >> 2] = Ds
- o[(Ye + 4) >> 2] = Ov
- Ye = (Nv & 127) | Ds
- break b
- }
- Ov = 0
- Ye = Nv & 255
- }
- o[Pv >> 2] = Ye
- o[(Qv + 4) >> 2] = Ov
- Sv = 1
- }
- return Sv
- }
- function og(Ye, Ds) {
- var Mv = 0,
- Tv = 0,
- Uv = 0,
- Vv = 0,
- Wv = 0,
- Xv = 0,
- Yv = 0,
- Zv = 0,
- _v = 0,
- $v = 0,
- aw = 0,
- bw = 0,
- cw = 0
- a: {
- if (!q[(Ds + 38) >> 1]) {
- break a
- }
- $v = (Ye + 12) | 0
- if (!lg(1, $v, Ds)) {
- break a
- }
- Vv = o[(Ye + 12) >> 2]
- Mv = o[Ye >> 2]
- Tv = (o[(Ye + 4) >> 2] - Mv) >> 2
- b: {
- if (Vv >>> 0 > Tv >>> 0) {
- Da(Ye, (Vv - Tv) | 0)
- Vv = o[(Ye + 12) >> 2]
- break b
- }
- if (Vv >>> 0 >= Tv >>> 0) {
- break b
- }
- o[(Ye + 4) >> 2] = Mv + (Vv << 2)
- }
- if (!Vv) {
- cw = 1
- break a
- }
- aw = o[(Ds + 8) >> 2]
- Yv = o[(Ds + 12) >> 2]
- while (1) {
- Uv = o[(Ds + 16) >> 2]
- Tv = o[(Ds + 20) >> 2]
- Mv = Tv
- if ((Yv | 0) < (Mv | 0) ? 1 : (Yv | 0) <= (Mv | 0) ? (aw >>> 0 > Uv >>> 0 ? 0 : 1) : 0) {
- break a
- }
- bw = o[Ds >> 2]
- Zv = p[(bw + Uv) | 0]
- Uv = (Uv + 1) | 0
- if (Uv >>> 0 < 1) {
- Tv = (Tv + 1) | 0
- }
- Mv = Ds
- Xv = Uv
- o[(Mv + 16) >> 2] = Uv
- o[(Mv + 20) >> 2] = Tv
- Uv = Zv >>> 2
- c: {
- d: {
- e: {
- _v = Zv & 3
- if (_v >>> 0 > 3) {
- Mv = 0
- break e
- }
- Mv = 0
- f: {
- switch ((_v - 1) | 0) {
- case 2:
- break f
- case 0:
- case 1:
- break e
- default:
- break d
- }
- }
- Tv = (Uv + Wv) | 0
- if (Tv >>> 0 >= Vv >>> 0) {
- return 0
- }
- xl((o[Ye >> 2] + (Wv << 2)) | 0, 0, ((Zv & 252) + 4) | 0)
- Wv = Tv
- break c
- }
- while (1) {
- if ((Yv | 0) < (Tv | 0) ? 1 : (Yv | 0) <= (Tv | 0) ? (aw >>> 0 > Xv >>> 0 ? 0 : 1) : 0) {
- return 0
- }
- Zv = p[(Xv + bw) | 0]
- Xv = (Xv + 1) | 0
- if (Xv >>> 0 < 1) {
- Tv = (Tv + 1) | 0
- }
- Vv = Ds
- o[(Vv + 16) >> 2] = Xv
- o[(Vv + 20) >> 2] = Tv
- Uv = (Zv << ((Mv << 3) | 6)) | Uv
- Mv = (Mv + 1) | 0
- if ((_v | 0) != (Mv | 0)) {
- continue
- }
- break
- }
- }
- o[(o[Ye >> 2] + (Wv << 2)) >> 2] = Uv
- }
- Wv = (Wv + 1) | 0
- Vv = o[$v >> 2]
- if (Wv >>> 0 < Vv >>> 0) {
- continue
- }
- break
- }
- Tv = (Ye + 16) | 0
- Yv = o[Ye >> 2]
- Ds = o[(Ye + 16) >> 2]
- Mv = (o[(Ye + 20) >> 2] - Ds) | 0
- Wv = Mv >> 2
- g: {
- if (Wv >>> 0 <= 8191) {
- Da(Tv, (8192 - Wv) | 0)
- break g
- }
- if ((Mv | 0) == 32768) {
- break g
- }
- o[(Ye + 20) >> 2] = Ds + 32768
- }
- h: {
- Mv = (Ye + 28) | 0
- Ds = o[Mv >> 2]
- Wv = (o[(Ye + 32) >> 2] - Ds) >> 3
- if (Vv >>> 0 > Wv >>> 0) {
- mg(Mv, (Vv - Wv) | 0)
- Ds = o[Mv >> 2]
- break h
- }
- if (Vv >>> 0 < Wv >>> 0) {
- o[(Ye + 32) >> 2] = (Vv << 3) + Ds
- }
- if (Vv) {
- break h
- }
- return 0
- }
- Uv = 0
- Mv = 0
- while (1) {
- Ye = (Yv + (Uv << 2)) | 0
- Wv = o[Ye >> 2]
- Xv = ((Uv << 3) + Ds) | 0
- o[(Xv + 4) >> 2] = Mv
- o[Xv >> 2] = Wv
- Ye = (o[Ye >> 2] + Mv) | 0
- if (Ye >>> 0 > 8192) {
- break a
- }
- if (Mv >>> 0 < Ye >>> 0) {
- Wv = o[Tv >> 2]
- while (1) {
- o[(Wv + (Mv << 2)) >> 2] = Uv
- Mv = (Mv + 1) | 0
- if ((Ye | 0) != (Mv | 0)) {
- continue
- }
- break
- }
- }
- Mv = Ye
- Uv = (Uv + 1) | 0
- if ((Vv | 0) != (Uv | 0)) {
- continue
- }
- break
- }
- return (Ye | 0) == 8192
- }
- return cw
- }
- function pg(Ye, Ds) {
- var dw = 0,
- ew = 0,
- fw = 0,
- gw = 0,
- hw = 0,
- iw = 0,
- jw = 0,
- kw = 0,
- lw = 0,
- mw = 0,
- nw = 0,
- ow = 0,
- pw = 0
- a: {
- if (!q[(Ds + 38) >> 1]) {
- break a
- }
- mw = (Ye + 12) | 0
- if (!lg(1, mw, Ds)) {
- break a
- }
- gw = o[(Ye + 12) >> 2]
- dw = o[Ye >> 2]
- ew = (o[(Ye + 4) >> 2] - dw) >> 2
- b: {
- if (gw >>> 0 > ew >>> 0) {
- Da(Ye, (gw - ew) | 0)
- gw = o[(Ye + 12) >> 2]
- break b
- }
- if (gw >>> 0 >= ew >>> 0) {
- break b
- }
- o[(Ye + 4) >> 2] = dw + (gw << 2)
- }
- if (!gw) {
- pw = 1
- break a
- }
- nw = o[(Ds + 8) >> 2]
- jw = o[(Ds + 12) >> 2]
- while (1) {
- fw = o[(Ds + 16) >> 2]
- ew = o[(Ds + 20) >> 2]
- dw = ew
- if ((jw | 0) < (dw | 0) ? 1 : (jw | 0) <= (dw | 0) ? (nw >>> 0 > fw >>> 0 ? 0 : 1) : 0) {
- break a
- }
- ow = o[Ds >> 2]
- kw = p[(ow + fw) | 0]
- fw = (fw + 1) | 0
- if (fw >>> 0 < 1) {
- ew = (ew + 1) | 0
- }
- dw = Ds
- iw = fw
- o[(dw + 16) >> 2] = fw
- o[(dw + 20) >> 2] = ew
- fw = kw >>> 2
- c: {
- d: {
- e: {
- lw = kw & 3
- if (lw >>> 0 > 3) {
- dw = 0
- break e
- }
- dw = 0
- f: {
- switch ((lw - 1) | 0) {
- case 2:
- break f
- case 0:
- case 1:
- break e
- default:
- break d
- }
- }
- ew = (fw + hw) | 0
- if (ew >>> 0 >= gw >>> 0) {
- return 0
- }
- xl((o[Ye >> 2] + (hw << 2)) | 0, 0, ((kw & 252) + 4) | 0)
- hw = ew
- break c
- }
- while (1) {
- if ((jw | 0) < (ew | 0) ? 1 : (jw | 0) <= (ew | 0) ? (nw >>> 0 > iw >>> 0 ? 0 : 1) : 0) {
- return 0
- }
- kw = p[(iw + ow) | 0]
- iw = (iw + 1) | 0
- if (iw >>> 0 < 1) {
- ew = (ew + 1) | 0
- }
- gw = Ds
- o[(gw + 16) >> 2] = iw
- o[(gw + 20) >> 2] = ew
- fw = (kw << ((dw << 3) | 6)) | fw
- dw = (dw + 1) | 0
- if ((lw | 0) != (dw | 0)) {
- continue
- }
- break
- }
- }
- o[(o[Ye >> 2] + (hw << 2)) >> 2] = fw
- }
- hw = (hw + 1) | 0
- gw = o[mw >> 2]
- if (hw >>> 0 < gw >>> 0) {
- continue
- }
- break
- }
- ew = (Ye + 16) | 0
- jw = o[Ye >> 2]
- Ds = o[(Ye + 16) >> 2]
- dw = (o[(Ye + 20) >> 2] - Ds) | 0
- hw = dw >> 2
- g: {
- if (hw >>> 0 <= 32767) {
- Da(ew, (32768 - hw) | 0)
- break g
- }
- if ((dw | 0) == 131072) {
- break g
- }
- o[(Ye + 20) >> 2] = Ds + 131072
- }
- h: {
- dw = (Ye + 28) | 0
- Ds = o[dw >> 2]
- hw = (o[(Ye + 32) >> 2] - Ds) >> 3
- if (gw >>> 0 > hw >>> 0) {
- mg(dw, (gw - hw) | 0)
- Ds = o[dw >> 2]
- break h
- }
- if (gw >>> 0 < hw >>> 0) {
- o[(Ye + 32) >> 2] = (gw << 3) + Ds
- }
- if (gw) {
- break h
- }
- return 0
- }
- fw = 0
- dw = 0
- while (1) {
- Ye = (jw + (fw << 2)) | 0
- hw = o[Ye >> 2]
- iw = ((fw << 3) + Ds) | 0
- o[(iw + 4) >> 2] = dw
- o[iw >> 2] = hw
- Ye = (o[Ye >> 2] + dw) | 0
- if (Ye >>> 0 > 32768) {
- break a
- }
- if (dw >>> 0 < Ye >>> 0) {
- hw = o[ew >> 2]
- while (1) {
- o[(hw + (dw << 2)) >> 2] = fw
- dw = (dw + 1) | 0
- if ((Ye | 0) != (dw | 0)) {
- continue
- }
- break
- }
- }
- dw = Ye
- fw = (fw + 1) | 0
- if ((gw | 0) != (fw | 0)) {
- continue
- }
- break
- }
- return (Ye | 0) == 32768
- }
- return pw
- }
- function qg(Ye, Ds) {
- var qw = 0,
- rw = 0,
- sw = 0,
- tw = 0,
- uw = 0,
- vw = 0,
- ww = 0,
- xw = 0,
- yw = 0,
- zw = 0,
- Aw = 0,
- Bw = 0,
- Cw = 0
- a: {
- if (!q[(Ds + 38) >> 1]) {
- break a
- }
- zw = (Ye + 12) | 0
- if (!lg(1, zw, Ds)) {
- break a
- }
- tw = o[(Ye + 12) >> 2]
- qw = o[Ye >> 2]
- rw = (o[(Ye + 4) >> 2] - qw) >> 2
- b: {
- if (tw >>> 0 > rw >>> 0) {
- Da(Ye, (tw - rw) | 0)
- tw = o[(Ye + 12) >> 2]
- break b
- }
- if (tw >>> 0 >= rw >>> 0) {
- break b
- }
- o[(Ye + 4) >> 2] = qw + (tw << 2)
- }
- if (!tw) {
- Cw = 1
- break a
- }
- Aw = o[(Ds + 8) >> 2]
- ww = o[(Ds + 12) >> 2]
- while (1) {
- sw = o[(Ds + 16) >> 2]
- rw = o[(Ds + 20) >> 2]
- qw = rw
- if ((ww | 0) < (qw | 0) ? 1 : (ww | 0) <= (qw | 0) ? (Aw >>> 0 > sw >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Bw = o[Ds >> 2]
- xw = p[(Bw + sw) | 0]
- sw = (sw + 1) | 0
- if (sw >>> 0 < 1) {
- rw = (rw + 1) | 0
- }
- qw = Ds
- vw = sw
- o[(qw + 16) >> 2] = sw
- o[(qw + 20) >> 2] = rw
- sw = xw >>> 2
- c: {
- d: {
- e: {
- yw = xw & 3
- if (yw >>> 0 > 3) {
- qw = 0
- break e
- }
- qw = 0
- f: {
- switch ((yw - 1) | 0) {
- case 2:
- break f
- case 0:
- case 1:
- break e
- default:
- break d
- }
- }
- rw = (sw + uw) | 0
- if (rw >>> 0 >= tw >>> 0) {
- return 0
- }
- xl((o[Ye >> 2] + (uw << 2)) | 0, 0, ((xw & 252) + 4) | 0)
- uw = rw
- break c
- }
- while (1) {
- if ((ww | 0) < (rw | 0) ? 1 : (ww | 0) <= (rw | 0) ? (Aw >>> 0 > vw >>> 0 ? 0 : 1) : 0) {
- return 0
- }
- xw = p[(vw + Bw) | 0]
- vw = (vw + 1) | 0
- if (vw >>> 0 < 1) {
- rw = (rw + 1) | 0
- }
- tw = Ds
- o[(tw + 16) >> 2] = vw
- o[(tw + 20) >> 2] = rw
- sw = (xw << ((qw << 3) | 6)) | sw
- qw = (qw + 1) | 0
- if ((yw | 0) != (qw | 0)) {
- continue
- }
- break
- }
- }
- o[(o[Ye >> 2] + (uw << 2)) >> 2] = sw
- }
- uw = (uw + 1) | 0
- tw = o[zw >> 2]
- if (uw >>> 0 < tw >>> 0) {
- continue
- }
- break
- }
- rw = (Ye + 16) | 0
- ww = o[Ye >> 2]
- Ds = o[(Ye + 16) >> 2]
- qw = (o[(Ye + 20) >> 2] - Ds) | 0
- uw = qw >> 2
- g: {
- if (uw >>> 0 <= 65535) {
- Da(rw, (65536 - uw) | 0)
- break g
- }
- if ((qw | 0) == 262144) {
- break g
- }
- o[(Ye + 20) >> 2] = Ds + 262144
- }
- h: {
- qw = (Ye + 28) | 0
- Ds = o[qw >> 2]
- uw = (o[(Ye + 32) >> 2] - Ds) >> 3
- if (tw >>> 0 > uw >>> 0) {
- mg(qw, (tw - uw) | 0)
- Ds = o[qw >> 2]
- break h
- }
- if (tw >>> 0 < uw >>> 0) {
- o[(Ye + 32) >> 2] = (tw << 3) + Ds
- }
- if (tw) {
- break h
- }
- return 0
- }
- sw = 0
- qw = 0
- while (1) {
- Ye = (ww + (sw << 2)) | 0
- uw = o[Ye >> 2]
- vw = ((sw << 3) + Ds) | 0
- o[(vw + 4) >> 2] = qw
- o[vw >> 2] = uw
- Ye = (o[Ye >> 2] + qw) | 0
- if (Ye >>> 0 > 65536) {
- break a
- }
- if (qw >>> 0 < Ye >>> 0) {
- uw = o[rw >> 2]
- while (1) {
- o[(uw + (qw << 2)) >> 2] = sw
- qw = (qw + 1) | 0
- if ((Ye | 0) != (qw | 0)) {
- continue
- }
- break
- }
- }
- qw = Ye
- sw = (sw + 1) | 0
- if ((tw | 0) != (sw | 0)) {
- continue
- }
- break
- }
- return (Ye | 0) == 65536
- }
- return Cw
- }
- function rg(Ye, Ds) {
- var Dw = 0,
- Ew = 0,
- Fw = 0,
- Gw = 0,
- Hw = 0,
- Iw = 0,
- Jw = 0,
- Kw = 0,
- Lw = 0,
- Mw = 0,
- Nw = 0,
- Ow = 0,
- Pw = 0
- a: {
- if (!q[(Ds + 38) >> 1]) {
- break a
- }
- Mw = (Ye + 12) | 0
- if (!lg(1, Mw, Ds)) {
- break a
- }
- Gw = o[(Ye + 12) >> 2]
- Dw = o[Ye >> 2]
- Ew = (o[(Ye + 4) >> 2] - Dw) >> 2
- b: {
- if (Gw >>> 0 > Ew >>> 0) {
- Da(Ye, (Gw - Ew) | 0)
- Gw = o[(Ye + 12) >> 2]
- break b
- }
- if (Gw >>> 0 >= Ew >>> 0) {
- break b
- }
- o[(Ye + 4) >> 2] = Dw + (Gw << 2)
- }
- if (!Gw) {
- Pw = 1
- break a
- }
- Nw = o[(Ds + 8) >> 2]
- Jw = o[(Ds + 12) >> 2]
- while (1) {
- Fw = o[(Ds + 16) >> 2]
- Ew = o[(Ds + 20) >> 2]
- Dw = Ew
- if ((Jw | 0) < (Dw | 0) ? 1 : (Jw | 0) <= (Dw | 0) ? (Nw >>> 0 > Fw >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Ow = o[Ds >> 2]
- Kw = p[(Ow + Fw) | 0]
- Fw = (Fw + 1) | 0
- if (Fw >>> 0 < 1) {
- Ew = (Ew + 1) | 0
- }
- Dw = Ds
- Iw = Fw
- o[(Dw + 16) >> 2] = Fw
- o[(Dw + 20) >> 2] = Ew
- Fw = Kw >>> 2
- c: {
- d: {
- e: {
- Lw = Kw & 3
- if (Lw >>> 0 > 3) {
- Dw = 0
- break e
- }
- Dw = 0
- f: {
- switch ((Lw - 1) | 0) {
- case 2:
- break f
- case 0:
- case 1:
- break e
- default:
- break d
- }
- }
- Ew = (Fw + Hw) | 0
- if (Ew >>> 0 >= Gw >>> 0) {
- return 0
- }
- xl((o[Ye >> 2] + (Hw << 2)) | 0, 0, ((Kw & 252) + 4) | 0)
- Hw = Ew
- break c
- }
- while (1) {
- if ((Jw | 0) < (Ew | 0) ? 1 : (Jw | 0) <= (Ew | 0) ? (Nw >>> 0 > Iw >>> 0 ? 0 : 1) : 0) {
- return 0
- }
- Kw = p[(Iw + Ow) | 0]
- Iw = (Iw + 1) | 0
- if (Iw >>> 0 < 1) {
- Ew = (Ew + 1) | 0
- }
- Gw = Ds
- o[(Gw + 16) >> 2] = Iw
- o[(Gw + 20) >> 2] = Ew
- Fw = (Kw << ((Dw << 3) | 6)) | Fw
- Dw = (Dw + 1) | 0
- if ((Lw | 0) != (Dw | 0)) {
- continue
- }
- break
- }
- }
- o[(o[Ye >> 2] + (Hw << 2)) >> 2] = Fw
- }
- Hw = (Hw + 1) | 0
- Gw = o[Mw >> 2]
- if (Hw >>> 0 < Gw >>> 0) {
- continue
- }
- break
- }
- Ew = (Ye + 16) | 0
- Jw = o[Ye >> 2]
- Ds = o[(Ye + 16) >> 2]
- Dw = (o[(Ye + 20) >> 2] - Ds) | 0
- Hw = Dw >> 2
- g: {
- if (Hw >>> 0 <= 262143) {
- Da(Ew, (262144 - Hw) | 0)
- break g
- }
- if ((Dw | 0) == 1048576) {
- break g
- }
- o[(Ye + 20) >> 2] = Ds - -1048576
- }
- h: {
- Dw = (Ye + 28) | 0
- Ds = o[Dw >> 2]
- Hw = (o[(Ye + 32) >> 2] - Ds) >> 3
- if (Gw >>> 0 > Hw >>> 0) {
- mg(Dw, (Gw - Hw) | 0)
- Ds = o[Dw >> 2]
- break h
- }
- if (Gw >>> 0 < Hw >>> 0) {
- o[(Ye + 32) >> 2] = (Gw << 3) + Ds
- }
- if (Gw) {
- break h
- }
- return 0
- }
- Fw = 0
- Dw = 0
- while (1) {
- Ye = (Jw + (Fw << 2)) | 0
- Hw = o[Ye >> 2]
- Iw = ((Fw << 3) + Ds) | 0
- o[(Iw + 4) >> 2] = Dw
- o[Iw >> 2] = Hw
- Ye = (o[Ye >> 2] + Dw) | 0
- if (Ye >>> 0 > 262144) {
- break a
- }
- if (Dw >>> 0 < Ye >>> 0) {
- Hw = o[Ew >> 2]
- while (1) {
- o[(Hw + (Dw << 2)) >> 2] = Fw
- Dw = (Dw + 1) | 0
- if ((Ye | 0) != (Dw | 0)) {
- continue
- }
- break
- }
- }
- Dw = Ye
- Fw = (Fw + 1) | 0
- if ((Gw | 0) != (Fw | 0)) {
- continue
- }
- break
- }
- return (Ye | 0) == 262144
- }
- return Pw
- }
- function sg(Ye, Ds) {
- var Qw = 0,
- Rw = 0,
- Sw = 0,
- Tw = 0,
- Uw = 0,
- Vw = 0,
- Ww = 0,
- Xw = 0,
- Yw = 0,
- Zw = 0,
- _w = 0,
- $w = 0,
- ax = 0
- a: {
- if (!q[(Ds + 38) >> 1]) {
- break a
- }
- Zw = (Ye + 12) | 0
- if (!lg(1, Zw, Ds)) {
- break a
- }
- Tw = o[(Ye + 12) >> 2]
- Qw = o[Ye >> 2]
- Rw = (o[(Ye + 4) >> 2] - Qw) >> 2
- b: {
- if (Tw >>> 0 > Rw >>> 0) {
- Da(Ye, (Tw - Rw) | 0)
- Tw = o[(Ye + 12) >> 2]
- break b
- }
- if (Tw >>> 0 >= Rw >>> 0) {
- break b
- }
- o[(Ye + 4) >> 2] = Qw + (Tw << 2)
- }
- if (!Tw) {
- ax = 1
- break a
- }
- _w = o[(Ds + 8) >> 2]
- Ww = o[(Ds + 12) >> 2]
- while (1) {
- Sw = o[(Ds + 16) >> 2]
- Rw = o[(Ds + 20) >> 2]
- Qw = Rw
- if ((Ww | 0) < (Qw | 0) ? 1 : (Ww | 0) <= (Qw | 0) ? (_w >>> 0 > Sw >>> 0 ? 0 : 1) : 0) {
- break a
- }
- $w = o[Ds >> 2]
- Xw = p[($w + Sw) | 0]
- Sw = (Sw + 1) | 0
- if (Sw >>> 0 < 1) {
- Rw = (Rw + 1) | 0
- }
- Qw = Ds
- Vw = Sw
- o[(Qw + 16) >> 2] = Sw
- o[(Qw + 20) >> 2] = Rw
- Sw = Xw >>> 2
- c: {
- d: {
- e: {
- Yw = Xw & 3
- if (Yw >>> 0 > 3) {
- Qw = 0
- break e
- }
- Qw = 0
- f: {
- switch ((Yw - 1) | 0) {
- case 2:
- break f
- case 0:
- case 1:
- break e
- default:
- break d
- }
- }
- Rw = (Sw + Uw) | 0
- if (Rw >>> 0 >= Tw >>> 0) {
- return 0
- }
- xl((o[Ye >> 2] + (Uw << 2)) | 0, 0, ((Xw & 252) + 4) | 0)
- Uw = Rw
- break c
- }
- while (1) {
- if ((Ww | 0) < (Rw | 0) ? 1 : (Ww | 0) <= (Rw | 0) ? (_w >>> 0 > Vw >>> 0 ? 0 : 1) : 0) {
- return 0
- }
- Xw = p[(Vw + $w) | 0]
- Vw = (Vw + 1) | 0
- if (Vw >>> 0 < 1) {
- Rw = (Rw + 1) | 0
- }
- Tw = Ds
- o[(Tw + 16) >> 2] = Vw
- o[(Tw + 20) >> 2] = Rw
- Sw = (Xw << ((Qw << 3) | 6)) | Sw
- Qw = (Qw + 1) | 0
- if ((Yw | 0) != (Qw | 0)) {
- continue
- }
- break
- }
- }
- o[(o[Ye >> 2] + (Uw << 2)) >> 2] = Sw
- }
- Uw = (Uw + 1) | 0
- Tw = o[Zw >> 2]
- if (Uw >>> 0 < Tw >>> 0) {
- continue
- }
- break
- }
- Rw = (Ye + 16) | 0
- Ww = o[Ye >> 2]
- Ds = o[(Ye + 16) >> 2]
- Qw = (o[(Ye + 20) >> 2] - Ds) | 0
- Uw = Qw >> 2
- g: {
- if (Uw >>> 0 <= 524287) {
- Da(Rw, (524288 - Uw) | 0)
- break g
- }
- if ((Qw | 0) == 2097152) {
- break g
- }
- o[(Ye + 20) >> 2] = Ds + 2097152
- }
- h: {
- Qw = (Ye + 28) | 0
- Ds = o[Qw >> 2]
- Uw = (o[(Ye + 32) >> 2] - Ds) >> 3
- if (Tw >>> 0 > Uw >>> 0) {
- mg(Qw, (Tw - Uw) | 0)
- Ds = o[Qw >> 2]
- break h
- }
- if (Tw >>> 0 < Uw >>> 0) {
- o[(Ye + 32) >> 2] = (Tw << 3) + Ds
- }
- if (Tw) {
- break h
- }
- return 0
- }
- Sw = 0
- Qw = 0
- while (1) {
- Ye = (Ww + (Sw << 2)) | 0
- Uw = o[Ye >> 2]
- Vw = ((Sw << 3) + Ds) | 0
- o[(Vw + 4) >> 2] = Qw
- o[Vw >> 2] = Uw
- Ye = (o[Ye >> 2] + Qw) | 0
- if (Ye >>> 0 > 524288) {
- break a
- }
- if (Qw >>> 0 < Ye >>> 0) {
- Uw = o[Rw >> 2]
- while (1) {
- o[(Uw + (Qw << 2)) >> 2] = Sw
- Qw = (Qw + 1) | 0
- if ((Ye | 0) != (Qw | 0)) {
- continue
- }
- break
- }
- }
- Qw = Ye
- Sw = (Sw + 1) | 0
- if ((Tw | 0) != (Sw | 0)) {
- continue
- }
- break
- }
- return (Ye | 0) == 524288
- }
- return ax
- }
- function tg(Ye, Ds) {
- var bx = 0,
- cx = 0,
- dx = 0,
- ex = 0,
- fx = 0,
- gx = 0,
- hx = 0,
- ix = 0,
- jx = 0,
- kx = 0,
- lx = 0,
- mx = 0,
- nx = 0
- a: {
- if (!q[(Ds + 38) >> 1]) {
- break a
- }
- kx = (Ye + 12) | 0
- if (!lg(1, kx, Ds)) {
- break a
- }
- ex = o[(Ye + 12) >> 2]
- bx = o[Ye >> 2]
- cx = (o[(Ye + 4) >> 2] - bx) >> 2
- b: {
- if (ex >>> 0 > cx >>> 0) {
- Da(Ye, (ex - cx) | 0)
- ex = o[(Ye + 12) >> 2]
- break b
- }
- if (ex >>> 0 >= cx >>> 0) {
- break b
- }
- o[(Ye + 4) >> 2] = bx + (ex << 2)
- }
- if (!ex) {
- nx = 1
- break a
- }
- lx = o[(Ds + 8) >> 2]
- hx = o[(Ds + 12) >> 2]
- while (1) {
- dx = o[(Ds + 16) >> 2]
- cx = o[(Ds + 20) >> 2]
- bx = cx
- if ((hx | 0) < (bx | 0) ? 1 : (hx | 0) <= (bx | 0) ? (lx >>> 0 > dx >>> 0 ? 0 : 1) : 0) {
- break a
- }
- mx = o[Ds >> 2]
- ix = p[(mx + dx) | 0]
- dx = (dx + 1) | 0
- if (dx >>> 0 < 1) {
- cx = (cx + 1) | 0
- }
- bx = Ds
- gx = dx
- o[(bx + 16) >> 2] = dx
- o[(bx + 20) >> 2] = cx
- dx = ix >>> 2
- c: {
- d: {
- e: {
- jx = ix & 3
- if (jx >>> 0 > 3) {
- bx = 0
- break e
- }
- bx = 0
- f: {
- switch ((jx - 1) | 0) {
- case 2:
- break f
- case 0:
- case 1:
- break e
- default:
- break d
- }
- }
- cx = (dx + fx) | 0
- if (cx >>> 0 >= ex >>> 0) {
- return 0
- }
- xl((o[Ye >> 2] + (fx << 2)) | 0, 0, ((ix & 252) + 4) | 0)
- fx = cx
- break c
- }
- while (1) {
- if ((hx | 0) < (cx | 0) ? 1 : (hx | 0) <= (cx | 0) ? (lx >>> 0 > gx >>> 0 ? 0 : 1) : 0) {
- return 0
- }
- ix = p[(gx + mx) | 0]
- gx = (gx + 1) | 0
- if (gx >>> 0 < 1) {
- cx = (cx + 1) | 0
- }
- ex = Ds
- o[(ex + 16) >> 2] = gx
- o[(ex + 20) >> 2] = cx
- dx = (ix << ((bx << 3) | 6)) | dx
- bx = (bx + 1) | 0
- if ((jx | 0) != (bx | 0)) {
- continue
- }
- break
- }
- }
- o[(o[Ye >> 2] + (fx << 2)) >> 2] = dx
- }
- fx = (fx + 1) | 0
- ex = o[kx >> 2]
- if (fx >>> 0 < ex >>> 0) {
- continue
- }
- break
- }
- cx = (Ye + 16) | 0
- hx = o[Ye >> 2]
- Ds = o[(Ye + 16) >> 2]
- bx = (o[(Ye + 20) >> 2] - Ds) | 0
- fx = bx >> 2
- g: {
- if (fx >>> 0 <= 1048575) {
- Da(cx, (1048576 - fx) | 0)
- break g
- }
- if ((bx | 0) == 4194304) {
- break g
- }
- o[(Ye + 20) >> 2] = Ds + 4194304
- }
- h: {
- bx = (Ye + 28) | 0
- Ds = o[bx >> 2]
- fx = (o[(Ye + 32) >> 2] - Ds) >> 3
- if (ex >>> 0 > fx >>> 0) {
- mg(bx, (ex - fx) | 0)
- Ds = o[bx >> 2]
- break h
- }
- if (ex >>> 0 < fx >>> 0) {
- o[(Ye + 32) >> 2] = (ex << 3) + Ds
- }
- if (ex) {
- break h
- }
- return 0
- }
- dx = 0
- bx = 0
- while (1) {
- Ye = (hx + (dx << 2)) | 0
- fx = o[Ye >> 2]
- gx = ((dx << 3) + Ds) | 0
- o[(gx + 4) >> 2] = bx
- o[gx >> 2] = fx
- Ye = (o[Ye >> 2] + bx) | 0
- if (Ye >>> 0 > 1048576) {
- break a
- }
- if (bx >>> 0 < Ye >>> 0) {
- fx = o[cx >> 2]
- while (1) {
- o[(fx + (bx << 2)) >> 2] = dx
- bx = (bx + 1) | 0
- if ((Ye | 0) != (bx | 0)) {
- continue
- }
- break
- }
- }
- bx = Ye
- dx = (dx + 1) | 0
- if ((ex | 0) != (dx | 0)) {
- continue
- }
- break
- }
- return (Ye | 0) == 1048576
- }
- return nx
- }
- function ug(Ye) {
- bi(Ye)
- o[(Ye + 44) >> 2] = 0
- o[Ye >> 2] = 7968
- }
- function vg(Ye) {
- Ye = Ye | 0
- if (o[(Ye + 44) >> 2]) {
- return l[o[(o[Ye >> 2] + 48) >> 2]](Ye) | 0
- }
- return 0
- }
- function wg(Ye) {
- Ye = Ye | 0
- var Ds = 0,
- ox = 0,
- px = 0,
- qx = 0,
- rx = 0
- o[Ye >> 2] = 10052
- Ds = o[(Ye + 20) >> 2]
- if (Ds) {
- o[(Ye + 24) >> 2] = Ds
- ul(Ds)
- }
- px = o[(Ye + 8) >> 2]
- if (px) {
- Ds = px
- rx = (Ye + 12) | 0
- ox = o[rx >> 2]
- qx = Ds
- a: {
- if ((Ds | 0) == (ox | 0)) {
- break a
- }
- while (1) {
- ox = (ox + -4) | 0
- Ds = o[ox >> 2]
- o[ox >> 2] = 0
- if (Ds) {
- l[o[(o[Ds >> 2] + 4) >> 2]](Ds)
- }
- if ((ox | 0) != (px | 0)) {
- continue
- }
- break
- }
- qx = o[(Ye + 8) >> 2]
- }
- Ds = qx
- o[rx >> 2] = px
- ul(Ds)
- }
- return Ye | 0
- }
- function xg(Ye, sx) {
- Ye = Ye | 0
- sx = sx | 0
- Ye = o[(Ye + 48) >> 2]
- return l[o[(o[Ye >> 2] + 20) >> 2]](Ye, sx) | 0
- }
- function yg(Ye) {
- Ye = Ye | 0
- var sx = 0,
- tx = 0,
- ux = 0,
- vx = 0
- sx = o[(Ye + 32) >> 2]
- ux = o[(sx + 16) >> 2]
- vx = o[(sx + 12) >> 2]
- tx = o[(sx + 20) >> 2]
- if ((vx | 0) > (tx | 0) ? 1 : (vx | 0) >= (tx | 0) ? (r[(sx + 8) >> 2] <= ux >>> 0 ? 0 : 1) : 0) {
- vx = p[(ux + o[sx >> 2]) | 0]
- ux = (ux + 1) | 0
- if (ux >>> 0 < 1) {
- tx = (tx + 1) | 0
- }
- o[(sx + 16) >> 2] = ux
- o[(sx + 20) >> 2] = tx
- sx = o[(Ye + 48) >> 2]
- o[(Ye + 48) >> 2] = 0
- if (sx) {
- l[o[(o[sx >> 2] + 4) >> 2]](sx)
- }
- a: {
- b: {
- if (vx >>> 0 > 2) {
- break b
- }
- c: {
- switch ((vx - 1) | 0) {
- default:
- tx = Hk(384)
- Gg(tx)
- sx = o[(Ye + 48) >> 2]
- o[(Ye + 48) >> 2] = tx
- if (!sx) {
- break a
- }
- l[o[(o[sx >> 2] + 4) >> 2]](sx)
- break b
- case 0:
- break b
- case 1:
- break c
- }
- }
- tx = Hk(440)
- fh(tx)
- sx = o[(Ye + 48) >> 2]
- o[(Ye + 48) >> 2] = tx
- if (!sx) {
- break a
- }
- l[o[(o[sx >> 2] + 4) >> 2]](sx)
- }
- tx = o[(Ye + 48) >> 2]
- if (tx) {
- break a
- }
- return 0
- }
- Ye = l[o[(o[tx >> 2] + 8) >> 2]](tx, Ye) | 0
- } else {
- Ye = 0
- }
- return Ye | 0
- }
- function zg(Ye) {
- Ye = Ye | 0
- Ye = o[(Ye + 48) >> 2]
- return l[o[(o[Ye >> 2] + 24) >> 2]](Ye) | 0
- }
- function Ag(Ye) {
- Ye = Ye | 0
- Ye = o[(Ye + 48) >> 2]
- return l[o[(o[Ye >> 2] + 28) >> 2]](Ye) | 0
- }
- function Bg(Ye) {
- Ye = Ye | 0
- var wx = 0,
- xx = 0,
- yx = 0,
- zx = 0,
- Ax = 0
- o[Ye >> 2] = 8064
- wx = (Ye + 48) | 0
- xx = o[wx >> 2]
- o[wx >> 2] = 0
- if (xx) {
- l[o[(o[xx >> 2] + 4) >> 2]](xx)
- }
- o[Ye >> 2] = 10052
- wx = o[(Ye + 20) >> 2]
- if (wx) {
- o[(Ye + 24) >> 2] = wx
- ul(wx)
- }
- xx = o[(Ye + 8) >> 2]
- if (xx) {
- wx = xx
- Ax = (Ye + 12) | 0
- yx = o[Ax >> 2]
- zx = wx
- a: {
- if ((wx | 0) == (yx | 0)) {
- break a
- }
- while (1) {
- yx = (yx + -4) | 0
- wx = o[yx >> 2]
- o[yx >> 2] = 0
- if (wx) {
- l[o[(o[wx >> 2] + 4) >> 2]](wx)
- }
- if ((xx | 0) != (yx | 0)) {
- continue
- }
- break
- }
- zx = o[(Ye + 8) >> 2]
- }
- wx = zx
- o[Ax >> 2] = xx
- ul(wx)
- }
- return Ye | 0
- }
- function Cg(a) {
- a = a | 0
- var b = 0,
- c = 0,
- d = 0,
- e = 0,
- f = 0
- o[a >> 2] = 8064
- b = (a + 48) | 0
- c = o[b >> 2]
- o[b >> 2] = 0
- if (c) {
- l[o[(o[c >> 2] + 4) >> 2]](c)
- }
- o[a >> 2] = 10052
- b = o[(a + 20) >> 2]
- if (b) {
- o[(a + 24) >> 2] = b
- ul(b)
- }
- c = o[(a + 8) >> 2]
- if (c) {
- b = c
- f = (a + 12) | 0
- d = o[f >> 2]
- e = b
- a: {
- if ((b | 0) == (d | 0)) {
- break a
- }
- while (1) {
- d = (d + -4) | 0
- b = o[d >> 2]
- o[d >> 2] = 0
- if (b) {
- l[o[(o[b >> 2] + 4) >> 2]](b)
- }
- if ((c | 0) != (d | 0)) {
- continue
- }
- break
- }
- e = o[(a + 8) >> 2]
- }
- b = e
- o[f >> 2] = c
- ul(b)
- }
- ul(a)
- }
- function Dg(a) {
- a = a | 0
- a = o[(a + 48) >> 2]
- return l[o[(o[a >> 2] + 36) >> 2]](a) | 0
- }
- function Eg(a, g) {
- a = a | 0
- g = g | 0
- a = o[(a + 48) >> 2]
- return l[o[(o[a >> 2] + 12) >> 2]](a, g) | 0
- }
- function Fg(a, g) {
- a = a | 0
- g = g | 0
- a = o[(a + 48) >> 2]
- return l[o[(o[a >> 2] + 16) >> 2]](a, g) | 0
- }
- function Gg(a) {
- o[a >> 2] = 8172
- xl((a + 4) | 0, 0, 80)
- o[(a + 96) >> 2] = 0
- o[(a + 100) >> 2] = 0
- o[(a + 92) >> 2] = -1
- o[(a + 84) >> 2] = -1
- o[(a + 88) >> 2] = -1
- o[(a + 104) >> 2] = 0
- o[(a + 108) >> 2] = 0
- o[(a + 112) >> 2] = 0
- o[(a + 116) >> 2] = 0
- o[(a + 120) >> 2] = 0
- o[(a + 124) >> 2] = 0
- o[(a + 128) >> 2] = 0
- o[(a + 132) >> 2] = 0
- o[(a + 136) >> 2] = 0
- o[(a + 140) >> 2] = 0
- o[(a + 144) >> 2] = 0
- o[(a + 148) >> 2] = 0
- o[(a + 156) >> 2] = 0
- o[(a + 160) >> 2] = 0
- o[(a + 152) >> 2] = 1065353216
- o[(a + 164) >> 2] = 0
- o[(a + 168) >> 2] = 0
- o[(a + 172) >> 2] = 0
- o[(a + 176) >> 2] = 0
- o[(a + 180) >> 2] = 0
- o[(a + 184) >> 2] = 0
- o[(a + 188) >> 2] = 0
- o[(a + 192) >> 2] = 0
- o[(a + 196) >> 2] = 0
- o[(a + 200) >> 2] = 0
- o[(a + 204) >> 2] = 0
- o[(a + 208) >> 2] = 0
- o[(a + 212) >> 2] = -1
- o[(a + 216) >> 2] = 0
- o[(a + 220) >> 2] = 0
- o[(a + 224) >> 2] = 0
- Hg((a + 232) | 0)
- }
- function Hg(a) {
- oi(a)
- oi((a + 40) | 0)
- Mf((a + 80) | 0)
- oi((a + 96) | 0)
- o[(a + 144) >> 2] = 0
- o[(a + 136) >> 2] = 0
- o[(a + 140) >> 2] = 0
- }
- function Ig(a, g) {
- a = a | 0
- g = g | 0
- o[(a + 4) >> 2] = g
- return 1
- }
- function Jg(a, g) {
- a = a | 0
- g = g | 0
- var h = 0,
- i = 0,
- j = 0,
- k = 0,
- m = 0
- h = o[(a + 216) >> 2]
- k = (a + 220) | 0
- if ((h | 0) != o[k >> 2]) {
- while (1) {
- a: {
- h = o[(u(j, 144) + h) >> 2]
- if ((h | 0) < 0) {
- break a
- }
- m = o[(a + 4) >> 2]
- i = o[(m + 8) >> 2]
- if ((h | 0) >= (o[(m + 12) >> 2] - i) >> 2) {
- break a
- }
- h = o[(i + (h << 2)) >> 2]
- if ((l[o[(o[h >> 2] + 24) >> 2]](h) | 0) < 1) {
- break a
- }
- i = 0
- while (1) {
- if ((l[o[(o[h >> 2] + 20) >> 2]](h, i) | 0) != (g | 0)) {
- i = (i + 1) | 0
- if ((i | 0) < (l[o[(o[h >> 2] + 24) >> 2]](h) | 0)) {
- continue
- }
- break a
- }
- break
- }
- a = (o[(a + 216) >> 2] + u(j, 144)) | 0
- return (p[(a + 100) | 0] ? (a + 4) | 0 : 0) | 0
- }
- j = (j + 1) | 0
- h = o[(a + 216) >> 2]
- if (j >>> 0 < (((o[k >> 2] - h) | 0) / 144) >>> 0) {
- continue
- }
- break
- }
- }
- return 0
- }
- function Kg(a, g) {
- a = a | 0
- g = g | 0
- var n = 0,
- p = 0,
- q = 0,
- r = 0,
- s = 0
- n = o[(a + 216) >> 2]
- r = (a + 220) | 0
- if ((n | 0) != o[r >> 2]) {
- while (1) {
- a: {
- n = o[(u(q, 144) + n) >> 2]
- if ((n | 0) < 0) {
- break a
- }
- s = o[(a + 4) >> 2]
- p = o[(s + 8) >> 2]
- if ((n | 0) >= (o[(s + 12) >> 2] - p) >> 2) {
- break a
- }
- n = o[(p + (n << 2)) >> 2]
- if ((l[o[(o[n >> 2] + 24) >> 2]](n) | 0) < 1) {
- break a
- }
- p = 0
- while (1) {
- if ((l[o[(o[n >> 2] + 20) >> 2]](n, p) | 0) != (g | 0)) {
- p = (p + 1) | 0
- if ((p | 0) < (l[o[(o[n >> 2] + 24) >> 2]](n) | 0)) {
- continue
- }
- break a
- }
- break
- }
- return (((o[(a + 216) >> 2] + u(q, 144)) | 0) + 104) | 0
- }
- q = (q + 1) | 0
- n = o[(a + 216) >> 2]
- if (q >>> 0 < (((o[r >> 2] - n) | 0) / 144) >>> 0) {
- continue
- }
- break
- }
- }
- return (a + 184) | 0
- }
- function Lg(a, g) {
- a = a | 0
- g = g | 0
- var t = 0,
- v = 0,
- w = 0,
- x = 0,
- y = 0,
- z = 0,
- A = 0,
- B = 0,
- C = 0,
- E = 0,
- F = 0,
- G = 0,
- H = 0,
- I = 0,
- J = 0
- x = (R - 80) | 0
- R = x
- a: {
- b: {
- H = o[(a + 4) >> 2]
- t = o[(H + 32) >> 2]
- C = o[(t + 8) >> 2]
- B = o[(t + 16) >> 2]
- F = o[(t + 12) >> 2]
- v = F
- z = o[(t + 20) >> 2]
- y = z
- c: {
- if ((v | 0) < (y | 0) ? 1 : (v | 0) <= (y | 0) ? (C >>> 0 > B >>> 0 ? 0 : 1) : 0) {
- break c
- }
- I = o[t >> 2]
- E = p[(I + B) | 0]
- v = z
- A = (B + 1) | 0
- if (A >>> 0 < 1) {
- v = (v + 1) | 0
- }
- y = t
- o[(t + 16) >> 2] = A
- o[(t + 20) >> 2] = v
- if ((F | 0) < (v | 0) ? 1 : (F | 0) <= (v | 0) ? (C >>> 0 > A >>> 0 ? 0 : 1) : 0) {
- break c
- }
- J = p[(A + I) | 0]
- v = z
- A = (B + 2) | 0
- if (A >>> 0 < 2) {
- v = (v + 1) | 0
- }
- o[(t + 16) >> 2] = A
- o[(y + 20) >> 2] = v
- G = (E << 24) >> 24
- d: {
- if ((G | 0) >= 0) {
- y = o[(a + 216) >> 2]
- if ((((o[(a + 220) >> 2] - y) | 0) / 144) >>> 0 <= E >>> 0) {
- break c
- }
- y = (y + u(E, 144)) | 0
- if (o[y >> 2] <= -1) {
- break d
- }
- break c
- }
- if (o[(a + 212) >> 2] > -1) {
- break c
- }
- y = (a + 212) | 0
- }
- o[y >> 2] = g
- y = 0
- w = q[(H + 36) >> 1]
- if ((((w << 24) | ((w << 8) & 16711680)) >>> 16) >>> 0 >= 258) {
- w = 0
- if ((F | 0) < (v | 0) ? 1 : (F | 0) <= (v | 0) ? (C >>> 0 > A >>> 0 ? 0 : 1) : 0) {
- break c
- }
- y = p[(A + I) | 0]
- v = (B + 3) | 0
- if (v >>> 0 < 3) {
- z = (z + 1) | 0
- }
- o[(t + 16) >> 2] = v
- o[(t + 20) >> 2] = z
- }
- e: {
- f: {
- g: {
- if (!J) {
- if ((G | 0) <= -1) {
- t = (a + 184) | 0
- } else {
- t = (o[(a + 216) >> 2] + u(E, 144)) | 0
- m[(t + 100) | 0] = 0
- t = (t + 104) | 0
- }
- w = 0
- if (y >>> 0 > 1) {
- break c
- }
- if (!(y - 1)) {
- break g
- }
- Mg((x + 16) | 0, a, t)
- break f
- }
- w = 0
- if (y | ((G | 0) < 0)) {
- break c
- }
- z = o[(H + 44) >> 2]
- w = o[(a + 216) >> 2]
- t = Hk(80)
- o[t >> 2] = 9636
- o[(t + 76) >> 2] = 0
- o[(t + 68) >> 2] = z
- v = (t + 12) | 0
- o[v >> 2] = 0
- o[(v + 4) >> 2] = 0
- o[(t + 4) >> 2] = 0
- y = (t + 20) | 0
- o[y >> 2] = 0
- o[(y + 4) >> 2] = 0
- F = (t + 28) | 0
- B = F
- o[B >> 2] = 0
- o[(B + 4) >> 2] = 0
- o[(t + 36) >> 2] = 0
- o[(t + 40) >> 2] = 0
- B = (t + 44) | 0
- o[B >> 2] = 0
- o[(B + 4) >> 2] = 0
- o[(t + 52) >> 2] = 0
- w = (w + u(E, 144)) | 0
- E = (w + 104) | 0
- o[(t + 72) >> 2] = E
- o[(t - -64) >> 2] = 0
- H = (t + 56) | 0
- C = H
- o[C >> 2] = 0
- o[(C + 4) >> 2] = 0
- o[(t + 8) >> 2] = 8512
- C = (x + 56) | 0
- o[C >> 2] = 0
- o[(C + 4) >> 2] = 0
- o[(x + 48) >> 2] = 0
- o[(x + 52) >> 2] = 0
- I = (x + 32) | 0
- A = I
- o[A >> 2] = 0
- o[(A + 4) >> 2] = 0
- o[(x + 72) >> 2] = 0
- o[(x + 40) >> 2] = 0
- o[(x + 44) >> 2] = 0
- o[(x + 24) >> 2] = 0
- o[(x + 28) >> 2] = 0
- o[(x + 64) >> 2] = 0
- o[(x + 68) >> 2] = 0
- o[(x + 16) >> 2] = 8512
- A = (w + 4) | 0
- o[(x + 20) >> 2] = A
- w = o[(w + 68) >> 2]
- G = o[w >> 2]
- w = o[(w + 4) >> 2]
- m[(x + 79) | 0] = 0
- $a((x + 40) | 0, ((((w - G) >> 2) >>> 0) / 3) | 0, (x + 79) | 0)
- w = o[(x + 20) >> 2]
- G = o[(w + 56) >> 2]
- w = o[(w + 52) >> 2]
- m[(x + 79) | 0] = 0
- $a((x + 52) | 0, (G - w) >> 2, (x + 79) | 0)
- o[(x + 36) >> 2] = t
- o[I >> 2] = z
- z = (x + 28) | 0
- o[z >> 2] = E
- o[(x + 24) >> 2] = A
- o[F >> 2] = t
- w = o[(z + 4) >> 2]
- o[y >> 2] = o[z >> 2]
- o[(y + 4) >> 2] = w
- z = o[(x + 24) >> 2]
- o[v >> 2] = o[(x + 20) >> 2]
- o[(v + 4) >> 2] = z
- z = t
- w = o[(x + 44) >> 2]
- if (w) {
- v = (t + 32) | 0
- h: {
- if (w >>> 0 <= (o[(t + 40) >> 2] << 5) >>> 0) {
- y = (w + -1) >>> 5
- w = o[v >> 2]
- break h
- }
- v = o[v >> 2]
- if (v) {
- ul(v)
- o[(t + 40) >> 2] = 0
- o[(t + 32) >> 2] = 0
- o[(t + 36) >> 2] = 0
- w = o[(x + 44) >> 2]
- }
- if ((w | 0) <= -1) {
- break b
- }
- y = (w + -1) >>> 5
- v = (y + 1) | 0
- w = Hk(v << 2)
- o[(t + 40) >> 2] = v
- o[(t + 36) >> 2] = 0
- o[(t + 32) >> 2] = w
- }
- yl(w, o[(x + 40) >> 2], ((y << 2) + 4) | 0)
- v = o[(x + 44) >> 2]
- } else {
- v = 0
- }
- o[(z + 36) >> 2] = v
- z = t
- w = o[C >> 2]
- if (w) {
- i: {
- if (w >>> 0 <= (o[(t + 52) >> 2] << 5) >>> 0) {
- v = (w + -1) >>> 5
- w = o[B >> 2]
- break i
- }
- v = o[B >> 2]
- if (v) {
- ul(v)
- o[(t + 52) >> 2] = 0
- o[(t + 44) >> 2] = 0
- o[(t + 48) >> 2] = 0
- w = o[(x + 56) >> 2]
- }
- if ((w | 0) <= -1) {
- break a
- }
- v = (w + -1) >>> 5
- y = (v + 1) | 0
- w = Hk(y << 2)
- o[(t + 52) >> 2] = y
- o[(t + 48) >> 2] = 0
- o[(t + 44) >> 2] = w
- }
- yl(w, o[(x + 52) >> 2], ((v << 2) + 4) | 0)
- v = o[(x + 56) >> 2]
- } else {
- v = 0
- }
- o[(z + 48) >> 2] = v
- td(H, o[(x + 64) >> 2], o[(x + 68) >> 2])
- o[(x + 16) >> 2] = 8512
- z = o[(x + 64) >> 2]
- if (z) {
- o[(x + 68) >> 2] = z
- ul(z)
- }
- o[(x + 16) >> 2] = 8764
- z = o[(x + 52) >> 2]
- if (z) {
- ul(z)
- }
- z = o[(x + 40) >> 2]
- if (!z) {
- break e
- }
- ul(z)
- break e
- }
- Ng((x + 16) | 0, a, t)
- }
- t = o[(x + 16) >> 2]
- if (!t) {
- break c
- }
- }
- z = Hk(64)
- o[(x + 8) >> 2] = t
- Qd(z, (x + 8) | 0)
- t = o[(x + 8) >> 2]
- o[(x + 8) >> 2] = 0
- if (t) {
- l[o[(o[t >> 2] + 4) >> 2]](t)
- }
- if ((g | 0) >= 0) {
- a = o[(a + 4) >> 2]
- w = (a + 8) | 0
- t = o[(a + 12) >> 2]
- E = o[(a + 8) >> 2]
- v = (t - E) >> 2
- j: {
- if ((v | 0) > (g | 0)) {
- break j
- }
- y = (g + 1) | 0
- if (v >>> 0 <= g >>> 0) {
- Og(w, (y - v) | 0)
- break j
- }
- if (y >>> 0 >= v >>> 0) {
- break j
- }
- y = (E + (y << 2)) | 0
- if ((y | 0) != (t | 0)) {
- while (1) {
- t = (t + -4) | 0
- v = o[t >> 2]
- o[t >> 2] = 0
- if (v) {
- l[o[(o[v >> 2] + 4) >> 2]](v)
- }
- if ((t | 0) != (y | 0)) {
- continue
- }
- break
- }
- }
- o[(a + 12) >> 2] = y
- }
- g = (o[w >> 2] + (g << 2)) | 0
- a = o[g >> 2]
- o[g >> 2] = z
- w = 1
- if (!a) {
- break c
- }
- l[o[(o[a >> 2] + 4) >> 2]](a)
- break c
- }
- l[o[(o[z >> 2] + 4) >> 2]](z)
- w = 0
- }
- R = (x + 80) | 0
- return w | 0
- }
- Yk()
- D()
- }
- Yk()
- D()
- }
- function Mg(a, g, l) {
- var u = 0,
- K = 0,
- L = 0,
- M = 0,
- N = 0,
- O = 0,
- P = 0,
- Q = 0,
- S = 0,
- T = 0,
- U = 0,
- V = 0
- u = (R + -64) | 0
- R = u
- L = o[(o[(g + 4) >> 2] + 44) >> 2]
- K = Hk(80)
- o[K >> 2] = 9344
- o[(K + 76) >> 2] = 0
- o[(K + 72) >> 2] = l
- o[(K + 68) >> 2] = L
- M = (K + 12) | 0
- o[M >> 2] = 0
- o[(M + 4) >> 2] = 0
- o[(K + 4) >> 2] = 0
- Q = (K + 20) | 0
- N = Q
- o[N >> 2] = 0
- o[(N + 4) >> 2] = 0
- T = (K + 28) | 0
- N = T
- o[N >> 2] = 0
- o[(N + 4) >> 2] = 0
- o[(K + 36) >> 2] = 0
- o[(K + 40) >> 2] = 0
- N = (K + 44) | 0
- o[N >> 2] = 0
- o[(N + 4) >> 2] = 0
- o[(K + 52) >> 2] = 0
- o[(K - -64) >> 2] = 0
- U = (K + 56) | 0
- P = U
- o[P >> 2] = 0
- o[(P + 4) >> 2] = 0
- o[(K + 8) >> 2] = 9508
- g = o[(g + 8) >> 2]
- P = (u + 40) | 0
- o[P >> 2] = 0
- o[(P + 4) >> 2] = 0
- o[(u + 32) >> 2] = 0
- o[(u + 36) >> 2] = 0
- V = (u + 16) | 0
- O = V
- o[O >> 2] = 0
- o[(O + 4) >> 2] = 0
- o[(u + 56) >> 2] = 0
- o[(u + 24) >> 2] = 0
- o[(u + 28) >> 2] = 0
- o[(u + 8) >> 2] = 0
- o[(u + 12) >> 2] = 0
- o[(u + 48) >> 2] = 0
- o[(u + 52) >> 2] = 0
- o[u >> 2] = 9508
- o[(u + 4) >> 2] = g
- O = o[g >> 2]
- S = o[(g + 4) >> 2]
- m[(u + 63) | 0] = 0
- $a((u + 24) | 0, ((((S - O) >> 2) >>> 0) / 3) | 0, (u + 63) | 0)
- O = o[(u + 4) >> 2]
- S = o[(O + 28) >> 2]
- O = o[(O + 24) >> 2]
- m[(u + 63) | 0] = 0
- $a((u + 36) | 0, (S - O) >> 2, (u + 63) | 0)
- o[(u + 20) >> 2] = K
- o[V >> 2] = L
- L = (u + 12) | 0
- o[L >> 2] = l
- o[(u + 8) >> 2] = g
- o[T >> 2] = K
- g = o[(L + 4) >> 2]
- o[Q >> 2] = o[L >> 2]
- o[(Q + 4) >> 2] = g
- g = o[(u + 8) >> 2]
- o[M >> 2] = o[(u + 4) >> 2]
- o[(M + 4) >> 2] = g
- a: {
- b: {
- l = K
- g = o[(u + 28) >> 2]
- if (g) {
- L = (K + 32) | 0
- c: {
- if (g >>> 0 <= (o[(K + 40) >> 2] << 5) >>> 0) {
- M = (g + -1) >>> 5
- g = o[L >> 2]
- break c
- }
- L = o[L >> 2]
- if (L) {
- ul(L)
- o[(K + 40) >> 2] = 0
- o[(K + 32) >> 2] = 0
- o[(K + 36) >> 2] = 0
- g = o[(u + 28) >> 2]
- }
- if ((g | 0) <= -1) {
- break b
- }
- M = (g + -1) >>> 5
- L = (M + 1) | 0
- g = Hk(L << 2)
- o[(K + 40) >> 2] = L
- o[(K + 36) >> 2] = 0
- o[(K + 32) >> 2] = g
- }
- yl(g, o[(u + 24) >> 2], ((M << 2) + 4) | 0)
- g = o[(u + 28) >> 2]
- } else {
- g = 0
- }
- o[(l + 36) >> 2] = g
- Q = K
- g = o[P >> 2]
- if (g) {
- d: {
- if (g >>> 0 <= (o[(K + 52) >> 2] << 5) >>> 0) {
- l = (g + -1) >>> 5
- g = o[N >> 2]
- break d
- }
- l = o[N >> 2]
- if (l) {
- ul(l)
- o[(K + 52) >> 2] = 0
- o[(K + 44) >> 2] = 0
- o[(K + 48) >> 2] = 0
- g = o[(u + 40) >> 2]
- }
- if ((g | 0) <= -1) {
- break a
- }
- l = (g + -1) >>> 5
- M = (l + 1) | 0
- g = Hk(M << 2)
- o[(K + 52) >> 2] = M
- o[(K + 48) >> 2] = 0
- o[(K + 44) >> 2] = g
- }
- yl(g, o[(u + 36) >> 2], ((l << 2) + 4) | 0)
- g = o[(u + 40) >> 2]
- } else {
- g = 0
- }
- o[(Q + 48) >> 2] = g
- td(U, o[(u + 48) >> 2], o[(u + 52) >> 2])
- o[a >> 2] = K
- o[u >> 2] = 9508
- a = o[(u + 48) >> 2]
- if (a) {
- o[(u + 52) >> 2] = a
- ul(a)
- }
- o[u >> 2] = 9324
- a = o[(u + 36) >> 2]
- if (a) {
- ul(a)
- }
- a = o[(u + 24) >> 2]
- if (a) {
- ul(a)
- }
- R = (u - -64) | 0
- return
- }
- Yk()
- D()
- }
- Yk()
- D()
- }
- function Ng(a, g, l) {
- var D = 0,
- W = 0,
- X = 0,
- Y = 0,
- Z = 0,
- _ = 0,
- $ = 0
- D = (R - 112) | 0
- R = D
- $ = o[(o[(g + 4) >> 2] + 44) >> 2]
- W = Hk(120)
- o[W >> 2] = 8876
- o[(W + 116) >> 2] = 0
- o[(W + 112) >> 2] = l
- o[(W + 108) >> 2] = $
- o[(W + 12) >> 2] = 0
- o[(W + 16) >> 2] = 0
- o[(W + 4) >> 2] = 0
- o[(W + 20) >> 2] = 0
- o[(W + 24) >> 2] = 0
- o[(W + 28) >> 2] = 0
- o[(W + 32) >> 2] = 0
- o[(W + 36) >> 2] = 0
- o[(W + 40) >> 2] = 0
- o[(W + 44) >> 2] = 0
- o[(W + 48) >> 2] = 0
- o[(W + 52) >> 2] = 0
- o[(W + 56) >> 2] = 0
- o[(W + 60) >> 2] = 0
- o[(W + 8) >> 2] = 9088
- Z = (W - -64) | 0
- o[Z >> 2] = 0
- o[(Z + 4) >> 2] = 0
- o[(W + 72) >> 2] = 0
- o[(W + 76) >> 2] = 0
- o[(W + 80) >> 2] = 0
- o[(W + 84) >> 2] = 0
- o[(W + 88) >> 2] = 0
- o[(W + 104) >> 2] = 0
- o[(W + 96) >> 2] = 0
- o[(W + 100) >> 2] = 0
- g = o[(g + 8) >> 2]
- o[(D + 48) >> 2] = 0
- o[(D + 52) >> 2] = 0
- o[(D + 40) >> 2] = 0
- o[(D + 44) >> 2] = 0
- Z = (D + 24) | 0
- X = Z
- o[X >> 2] = 0
- o[(X + 4) >> 2] = 0
- X = (D - -64) | 0
- o[X >> 2] = 0
- o[(X + 4) >> 2] = 0
- o[(D + 72) >> 2] = 0
- o[(D + 76) >> 2] = 0
- X = (D + 80) | 0
- o[X >> 2] = 0
- o[(X + 4) >> 2] = 0
- o[(D + 88) >> 2] = 0
- o[(D + 104) >> 2] = 0
- o[(D + 32) >> 2] = 0
- o[(D + 36) >> 2] = 0
- o[(D + 16) >> 2] = 0
- o[(D + 20) >> 2] = 0
- o[(D + 56) >> 2] = 0
- o[(D + 60) >> 2] = 0
- o[(D + 8) >> 2] = 9088
- o[(D + 96) >> 2] = 0
- o[(D + 100) >> 2] = 0
- o[(D + 12) >> 2] = g
- Y = o[g >> 2]
- _ = o[(g + 4) >> 2]
- m[(D + 111) | 0] = 0
- $a((D + 32) | 0, ((((_ - Y) >> 2) >>> 0) / 3) | 0, (D + 111) | 0)
- Y = o[(D + 12) >> 2]
- _ = o[(Y + 28) >> 2]
- Y = o[(Y + 24) >> 2]
- m[(D + 111) | 0] = 0
- $a((D + 44) | 0, (_ - Y) >> 2, (D + 111) | 0)
- o[(D + 28) >> 2] = W
- o[Z >> 2] = $
- o[(D + 20) >> 2] = l
- o[(D + 16) >> 2] = g
- Pg(W, (D + 8) | 0)
- o[a >> 2] = W
- o[(D + 8) >> 2] = 9088
- a = o[(D + 96) >> 2]
- if (a) {
- o[(D + 100) >> 2] = a
- ul(a)
- }
- a = o[X >> 2]
- if (a) {
- o[(D + 84) >> 2] = a
- ul(a)
- }
- a = o[(D + 68) >> 2]
- if (a) {
- o[(D + 72) >> 2] = a
- ul(a)
- }
- a = o[(D + 56) >> 2]
- if (a) {
- o[(D + 60) >> 2] = a
- ul(a)
- }
- o[(D + 8) >> 2] = 9324
- a = o[(D + 44) >> 2]
- if (a) {
- ul(a)
- }
- a = o[(D + 32) >> 2]
- if (a) {
- ul(a)
- }
- R = (D + 112) | 0
- }
- function Og(a, g) {
- var R = 0,
- aa = 0,
- ba = 0,
- ca = 0,
- da = 0,
- ea = 0,
- fa = 0,
- ga = 0,
- ha = 0
- aa = o[(a + 8) >> 2]
- ba = (a + 4) | 0
- R = o[ba >> 2]
- if (((aa - R) >> 2) >>> 0 >= g >>> 0) {
- a = g << 2
- ;(ga = ba), (ha = (xl(R, 0, a) + a) | 0), (o[ga >> 2] = ha)
- return
- }
- a: {
- ba = o[a >> 2]
- ca = (R - ba) >> 2
- da = (ca + g) | 0
- if (da >>> 0 < 1073741824) {
- ca = ca << 2
- aa = (aa - ba) | 0
- fa = aa >> 1
- aa = (aa >> 2) >>> 0 < 536870911 ? (fa >>> 0 < da >>> 0 ? da : fa) : 1073741823
- if (aa) {
- if (aa >>> 0 >= 1073741824) {
- break a
- }
- ea = Hk(aa << 2)
- }
- ca = (ca + ea) | 0
- xl(ca, 0, g << 2)
- g = ((da << 2) + ea) | 0
- da = ((aa << 2) + ea) | 0
- if ((R | 0) != (ba | 0)) {
- while (1) {
- R = (R + -4) | 0
- aa = o[R >> 2]
- o[R >> 2] = 0
- ca = (ca + -4) | 0
- o[ca >> 2] = aa
- if ((R | 0) != (ba | 0)) {
- continue
- }
- break
- }
- ba = o[a >> 2]
- R = o[(a + 4) >> 2]
- }
- o[a >> 2] = ca
- o[(a + 8) >> 2] = da
- o[(a + 4) >> 2] = g
- if ((R | 0) != (ba | 0)) {
- while (1) {
- R = (R + -4) | 0
- a = o[R >> 2]
- o[R >> 2] = 0
- if (a) {
- l[o[(o[a >> 2] + 4) >> 2]](a)
- }
- if ((R | 0) != (ba | 0)) {
- continue
- }
- break
- }
- }
- if (ba) {
- ul(ba)
- }
- return
- }
- Yk()
- D()
- }
- _a(8776)
- D()
- }
- function Pg(a, g) {
- var l = 0
- l = o[(g + 8) >> 2]
- o[(a + 12) >> 2] = o[(g + 4) >> 2]
- o[(a + 16) >> 2] = l
- o[(a + 28) >> 2] = o[(g + 20) >> 2]
- l = o[(g + 16) >> 2]
- o[(a + 20) >> 2] = o[(g + 12) >> 2]
- o[(a + 24) >> 2] = l
- uh((a + 32) | 0, (g + 24) | 0)
- uh((a + 44) | 0, (g + 36) | 0)
- if (((a + 8) | 0) == (g | 0)) {
- o[(a + 92) >> 2] = o[(g + 84) >> 2]
- return
- }
- td((a + 56) | 0, o[(g + 48) >> 2], o[(g + 52) >> 2])
- td((a + 68) | 0, o[(g + 60) >> 2], o[(g - -64) >> 2])
- td((a + 80) | 0, o[(g + 72) >> 2], o[(g + 76) >> 2])
- o[(a + 92) >> 2] = o[(g + 84) >> 2]
- fd((a + 96) | 0, o[(g + 88) >> 2], o[(g + 92) >> 2])
- }
- function Qg(a, g, ia) {
- a = a | 0
- g = g | 0
- ia = ia | 0
- var ja = 0,
- ka = 0
- ja = (R - 16) | 0
- R = ja
- o[(a + 4) >> 2] = g
- g = o[(g + 64) >> 2]
- ka = o[(g + 4) >> 2]
- g = o[g >> 2]
- m[(ja + 15) | 0] = 0
- $a((a + 24) | 0, ((((ka - g) >> 2) >>> 0) / 3) | 0, (ja + 15) | 0)
- g = o[(a + 4) >> 2]
- ka = o[(g + 56) >> 2]
- g = o[(g + 52) >> 2]
- m[(ja + 14) | 0] = 0
- $a((a + 36) | 0, (ka - g) >> 2, (ja + 14) | 0)
- g = o[(ia + 12) >> 2]
- o[(a + 16) >> 2] = o[(ia + 8) >> 2]
- o[(a + 20) >> 2] = g
- g = o[(ia + 4) >> 2]
- o[(a + 8) >> 2] = o[ia >> 2]
- o[(a + 12) >> 2] = g
- R = (ja + 16) | 0
- }
- function Rg(a) {
- a = a | 0
- var g = 0
- o[a >> 2] = 8512
- g = o[(a + 48) >> 2]
- if (g) {
- o[(a + 52) >> 2] = g
- ul(g)
- }
- o[a >> 2] = 8764
- g = o[(a + 36) >> 2]
- if (g) {
- ul(g)
- }
- g = o[(a + 24) >> 2]
- if (g) {
- ul(g)
- }
- return a | 0
- }
- function Sg(a) {
- a = a | 0
- var ia = 0,
- la = 0,
- ma = 0,
- na = 0,
- oa = 0,
- pa = 0,
- qa = 0,
- ra = 0,
- sa = 0,
- ta = 0,
- va = 0,
- wa = 0,
- xa = 0,
- ya = 0
- qa = (R + -64) | 0
- R = qa
- o[(a + 132) >> 2] = 0
- if (o[(a + 148) >> 2]) {
- ma = (a + 144) | 0
- la = o[ma >> 2]
- if (la) {
- while (1) {
- ia = o[la >> 2]
- ul(la)
- la = ia
- if (ia) {
- continue
- }
- break
- }
- }
- o[ma >> 2] = 0
- ia = o[(a + 140) >> 2]
- if (ia) {
- ma = (a + 136) | 0
- la = 0
- while (1) {
- o[(o[ma >> 2] + (la << 2)) >> 2] = 0
- la = (la + 1) | 0
- if ((ia | 0) != (la | 0)) {
- continue
- }
- break
- }
- }
- o[(a + 148) >> 2] = 0
- }
- a: {
- if (!Tg(1, (qa + 52) | 0, o[(o[(a + 4) >> 2] + 32) >> 2])) {
- break a
- }
- o[(a + 156) >> 2] = o[(qa + 52) >> 2]
- if (!Tg(1, (qa + 48) | 0, o[(o[(a + 4) >> 2] + 32) >> 2])) {
- break a
- }
- na = o[(qa + 48) >> 2]
- if ((na >>> 0 > 1431655765) | (r[(a + 156) >> 2] > u(na, 3) >>> 0)) {
- break a
- }
- la = o[(o[(a + 4) >> 2] + 32) >> 2]
- ra = o[(la + 16) >> 2]
- ma = o[(la + 12) >> 2]
- ia = o[(la + 20) >> 2]
- if ((ma | 0) < (ia | 0) ? 1 : (ma | 0) <= (ia | 0) ? (r[(la + 8) >> 2] > ra >>> 0 ? 0 : 1) : 0) {
- break a
- }
- pa = p[(ra + o[la >> 2]) | 0]
- ra = (ra + 1) | 0
- if (ra >>> 0 < 1) {
- ia = (ia + 1) | 0
- }
- o[(la + 16) >> 2] = ra
- o[(la + 20) >> 2] = ia
- if (!Tg(1, (qa + 44) | 0, la)) {
- break a
- }
- ta = o[(qa + 44) >> 2]
- if ((na >>> 0 < ta >>> 0) | (na >>> 0 > (ta + (((ta >>> 0) / 3) | 0)) >>> 0)) {
- break a
- }
- if (!Tg(1, (qa + 40) | 0, o[(o[(a + 4) >> 2] + 32) >> 2])) {
- break a
- }
- sa = o[(qa + 40) >> 2]
- if (sa >>> 0 > ta >>> 0) {
- break a
- }
- o[(a + 28) >> 2] = o[(a + 24) >> 2]
- ia = Hk(88)
- zi(ia)
- la = o[(a + 8) >> 2]
- o[(a + 8) >> 2] = ia
- ra = (a + 8) | 0
- if (la) {
- ua(ra, la)
- if (!o[ra >> 2]) {
- break a
- }
- }
- la = o[(a + 160) >> 2]
- o[(a + 164) >> 2] = la
- b: {
- c: {
- d: {
- e: {
- f: {
- if (((o[(a + 168) >> 2] - la) >> 2) >>> 0 >= na >>> 0) {
- break f
- }
- if (na >>> 0 >= 1073741824) {
- break e
- }
- ma = na << 2
- ia = Hk(ma)
- o[(a + 164) >> 2] = ia
- o[(a + 160) >> 2] = ia
- o[(a + 168) >> 2] = ia + ma
- if (!la) {
- break f
- }
- ul(la)
- }
- la = o[(a + 172) >> 2]
- o[(a + 176) >> 2] = la
- g: {
- if (((o[(a + 180) >> 2] - la) >> 2) >>> 0 >= na >>> 0) {
- break g
- }
- if (na >>> 0 >= 1073741824) {
- break d
- }
- ma = na << 2
- ia = Hk(ma)
- o[(a + 176) >> 2] = ia
- o[(a + 172) >> 2] = ia
- o[(a + 180) >> 2] = ia + ma
- if (!la) {
- break g
- }
- ul(la)
- }
- o[(a + 92) >> 2] = -1
- o[(a + 84) >> 2] = -1
- o[(a + 88) >> 2] = -1
- o[(a + 40) >> 2] = o[(a + 36) >> 2]
- o[(a - -64) >> 2] = 0
- o[(a + 52) >> 2] = o[(a + 48) >> 2]
- o[(a + 76) >> 2] = o[(a + 72) >> 2]
- va = (a + 216) | 0
- ia = o[(a + 220) >> 2]
- la = o[(a + 216) >> 2]
- if ((ia | 0) == (la | 0)) {
- break c
- }
- while (1) {
- ma = o[(ia + -12) >> 2]
- if (ma) {
- o[(ia + -8) >> 2] = ma
- ul(ma)
- }
- ma = o[(ia + -28) >> 2]
- if (ma) {
- o[(ia + -24) >> 2] = ma
- ul(ma)
- }
- ma = (ia + -144) | 0
- oa = o[(ia + -40) >> 2]
- if (oa) {
- o[(ia + -36) >> 2] = oa
- ul(oa)
- }
- Ug((ia + -140) | 0)
- ia = ma
- if ((la | 0) != (ia | 0)) {
- continue
- }
- break
- }
- ia = o[va >> 2]
- break b
- }
- _a(8776)
- D()
- }
- _a(8776)
- D()
- }
- ia = la
- }
- o[(a + 220) >> 2] = la
- ma = (((la - ia) | 0) / 144) | 0
- h: {
- if (ma >>> 0 < pa >>> 0) {
- Vg(va, (pa - ma) | 0)
- break h
- }
- if (ma >>> 0 <= pa >>> 0) {
- break h
- }
- ma = (ia + u(pa, 144)) | 0
- if ((ma | 0) != (la | 0)) {
- while (1) {
- ia = o[(la + -12) >> 2]
- if (ia) {
- o[(la + -8) >> 2] = ia
- ul(ia)
- }
- ia = o[(la + -28) >> 2]
- if (ia) {
- o[(la + -24) >> 2] = ia
- ul(ia)
- }
- ia = (la + -144) | 0
- oa = o[(la + -40) >> 2]
- if (oa) {
- o[(la + -36) >> 2] = oa
- ul(oa)
- }
- Ug((la + -140) | 0)
- la = ia
- if ((ia | 0) != (ma | 0)) {
- continue
- }
- break
- }
- }
- o[(a + 220) >> 2] = ma
- }
- oa = 0
- if (!Ji(o[(a + 8) >> 2], na, (sa + o[(a + 156) >> 2]) | 0)) {
- break a
- }
- la = o[(a + 156) >> 2]
- m[qa | 0] = 1
- $a((a + 120) | 0, (la + sa) | 0, qa)
- if ((Wg(a, o[(o[(a + 4) >> 2] + 32) >> 2]) | 0) == -1) {
- break a
- }
- o[(a + 376) >> 2] = a
- na = (a + 232) | 0
- la = o[((l[o[(o[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2]
- oa = (o[la >> 2] + o[(la + 16) >> 2]) | 0
- ma = o[((l[o[(o[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2]
- la = o[(ma + 8) >> 2]
- ia = o[(ma + 16) >> 2]
- pi(na, oa, (la - ia) | 0, q[(o[((l[o[(o[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2] + 38) >> 1])
- o[(a + 372) >> 2] = pa
- la = oi(qa)
- ia = o[(a + 268) >> 2]
- o[(a + 304) >> 2] = o[(a + 264) >> 2]
- o[(a + 308) >> 2] = ia
- ia = o[(a + 260) >> 2]
- o[(a + 296) >> 2] = o[(a + 256) >> 2]
- o[(a + 300) >> 2] = ia
- ma = (a + 248) | 0
- ia = o[(ma + 4) >> 2]
- o[(a + 288) >> 2] = o[ma >> 2]
- o[(a + 292) >> 2] = ia
- oa = (a + 240) | 0
- ia = oa
- pa = o[(ia + 4) >> 2]
- o[(a + 280) >> 2] = o[ia >> 2]
- o[(a + 284) >> 2] = pa
- ia = o[(a + 236) >> 2]
- pa = (a + 272) | 0
- o[pa >> 2] = o[(a + 232) >> 2]
- o[(pa + 4) >> 2] = ia
- i: {
- j: {
- if (qi(pa, 1, (qa + 56) | 0)) {
- ia = o[(pa + 4) >> 2]
- o[na >> 2] = o[pa >> 2]
- o[(na + 4) >> 2] = ia
- ia = o[(pa + 36) >> 2]
- o[(na + 32) >> 2] = o[(pa + 32) >> 2]
- o[(na + 36) >> 2] = ia
- ia = o[(pa + 28) >> 2]
- o[(na + 24) >> 2] = o[(pa + 24) >> 2]
- o[(na + 28) >> 2] = ia
- ia = o[(pa + 20) >> 2]
- o[(na + 16) >> 2] = o[(pa + 16) >> 2]
- o[(na + 20) >> 2] = ia
- ia = o[(pa + 12) >> 2]
- o[(na + 8) >> 2] = o[(pa + 8) >> 2]
- o[(na + 12) >> 2] = ia
- sa = o[oa >> 2]
- ia = o[ma >> 2]
- xa = (sa - ia) | 0
- wa = o[(qa + 60) >> 2]
- ya = o[(oa + 4) >> 2]
- oa = o[(ma + 4) >> 2]
- ma = (ya - ((oa + (sa >>> 0 < ia >>> 0)) | 0)) | 0
- sa = o[(qa + 56) >> 2]
- if ((((wa | 0) == (ma | 0)) & (sa >>> 0 <= xa >>> 0)) | (wa >>> 0 < ma >>> 0)) {
- break j
- }
- }
- oa = 0
- break i
- }
- oa = (oa + wa) | 0
- sa = (ia + sa) | 0
- if (sa >>> 0 < ia >>> 0) {
- oa = (oa + 1) | 0
- }
- o[(a + 248) >> 2] = sa
- o[(a + 252) >> 2] = oa
- oa = 0
- if (!Nf((a + 312) | 0, na)) {
- break i
- }
- if (!Xg(na)) {
- break i
- }
- ia = o[(na + 36) >> 2]
- o[(qa + 32) >> 2] = o[(na + 32) >> 2]
- o[(qa + 36) >> 2] = ia
- ia = o[(na + 28) >> 2]
- o[(qa + 24) >> 2] = o[(na + 24) >> 2]
- o[(qa + 28) >> 2] = ia
- ia = o[(na + 20) >> 2]
- o[(qa + 16) >> 2] = o[(na + 16) >> 2]
- o[(qa + 20) >> 2] = ia
- ia = o[(na + 12) >> 2]
- o[(qa + 8) >> 2] = o[(na + 8) >> 2]
- o[(qa + 12) >> 2] = ia
- ia = o[(na + 4) >> 2]
- o[qa >> 2] = o[na >> 2]
- o[(qa + 4) >> 2] = ia
- ta = Yg(a, ta)
- if ((ta | 0) == -1) {
- break i
- }
- ma = o[(o[(a + 4) >> 2] + 32) >> 2]
- ia = o[(la + 16) >> 2]
- na = (ia + o[la >> 2]) | 0
- la = o[(la + 8) >> 2]
- pi(ma, na, (la - ia) | 0, q[(ma + 38) >> 1])
- k: {
- if (o[(a + 220) >> 2] == o[(a + 216) >> 2]) {
- break k
- }
- la = o[ra >> 2]
- if (o[(la + 4) >> 2] == o[la >> 2]) {
- break k
- }
- ia = 0
- while (1) {
- if (Zg(a, ia)) {
- ia = (ia + 3) | 0
- la = o[ra >> 2]
- if (ia >>> 0 < ((o[(la + 4) >> 2] - o[la >> 2]) >> 2) >>> 0) {
- continue
- }
- break k
- }
- break
- }
- break i
- }
- if (p[(a + 308) | 0]) {
- si(pa)
- }
- la = o[(a + 216) >> 2]
- pa = (a + 220) | 0
- if ((la | 0) != o[pa >> 2]) {
- ma = 0
- while (1) {
- na = u(ma, 144)
- Ui((((na + la) | 0) + 4) | 0, o[ra >> 2])
- ia = o[va >> 2]
- oa = (na + ia) | 0
- la = o[(oa + 132) >> 2]
- oa = o[(oa + 136) >> 2]
- if ((la | 0) != (oa | 0)) {
- while (1) {
- Wi((((ia + na) | 0) + 4) | 0, o[la >> 2])
- ia = o[va >> 2]
- la = (la + 4) | 0
- if ((oa | 0) != (la | 0)) {
- continue
- }
- break
- }
- }
- Vi((((ia + na) | 0) + 4) | 0)
- ma = (ma + 1) | 0
- la = o[(a + 216) >> 2]
- if (ma >>> 0 < (((o[pa >> 2] - la) | 0) / 144) >>> 0) {
- continue
- }
- break
- }
- }
- la = o[(a + 8) >> 2]
- _g((a + 184) | 0, (o[(la + 28) >> 2] - o[(la + 24) >> 2]) >> 2)
- ia = o[(a + 216) >> 2]
- if ((ia | 0) != o[pa >> 2]) {
- la = 0
- na = (a + 220) | 0
- while (1) {
- ia = (u(la, 144) + ia) | 0
- ma = (o[(ia + 60) >> 2] - o[(ia + 56) >> 2]) >> 2
- pa = (ia + 104) | 0
- ia = o[ra >> 2]
- ia = (o[(ia + 28) >> 2] - o[(ia + 24) >> 2]) >> 2
- _g(pa, (ma | 0) < (ia | 0) ? ia : ma)
- la = (la + 1) | 0
- ia = o[(a + 216) >> 2]
- if (la >>> 0 < (((o[na >> 2] - ia) | 0) / 144) >>> 0) {
- continue
- }
- break
- }
- }
- oa = $g(a, ta)
- }
- }
- R = (qa - -64) | 0
- return oa | 0
- }
- function Tg(a, ua, za) {
- var Aa = 0,
- Ba = 0,
- Ca = 0,
- Da = 0
- a: {
- if (a >>> 0 > 5) {
- break a
- }
- Ca = o[(za + 16) >> 2]
- Aa = o[(za + 12) >> 2]
- Ba = o[(za + 20) >> 2]
- if ((Aa | 0) < (Ba | 0) ? 1 : (Aa | 0) <= (Ba | 0) ? (r[(za + 8) >> 2] > Ca >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Aa = p[(Ca + o[za >> 2]) | 0]
- Ca = (Ca + 1) | 0
- if (Ca >>> 0 < 1) {
- Ba = (Ba + 1) | 0
- }
- o[(za + 16) >> 2] = Ca
- o[(za + 20) >> 2] = Ba
- Ba = ua
- if (Aa & 128) {
- if (!Tg((a + 1) | 0, ua, za)) {
- break a
- }
- a = o[ua >> 2] << 7
- o[ua >> 2] = a
- Aa = a | (Aa & 127)
- }
- o[Ba >> 2] = Aa
- Da = 1
- }
- return Da
- }
- function Ug(a) {
- var ua = 0
- ua = o[(a + 84) >> 2]
- if (ua) {
- o[(a + 88) >> 2] = ua
- ul(ua)
- }
- ua = o[(a + 72) >> 2]
- if (ua) {
- o[(a + 76) >> 2] = ua
- ul(ua)
- }
- ua = o[(a + 52) >> 2]
- if (ua) {
- o[(a + 56) >> 2] = ua
- ul(ua)
- }
- ua = o[(a + 40) >> 2]
- if (ua) {
- o[(a + 44) >> 2] = ua
- ul(ua)
- }
- ua = o[(a + 28) >> 2]
- if (ua) {
- o[(a + 32) >> 2] = ua
- ul(ua)
- }
- ua = o[(a + 12) >> 2]
- if (ua) {
- ul(ua)
- }
- a = o[a >> 2]
- if (a) {
- ul(a)
- }
- }
- function Vg(a, za) {
- var Ea = 0,
- Fa = 0,
- Ga = 0,
- Ha = 0,
- Ia = 0,
- Ja = 0
- Fa = (R - 32) | 0
- R = Fa
- a: {
- b: {
- Ga = o[(a + 8) >> 2]
- Ha = (a + 4) | 0
- Ea = o[Ha >> 2]
- c: {
- if ((((Ga - Ea) | 0) / 144) >>> 0 >= za >>> 0) {
- while (1) {
- o[Ea >> 2] = -1
- Ti((Ea + 4) | 0)
- o[(Ea + 104) >> 2] = 0
- o[(Ea + 108) >> 2] = 0
- m[(Ea + 100) | 0] = 1
- o[(Ea + 112) >> 2] = 0
- o[(Ea + 116) >> 2] = 0
- o[(Ea + 120) >> 2] = 0
- o[(Ea + 124) >> 2] = 0
- o[(Ea + 128) >> 2] = 0
- o[(Ea + 132) >> 2] = 0
- o[(Ea + 136) >> 2] = 0
- o[(Ea + 140) >> 2] = 0
- Ea = (o[Ha >> 2] + 144) | 0
- o[Ha >> 2] = Ea
- za = (za + -1) | 0
- if (za) {
- continue
- }
- break c
- }
- }
- Ia = o[a >> 2]
- Ja = (((Ea - Ia) | 0) / 144) | 0
- Ea = (Ja + za) | 0
- if (Ea >>> 0 >= 29826162) {
- break b
- }
- o[(Fa + 24) >> 2] = a + 8
- Ha = 0
- o[(Fa + 20) >> 2] = 0
- Ga = (((Ga - Ia) | 0) / 144) | 0
- Ia = Ga << 1
- Ga = Ga >>> 0 < 14913080 ? (Ia >>> 0 < Ea >>> 0 ? Ea : Ia) : 29826161
- if (Ga) {
- if (Ga >>> 0 >= 29826162) {
- break a
- }
- Ha = Hk(u(Ga, 144))
- }
- o[(Fa + 8) >> 2] = Ha
- Ea = (u(Ja, 144) + Ha) | 0
- o[(Fa + 16) >> 2] = Ea
- o[(Fa + 20) >> 2] = u(Ga, 144) + Ha
- o[(Fa + 12) >> 2] = Ea
- while (1) {
- o[Ea >> 2] = -1
- Ti((Ea + 4) | 0)
- o[(Ea + 104) >> 2] = 0
- o[(Ea + 108) >> 2] = 0
- m[(Ea + 100) | 0] = 1
- o[(Ea + 112) >> 2] = 0
- o[(Ea + 116) >> 2] = 0
- o[(Ea + 120) >> 2] = 0
- o[(Ea + 124) >> 2] = 0
- o[(Ea + 128) >> 2] = 0
- o[(Ea + 132) >> 2] = 0
- o[(Ea + 136) >> 2] = 0
- o[(Ea + 140) >> 2] = 0
- Ea = (o[(Fa + 16) >> 2] + 144) | 0
- o[(Fa + 16) >> 2] = Ea
- za = (za + -1) | 0
- if (za) {
- continue
- }
- break
- }
- za = o[(a + 4) >> 2]
- Ga = o[a >> 2]
- d: {
- if ((za | 0) == (Ga | 0)) {
- Ha = o[(Fa + 12) >> 2]
- break d
- }
- Ha = o[(Fa + 12) >> 2]
- while (1) {
- za = (za + -144) | 0
- Ha = Qh((Ha + -144) | 0, za)
- if ((za | 0) != (Ga | 0)) {
- continue
- }
- break
- }
- o[(Fa + 12) >> 2] = Ha
- za = o[(a + 4) >> 2]
- Ga = o[a >> 2]
- }
- o[a >> 2] = Ha
- o[(Fa + 12) >> 2] = Ga
- o[(a + 4) >> 2] = Ea
- o[(Fa + 16) >> 2] = za
- a = (a + 8) | 0
- za = o[a >> 2]
- o[a >> 2] = o[(Fa + 20) >> 2]
- o[(Fa + 8) >> 2] = Ga
- o[(Fa + 20) >> 2] = za
- Rh((Fa + 8) | 0)
- }
- R = (Fa + 32) | 0
- return
- }
- Yk()
- D()
- }
- _a(8776)
- D()
- }
- function Wg(a, za) {
- var Ka = 0,
- La = 0,
- Ma = 0,
- Na = 0,
- Oa = 0,
- Pa = 0,
- Qa = 0,
- Ra = 0,
- Sa = 0,
- Ta = 0
- Ma = (R - 32) | 0
- R = Ma
- Pa = -1
- a: {
- if (!Tg(1, (Ma + 28) | 0, za)) {
- break a
- }
- Qa = o[(Ma + 28) >> 2]
- if (Qa) {
- La = o[(a + 8) >> 2]
- if (Qa >>> 0 > ((((o[(La + 4) >> 2] - o[La >> 2]) >> 2) >>> 0) / 3) >>> 0) {
- break a
- }
- Ta = (a + 36) | 0
- Ra = (a + 44) | 0
- La = (a + 40) | 0
- while (1) {
- Tg(1, (Ma + 12) | 0, za)
- o[(Ma + 20) >> 2] = o[(Ma + 12) >> 2] + Oa
- Tg(1, (Ma + 12) | 0, za)
- Oa = o[(Ma + 20) >> 2]
- Ka = o[(Ma + 12) >> 2]
- if (Oa >>> 0 < Ka >>> 0) {
- break a
- }
- o[(Ma + 16) >> 2] = Oa - Ka
- Ka = o[La >> 2]
- b: {
- if ((Ka | 0) != o[Ra >> 2]) {
- Sa = o[(Ma + 20) >> 2]
- o[Ka >> 2] = o[(Ma + 16) >> 2]
- o[(Ka + 4) >> 2] = Sa
- o[(Ka + 8) >> 2] = o[(Ma + 24) >> 2]
- o[La >> 2] = o[La >> 2] + 12
- break b
- }
- ah(Ta, (Ma + 16) | 0)
- }
- Na = (Na + 1) | 0
- if ((Qa | 0) != (Na | 0)) {
- continue
- }
- break
- }
- Oa = 0
- qi(za, 0, 0)
- Ta = (a + 36) | 0
- while (1) {
- La = p[(za + 36) | 0]
- Ka = q[(o[(a + 4) >> 2] + 36) >> 1]
- c: {
- if ((((Ka << 24) | ((Ka << 8) & 16711680)) >>> 16) >>> 0 <= 513) {
- if (!La) {
- break c
- }
- Na = 0
- La = o[(za + 32) >> 2]
- Pa = La >>> 3
- Ra = o[(za + 24) >> 2]
- Ka = (Pa + Ra) | 0
- Sa = o[(za + 28) >> 2]
- d: {
- if (Ka >>> 0 >= Sa >>> 0) {
- Ka = La
- break d
- }
- Na = p[Ka | 0]
- Ka = (La + 1) | 0
- o[(za + 32) >> 2] = Ka
- Pa = Ka >>> 3
- Na = (Na >>> (La & 7)) & 1
- }
- if ((Pa + Ra) >>> 0 >= Sa >>> 0) {
- break c
- }
- o[(za + 32) >> 2] = Ka + 1
- break c
- }
- if (!La) {
- break c
- }
- Na = 0
- La = o[(za + 32) >> 2]
- Ka = (o[(za + 24) >> 2] + (La >>> 3)) | 0
- if (Ka >>> 0 >= r[(za + 28) >> 2]) {
- break c
- }
- Ka = p[Ka | 0]
- o[(za + 32) >> 2] = La + 1
- Na = (Ka >>> (La & 7)) & 1
- }
- La = (o[Ta >> 2] + u(Oa, 12)) | 0
- m[(La + 8) | 0] = (p[(La + 8) | 0] & 254) | (Na & 1)
- Oa = (Oa + 1) | 0
- if ((Qa | 0) != (Oa | 0)) {
- continue
- }
- break
- }
- si(za)
- }
- Pa = o[(za + 16) >> 2]
- }
- R = (Ma + 32) | 0
- return Pa
- }
- function Xg(a) {
- var za = 0,
- Ua = 0,
- Va = 0,
- Wa = 0
- Ua = 1
- Va = o[(a + 140) >> 2]
- a: {
- if ((Va | 0) < 1) {
- break a
- }
- za = Va << 4
- Ua = Hk((Va | 0) != (Va & 268435455) ? -1 : za | 4)
- o[Ua >> 2] = Va
- Ua = (Ua + 4) | 0
- Va = (Ua + za) | 0
- za = Ua
- while (1) {
- za = (Mf(za) + 16) | 0
- if ((Va | 0) != (za | 0)) {
- continue
- }
- break
- }
- Wa = o[(a + 136) >> 2]
- o[(a + 136) >> 2] = Ua
- if (Wa) {
- Va = (Wa + -4) | 0
- Ua = o[Va >> 2]
- if (Ua) {
- za = (Wa + (Ua << 4)) | 0
- while (1) {
- za = (za + -16) | 0
- if ((Wa | 0) != (za | 0)) {
- continue
- }
- break
- }
- }
- ul(Va)
- }
- Ua = 1
- if (o[(a + 140) >> 2] < 1) {
- break a
- }
- Ua = 0
- za = 0
- while (1) {
- if (!Nf((o[(a + 136) >> 2] + (za << 4)) | 0, a)) {
- break a
- }
- za = (za + 1) | 0
- if ((za | 0) < o[(a + 140) >> 2]) {
- continue
- }
- break
- }
- Ua = 1
- }
- return Ua
- }
- function Yg(a, Xa) {
- var Ya = 0,
- Za = 0,
- _a = 0,
- $a = 0,
- bb = 0,
- cb = 0,
- db = 0,
- eb = 0,
- fb = 0,
- gb = 0,
- hb = 0,
- ib = 0,
- jb = 0,
- kb = 0,
- lb = 0,
- mb = 0,
- nb = 0,
- ob = 0,
- pb = 0,
- qb = 0,
- rb = 0,
- sb = 0,
- tb = 0
- $a = (R - 96) | 0
- R = $a
- o[($a + 72) >> 2] = 0
- o[($a + 64) >> 2] = 0
- o[($a + 68) >> 2] = 0
- o[($a + 48) >> 2] = 0
- o[($a + 52) >> 2] = 0
- o[($a + 40) >> 2] = 0
- o[($a + 44) >> 2] = 0
- o[($a + 56) >> 2] = 1065353216
- o[($a + 32) >> 2] = 0
- o[($a + 24) >> 2] = 0
- o[($a + 28) >> 2] = 0
- rb = o[(a + 124) >> 2]
- a: {
- b: {
- c: {
- d: {
- if ((Xa | 0) >= 1) {
- qb = (a + 8) | 0
- nb = o[(a + 216) >> 2] != o[(a + 220) >> 2]
- ob = (a + 40) | 0
- while (1) {
- e: {
- f: {
- g: {
- h: {
- i: {
- j: {
- k: {
- if (!p[(a + 308) | 0]) {
- break k
- }
- l: {
- m: {
- eb = o[(a + 296) >> 2]
- gb = o[(a + 304) >> 2]
- Ya = (eb + (gb >>> 3)) | 0
- cb = o[(a + 300) >> 2]
- if (Ya >>> 0 >= cb >>> 0) {
- break m
- }
- Ya = p[Ya | 0]
- Za = (gb + 1) | 0
- o[(a + 304) >> 2] = Za
- if (!((Ya >>> (gb & 7)) & 1)) {
- break m
- }
- Ya = Za >>> 3
- _a = (eb + Ya) | 0
- n: {
- if (_a >>> 0 >= cb >>> 0) {
- _a = Za
- Za = 0
- break n
- }
- db = p[_a | 0]
- _a = (gb + 2) | 0
- o[(a + 304) >> 2] = _a
- Ya = _a >>> 3
- Za = (db >>> (Za & 7)) & 1
- }
- Ya = (Ya + eb) | 0
- if (Ya >>> 0 < cb >>> 0) {
- Ya = p[Ya | 0]
- o[(a + 304) >> 2] = _a + 1
- Ya = ((Ya >>> (_a & 7)) << 1) & 2
- } else {
- Ya = 0
- }
- Ya = ((Za | Ya) << 1) | 1
- switch ((Ya + -2) | 0) {
- case 0:
- case 2:
- case 4:
- break h
- case 5:
- break j
- case 1:
- case 3:
- break l
- default:
- break k
- }
- }
- Za = o[($a + 68) >> 2]
- if ((Za | 0) == o[($a + 64) >> 2]) {
- break d
- }
- eb = -1
- ib = o[qb >> 2]
- cb = o[(ib + 24) >> 2]
- _a = cb
- db = (Za + -4) | 0
- lb = o[db >> 2]
- Ya = -1
- o: {
- if ((lb | 0) == -1) {
- break o
- }
- Za = (lb + 1) | 0
- Za = (Za >>> 0) % 3 | 0 ? Za : (lb + -2) | 0
- Ya = -1
- if ((Za | 0) == -1) {
- break o
- }
- Ya = o[(o[ib >> 2] + (Za << 2)) >> 2]
- }
- _a = o[(_a + (Ya << 2)) >> 2]
- if ((_a | 0) != -1) {
- Za = (_a + 1) | 0
- eb = (Za >>> 0) % 3 | 0 ? Za : (_a + -2) | 0
- }
- _a = o[(ib + 12) >> 2]
- jb = u(bb, 3)
- Za = (jb + 1) | 0
- o[(_a + (lb << 2)) >> 2] = Za
- Za = Za << 2
- o[(Za + _a) >> 2] = lb
- hb = (jb + 2) | 0
- o[(_a + (eb << 2)) >> 2] = hb
- gb = hb << 2
- o[(gb + _a) >> 2] = eb
- kb = o[ib >> 2]
- o[(kb + (jb << 2)) >> 2] = Ya
- _a = (Za + kb) | 0
- fb = -1
- p: {
- if ((eb | 0) == -1) {
- break p
- }
- Za = (eb + 1) | 0
- Za = (Za >>> 0) % 3 | 0 ? Za : (eb + -2) | 0
- fb = -1
- if ((Za | 0) == -1) {
- break p
- }
- fb = o[(kb + (Za << 2)) >> 2]
- }
- o[_a >> 2] = fb
- q: {
- r: {
- if ((lb | 0) != -1) {
- Za = (lb + ((lb >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((Za | 0) != -1) {
- break r
- }
- }
- o[(gb + kb) >> 2] = -1
- break q
- }
- Za = o[(kb + (Za << 2)) >> 2]
- o[(gb + kb) >> 2] = Za
- if ((Za | 0) == -1) {
- break q
- }
- o[(cb + (Za << 2)) >> 2] = hb
- }
- _a = (o[(a + 120) >> 2] + ((Ya >>> 3) & 536870908)) | 0
- Za = o[_a >> 2]
- ;(sb = _a), (tb = Zl(Ya) & Za), (o[sb >> 2] = tb)
- o[db >> 2] = jb
- break e
- }
- _a = o[($a + 68) >> 2]
- if ((_a | 0) == o[($a + 64) >> 2]) {
- break d
- }
- gb = o[qb >> 2]
- Za = o[(gb + 12) >> 2]
- hb = u(bb, 3)
- eb = (Ya | 0) == 5
- cb = (hb + (eb ? 2 : 1)) | 0
- Ya = cb << 2
- kb = o[(_a + -4) >> 2]
- o[(Za + Ya) >> 2] = kb
- o[(Za + (kb << 2)) >> 2] = cb
- db = (gb + 24) | 0
- _a = (gb + 28) | 0
- Za = o[_a >> 2]
- s: {
- if ((Za | 0) != o[(gb + 32) >> 2]) {
- o[Za >> 2] = -1
- ib = (Za + 4) | 0
- o[_a >> 2] = ib
- break s
- }
- bh(db, 8212)
- ib = o[_a >> 2]
- }
- _a = -1
- Za = o[qb >> 2]
- gb = o[(Za + 24) >> 2]
- if ((o[(Za + 28) >> 2] - gb) >> 2 > (rb | 0)) {
- break c
- }
- _a = (hb + 2) | 0
- jb = o[Za >> 2]
- fb = (jb + Ya) | 0
- Za = (ib - o[db >> 2]) | 0
- Ya = ((Za >> 2) + -1) | 0
- o[fb >> 2] = Ya
- if (Za) {
- o[(gb + (Ya << 2)) >> 2] = cb
- }
- _a = eb ? hb : _a
- Za = (jb + ((eb + hb) << 2)) | 0
- t: {
- u: {
- v: {
- if ((kb | 0) != -1) {
- Ya = (kb + ((kb >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((Ya | 0) == -1) {
- break v
- }
- Ya = o[(jb + (Ya << 2)) >> 2]
- o[(jb + (_a << 2)) >> 2] = Ya
- if ((Ya | 0) == -1) {
- break u
- }
- o[(gb + (Ya << 2)) >> 2] = _a
- break u
- }
- o[(jb + (_a << 2)) >> 2] = -1
- _a = -1
- break t
- }
- o[(jb + (_a << 2)) >> 2] = -1
- }
- Ya = (kb + 1) | 0
- Ya = (Ya >>> 0) % 3 | 0 ? Ya : (kb + -2) | 0
- _a = -1
- if ((Ya | 0) == -1) {
- break t
- }
- _a = o[(jb + (Ya << 2)) >> 2]
- }
- o[Za >> 2] = _a
- o[(o[($a + 68) >> 2] + -4) >> 2] = hb
- break i
- }
- _a = -1
- Ya = o[($a + 68) >> 2]
- ib = o[($a + 64) >> 2]
- if ((Ya | 0) == (ib | 0)) {
- break c
- }
- Za = (Ya + -4) | 0
- mb = o[Za >> 2]
- o[($a + 68) >> 2] = Za
- hb = o[($a + 44) >> 2]
- w: {
- if (!hb) {
- Ya = Za
- break w
- }
- cb = o[($a + 40) >> 2]
- gb = Yl(hb) >>> 0 > 1
- db = (hb + 2147483647) & bb
- x: {
- if (!gb) {
- break x
- }
- db = bb
- if (bb >>> 0 < hb >>> 0) {
- break x
- }
- db = (bb >>> 0) % (hb >>> 0) | 0
- }
- cb = o[(cb + (db << 2)) >> 2]
- if (!cb) {
- Ya = Za
- break w
- }
- fb = o[cb >> 2]
- if (!fb) {
- Ya = Za
- break w
- }
- cb = (hb + -1) | 0
- y: {
- while (1) {
- eb = o[(fb + 4) >> 2]
- z: {
- if ((eb | 0) != (bb | 0)) {
- A: {
- if (!gb) {
- eb = eb & cb
- break A
- }
- if (eb >>> 0 < hb >>> 0) {
- break A
- }
- eb = (eb >>> 0) % (hb >>> 0) | 0
- }
- if ((eb | 0) == (db | 0)) {
- break z
- }
- Ya = Za
- break w
- }
- if (o[(fb + 8) >> 2] == (bb | 0)) {
- break y
- }
- }
- fb = o[fb >> 2]
- if (fb) {
- continue
- }
- break
- }
- Ya = Za
- break w
- }
- db = (fb + 12) | 0
- if ((Za | 0) != o[($a + 72) >> 2]) {
- o[Za >> 2] = o[db >> 2]
- o[($a + 68) >> 2] = Ya
- break w
- }
- bh(($a - -64) | 0, db)
- Ya = o[($a + 68) >> 2]
- ib = o[($a + 64) >> 2]
- }
- if ((Ya | 0) == (ib | 0)) {
- break c
- }
- lb = o[(Ya + -4) >> 2]
- db = (lb | 0) == -1
- pb = o[qb >> 2]
- if (o[(o[(pb + 12) >> 2] + (lb << 2)) >> 2] != -1 ? !db : 0) {
- break c
- }
- gb = (mb | 0) == -1
- hb = (pb + 12) | 0
- cb = o[hb >> 2]
- if (o[(cb + (mb << 2)) >> 2] != -1 ? !gb : 0) {
- break c
- }
- kb = u(bb, 3)
- ib = (kb + 2) | 0
- o[(cb + (lb << 2)) >> 2] = ib
- jb = ib << 2
- o[(jb + cb) >> 2] = lb
- Za = (kb + 1) | 0
- o[(cb + (mb << 2)) >> 2] = Za
- eb = cb
- cb = Za << 2
- o[(eb + cb) >> 2] = mb
- if (db) {
- break g
- }
- eb = -1
- db = o[pb >> 2]
- fb = (db + (kb << 2)) | 0
- Za = (lb + ((lb >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((Za | 0) != -1) {
- eb = o[((Za << 2) + db) >> 2]
- }
- o[fb >> 2] = eb
- Za = (lb + 1) | 0
- Za = (Za >>> 0) % 3 | 0 ? Za : (lb + -2) | 0
- if ((Za | 0) == -1) {
- break f
- }
- _a = o[((Za << 2) + db) >> 2]
- break f
- }
- o[$a >> 2] = u(bb, 3)
- Ya = o[qb >> 2]
- _a = (Ya + 24) | 0
- cb = o[(Ya + 32) >> 2]
- Za = (Ya + 28) | 0
- Ya = o[Za >> 2]
- B: {
- if ((cb | 0) != (Ya | 0)) {
- o[Ya >> 2] = -1
- Ya = (Ya + 4) | 0
- o[Za >> 2] = Ya
- break B
- }
- bh(_a, 8212)
- Ya = o[Za >> 2]
- }
- ib = o[qb >> 2]
- eb = o[ib >> 2]
- Za = o[$a >> 2]
- gb = (Ya - o[_a >> 2]) | 0
- hb = gb >> 2
- _a = (hb + -1) | 0
- o[(eb + (Za << 2)) >> 2] = _a
- Za = (Za + 1) | 0
- cb = (ib + 24) | 0
- db = (ib + 28) | 0
- Ya = o[db >> 2]
- C: {
- if ((Ya | 0) != o[(ib + 32) >> 2]) {
- o[Ya >> 2] = -1
- Ya = (Ya + 4) | 0
- o[db >> 2] = Ya
- break C
- }
- bh(cb, 8212)
- Ya = o[db >> 2]
- eb = o[ib >> 2]
- }
- o[((Za << 2) + eb) >> 2] = ((Ya - o[cb >> 2]) >> 2) + -1
- Ya = (o[$a >> 2] + 2) | 0
- cb = o[qb >> 2]
- Za = (cb + 28) | 0
- db = o[Za >> 2]
- D: {
- if ((db | 0) != o[(cb + 32) >> 2]) {
- o[db >> 2] = -1
- eb = (db + 4) | 0
- o[Za >> 2] = eb
- break D
- }
- bh((cb + 24) | 0, 8212)
- eb = o[Za >> 2]
- }
- o[(o[cb >> 2] + (Ya << 2)) >> 2] = ((eb - o[(cb + 24) >> 2]) >> 2) + -1
- Ya = o[qb >> 2]
- Za = o[(Ya + 24) >> 2]
- if ((o[(Ya + 28) >> 2] - Za) >> 2 > (rb | 0)) {
- break d
- }
- Ya = o[$a >> 2]
- E: {
- F: {
- if (!gb) {
- eb = 1
- o[(Za + (hb << 2)) >> 2] = Ya + 1
- break F
- }
- o[(Za + (_a << 2)) >> 2] = Ya
- eb = 0
- if ((gb | 0) == -4) {
- break F
- }
- o[(Za + (hb << 2)) >> 2] = o[$a >> 2] + 1
- eb = (hb + 1) | 0
- if ((eb | 0) == -1) {
- break E
- }
- }
- o[(Za + (eb << 2)) >> 2] = o[$a >> 2] + 2
- }
- Ya = o[($a + 68) >> 2]
- if ((Ya | 0) != o[($a + 72) >> 2]) {
- o[Ya >> 2] = o[$a >> 2]
- o[($a + 68) >> 2] = Ya + 4
- break i
- }
- bh(($a - -64) | 0, $a)
- }
- fb = o[ob >> 2]
- if ((fb | 0) == o[(a + 36) >> 2]) {
- break e
- }
- cb = ((bb ^ -1) + Xa) | 0
- while (1) {
- _a = -1
- Ya = o[(fb + -8) >> 2]
- if (Ya >>> 0 > cb >>> 0) {
- break c
- }
- if ((Ya | 0) != (cb | 0)) {
- break e
- }
- Za = p[(fb + -4) | 0]
- Ya = (fb + -12) | 0
- db = o[Ya >> 2]
- o[ob >> 2] = Ya
- if ((db | 0) < 0) {
- break c
- }
- _a = o[(o[($a + 68) >> 2] + -4) >> 2]
- o[($a + 20) >> 2] = (db ^ -1) + Xa
- o[($a + 88) >> 2] = $a + 20
- ch($a, ($a + 40) | 0, ($a + 20) | 0, ($a + 88) | 0)
- db = o[$a >> 2]
- G: {
- if (Za & 1) {
- Ya = -1
- if ((_a | 0) == -1) {
- break G
- }
- Ya = (_a + 1) | 0
- Ya = (Ya >>> 0) % 3 | 0 ? Ya : (_a + -2) | 0
- break G
- }
- Ya = -1
- if ((_a | 0) == -1) {
- break G
- }
- Ya = (_a + -1) | 0
- if ((_a >>> 0) % 3) {
- break G
- }
- Ya = (_a + 2) | 0
- }
- o[(db + 12) >> 2] = Ya
- fb = o[ob >> 2]
- if ((fb | 0) != o[(a + 36) >> 2]) {
- continue
- }
- break
- }
- break e
- }
- D()
- }
- eb = -1
- db = o[pb >> 2]
- o[(db + (kb << 2)) >> 2] = -1
- }
- o[(cb + db) >> 2] = _a
- H: {
- I: {
- J: {
- if (!gb) {
- Za = (mb + ((mb >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((Za | 0) == -1) {
- break J
- }
- Za = o[((Za << 2) + db) >> 2]
- o[(db + jb) >> 2] = Za
- if ((Za | 0) == -1) {
- break I
- }
- o[(o[(pb + 24) >> 2] + (Za << 2)) >> 2] = ib
- break I
- }
- o[(db + jb) >> 2] = -1
- fb = -1
- _a = -1
- break H
- }
- o[(db + jb) >> 2] = -1
- }
- fb = -1
- Za = (mb + 1) | 0
- Za = (Za >>> 0) % 3 | 0 ? Za : (mb + -2) | 0
- _a = -1
- if ((Za | 0) == -1) {
- break H
- }
- fb = o[((Za << 2) + db) >> 2]
- _a = Za
- }
- o[$a >> 2] = fb
- cb = o[(pb + 24) >> 2]
- if ((eb | 0) != -1) {
- o[(cb + (eb << 2)) >> 2] = o[(cb + (fb << 2)) >> 2]
- }
- K: {
- if ((_a | 0) == -1) {
- break K
- }
- db = o[pb >> 2]
- while (1) {
- o[(db + (_a << 2)) >> 2] = eb
- Za = (_a + 1) | 0
- Za = (Za >>> 0) % 3 | 0 ? Za : (_a + -2) | 0
- if ((Za | 0) == -1) {
- break K
- }
- _a = o[(o[hb >> 2] + (Za << 2)) >> 2]
- if ((_a | 0) == -1) {
- break K
- }
- Za = (_a + 1) | 0
- _a = (Za >>> 0) % 3 | 0 ? Za : (_a + -2) | 0
- if ((_a | 0) != -1) {
- continue
- }
- break
- }
- }
- o[(cb + (o[$a >> 2] << 2)) >> 2] = -1
- L: {
- if (nb) {
- break L
- }
- Za = o[($a + 28) >> 2]
- if ((Za | 0) != o[($a + 32) >> 2]) {
- o[Za >> 2] = o[$a >> 2]
- o[($a + 28) >> 2] = Za + 4
- break L
- }
- bh(($a + 24) | 0, $a)
- Ya = o[($a + 68) >> 2]
- }
- o[(Ya + -4) >> 2] = kb
- }
- bb = (bb + 1) | 0
- if ((bb | 0) != (Xa | 0)) {
- continue
- }
- break
- }
- eb = Xa
- }
- _a = -1
- fb = o[(a + 8) >> 2]
- if ((o[(fb + 28) >> 2] - o[(fb + 24) >> 2]) >> 2 > (rb | 0)) {
- break c
- }
- bb = o[($a + 68) >> 2]
- if ((bb | 0) != o[($a + 64) >> 2]) {
- lb = (a + 72) | 0
- Za = (a + 60) | 0
- ib = (a + 312) | 0
- nb = (a + 8) | 0
- kb = (a + 68) | 0
- rb = (a + 80) | 0
- pb = (a + 76) | 0
- while (1) {
- Ya = (bb + -4) | 0
- Xa = o[Ya >> 2]
- o[($a + 68) >> 2] = Ya
- o[$a >> 2] = Xa
- M: {
- if (Pf(ib)) {
- hb = o[nb >> 2]
- mb = o[hb >> 2]
- if ((eb | 0) >= (((((o[(hb + 4) >> 2] - mb) >> 2) >>> 0) / 3) | 0)) {
- break d
- }
- Ya = -1
- fb = -1
- bb = o[(hb + 24) >> 2]
- cb = bb
- ob = o[$a >> 2]
- db = -1
- N: {
- if ((ob | 0) == -1) {
- break N
- }
- Xa = (ob + 1) | 0
- Xa = (Xa >>> 0) % 3 | 0 ? Xa : (ob + -2) | 0
- db = -1
- if ((Xa | 0) == -1) {
- break N
- }
- db = o[(mb + (Xa << 2)) >> 2]
- }
- cb = o[(cb + (db << 2)) >> 2]
- O: {
- if ((cb | 0) == -1) {
- break O
- }
- Xa = (cb + 1) | 0
- Xa = (Xa >>> 0) % 3 | 0 ? Xa : (cb + -2) | 0
- if ((Xa | 0) == -1) {
- break O
- }
- Ya = (Xa + 1) | 0
- Ya = (Ya >>> 0) % 3 | 0 ? Ya : (Xa + -2) | 0
- if ((Ya | 0) != -1) {
- fb = o[(mb + (Ya << 2)) >> 2]
- }
- Ya = Xa
- }
- Xa = -1
- jb = -1
- gb = o[(bb + (fb << 2)) >> 2]
- cb = -1
- P: {
- if ((gb | 0) == -1) {
- break P
- }
- bb = (gb + 1) | 0
- bb = (bb >>> 0) % 3 | 0 ? bb : (gb + -2) | 0
- cb = -1
- if ((bb | 0) == -1) {
- break P
- }
- cb = (bb + 1) | 0
- cb = (cb >>> 0) % 3 | 0 ? cb : (bb + -2) | 0
- if ((cb | 0) != -1) {
- jb = o[(mb + (cb << 2)) >> 2]
- }
- cb = bb
- }
- bb = u(eb, 3)
- o[($a + 88) >> 2] = bb
- gb = o[(hb + 12) >> 2]
- o[(gb + (bb << 2)) >> 2] = ob
- o[(gb + (ob << 2)) >> 2] = bb
- bb = (o[($a + 88) >> 2] + 1) | 0
- o[(gb + (bb << 2)) >> 2] = Ya
- o[(gb + (Ya << 2)) >> 2] = bb
- Ya = (o[($a + 88) >> 2] + 2) | 0
- o[(gb + (Ya << 2)) >> 2] = cb
- o[(gb + (cb << 2)) >> 2] = Ya
- Ya = o[($a + 88) >> 2]
- o[(mb + (Ya << 2)) >> 2] = fb
- ob = (Ya + 1) | 0
- hb = (mb + (ob << 2)) | 0
- o[hb >> 2] = jb
- gb = (Ya + 2) | 0
- cb = (mb + (gb << 2)) | 0
- o[cb >> 2] = db
- jb = o[(a + 120) >> 2]
- bb = ob >>> 0 < Ya >>> 0 ? -1 : fb
- db = (jb + ((bb >>> 3) & 536870908)) | 0
- Ya = o[db >> 2]
- ;(sb = db), (tb = Zl(bb) & Ya), (o[sb >> 2] = tb)
- Xa = (ob | 0) != -1 ? o[hb >> 2] : Xa
- db = (jb + ((Xa >>> 3) & 536870908)) | 0
- Ya = o[db >> 2]
- ;(sb = db), (tb = Zl(Xa) & Ya), (o[sb >> 2] = tb)
- bb = -1
- bb = (gb | 0) != -1 ? o[cb >> 2] : bb
- Ya = (jb + ((bb >>> 3) & 536870908)) | 0
- Xa = o[Ya >> 2]
- ;(sb = Ya), (tb = Zl(bb) & Xa), (o[sb >> 2] = tb)
- bb = o[(a + 64) >> 2]
- Ya = o[kb >> 2]
- if ((bb | 0) == Ya << 5) {
- if (((bb + 1) | 0) <= -1) {
- break a
- }
- Xa = Za
- if (bb >>> 0 <= 1073741822) {
- db = (bb + 32) & -32
- Ya = Ya << 6
- Ya = Ya >>> 0 < db >>> 0 ? db : Ya
- } else {
- Ya = 2147483647
- }
- ab(Xa, Ya)
- bb = o[(a + 64) >> 2]
- }
- eb = (eb + 1) | 0
- o[(a + 64) >> 2] = bb + 1
- Xa = (o[(a + 60) >> 2] + ((bb >>> 3) & 536870908)) | 0
- o[Xa >> 2] = o[Xa >> 2] | (1 << (bb & 31))
- Xa = o[pb >> 2]
- if ((Xa | 0) != o[rb >> 2]) {
- o[Xa >> 2] = o[($a + 88) >> 2]
- o[pb >> 2] = Xa + 4
- break M
- }
- bh(lb, ($a + 88) | 0)
- break M
- }
- bb = o[(a + 64) >> 2]
- Ya = o[kb >> 2]
- if ((bb | 0) == Ya << 5) {
- if (((bb + 1) | 0) <= -1) {
- break a
- }
- Xa = Za
- if (bb >>> 0 <= 1073741822) {
- db = (bb + 32) & -32
- Ya = Ya << 6
- Ya = Ya >>> 0 < db >>> 0 ? db : Ya
- } else {
- Ya = 2147483647
- }
- ab(Xa, Ya)
- bb = o[(a + 64) >> 2]
- }
- o[(a + 64) >> 2] = bb + 1
- Ya = (o[(a + 60) >> 2] + ((bb >>> 3) & 536870908)) | 0
- Xa = o[Ya >> 2]
- ;(sb = Ya), (tb = Zl(bb) & Xa), (o[sb >> 2] = tb)
- Xa = o[pb >> 2]
- if ((Xa | 0) != o[rb >> 2]) {
- o[Xa >> 2] = o[$a >> 2]
- o[pb >> 2] = Xa + 4
- break M
- }
- bh(lb, $a)
- }
- bb = o[($a + 68) >> 2]
- if ((bb | 0) != o[($a + 64) >> 2]) {
- continue
- }
- break
- }
- fb = o[(a + 8) >> 2]
- }
- if ((((((o[(fb + 4) >> 2] - o[fb >> 2]) >> 2) >>> 0) / 3) | 0) != (eb | 0)) {
- break c
- }
- _a = (o[(fb + 28) >> 2] - o[(fb + 24) >> 2]) >> 2
- nb = o[($a + 24) >> 2]
- cb = o[($a + 28) >> 2]
- if ((nb | 0) == (cb | 0)) {
- break b
- }
- db = (a + 8) | 0
- while (1) {
- hb = o[nb >> 2]
- eb = o[(fb + 24) >> 2]
- bb = (_a + -1) | 0
- Q: {
- if (o[(eb + (bb << 2)) >> 2] != -1) {
- Ya = _a
- break Q
- }
- eb = o[(fb + 24) >> 2]
- while (1) {
- bb = (_a + -2) | 0
- Ya = (_a + -1) | 0
- _a = Ya
- if (o[((bb << 2) + eb) >> 2] == -1) {
- continue
- }
- break
- }
- }
- if (!(bb >>> 0 < hb >>> 0)) {
- o[$a >> 2] = fb
- Xa = bb << 2
- _a = o[(Xa + eb) >> 2]
- m[($a + 12) | 0] = 1
- o[($a + 8) >> 2] = _a
- o[($a + 4) >> 2] = _a
- if ((_a | 0) != -1) {
- while (1) {
- o[(o[fb >> 2] + (_a << 2)) >> 2] = hb
- jf($a)
- fb = o[db >> 2]
- _a = o[($a + 8) >> 2]
- if ((_a | 0) != -1) {
- continue
- }
- break
- }
- }
- Za = Xa
- Xa = o[(fb + 24) >> 2]
- Za = (Za + Xa) | 0
- if ((hb | 0) != -1) {
- o[(Xa + (hb << 2)) >> 2] = o[Za >> 2]
- }
- o[Za >> 2] = -1
- gb = 1 << (hb & 31)
- Xa = o[(a + 120) >> 2]
- _a = (Xa + ((hb >>> 3) & 536870908)) | 0
- Za = _a
- eb = (Xa + ((bb >>> 3) & 536870908)) | 0
- Xa = 1 << (bb & 31)
- bb = gb | o[_a >> 2]
- R: {
- if (o[eb >> 2] & Xa) {
- break R
- }
- bb = o[_a >> 2] & (gb ^ -1)
- }
- o[Za >> 2] = bb
- o[eb >> 2] = o[eb >> 2] & (Xa ^ -1)
- Ya = (Ya + -1) | 0
- }
- _a = Ya
- nb = (nb + 4) | 0
- if ((cb | 0) != (nb | 0)) {
- continue
- }
- break
- }
- break c
- }
- _a = -1
- }
- nb = o[($a + 24) >> 2]
- }
- if (nb) {
- o[($a + 28) >> 2] = nb
- ul(nb)
- }
- bb = o[($a + 48) >> 2]
- if (bb) {
- while (1) {
- a = o[bb >> 2]
- ul(bb)
- bb = a
- if (bb) {
- continue
- }
- break
- }
- }
- a = o[($a + 40) >> 2]
- o[($a + 40) >> 2] = 0
- if (a) {
- ul(a)
- }
- a = o[($a + 64) >> 2]
- if (a) {
- o[($a + 68) >> 2] = a
- ul(a)
- }
- R = ($a + 96) | 0
- return _a
- }
- Yk()
- D()
- }
- function Zg(a, Xa) {
- var ab = 0,
- ub = 0,
- vb = 0,
- wb = 0,
- xb = 0,
- yb = 0,
- zb = 0,
- Ab = 0,
- Bb = 0,
- Cb = 0,
- Db = 0,
- Eb = 0
- ub = (R - 32) | 0
- R = ub
- o[(ub + 16) >> 2] = Xa
- ab = -1
- a: {
- if ((Xa | 0) == -1) {
- o[(ub + 20) >> 2] = -1
- break a
- }
- ab = (Xa + 1) | 0
- o[(ub + 20) >> 2] = (ab >>> 0) % 3 | 0 ? ab : (Xa + -2) | 0
- if ((Xa >>> 0) % 3) {
- ab = (Xa + -1) | 0
- break a
- }
- ab = (Xa + 2) | 0
- }
- o[(ub + 24) >> 2] = ab
- Cb = (Xa | 0) == -1 ? -1 : ((Xa >>> 0) / 3) | 0
- yb = (a + 220) | 0
- Db = (a + 8) | 0
- Eb = (a + 368) | 0
- while (1) {
- b: {
- c: {
- if ((Xa | 0) != -1) {
- ab = o[(o[(o[Db >> 2] + 12) >> 2] + (Xa << 2)) >> 2]
- if ((ab | 0) != -1) {
- break c
- }
- }
- ab = 0
- vb = o[(a + 216) >> 2]
- wb = o[yb >> 2]
- if ((vb | 0) == (wb | 0)) {
- break b
- }
- while (1) {
- o[(ub + 12) >> 2] = Xa
- xb = (u(ab, 144) + vb) | 0
- Bb = (xb + 136) | 0
- zb = o[Bb >> 2]
- d: {
- if (zb >>> 0 < r[(xb + 140) >> 2]) {
- o[zb >> 2] = Xa
- o[Bb >> 2] = zb + 4
- break d
- }
- wa((xb + 132) | 0, (ub + 12) | 0)
- wb = o[yb >> 2]
- vb = o[(a + 216) >> 2]
- }
- ab = (ab + 1) | 0
- if (ab >>> 0 < (((wb - vb) | 0) / 144) >>> 0) {
- continue
- }
- break
- }
- break b
- }
- if (((ab >>> 0) / 3) >>> 0 < Cb >>> 0) {
- break b
- }
- ab = 0
- if (o[yb >> 2] == o[(a + 216) >> 2]) {
- break b
- }
- while (1) {
- e: {
- if (!Pf((o[Eb >> 2] + (ab << 4)) | 0)) {
- break e
- }
- vb = o[(a + 216) >> 2]
- o[(ub + 12) >> 2] = Xa
- vb = (vb + u(ab, 144)) | 0
- xb = (vb + 136) | 0
- wb = o[xb >> 2]
- if (wb >>> 0 < r[(vb + 140) >> 2]) {
- o[wb >> 2] = Xa
- o[xb >> 2] = wb + 4
- break e
- }
- wa((vb + 132) | 0, (ub + 12) | 0)
- }
- ab = (ab + 1) | 0
- if (ab >>> 0 < (((o[yb >> 2] - o[(a + 216) >> 2]) | 0) / 144) >>> 0) {
- continue
- }
- break
- }
- }
- Ab = (Ab + 1) | 0
- if ((Ab | 0) != 3) {
- Xa = o[(((ub + 16) | 0) + (Ab << 2)) >> 2]
- continue
- }
- break
- }
- R = (ub + 32) | 0
- return 1
- }
- function _g(a, Xa) {
- var Fb = 0,
- Gb = 0,
- Hb = 0,
- Ib = 0,
- Jb = 0
- Gb = o[(a + 12) >> 2]
- Fb = (o[(a + 16) >> 2] - Gb) >> 2
- a: {
- if (Fb >>> 0 < Xa >>> 0) {
- Da((a + 12) | 0, (Xa - Fb) | 0)
- break a
- }
- if (Fb >>> 0 <= Xa >>> 0) {
- break a
- }
- o[(a + 16) >> 2] = Gb + (Xa << 2)
- }
- b: {
- Fb = o[a >> 2]
- c: {
- if (((o[(a + 8) >> 2] - Fb) >> 2) >>> 0 >= Xa >>> 0) {
- break c
- }
- if (Xa >>> 0 >= 1073741824) {
- break b
- }
- Ib = (a + 4) | 0
- Gb = o[Ib >> 2]
- Hb = Xa << 2
- Xa = Hk(Hb)
- Hb = (Xa + Hb) | 0
- Gb = (Gb - Fb) | 0
- Jb = (Gb + Xa) | 0
- if ((Gb | 0) >= 1) {
- wl(Xa, Fb, Gb)
- }
- o[a >> 2] = Xa
- o[(a + 8) >> 2] = Hb
- o[Ib >> 2] = Jb
- if (!Fb) {
- break c
- }
- ul(Fb)
- }
- return
- }
- _a(8776)
- D()
- }
- function $g(a, Xa) {
- var Kb = 0,
- Lb = 0,
- Mb = 0,
- Nb = 0,
- Ob = 0,
- Pb = 0,
- Qb = 0,
- Rb = 0,
- Sb = 0,
- Tb = 0,
- Ub = 0,
- Vb = 0,
- Wb = 0,
- Xb = 0,
- Yb = 0,
- Zb = 0
- Lb = (R - 48) | 0
- R = Lb
- Kb = o[(a + 8) >> 2]
- Mb = o[Kb >> 2]
- Ob = o[(Kb + 4) >> 2]
- Kb = o[(o[(a + 4) >> 2] + 44) >> 2]
- o[(Lb + 40) >> 2] = 0
- o[(Lb + 32) >> 2] = 0
- o[(Lb + 36) >> 2] = 0
- Mb = ((((Ob - Mb) >> 2) >>> 0) / 3) | 0
- Nb = o[(Kb + 96) >> 2]
- Ob = (((o[(Kb + 100) >> 2] - Nb) | 0) / 12) | 0
- a: {
- if (Mb >>> 0 > Ob >>> 0) {
- dh((Kb + 96) | 0, (Mb - Ob) | 0, (Lb + 32) | 0)
- break a
- }
- if (Mb >>> 0 >= Ob >>> 0) {
- break a
- }
- o[(Kb + 100) >> 2] = Nb + u(Mb, 12)
- }
- b: {
- if (o[(a + 216) >> 2] == o[(a + 220) >> 2]) {
- Sb = o[(a + 4) >> 2]
- Kb = o[(Sb + 44) >> 2]
- Mb = o[(Kb + 100) >> 2]
- Qb = o[(Kb + 96) >> 2]
- if ((Mb | 0) != (Qb | 0)) {
- Tb = (((Mb - Qb) | 0) / 12) | 0
- Ub = (Lb + 40) | 0
- Kb = 0
- while (1) {
- o[Ub >> 2] = 0
- o[(Lb + 32) >> 2] = 0
- o[(Lb + 36) >> 2] = 0
- Ob = Lb
- c: {
- d: {
- e: {
- Nb = u(Kb, 3)
- if ((Nb | 0) == -1) {
- Mb = -1
- o[(Lb + 32) >> 2] = -1
- Pb = 0
- break e
- }
- Mb = o[(o[o[(a + 8) >> 2] >> 2] + (Nb << 2)) >> 2]
- o[(Lb + 32) >> 2] = Mb
- Pb = (Nb + 1) | 0
- if ((Pb | 0) != -1) {
- break e
- }
- o[(Lb + 36) >> 2] = -1
- Nb = 0
- break d
- }
- o[(Lb + 36) >> 2] = o[(o[o[(a + 8) >> 2] >> 2] + (Pb << 2)) >> 2]
- Nb = (Nb + 2) | 0
- Vb = -1
- if ((Nb | 0) == -1) {
- break c
- }
- }
- Vb = o[(o[o[(a + 8) >> 2] >> 2] + (Nb << 2)) >> 2]
- }
- o[(Ob + 40) >> 2] = Vb
- Ob = (Qb + u(Kb, 12)) | 0
- o[Ob >> 2] = Mb
- o[(Ob + 4) >> 2] = o[(Lb + 36) >> 2]
- o[(Ob + 8) >> 2] = o[(Lb + 40) >> 2]
- Kb = (Kb + 1) | 0
- if (Kb >>> 0 < Tb >>> 0) {
- continue
- }
- break
- }
- }
- o[(o[(Sb + 4) >> 2] + 80) >> 2] = Xa
- Kb = 1
- break b
- }
- o[(Lb + 40) >> 2] = 0
- o[(Lb + 32) >> 2] = 0
- o[(Lb + 36) >> 2] = 0
- Nb = o[(a + 8) >> 2]
- Xa = o[Nb >> 2]
- Kb = o[(Nb + 4) >> 2]
- o[(Lb + 24) >> 2] = 0
- o[(Lb + 16) >> 2] = 0
- o[(Lb + 20) >> 2] = 0
- f: {
- g: {
- h: {
- Xa = (Kb - Xa) | 0
- if (Xa) {
- Mb = Xa >> 2
- if (Mb >>> 0 >= 1073741824) {
- break h
- }
- Kb = Hk(Xa)
- o[(Lb + 16) >> 2] = Kb
- o[(Lb + 24) >> 2] = Kb + (Mb << 2)
- ;(Yb = Lb), (Zb = (xl(Kb, 0, Xa) + Xa) | 0), (o[(Yb + 20) >> 2] = Zb)
- }
- if (((o[(Nb + 28) >> 2] - o[(Nb + 24) >> 2]) | 0) < 1) {
- break g
- }
- Sb = (a + 220) | 0
- Tb = (a + 8) | 0
- while (1) {
- Mb = o[(o[(Nb + 24) >> 2] + (Qb << 2)) >> 2]
- i: {
- if ((Mb | 0) == -1) {
- break i
- }
- j: {
- if ((o[(o[(a + 120) >> 2] + ((Qb >>> 3) & 536870908)) >> 2] >>> (Qb & 31)) & 1) {
- break j
- }
- Xa = o[Sb >> 2]
- Ub = o[(a + 216) >> 2]
- if ((Xa | 0) == (Ub | 0)) {
- break j
- }
- Vb = (((Xa - Ub) | 0) / 144) | 0
- Wb = (((Mb >>> 0) % 3 | 0 ? -1 : 2) + Mb) | 0
- Pb = 0
- while (1) {
- Xb = Mb << 2
- Rb = (Ub + u(Pb, 144)) | 0
- Xa = o[(Xb + o[o[(Rb + 68) >> 2] >> 2]) >> 2]
- k: {
- if (!((o[(o[(Rb + 16) >> 2] + ((Xa >>> 3) & 536870908)) >> 2] >>> (Xa & 31)) & 1)) {
- break k
- }
- Xa = Mb
- Kb = -1
- l: {
- if ((Wb | 0) == -1) {
- break l
- }
- Ob = o[(o[(Nb + 12) >> 2] + (Wb << 2)) >> 2]
- Kb = -1
- if ((Ob | 0) == -1) {
- break l
- }
- Kb = (Ob + -1) | 0
- if ((Ob >>> 0) % 3) {
- break l
- }
- Kb = (Ob + 2) | 0
- }
- if ((Xa | 0) == (Kb | 0)) {
- break k
- }
- Rb = o[(Rb + 32) >> 2]
- Xb = o[(Rb + Xb) >> 2]
- while (1) {
- Xa = 0
- if ((Kb | 0) == -1) {
- break f
- }
- if ((Xb | 0) != o[(Rb + (Kb << 2)) >> 2]) {
- Mb = Kb
- break j
- }
- Ob = Mb
- Kb = (((Kb >>> 0) % 3 | 0 ? -1 : 2) + Kb) | 0
- Xa = -1
- m: {
- if ((Kb | 0) == -1) {
- break m
- }
- Kb = o[(o[(Nb + 12) >> 2] + (Kb << 2)) >> 2]
- Xa = -1
- if ((Kb | 0) == -1) {
- break m
- }
- Xa = (Kb + -1) | 0
- if ((Kb >>> 0) % 3) {
- break m
- }
- Xa = (Kb + 2) | 0
- }
- Kb = Xa
- if ((Ob | 0) != (Kb | 0)) {
- continue
- }
- break
- }
- }
- Pb = (Pb + 1) | 0
- if (Pb >>> 0 < Vb >>> 0) {
- continue
- }
- break
- }
- }
- Xa = o[(Lb + 36) >> 2]
- o[(o[(Lb + 16) >> 2] + (Mb << 2)) >> 2] = (Xa - o[(Lb + 32) >> 2]) >> 2
- o[Lb >> 2] = Mb
- n: {
- if (r[(Lb + 40) >> 2] > Xa >>> 0) {
- o[Xa >> 2] = Mb
- o[(Lb + 36) >> 2] = Xa + 4
- break n
- }
- wa((Lb + 32) | 0, Lb)
- Nb = o[Tb >> 2]
- }
- if ((Mb | 0) == -1) {
- break i
- }
- Xa = (((Mb >>> 0) % 3 | 0 ? -1 : 2) + Mb) | 0
- if ((Xa | 0) == -1) {
- break i
- }
- Xa = o[(o[(Nb + 12) >> 2] + (Xa << 2)) >> 2]
- if ((Xa | 0) == -1) {
- break i
- }
- Kb = (Xa + ((Xa >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((Kb | 0) == -1) {
- break i
- }
- Ob = Mb
- if ((Kb | 0) == (Mb | 0)) {
- break i
- }
- while (1) {
- Xa = Kb
- o: {
- p: {
- Kb = o[Sb >> 2]
- Pb = o[(a + 216) >> 2]
- if ((Kb | 0) == (Pb | 0)) {
- break p
- }
- Ub = (((Kb - Pb) | 0) / 144) | 0
- Kb = 0
- while (1) {
- Wb = o[(((Pb + u(Kb, 144)) | 0) + 32) >> 2]
- Rb = Xa << 2
- if (o[(Wb + Rb) >> 2] == o[(Wb + (Ob << 2)) >> 2]) {
- Kb = (Kb + 1) | 0
- if (Kb >>> 0 < Ub >>> 0) {
- continue
- }
- break p
- }
- break
- }
- Kb = o[(Lb + 36) >> 2]
- o[(Rb + o[(Lb + 16) >> 2]) >> 2] = (Kb - o[(Lb + 32) >> 2]) >> 2
- o[Lb >> 2] = Xa
- if (r[(Lb + 40) >> 2] > Kb >>> 0) {
- o[Kb >> 2] = Xa
- o[(Lb + 36) >> 2] = Kb + 4
- break o
- }
- wa((Lb + 32) | 0, Lb)
- Nb = o[Tb >> 2]
- break o
- }
- Kb = o[(Lb + 16) >> 2]
- o[(Kb + (Xa << 2)) >> 2] = o[(Kb + (Ob << 2)) >> 2]
- }
- if ((Xa | 0) == -1) {
- break i
- }
- Kb = (Xa + ((Xa >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((Kb | 0) == -1) {
- break i
- }
- Kb = o[(o[(Nb + 12) >> 2] + (Kb << 2)) >> 2]
- if ((Kb | 0) == -1) {
- break i
- }
- Kb = (Kb + ((Kb >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((Kb | 0) == -1) {
- break i
- }
- Ob = Xa
- if ((Kb | 0) != (Mb | 0)) {
- continue
- }
- break
- }
- }
- Qb = (Qb + 1) | 0
- if ((Qb | 0) < (o[(Nb + 28) >> 2] - o[(Nb + 24) >> 2]) >> 2) {
- continue
- }
- break
- }
- break g
- }
- Yk()
- D()
- }
- Mb = o[(a + 4) >> 2]
- a = o[(Mb + 44) >> 2]
- Xa = o[(a + 100) >> 2]
- a = o[(a + 96) >> 2]
- if ((Xa | 0) != (a | 0)) {
- Ob = (((Xa - a) | 0) / 12) | 0
- Kb = 0
- Nb = o[(Lb + 16) >> 2]
- while (1) {
- Qb = (Lb + 8) | 0
- Pb = u(Kb, 12)
- Xa = (Pb + Nb) | 0
- o[Qb >> 2] = o[(Xa + 8) >> 2]
- Sb = o[(Xa + 4) >> 2]
- Tb = o[Xa >> 2]
- o[Lb >> 2] = Tb
- o[(Lb + 4) >> 2] = Sb
- Xa = (a + Pb) | 0
- o[Xa >> 2] = Tb
- o[(Xa + 4) >> 2] = o[(Lb + 4) >> 2]
- o[(Xa + 8) >> 2] = o[Qb >> 2]
- Kb = (Kb + 1) | 0
- if (Kb >>> 0 < Ob >>> 0) {
- continue
- }
- break
- }
- }
- o[(o[(Mb + 4) >> 2] + 80) >> 2] = (o[(Lb + 36) >> 2] - o[(Lb + 32) >> 2]) >> 2
- Xa = 1
- }
- Kb = Xa
- a = o[(Lb + 16) >> 2]
- if (a) {
- o[(Lb + 20) >> 2] = a
- ul(a)
- }
- a = o[(Lb + 32) >> 2]
- if (!a) {
- break b
- }
- o[(Lb + 36) >> 2] = a
- ul(a)
- }
- R = (Lb + 48) | 0
- return Kb
- }
- function ah(a, Xa) {
- var _b = 0,
- $b = 0,
- ac = 0,
- bc = 0,
- cc = 0,
- dc = 0
- a: {
- bc = o[a >> 2]
- cc = (o[(a + 4) >> 2] - bc) | 0
- _b = ((cc | 0) / 12) | 0
- $b = (_b + 1) | 0
- if ($b >>> 0 < 357913942) {
- dc = u(_b, 12)
- ac = (((o[(a + 8) >> 2] - bc) | 0) / 12) | 0
- _b = ac << 1
- ac = ac >>> 0 < 178956970 ? (_b >>> 0 < $b >>> 0 ? $b : _b) : 357913941
- _b = 0
- b: {
- if (!ac) {
- break b
- }
- if (ac >>> 0 >= 357913942) {
- break a
- }
- _b = Hk(u(ac, 12))
- }
- $b = (dc + _b) | 0
- dc = o[(Xa + 4) >> 2]
- o[$b >> 2] = o[Xa >> 2]
- o[($b + 4) >> 2] = dc
- o[($b + 8) >> 2] = o[(Xa + 8) >> 2]
- Xa = ($b + u(((cc | 0) / -12) | 0, 12)) | 0
- _b = (_b + u(ac, 12)) | 0
- $b = ($b + 12) | 0
- if ((cc | 0) >= 1) {
- wl(Xa, bc, cc)
- }
- o[a >> 2] = Xa
- o[(a + 8) >> 2] = _b
- o[(a + 4) >> 2] = $b
- if (bc) {
- ul(bc)
- }
- return
- }
- Yk()
- D()
- }
- _a(8776)
- D()
- }
- function bh(a, Xa) {
- var ec = 0,
- fc = 0,
- gc = 0,
- hc = 0,
- ic = 0,
- jc = 0
- a: {
- gc = o[a >> 2]
- ic = (o[(a + 4) >> 2] - gc) | 0
- ec = ic >> 2
- fc = (ec + 1) | 0
- if (fc >>> 0 < 1073741824) {
- jc = ec << 2
- ec = (o[(a + 8) >> 2] - gc) | 0
- hc = ec >> 1
- fc = (ec >> 2) >>> 0 < 536870911 ? (hc >>> 0 < fc >>> 0 ? fc : hc) : 1073741823
- ec = 0
- b: {
- if (!fc) {
- break b
- }
- if (fc >>> 0 >= 1073741824) {
- break a
- }
- ec = Hk(fc << 2)
- }
- hc = (jc + ec) | 0
- o[hc >> 2] = o[Xa >> 2]
- Xa = (ec + (fc << 2)) | 0
- fc = (hc + 4) | 0
- if ((ic | 0) >= 1) {
- wl(ec, gc, ic)
- }
- o[a >> 2] = ec
- o[(a + 8) >> 2] = Xa
- o[(a + 4) >> 2] = fc
- if (gc) {
- ul(gc)
- }
- return
- }
- Yk()
- D()
- }
- _a(8776)
- D()
- }
- function ch(a, Xa, kc, lc) {
- var mc = 0,
- nc = 0,
- oc = 0,
- pc = 0,
- qc = 0,
- rc = v(0),
- sc = 0,
- tc = v(0),
- uc = 0
- mc = o[kc >> 2]
- uc = a
- a: {
- b: {
- nc = o[(Xa + 4) >> 2]
- if (!nc) {
- break b
- }
- sc = o[Xa >> 2]
- pc = Yl(nc)
- kc = (nc + -1) & mc
- c: {
- if (pc >>> 0 <= 1) {
- break c
- }
- kc = mc
- if (mc >>> 0 < nc >>> 0) {
- break c
- }
- kc = (mc >>> 0) % (nc >>> 0) | 0
- }
- oc = kc
- kc = o[((kc << 2) + sc) >> 2]
- if (!kc) {
- break b
- }
- sc = (nc + -1) | 0
- pc = pc >>> 0 > 1
- while (1) {
- kc = o[kc >> 2]
- if (!kc) {
- break b
- }
- qc = o[(kc + 4) >> 2]
- if ((qc | 0) != (mc | 0)) {
- d: {
- if (!pc) {
- qc = qc & sc
- break d
- }
- if (qc >>> 0 < nc >>> 0) {
- break d
- }
- qc = (qc >>> 0) % (nc >>> 0) | 0
- }
- if ((oc | 0) != (qc | 0)) {
- break b
- }
- }
- if (o[(kc + 8) >> 2] != (mc | 0)) {
- continue
- }
- break
- }
- Xa = 0
- break a
- }
- kc = Hk(16)
- lc = o[o[lc >> 2] >> 2]
- o[(kc + 12) >> 2] = 0
- o[(kc + 8) >> 2] = lc
- o[(kc + 4) >> 2] = mc
- o[kc >> 2] = 0
- tc = s[(Xa + 16) >> 2]
- rc = v((o[(Xa + 12) >> 2] + 1) >>> 0)
- e: {
- if (!(!nc | !!(v(tc * v(nc >>> 0)) < rc))) {
- mc = oc
- break e
- }
- oc = (((nc + -1) & nc) != 0) | (nc >>> 0 < 3) | (nc << 1)
- lc = Xa
- rc = v(B(v(rc / tc)))
- f: {
- if ((rc < v(4294967296)) & (rc >= v(0))) {
- pc = ~~rc >>> 0
- break f
- }
- pc = 0
- }
- Sh(lc, oc >>> 0 < pc >>> 0 ? pc : oc)
- nc = o[(Xa + 4) >> 2]
- if (!(nc & (nc + -1))) {
- mc = (nc + -1) & mc
- break e
- }
- if (mc >>> 0 < nc >>> 0) {
- break e
- }
- mc = (mc >>> 0) % (nc >>> 0) | 0
- }
- lc = (o[Xa >> 2] + (mc << 2)) | 0
- mc = o[lc >> 2]
- g: {
- h: {
- if (!mc) {
- oc = (Xa + 8) | 0
- o[kc >> 2] = o[oc >> 2]
- o[oc >> 2] = kc
- o[lc >> 2] = oc
- lc = o[kc >> 2]
- if (!lc) {
- break g
- }
- mc = o[(lc + 4) >> 2]
- lc = (nc + -1) | 0
- i: {
- if (!(lc & nc)) {
- mc = lc & mc
- break i
- }
- if (mc >>> 0 < nc >>> 0) {
- break i
- }
- mc = (mc >>> 0) % (nc >>> 0) | 0
- }
- mc = (o[Xa >> 2] + (mc << 2)) | 0
- break h
- }
- o[kc >> 2] = o[mc >> 2]
- }
- o[mc >> 2] = kc
- }
- Xa = (Xa + 12) | 0
- o[Xa >> 2] = o[Xa >> 2] + 1
- Xa = 1
- }
- m[(uc + 4) | 0] = Xa
- o[a >> 2] = kc
- }
- function dh(a, Xa, kc) {
- var lc = 0,
- vc = 0,
- wc = 0,
- xc = 0,
- yc = 0
- a: {
- b: {
- xc = o[(a + 8) >> 2]
- vc = (a + 4) | 0
- lc = o[vc >> 2]
- c: {
- if ((((xc - lc) | 0) / 12) >>> 0 >= Xa >>> 0) {
- while (1) {
- a = o[(kc + 4) >> 2]
- o[lc >> 2] = o[kc >> 2]
- o[(lc + 4) >> 2] = a
- o[(lc + 8) >> 2] = o[(kc + 8) >> 2]
- lc = (o[vc >> 2] + 12) | 0
- o[vc >> 2] = lc
- Xa = (Xa + -1) | 0
- if (Xa) {
- continue
- }
- break c
- }
- }
- wc = o[a >> 2]
- yc = (((lc - wc) | 0) / 12) | 0
- vc = (yc + Xa) | 0
- if (vc >>> 0 >= 357913942) {
- break b
- }
- xc = (((xc - wc) | 0) / 12) | 0
- wc = xc << 1
- vc = xc >>> 0 < 178956970 ? (wc >>> 0 < vc >>> 0 ? vc : wc) : 357913941
- lc = 0
- d: {
- if (!vc) {
- break d
- }
- if (vc >>> 0 >= 357913942) {
- break a
- }
- lc = Hk(u(vc, 12))
- }
- xc = (lc + u(vc, 12)) | 0
- vc = (lc + u(yc, 12)) | 0
- lc = vc
- while (1) {
- wc = o[(kc + 4) >> 2]
- o[lc >> 2] = o[kc >> 2]
- o[(lc + 4) >> 2] = wc
- o[(lc + 8) >> 2] = o[(kc + 8) >> 2]
- lc = (lc + 12) | 0
- Xa = (Xa + -1) | 0
- if (Xa) {
- continue
- }
- break
- }
- wc = (a + 4) | 0
- Xa = o[a >> 2]
- kc = (o[wc >> 2] - Xa) | 0
- vc = (vc + u(((kc | 0) / -12) | 0, 12)) | 0
- if ((kc | 0) >= 1) {
- wl(vc, Xa, kc)
- }
- o[a >> 2] = vc
- o[(a + 8) >> 2] = xc
- o[wc >> 2] = lc
- if (!Xa) {
- break c
- }
- ul(Xa)
- }
- return
- }
- Yk()
- D()
- }
- _a(8776)
- D()
- }
- function eh(a) {
- a = a | 0
- return o[(a + 8) >> 2]
- }
- function fh(a) {
- o[a >> 2] = 8224
- xl((a + 4) | 0, 0, 80)
- o[(a + 96) >> 2] = 0
- o[(a + 100) >> 2] = 0
- o[(a + 92) >> 2] = -1
- o[(a + 84) >> 2] = -1
- o[(a + 88) >> 2] = -1
- o[(a + 104) >> 2] = 0
- o[(a + 108) >> 2] = 0
- o[(a + 112) >> 2] = 0
- o[(a + 116) >> 2] = 0
- o[(a + 120) >> 2] = 0
- o[(a + 124) >> 2] = 0
- o[(a + 128) >> 2] = 0
- o[(a + 132) >> 2] = 0
- o[(a + 136) >> 2] = 0
- o[(a + 140) >> 2] = 0
- o[(a + 144) >> 2] = 0
- o[(a + 148) >> 2] = 0
- o[(a + 156) >> 2] = 0
- o[(a + 160) >> 2] = 0
- o[(a + 152) >> 2] = 1065353216
- o[(a + 164) >> 2] = 0
- o[(a + 168) >> 2] = 0
- o[(a + 172) >> 2] = 0
- o[(a + 176) >> 2] = 0
- o[(a + 180) >> 2] = 0
- o[(a + 184) >> 2] = 0
- o[(a + 188) >> 2] = 0
- o[(a + 192) >> 2] = 0
- o[(a + 196) >> 2] = 0
- o[(a + 200) >> 2] = 0
- o[(a + 204) >> 2] = 0
- o[(a + 208) >> 2] = 0
- o[(a + 212) >> 2] = -1
- o[(a + 216) >> 2] = 0
- o[(a + 220) >> 2] = 0
- o[(a + 224) >> 2] = 0
- Hg((a + 232) | 0)
- o[(a + 388) >> 2] = 0
- o[(a + 392) >> 2] = 0
- o[(a + 380) >> 2] = 0
- o[(a + 384) >> 2] = 0
- o[(a + 416) >> 2] = 0
- o[(a + 420) >> 2] = 0
- o[(a + 412) >> 2] = 7
- o[(a + 404) >> 2] = -1
- o[(a + 408) >> 2] = 2
- o[(a + 396) >> 2] = 0
- o[(a + 400) >> 2] = -1
- o[(a + 424) >> 2] = 0
- o[(a + 428) >> 2] = 0
- o[(a + 432) >> 2] = 0
- o[(a + 436) >> 2] = 0
- }
- function gh(a) {
- a = a | 0
- var Xa = 0,
- kc = 0,
- zc = 0,
- Ac = 0,
- Bc = 0,
- Cc = 0,
- Dc = 0,
- Ec = 0,
- Fc = 0,
- Gc = 0,
- Hc = 0,
- Ic = 0,
- Jc = 0,
- Kc = 0
- Bc = (R + -64) | 0
- R = Bc
- o[(a + 132) >> 2] = 0
- if (o[(a + 148) >> 2]) {
- zc = (a + 144) | 0
- Xa = o[zc >> 2]
- if (Xa) {
- while (1) {
- kc = o[Xa >> 2]
- ul(Xa)
- Xa = kc
- if (Xa) {
- continue
- }
- break
- }
- }
- o[zc >> 2] = 0
- kc = o[(a + 140) >> 2]
- if (kc) {
- zc = (a + 136) | 0
- Xa = 0
- while (1) {
- o[(o[zc >> 2] + (Xa << 2)) >> 2] = 0
- Xa = (Xa + 1) | 0
- if ((kc | 0) != (Xa | 0)) {
- continue
- }
- break
- }
- }
- o[(a + 148) >> 2] = 0
- }
- a: {
- if (!Tg(1, (Bc + 60) | 0, o[(o[(a + 4) >> 2] + 32) >> 2])) {
- break a
- }
- o[(a + 156) >> 2] = o[(Bc + 60) >> 2]
- if (!Tg(1, (Bc + 56) | 0, o[(o[(a + 4) >> 2] + 32) >> 2])) {
- break a
- }
- Ac = o[(Bc + 56) >> 2]
- if ((Ac >>> 0 > 1431655765) | (r[(a + 156) >> 2] > u(Ac, 3) >>> 0)) {
- break a
- }
- Xa = o[(o[(a + 4) >> 2] + 32) >> 2]
- Cc = o[(Xa + 16) >> 2]
- zc = o[(Xa + 12) >> 2]
- kc = o[(Xa + 20) >> 2]
- if ((zc | 0) < (kc | 0) ? 1 : (zc | 0) <= (kc | 0) ? (r[(Xa + 8) >> 2] > Cc >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Dc = p[(Cc + o[Xa >> 2]) | 0]
- Cc = (Cc + 1) | 0
- if (Cc >>> 0 < 1) {
- kc = (kc + 1) | 0
- }
- o[(Xa + 16) >> 2] = Cc
- o[(Xa + 20) >> 2] = kc
- if (!Tg(1, (Bc + 52) | 0, Xa)) {
- break a
- }
- Gc = o[(Bc + 52) >> 2]
- if ((Ac >>> 0 < Gc >>> 0) | (Ac >>> 0 > (Gc + (((Gc >>> 0) / 3) | 0)) >>> 0)) {
- break a
- }
- if (!Tg(1, (Bc + 48) | 0, o[(o[(a + 4) >> 2] + 32) >> 2])) {
- break a
- }
- Ec = o[(Bc + 48) >> 2]
- if (Ec >>> 0 > Gc >>> 0) {
- break a
- }
- o[(a + 28) >> 2] = o[(a + 24) >> 2]
- kc = Hk(88)
- zi(kc)
- Xa = o[(a + 8) >> 2]
- o[(a + 8) >> 2] = kc
- Cc = (a + 8) | 0
- if (Xa) {
- ua(Cc, Xa)
- if (!o[Cc >> 2]) {
- break a
- }
- }
- Xa = o[(a + 160) >> 2]
- o[(a + 164) >> 2] = Xa
- b: {
- c: {
- d: {
- e: {
- f: {
- if (((o[(a + 168) >> 2] - Xa) >> 2) >>> 0 >= Ac >>> 0) {
- break f
- }
- if (Ac >>> 0 >= 1073741824) {
- break e
- }
- zc = Ac << 2
- kc = Hk(zc)
- o[(a + 164) >> 2] = kc
- o[(a + 160) >> 2] = kc
- o[(a + 168) >> 2] = kc + zc
- if (!Xa) {
- break f
- }
- ul(Xa)
- }
- Xa = o[(a + 172) >> 2]
- o[(a + 176) >> 2] = Xa
- g: {
- if (((o[(a + 180) >> 2] - Xa) >> 2) >>> 0 >= Ac >>> 0) {
- break g
- }
- if (Ac >>> 0 >= 1073741824) {
- break d
- }
- zc = Ac << 2
- kc = Hk(zc)
- o[(a + 176) >> 2] = kc
- o[(a + 172) >> 2] = kc
- o[(a + 180) >> 2] = kc + zc
- if (!Xa) {
- break g
- }
- ul(Xa)
- }
- o[(a + 92) >> 2] = -1
- o[(a + 84) >> 2] = -1
- o[(a + 88) >> 2] = -1
- o[(a + 40) >> 2] = o[(a + 36) >> 2]
- o[(a - -64) >> 2] = 0
- o[(a + 52) >> 2] = o[(a + 48) >> 2]
- o[(a + 76) >> 2] = o[(a + 72) >> 2]
- Hc = (a + 216) | 0
- kc = o[(a + 220) >> 2]
- Xa = o[(a + 216) >> 2]
- if ((kc | 0) == (Xa | 0)) {
- break c
- }
- while (1) {
- zc = o[(kc + -12) >> 2]
- if (zc) {
- o[(kc + -8) >> 2] = zc
- ul(zc)
- }
- zc = o[(kc + -28) >> 2]
- if (zc) {
- o[(kc + -24) >> 2] = zc
- ul(zc)
- }
- zc = (kc + -144) | 0
- Fc = o[(kc + -40) >> 2]
- if (Fc) {
- o[(kc + -36) >> 2] = Fc
- ul(Fc)
- }
- Ug((kc + -140) | 0)
- kc = zc
- if ((Xa | 0) != (kc | 0)) {
- continue
- }
- break
- }
- kc = o[Hc >> 2]
- break b
- }
- _a(8776)
- D()
- }
- _a(8776)
- D()
- }
- kc = Xa
- }
- o[(a + 220) >> 2] = Xa
- zc = (((Xa - kc) | 0) / 144) | 0
- h: {
- if (zc >>> 0 < Dc >>> 0) {
- Vg(Hc, (Dc - zc) | 0)
- break h
- }
- if (zc >>> 0 <= Dc >>> 0) {
- break h
- }
- zc = (kc + u(Dc, 144)) | 0
- if ((zc | 0) != (Xa | 0)) {
- while (1) {
- kc = o[(Xa + -12) >> 2]
- if (kc) {
- o[(Xa + -8) >> 2] = kc
- ul(kc)
- }
- kc = o[(Xa + -28) >> 2]
- if (kc) {
- o[(Xa + -24) >> 2] = kc
- ul(kc)
- }
- kc = (Xa + -144) | 0
- Fc = o[(Xa + -40) >> 2]
- if (Fc) {
- o[(Xa + -36) >> 2] = Fc
- ul(Fc)
- }
- Ug((Xa + -140) | 0)
- Xa = kc
- if ((Xa | 0) != (zc | 0)) {
- continue
- }
- break
- }
- }
- o[(a + 220) >> 2] = zc
- }
- Fc = 0
- if (!Ji(o[(a + 8) >> 2], Ac, (Ec + o[(a + 156) >> 2]) | 0)) {
- break a
- }
- Xa = o[(a + 156) >> 2]
- m[(Bc + 8) | 0] = 1
- $a((a + 120) | 0, (Xa + Ec) | 0, (Bc + 8) | 0)
- if ((Wg(a, o[(o[(a + 4) >> 2] + 32) >> 2]) | 0) == -1) {
- break a
- }
- o[(a + 376) >> 2] = a
- Ac = (a + 232) | 0
- Xa = o[((l[o[(o[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2]
- Ic = (o[Xa >> 2] + o[(Xa + 16) >> 2]) | 0
- zc = o[((l[o[(o[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2]
- Xa = o[(zc + 8) >> 2]
- kc = o[(zc + 16) >> 2]
- pi(Ac, Ic, (Xa - kc) | 0, q[(o[((l[o[(o[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2] + 38) >> 1])
- ;(Jc = a), (Kc = l[o[(o[a >> 2] + 36) >> 2]](a) | 0), (o[(Jc + 380) >> 2] = Kc)
- o[(a + 372) >> 2] = Dc
- o[(a + 384) >> 2] = Ec + o[(a + 156) >> 2]
- Xa = oi((Bc + 8) | 0)
- i: {
- if (!hh(Ac, Xa)) {
- break i
- }
- Gc = ih(a, Gc)
- if ((Gc | 0) == -1) {
- break i
- }
- zc = o[(o[(a + 4) >> 2] + 32) >> 2]
- kc = o[(Xa + 16) >> 2]
- Dc = (kc + o[Xa >> 2]) | 0
- Xa = o[(Xa + 8) >> 2]
- pi(zc, Dc, (Xa - kc) | 0, q[(zc + 38) >> 1])
- j: {
- if (o[(a + 220) >> 2] == o[(a + 216) >> 2]) {
- break j
- }
- Xa = o[Cc >> 2]
- if (o[(Xa + 4) >> 2] == o[Xa >> 2]) {
- break j
- }
- Xa = 0
- while (1) {
- if (Zg(a, Xa)) {
- Xa = (Xa + 3) | 0
- kc = o[Cc >> 2]
- if (Xa >>> 0 < ((o[(kc + 4) >> 2] - o[kc >> 2]) >> 2) >>> 0) {
- continue
- }
- break j
- }
- break
- }
- break i
- }
- if (p[(a + 308) | 0]) {
- si((a + 272) | 0)
- }
- Xa = o[(a + 216) >> 2]
- Dc = (a + 220) | 0
- if ((Xa | 0) != o[Dc >> 2]) {
- zc = 0
- while (1) {
- Ac = u(zc, 144)
- Ui((((Ac + Xa) | 0) + 4) | 0, o[Cc >> 2])
- kc = o[Hc >> 2]
- Ec = (Ac + kc) | 0
- Xa = o[(Ec + 132) >> 2]
- Ec = o[(Ec + 136) >> 2]
- if ((Xa | 0) != (Ec | 0)) {
- while (1) {
- Wi((((kc + Ac) | 0) + 4) | 0, o[Xa >> 2])
- kc = o[Hc >> 2]
- Xa = (Xa + 4) | 0
- if ((Ec | 0) != (Xa | 0)) {
- continue
- }
- break
- }
- }
- Vi((((kc + Ac) | 0) + 4) | 0)
- zc = (zc + 1) | 0
- Xa = o[(a + 216) >> 2]
- if (zc >>> 0 < (((o[Dc >> 2] - Xa) | 0) / 144) >>> 0) {
- continue
- }
- break
- }
- }
- Xa = o[(a + 8) >> 2]
- _g((a + 184) | 0, (o[(Xa + 28) >> 2] - o[(Xa + 24) >> 2]) >> 2)
- kc = o[(a + 216) >> 2]
- if ((kc | 0) != o[Dc >> 2]) {
- Xa = 0
- Ac = (a + 220) | 0
- while (1) {
- kc = (u(Xa, 144) + kc) | 0
- zc = (o[(kc + 60) >> 2] - o[(kc + 56) >> 2]) >> 2
- Dc = (kc + 104) | 0
- kc = o[Cc >> 2]
- kc = (o[(kc + 28) >> 2] - o[(kc + 24) >> 2]) >> 2
- _g(Dc, (zc | 0) < (kc | 0) ? kc : zc)
- Xa = (Xa + 1) | 0
- kc = o[(a + 216) >> 2]
- if (Xa >>> 0 < (((o[Ac >> 2] - kc) | 0) / 144) >>> 0) {
- continue
- }
- break
- }
- }
- Fc = $g(a, Gc)
- }
- }
- R = (Bc - -64) | 0
- return Fc | 0
- }
- function hh(a, Lc) {
- var Mc = 0,
- Nc = 0,
- Oc = 0,
- Pc = 0,
- Qc = 0,
- Rc = 0,
- Sc = 0,
- Tc = 0,
- Uc = 0,
- Vc = 0,
- Wc = 0,
- Xc = 0
- Sc = (R - 16) | 0
- R = Sc
- a: {
- if (!Nf((a + 80) | 0, a)) {
- break a
- }
- if (!Xg(a)) {
- break a
- }
- Mc = o[(a + 4) >> 2]
- o[Lc >> 2] = o[a >> 2]
- o[(Lc + 4) >> 2] = Mc
- Mc = o[(a + 36) >> 2]
- o[(Lc + 32) >> 2] = o[(a + 32) >> 2]
- o[(Lc + 36) >> 2] = Mc
- Mc = o[(a + 28) >> 2]
- o[(Lc + 24) >> 2] = o[(a + 24) >> 2]
- o[(Lc + 28) >> 2] = Mc
- Mc = o[(a + 20) >> 2]
- o[(Lc + 16) >> 2] = o[(a + 16) >> 2]
- o[(Lc + 20) >> 2] = Mc
- Mc = o[(a + 12) >> 2]
- o[(Lc + 8) >> 2] = o[(a + 8) >> 2]
- o[(Lc + 12) >> 2] = Mc
- o[(a + 176) >> 2] = 2
- o[(a + 180) >> 2] = 7
- Mc = o[(a + 152) >> 2]
- if ((Mc | 0) < 0) {
- break a
- }
- o[(Sc + 12) >> 2] = 0
- Oc = 2
- Pc = o[(a + 156) >> 2]
- Rc = (o[(a + 160) >> 2] - Pc) >> 2
- b: {
- if (Mc >>> 0 > Rc >>> 0) {
- yd((a + 156) | 0, (Mc - Rc) | 0, (Sc + 12) | 0)
- Oc = o[(a + 176) >> 2]
- Nc = o[(a + 180) >> 2]
- break b
- }
- Nc = 7
- if (Mc >>> 0 >= Rc >>> 0) {
- break b
- }
- o[(a + 160) >> 2] = Pc + (Mc << 2)
- }
- Rc = (a + 184) | 0
- Nc = (((Nc - Oc) | 0) + 1) | 0
- Pc = (a + 188) | 0
- Mc = o[Pc >> 2]
- Qc = o[(a + 184) >> 2]
- Oc = (((Mc - Qc) | 0) / 12) | 0
- c: {
- if (Nc >>> 0 > Oc >>> 0) {
- jh(Rc, (Nc - Oc) | 0)
- Nc = o[Pc >> 2]
- break c
- }
- if (Nc >>> 0 >= Oc >>> 0) {
- Nc = Mc
- break c
- }
- Nc = (Qc + u(Nc, 12)) | 0
- if ((Nc | 0) != (Mc | 0)) {
- while (1) {
- Oc = (Mc + -12) | 0
- Pc = o[Oc >> 2]
- if (Pc) {
- o[(Mc + -8) >> 2] = Pc
- ul(Pc)
- }
- Mc = Oc
- if ((Mc | 0) != (Nc | 0)) {
- continue
- }
- break
- }
- }
- o[(a + 188) >> 2] = Nc
- }
- Pc = (a + 196) | 0
- Mc = o[(a + 184) >> 2]
- Oc = (((Nc - Mc) | 0) / 12) | 0
- Tc = o[(a + 196) >> 2]
- Qc = (o[(a + 200) >> 2] - Tc) >> 2
- d: {
- if (Oc >>> 0 > Qc >>> 0) {
- Da(Pc, (Oc - Qc) | 0)
- Nc = o[(a + 188) >> 2]
- Mc = o[(a + 184) >> 2]
- break d
- }
- if (Oc >>> 0 >= Qc >>> 0) {
- break d
- }
- o[(a + 200) >> 2] = Tc + (Oc << 2)
- }
- Oc = 1
- if ((Mc | 0) == (Nc | 0)) {
- break a
- }
- Mc = 0
- Xc = (a + 188) | 0
- while (1) {
- Tg(1, (Sc + 8) | 0, Lc)
- Nc = o[(Sc + 8) >> 2]
- if (Nc) {
- Oc = o[Rc >> 2]
- Uc = u(Mc, 12)
- Qc = (Oc + Uc) | 0
- Vc = (Qc + 4) | 0
- Wc = o[Qc >> 2]
- Tc = (o[Vc >> 2] - Wc) >> 2
- e: {
- if (Nc >>> 0 > Tc >>> 0) {
- Da(Qc, (Nc - Tc) | 0)
- Oc = o[Rc >> 2]
- break e
- }
- if (Nc >>> 0 >= Tc >>> 0) {
- break e
- }
- o[Vc >> 2] = (Nc << 2) + Wc
- }
- _f(Nc, 1, Lc, o[(Oc + Uc) >> 2])
- o[(o[Pc >> 2] + (Mc << 2)) >> 2] = Nc
- }
- Oc = 1
- Mc = (Mc + 1) | 0
- if (Mc >>> 0 < (((o[Xc >> 2] - o[(a + 184) >> 2]) | 0) / 12) >>> 0) {
- continue
- }
- break
- }
- }
- R = (Sc + 16) | 0
- return Oc
- }
- function ih(a, Lc) {
- var Yc = 0,
- Zc = 0,
- _c = 0,
- $c = 0,
- ad = 0,
- bd = 0,
- cd = 0,
- dd = 0,
- ed = 0,
- fd = 0,
- gd = 0,
- hd = 0,
- id = 0,
- jd = 0,
- kd = 0,
- ld = 0,
- md = 0,
- nd = 0,
- od = 0,
- pd = 0,
- qd = 0,
- rd = 0,
- sd = 0,
- td = 0,
- ud = 0,
- vd = 0,
- wd = 0
- ad = (R - 96) | 0
- R = ad
- o[(ad + 72) >> 2] = 0
- o[(ad + 64) >> 2] = 0
- o[(ad + 68) >> 2] = 0
- o[(ad + 48) >> 2] = 0
- o[(ad + 52) >> 2] = 0
- o[(ad + 40) >> 2] = 0
- o[(ad + 44) >> 2] = 0
- o[(ad + 56) >> 2] = 1065353216
- o[(ad + 32) >> 2] = 0
- o[(ad + 24) >> 2] = 0
- o[(ad + 28) >> 2] = 0
- jd = o[(a + 124) >> 2]
- a: {
- b: {
- c: {
- if ((Lc | 0) >= 1) {
- qd = (a + 232) | 0
- hd = (a + 8) | 0
- nd = (a + 40) | 0
- rd = (a + 428) | 0
- ld = (a + 416) | 0
- sd = (a + 388) | 0
- td = o[(a + 216) >> 2] != o[(a + 220) >> 2]
- while (1) {
- d: {
- e: {
- f: {
- Yc = o[(a + 404) >> 2]
- g: {
- h: {
- if ((Yc | 0) != -1) {
- $c = -1
- Zc = (o[rd >> 2] + (Yc << 2)) | 0
- _c = o[Zc >> 2]
- Yc = (_c + -1) | 0
- o[Zc >> 2] = Yc
- if ((_c | 0) < 1) {
- break c
- }
- Yc = o[(o[(o[ld >> 2] + u(o[(a + 404) >> 2], 12)) >> 2] + (Yc << 2)) >> 2]
- Zc = o[((Yc << 2) + 8848) >> 2]
- o[(a + 400) >> 2] = Zc
- if (!Yc) {
- Yc = o[(ad + 68) >> 2]
- if ((Yc | 0) == o[(ad + 64) >> 2]) {
- break c
- }
- cd = -1
- _c = o[hd >> 2]
- id = o[(_c + 24) >> 2]
- bd = id
- md = (Yc + -4) | 0
- $c = o[md >> 2]
- Zc = -1
- i: {
- if (($c | 0) == -1) {
- break i
- }
- fd = ($c + 1) | 0
- fd = (fd >>> 0) % 3 | 0 ? fd : ($c + -2) | 0
- Zc = -1
- if ((fd | 0) == -1) {
- break i
- }
- Zc = o[(o[_c >> 2] + (fd << 2)) >> 2]
- }
- bd = o[(bd + (Zc << 2)) >> 2]
- if ((bd | 0) != -1) {
- cd = (bd + 1) | 0
- cd = (cd >>> 0) % 3 | 0 ? cd : (bd + -2) | 0
- }
- bd = o[(_c + 12) >> 2]
- fd = u(dd, 3)
- ed = (fd + 1) | 0
- o[(bd + ($c << 2)) >> 2] = ed
- kd = ed << 2
- o[(kd + bd) >> 2] = $c
- ed = (fd + 2) | 0
- o[(bd + (cd << 2)) >> 2] = ed
- gd = ed << 2
- o[(gd + bd) >> 2] = cd
- _c = o[_c >> 2]
- o[(_c + (fd << 2)) >> 2] = Zc
- bd = (_c + kd) | 0
- kd = -1
- j: {
- if ((cd | 0) == -1) {
- break j
- }
- od = (cd + 1) | 0
- cd = (od >>> 0) % 3 | 0 ? od : (cd + -2) | 0
- kd = -1
- if ((cd | 0) == -1) {
- break j
- }
- kd = o[(_c + (cd << 2)) >> 2]
- }
- o[bd >> 2] = kd
- k: {
- l: {
- if (($c | 0) != -1) {
- $c = ($c + (($c >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if (($c | 0) != -1) {
- break l
- }
- }
- o[(_c + gd) >> 2] = -1
- break k
- }
- $c = o[(_c + ($c << 2)) >> 2]
- o[(_c + gd) >> 2] = $c
- if (($c | 0) == -1) {
- break k
- }
- o[(id + ($c << 2)) >> 2] = ed
- }
- $c = (o[(a + 120) >> 2] + ((Zc >>> 3) & 536870908)) | 0
- _c = o[$c >> 2]
- ;(vd = $c), (wd = Zl(Zc) & _c), (o[vd >> 2] = wd)
- o[md >> 2] = fd
- Zc = 0
- break d
- }
- Zc = (Zc + -1) | 0
- if (Zc >>> 0 > 6) {
- break c
- }
- m: {
- switch ((Zc - 1) | 0) {
- case 1:
- case 3:
- cd = o[(ad + 68) >> 2]
- if ((cd | 0) == o[(ad + 64) >> 2]) {
- break c
- }
- Zc = o[hd >> 2]
- $c = o[(Zc + 12) >> 2]
- _c = u(dd, 3)
- bd = (Yc | 0) == 3
- fd = (_c + (bd ? 2 : 1)) | 0
- id = fd << 2
- Yc = o[(cd + -4) >> 2]
- o[($c + id) >> 2] = Yc
- o[($c + (Yc << 2)) >> 2] = fd
- ed = (Zc + 24) | 0
- cd = o[(Zc + 32) >> 2]
- Zc = (Zc + 28) | 0
- $c = o[Zc >> 2]
- n: {
- if ((cd | 0) != ($c | 0)) {
- o[$c >> 2] = -1
- gd = ($c + 4) | 0
- o[Zc >> 2] = gd
- break n
- }
- bh(ed, 8212)
- gd = o[Zc >> 2]
- }
- $c = -1
- Zc = o[hd >> 2]
- cd = o[(Zc + 24) >> 2]
- if ((o[(Zc + 28) >> 2] - cd) >> 2 > (jd | 0)) {
- break c
- }
- $c = (_c + 2) | 0
- Zc = o[Zc >> 2]
- ed = (gd - o[ed >> 2]) | 0
- gd = ((ed >> 2) + -1) | 0
- o[(Zc + id) >> 2] = gd
- if (ed) {
- o[(cd + (gd << 2)) >> 2] = fd
- }
- $c = bd ? _c : $c
- id = (Zc + ((_c + bd) << 2)) | 0
- o: {
- p: {
- q: {
- if ((Yc | 0) != -1) {
- bd = (Yc + ((Yc >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((bd | 0) == -1) {
- break q
- }
- bd = o[(Zc + (bd << 2)) >> 2]
- o[(Zc + ($c << 2)) >> 2] = bd
- if ((bd | 0) == -1) {
- break p
- }
- o[(cd + (bd << 2)) >> 2] = $c
- break p
- }
- o[(Zc + ($c << 2)) >> 2] = -1
- $c = -1
- break o
- }
- o[(Zc + ($c << 2)) >> 2] = -1
- }
- cd = (Yc + 1) | 0
- Yc = (cd >>> 0) % 3 | 0 ? cd : (Yc + -2) | 0
- $c = -1
- if ((Yc | 0) == -1) {
- break o
- }
- $c = o[(Zc + (Yc << 2)) >> 2]
- }
- o[id >> 2] = $c
- Yc = o[(ad + 68) >> 2]
- o[(Yc + -4) >> 2] = _c
- break g
- case 5:
- break h
- case 0:
- case 2:
- case 4:
- break c
- default:
- break m
- }
- }
- Yc = o[(ad + 68) >> 2]
- gd = o[(ad + 64) >> 2]
- if ((Yc | 0) == (gd | 0)) {
- break c
- }
- Zc = (Yc + -4) | 0
- fd = o[Zc >> 2]
- o[(ad + 68) >> 2] = Zc
- ed = o[(ad + 44) >> 2]
- r: {
- if (!ed) {
- Yc = Zc
- break r
- }
- id = Yl(ed) >>> 0 > 1
- s: {
- if (!id) {
- _c = (ed + 2147483647) & dd
- break s
- }
- _c = dd
- if (_c >>> 0 < ed >>> 0) {
- break s
- }
- _c = (dd >>> 0) % (ed >>> 0) | 0
- }
- cd = o[(o[(ad + 40) >> 2] + (_c << 2)) >> 2]
- if (!cd) {
- Yc = Zc
- break r
- }
- bd = o[cd >> 2]
- if (!bd) {
- Yc = Zc
- break r
- }
- md = (ed + -1) | 0
- t: {
- while (1) {
- cd = o[(bd + 4) >> 2]
- u: {
- if ((dd | 0) != (cd | 0)) {
- v: {
- if (!id) {
- cd = cd & md
- break v
- }
- if (cd >>> 0 < ed >>> 0) {
- break v
- }
- cd = (cd >>> 0) % (ed >>> 0) | 0
- }
- if ((_c | 0) == (cd | 0)) {
- break u
- }
- Yc = Zc
- break r
- }
- if (o[(bd + 8) >> 2] == (dd | 0)) {
- break t
- }
- }
- bd = o[bd >> 2]
- if (bd) {
- continue
- }
- break
- }
- Yc = Zc
- break r
- }
- _c = (bd + 12) | 0
- if ((Zc | 0) != o[(ad + 72) >> 2]) {
- o[Zc >> 2] = o[_c >> 2]
- o[(ad + 68) >> 2] = Yc
- break r
- }
- bh((ad - -64) | 0, _c)
- Yc = o[(ad + 68) >> 2]
- gd = o[(ad + 64) >> 2]
- }
- if ((Yc | 0) == (gd | 0)) {
- break c
- }
- Zc = o[(Yc + -4) >> 2]
- cd = (Zc | 0) == -1
- ed = o[hd >> 2]
- if (o[(o[(ed + 12) >> 2] + (Zc << 2)) >> 2] != -1 ? !cd : 0) {
- break c
- }
- kd = (fd | 0) == -1
- md = (ed + 12) | 0
- _c = o[md >> 2]
- if (o[(_c + (fd << 2)) >> 2] != -1 ? !kd : 0) {
- break c
- }
- gd = u(dd, 3)
- id = (gd + 2) | 0
- o[(_c + (Zc << 2)) >> 2] = id
- bd = id << 2
- o[(bd + _c) >> 2] = Zc
- $c = (gd + 1) | 0
- o[(_c + (fd << 2)) >> 2] = $c
- od = $c << 2
- o[(od + _c) >> 2] = fd
- if (cd) {
- break f
- }
- $c = -1
- cd = -1
- _c = o[ed >> 2]
- ud = (_c + (gd << 2)) | 0
- pd = (Zc + ((Zc >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((pd | 0) != -1) {
- cd = o[((pd << 2) + _c) >> 2]
- }
- o[ud >> 2] = cd
- pd = (Zc + 1) | 0
- Zc = (pd >>> 0) % 3 | 0 ? pd : (Zc + -2) | 0
- if ((Zc | 0) == -1) {
- break e
- }
- $c = o[((Zc << 2) + _c) >> 2]
- break e
- }
- o[(a + 400) >> 2] = 7
- }
- o[ad >> 2] = u(dd, 3)
- Yc = o[hd >> 2]
- $c = (Yc + 24) | 0
- _c = o[(Yc + 32) >> 2]
- Yc = (Yc + 28) | 0
- Zc = o[Yc >> 2]
- w: {
- if ((_c | 0) != (Zc | 0)) {
- o[Zc >> 2] = -1
- _c = Yc
- Yc = (Zc + 4) | 0
- o[_c >> 2] = Yc
- break w
- }
- bh($c, 8212)
- Yc = o[Yc >> 2]
- }
- Zc = o[hd >> 2]
- bd = o[Zc >> 2]
- cd = o[ad >> 2]
- _c = (Yc - o[$c >> 2]) | 0
- $c = _c >> 2
- ed = ($c + -1) | 0
- o[(bd + (cd << 2)) >> 2] = ed
- gd = (cd + 1) | 0
- cd = (Zc + 24) | 0
- Yc = (Zc + 28) | 0
- fd = o[Yc >> 2]
- x: {
- if ((fd | 0) != o[(Zc + 32) >> 2]) {
- o[fd >> 2] = -1
- Zc = Yc
- Yc = (fd + 4) | 0
- o[Zc >> 2] = Yc
- break x
- }
- bh(cd, 8212)
- Yc = o[Yc >> 2]
- bd = o[Zc >> 2]
- }
- o[((gd << 2) + bd) >> 2] = ((Yc - o[cd >> 2]) >> 2) + -1
- fd = (o[ad >> 2] + 2) | 0
- Yc = o[hd >> 2]
- cd = (Yc + 28) | 0
- Zc = o[cd >> 2]
- y: {
- if ((Zc | 0) != o[(Yc + 32) >> 2]) {
- o[Zc >> 2] = -1
- bd = (Zc + 4) | 0
- o[cd >> 2] = bd
- break y
- }
- bh((Yc + 24) | 0, 8212)
- bd = o[cd >> 2]
- }
- o[(o[Yc >> 2] + (fd << 2)) >> 2] = ((bd - o[(Yc + 24) >> 2]) >> 2) + -1
- Zc = o[hd >> 2]
- Yc = o[(Zc + 24) >> 2]
- z: {
- if ((o[(Zc + 28) >> 2] - Yc) >> 2 <= (jd | 0)) {
- Zc = o[ad >> 2]
- A: {
- B: {
- if (!_c) {
- bd = 1
- o[(Yc + ($c << 2)) >> 2] = Zc + 1
- break B
- }
- o[(Yc + (ed << 2)) >> 2] = Zc
- bd = 0
- if ((_c | 0) == -4) {
- break B
- }
- o[(Yc + ($c << 2)) >> 2] = o[ad >> 2] + 1
- bd = ($c + 1) | 0
- if ((bd | 0) == -1) {
- break A
- }
- }
- o[(Yc + (bd << 2)) >> 2] = o[ad >> 2] + 2
- }
- Yc = o[(ad + 68) >> 2]
- if ((Yc | 0) == o[(ad + 72) >> 2]) {
- break z
- }
- o[Yc >> 2] = o[ad >> 2]
- Yc = (Yc + 4) | 0
- o[(ad + 68) >> 2] = Yc
- break g
- }
- $c = -1
- break c
- }
- bh((ad - -64) | 0, ad)
- Yc = o[(ad + 68) >> 2]
- }
- Zc = 1
- break d
- }
- cd = -1
- _c = o[ed >> 2]
- o[(_c + (gd << 2)) >> 2] = -1
- $c = -1
- }
- o[(_c + od) >> 2] = $c
- C: {
- D: {
- E: {
- if (!kd) {
- Zc = (fd + ((fd >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((Zc | 0) == -1) {
- break E
- }
- Zc = o[((Zc << 2) + _c) >> 2]
- o[(_c + bd) >> 2] = Zc
- if ((Zc | 0) == -1) {
- break D
- }
- o[(o[(ed + 24) >> 2] + (Zc << 2)) >> 2] = id
- break D
- }
- o[(_c + bd) >> 2] = -1
- bd = -1
- $c = -1
- break C
- }
- o[(_c + bd) >> 2] = -1
- }
- bd = -1
- Zc = (fd + 1) | 0
- Zc = (Zc >>> 0) % 3 | 0 ? Zc : (fd + -2) | 0
- $c = -1
- if ((Zc | 0) == -1) {
- break C
- }
- bd = o[((Zc << 2) + _c) >> 2]
- $c = Zc
- }
- o[ad >> 2] = bd
- Zc = o[sd >> 2]
- _c = cd << 2
- fd = (Zc + _c) | 0
- o[fd >> 2] = o[fd >> 2] + o[(Zc + (bd << 2)) >> 2]
- Zc = o[(ed + 24) >> 2]
- if ((cd | 0) != -1) {
- o[(Zc + _c) >> 2] = o[(Zc + (o[ad >> 2] << 2)) >> 2]
- }
- F: {
- if (($c | 0) == -1) {
- break F
- }
- _c = o[ed >> 2]
- while (1) {
- o[(_c + ($c << 2)) >> 2] = cd
- bd = ($c + 1) | 0
- $c = (bd >>> 0) % 3 | 0 ? bd : ($c + -2) | 0
- if (($c | 0) == -1) {
- break F
- }
- $c = o[(o[md >> 2] + ($c << 2)) >> 2]
- if (($c | 0) == -1) {
- break F
- }
- bd = ($c + 1) | 0
- $c = (bd >>> 0) % 3 | 0 ? bd : ($c + -2) | 0
- if (($c | 0) != -1) {
- continue
- }
- break
- }
- }
- o[(Zc + (o[ad >> 2] << 2)) >> 2] = -1
- G: {
- if (td) {
- break G
- }
- Zc = o[(ad + 28) >> 2]
- if ((Zc | 0) != o[(ad + 32) >> 2]) {
- o[Zc >> 2] = o[ad >> 2]
- o[(ad + 28) >> 2] = Zc + 4
- break G
- }
- bh((ad + 24) | 0, ad)
- Yc = o[(ad + 68) >> 2]
- }
- o[(Yc + -4) >> 2] = gd
- Zc = 0
- }
- kh(qd, o[(Yc + -4) >> 2])
- H: {
- if (!Zc) {
- break H
- }
- Yc = o[nd >> 2]
- if ((Yc | 0) == o[(a + 36) >> 2]) {
- break H
- }
- _c = ((dd ^ -1) + Lc) | 0
- while (1) {
- $c = -1
- Zc = o[(Yc + -8) >> 2]
- if (Zc >>> 0 > _c >>> 0) {
- break c
- }
- if ((Zc | 0) != (_c | 0)) {
- break H
- }
- Zc = p[(Yc + -4) | 0]
- Yc = (Yc + -12) | 0
- cd = o[Yc >> 2]
- o[nd >> 2] = Yc
- if ((cd | 0) < 0) {
- break c
- }
- Yc = o[(o[(ad + 68) >> 2] + -4) >> 2]
- o[(ad + 20) >> 2] = (cd ^ -1) + Lc
- o[(ad + 88) >> 2] = ad + 20
- ch(ad, (ad + 40) | 0, (ad + 20) | 0, (ad + 88) | 0)
- $c = o[ad >> 2]
- I: {
- if (Zc & 1) {
- Zc = -1
- if ((Yc | 0) == -1) {
- break I
- }
- Zc = (Yc + 1) | 0
- Zc = (Zc >>> 0) % 3 | 0 ? Zc : (Yc + -2) | 0
- break I
- }
- Zc = -1
- if ((Yc | 0) == -1) {
- break I
- }
- Zc = (Yc + -1) | 0
- if ((Yc >>> 0) % 3) {
- break I
- }
- Zc = (Yc + 2) | 0
- }
- o[($c + 12) >> 2] = Zc
- Yc = o[nd >> 2]
- if ((Yc | 0) != o[(a + 36) >> 2]) {
- continue
- }
- break
- }
- }
- dd = (dd + 1) | 0
- if ((dd | 0) != (Lc | 0)) {
- continue
- }
- break
- }
- Zc = Lc
- }
- $c = -1
- bd = o[(a + 8) >> 2]
- if ((o[(bd + 28) >> 2] - o[(bd + 24) >> 2]) >> 2 > (jd | 0)) {
- break c
- }
- Yc = o[(ad + 68) >> 2]
- if ((Yc | 0) != o[(ad + 64) >> 2]) {
- nd = (a + 72) | 0
- Lc = (a + 60) | 0
- sd = (a + 312) | 0
- td = (a + 8) | 0
- id = (a + 68) | 0
- qd = (a + 80) | 0
- fd = (a + 76) | 0
- while (1) {
- Yc = (Yc + -4) | 0
- dd = o[Yc >> 2]
- o[(ad + 68) >> 2] = Yc
- o[ad >> 2] = dd
- J: {
- if (Pf(sd)) {
- gd = o[td >> 2]
- hd = o[gd >> 2]
- if ((Zc | 0) >= (((((o[(gd + 4) >> 2] - hd) >> 2) >>> 0) / 3) | 0)) {
- break c
- }
- Yc = -1
- bd = -1
- ed = o[ad >> 2]
- cd = -1
- K: {
- if ((ed | 0) == -1) {
- break K
- }
- _c = (ed + 1) | 0
- _c = (_c >>> 0) % 3 | 0 ? _c : (ed + -2) | 0
- cd = -1
- if ((_c | 0) == -1) {
- break K
- }
- cd = o[(hd + (_c << 2)) >> 2]
- }
- _c = o[(gd + 24) >> 2]
- dd = o[((cd << 2) + _c) >> 2]
- L: {
- if ((dd | 0) == -1) {
- break L
- }
- jd = (dd + 1) | 0
- dd = (jd >>> 0) % 3 | 0 ? jd : (dd + -2) | 0
- if ((dd | 0) == -1) {
- break L
- }
- Yc = (dd + 1) | 0
- Yc = (Yc >>> 0) % 3 | 0 ? Yc : (dd + -2) | 0
- if ((Yc | 0) != -1) {
- bd = o[(hd + (Yc << 2)) >> 2]
- }
- Yc = dd
- }
- jd = -1
- rd = -1
- _c = o[(_c + (bd << 2)) >> 2]
- dd = -1
- M: {
- if ((_c | 0) == -1) {
- break M
- }
- ld = (_c + 1) | 0
- _c = (ld >>> 0) % 3 | 0 ? ld : (_c + -2) | 0
- dd = -1
- if ((_c | 0) == -1) {
- break M
- }
- dd = (_c + 1) | 0
- dd = (dd >>> 0) % 3 | 0 ? dd : (_c + -2) | 0
- if ((dd | 0) != -1) {
- rd = o[(hd + (dd << 2)) >> 2]
- }
- dd = _c
- }
- ld = u(Zc, 3)
- o[(ad + 88) >> 2] = ld
- _c = o[(gd + 12) >> 2]
- o[(_c + (ld << 2)) >> 2] = ed
- o[(_c + (ed << 2)) >> 2] = ld
- ed = (o[(ad + 88) >> 2] + 1) | 0
- o[(_c + (ed << 2)) >> 2] = Yc
- o[(_c + (Yc << 2)) >> 2] = ed
- Yc = (o[(ad + 88) >> 2] + 2) | 0
- o[(_c + (Yc << 2)) >> 2] = dd
- o[(_c + (dd << 2)) >> 2] = Yc
- Yc = o[(ad + 88) >> 2]
- o[(hd + (Yc << 2)) >> 2] = bd
- dd = (Yc + 1) | 0
- ed = (hd + (dd << 2)) | 0
- o[ed >> 2] = rd
- gd = (Yc + 2) | 0
- hd = (hd + (gd << 2)) | 0
- o[hd >> 2] = cd
- _c = o[(a + 120) >> 2]
- Yc = dd >>> 0 < Yc >>> 0 ? -1 : bd
- cd = (_c + ((Yc >>> 3) & 536870908)) | 0
- bd = o[cd >> 2]
- ;(vd = cd), (wd = Zl(Yc) & bd), (o[vd >> 2] = wd)
- jd = (dd | 0) != -1 ? o[ed >> 2] : jd
- Yc = (_c + ((jd >>> 3) & 536870908)) | 0
- dd = o[Yc >> 2]
- ;(vd = Yc), (wd = Zl(jd) & dd), (o[vd >> 2] = wd)
- Yc = -1
- Yc = (gd | 0) != -1 ? o[hd >> 2] : Yc
- dd = (_c + ((Yc >>> 3) & 536870908)) | 0
- _c = o[dd >> 2]
- ;(vd = dd), (wd = Zl(Yc) & _c), (o[vd >> 2] = wd)
- Yc = o[(a + 64) >> 2]
- _c = o[id >> 2]
- if ((Yc | 0) == _c << 5) {
- if (((Yc + 1) | 0) <= -1) {
- break a
- }
- dd = Lc
- if (Yc >>> 0 <= 1073741822) {
- Yc = (Yc + 32) & -32
- _c = _c << 6
- Yc = _c >>> 0 < Yc >>> 0 ? Yc : _c
- } else {
- Yc = 2147483647
- }
- ab(dd, Yc)
- Yc = o[(a + 64) >> 2]
- }
- Zc = (Zc + 1) | 0
- o[(a + 64) >> 2] = Yc + 1
- dd = (o[(a + 60) >> 2] + ((Yc >>> 3) & 536870908)) | 0
- o[dd >> 2] = o[dd >> 2] | (1 << (Yc & 31))
- Yc = o[fd >> 2]
- if ((Yc | 0) != o[qd >> 2]) {
- o[Yc >> 2] = o[(ad + 88) >> 2]
- o[fd >> 2] = Yc + 4
- break J
- }
- bh(nd, (ad + 88) | 0)
- break J
- }
- Yc = o[(a + 64) >> 2]
- _c = o[id >> 2]
- if ((Yc | 0) == _c << 5) {
- if (((Yc + 1) | 0) <= -1) {
- break a
- }
- dd = Lc
- if (Yc >>> 0 <= 1073741822) {
- Yc = (Yc + 32) & -32
- _c = _c << 6
- Yc = _c >>> 0 < Yc >>> 0 ? Yc : _c
- } else {
- Yc = 2147483647
- }
- ab(dd, Yc)
- Yc = o[(a + 64) >> 2]
- }
- o[(a + 64) >> 2] = Yc + 1
- dd = (o[(a + 60) >> 2] + ((Yc >>> 3) & 536870908)) | 0
- _c = o[dd >> 2]
- ;(vd = dd), (wd = Zl(Yc) & _c), (o[vd >> 2] = wd)
- Yc = o[fd >> 2]
- if ((Yc | 0) != o[qd >> 2]) {
- o[Yc >> 2] = o[ad >> 2]
- o[fd >> 2] = Yc + 4
- break J
- }
- bh(nd, ad)
- }
- Yc = o[(ad + 68) >> 2]
- if ((Yc | 0) != o[(ad + 64) >> 2]) {
- continue
- }
- break
- }
- bd = o[(a + 8) >> 2]
- }
- if ((((((o[(bd + 4) >> 2] - o[bd >> 2]) >> 2) >>> 0) / 3) | 0) != (Zc | 0)) {
- break c
- }
- $c = (o[(bd + 28) >> 2] - o[(bd + 24) >> 2]) >> 2
- Lc = o[(ad + 24) >> 2]
- cd = o[(ad + 28) >> 2]
- if ((Lc | 0) == (cd | 0)) {
- break b
- }
- hd = (a + 8) | 0
- while (1) {
- _c = o[Lc >> 2]
- Zc = o[(bd + 24) >> 2]
- Yc = ($c + -1) | 0
- N: {
- if (o[(Zc + (Yc << 2)) >> 2] != -1) {
- dd = $c
- break N
- }
- Zc = o[(bd + 24) >> 2]
- while (1) {
- Yc = ($c + -2) | 0
- dd = ($c + -1) | 0
- $c = dd
- if (o[((Yc << 2) + Zc) >> 2] == -1) {
- continue
- }
- break
- }
- }
- if (!(Yc >>> 0 < _c >>> 0)) {
- o[ad >> 2] = bd
- $c = Zc
- Zc = Yc << 2
- $c = o[($c + Zc) >> 2]
- m[(ad + 12) | 0] = 1
- o[(ad + 8) >> 2] = $c
- o[(ad + 4) >> 2] = $c
- if (($c | 0) != -1) {
- while (1) {
- o[(o[bd >> 2] + ($c << 2)) >> 2] = _c
- jf(ad)
- bd = o[hd >> 2]
- $c = o[(ad + 8) >> 2]
- if (($c | 0) != -1) {
- continue
- }
- break
- }
- }
- $c = o[(bd + 24) >> 2]
- Zc = ($c + Zc) | 0
- if ((_c | 0) != -1) {
- o[($c + (_c << 2)) >> 2] = o[Zc >> 2]
- }
- o[Zc >> 2] = -1
- Zc = 1 << (_c & 31)
- $c = (_c >>> 3) & 536870908
- _c = o[(a + 120) >> 2]
- $c = ($c + _c) | 0
- id = $c
- ed = 1 << (Yc & 31)
- _c = (_c + ((Yc >>> 3) & 536870908)) | 0
- Yc = Zc | o[$c >> 2]
- O: {
- if (ed & o[_c >> 2]) {
- break O
- }
- Yc = o[$c >> 2] & (Zc ^ -1)
- }
- o[id >> 2] = Yc
- o[_c >> 2] = o[_c >> 2] & (ed ^ -1)
- dd = (dd + -1) | 0
- }
- $c = dd
- Lc = (Lc + 4) | 0
- if ((cd | 0) != (Lc | 0)) {
- continue
- }
- break
- }
- }
- Lc = o[(ad + 24) >> 2]
- }
- if (Lc) {
- o[(ad + 28) >> 2] = Lc
- ul(Lc)
- }
- Yc = o[(ad + 48) >> 2]
- if (Yc) {
- while (1) {
- a = o[Yc >> 2]
- ul(Yc)
- Yc = a
- if (Yc) {
- continue
- }
- break
- }
- }
- a = o[(ad + 40) >> 2]
- o[(ad + 40) >> 2] = 0
- if (a) {
- ul(a)
- }
- a = o[(ad + 64) >> 2]
- if (a) {
- o[(ad + 68) >> 2] = a
- ul(a)
- }
- R = (ad + 96) | 0
- return $c
- }
- Yk()
- D()
- }
- function jh(a, Lc) {
- var xd = 0,
- yd = 0,
- zd = 0,
- Ad = 0,
- Bd = 0,
- Cd = 0,
- Dd = 0,
- Ed = 0,
- Fd = 0
- zd = o[(a + 8) >> 2]
- Ad = (a + 4) | 0
- xd = o[Ad >> 2]
- if ((((zd - xd) | 0) / 12) >>> 0 >= Lc >>> 0) {
- a = u(Lc, 12)
- ;(Ed = Ad), (Fd = (xl(xd, 0, a) + a) | 0), (o[Ed >> 2] = Fd)
- return
- }
- a: {
- Ad = o[a >> 2]
- yd = (((xd - Ad) | 0) / 12) | 0
- Bd = (yd + Lc) | 0
- if (Bd >>> 0 < 357913942) {
- Dd = u(yd, 12)
- zd = (((zd - Ad) | 0) / 12) | 0
- yd = zd << 1
- yd = zd >>> 0 < 178956970 ? (yd >>> 0 < Bd >>> 0 ? Bd : yd) : 357913941
- if (yd) {
- if (yd >>> 0 >= 357913942) {
- break a
- }
- Cd = Hk(u(yd, 12))
- }
- zd = (Cd + Dd) | 0
- xl(zd, 0, u(Lc, 12))
- Lc = (u(Bd, 12) + Cd) | 0
- Bd = (u(yd, 12) + Cd) | 0
- if ((xd | 0) != (Ad | 0)) {
- while (1) {
- zd = (zd + -12) | 0
- o[zd >> 2] = 0
- o[(zd + 4) >> 2] = 0
- yd = (zd + 8) | 0
- o[yd >> 2] = 0
- xd = (xd + -12) | 0
- o[zd >> 2] = o[xd >> 2]
- o[(zd + 4) >> 2] = o[(xd + 4) >> 2]
- Cd = yd
- yd = (xd + 8) | 0
- o[Cd >> 2] = o[yd >> 2]
- o[yd >> 2] = 0
- o[xd >> 2] = 0
- o[(xd + 4) >> 2] = 0
- if ((xd | 0) != (Ad | 0)) {
- continue
- }
- break
- }
- Ad = o[a >> 2]
- xd = o[(a + 4) >> 2]
- }
- o[a >> 2] = zd
- o[(a + 8) >> 2] = Bd
- o[(a + 4) >> 2] = Lc
- if ((xd | 0) != (Ad | 0)) {
- while (1) {
- a = (xd + -12) | 0
- Lc = o[a >> 2]
- if (Lc) {
- o[(xd + -8) >> 2] = Lc
- ul(Lc)
- }
- xd = a
- if ((xd | 0) != (Ad | 0)) {
- continue
- }
- break
- }
- }
- if (Ad) {
- ul(Ad)
- }
- return
- }
- Yk()
- D()
- }
- _a(8776)
- D()
- }
- function kh(a, Lc) {
- var Gd = 0,
- Hd = 0,
- Id = 0,
- Jd = 0,
- Kd = 0
- Jd = -1
- Hd = -1
- a: {
- if ((Lc | 0) == -1) {
- break a
- }
- Hd = (Lc + 1) | 0
- Jd = (Hd >>> 0) % 3 | 0 ? Hd : (Lc + -2) | 0
- Hd = (Lc + -1) | 0
- if ((Lc >>> 0) % 3) {
- break a
- }
- Hd = (Lc + 2) | 0
- }
- Gd = o[(a + 168) >> 2]
- b: {
- if (Gd >>> 0 > 7) {
- break b
- }
- c: {
- d: {
- switch ((Gd - 2) | 0) {
- default:
- Gd = o[(a + 148) >> 2]
- Id = 1
- Lc = o[(a + 156) >> 2]
- Kd = (Lc + (((Jd | 0) != -1 ? o[(o[Gd >> 2] + (Jd << 2)) >> 2] : -1) << 2)) | 0
- o[Kd >> 2] = o[Kd >> 2] + 1
- Lc = ((((Hd | 0) != -1 ? o[(o[Gd >> 2] + (Hd << 2)) >> 2] : -1) << 2) + Lc) | 0
- break c
- case 3:
- Id = o[(a + 148) >> 2]
- Gd = -1
- Gd = ((Lc | 0) != -1 ? o[(o[Id >> 2] + (Lc << 2)) >> 2] : Gd) << 2
- Lc = o[(a + 156) >> 2]
- Gd = (Gd + Lc) | 0
- o[Gd >> 2] = o[Gd >> 2] + 1
- Gd = ((((Jd | 0) != -1 ? o[(o[Id >> 2] + (Jd << 2)) >> 2] : -1) << 2) + Lc) | 0
- o[Gd >> 2] = o[Gd >> 2] + 1
- Gd = -1
- Gd = (Hd | 0) != -1 ? o[(o[Id >> 2] + (Hd << 2)) >> 2] : Gd
- Id = 2
- Lc = (Lc + (Gd << 2)) | 0
- break c
- case 1:
- Id = o[(a + 148) >> 2]
- Gd = -1
- Gd = ((Lc | 0) != -1 ? o[(o[Id >> 2] + (Lc << 2)) >> 2] : Gd) << 2
- Lc = o[(a + 156) >> 2]
- Gd = (Gd + Lc) | 0
- o[Gd >> 2] = o[Gd >> 2] + 1
- Gd = ((((Jd | 0) != -1 ? o[(o[Id >> 2] + (Jd << 2)) >> 2] : -1) << 2) + Lc) | 0
- o[Gd >> 2] = o[Gd >> 2] + 2
- Lc = ((((Hd | 0) != -1 ? o[(o[Id >> 2] + (Hd << 2)) >> 2] : -1) << 2) + Lc) | 0
- Id = 1
- break c
- case 0:
- case 2:
- case 4:
- break b
- case 5:
- break d
- }
- }
- Id = o[(a + 148) >> 2]
- Gd = -1
- Gd = ((Lc | 0) != -1 ? o[(o[Id >> 2] + (Lc << 2)) >> 2] : Gd) << 2
- Lc = o[(a + 156) >> 2]
- Gd = (Gd + Lc) | 0
- o[Gd >> 2] = o[Gd >> 2] + 2
- Gd = ((((Jd | 0) != -1 ? o[(o[Id >> 2] + (Jd << 2)) >> 2] : -1) << 2) + Lc) | 0
- o[Gd >> 2] = o[Gd >> 2] + 2
- Gd = -1
- Gd = (Hd | 0) != -1 ? o[(o[Id >> 2] + (Hd << 2)) >> 2] : Gd
- Id = 2
- Lc = (Lc + (Gd << 2)) | 0
- }
- o[Lc >> 2] = o[Lc >> 2] + Id
- }
- Gd = -1
- Gd = (Jd | 0) != -1 ? o[(o[o[(a + 148) >> 2] >> 2] + (Jd << 2)) >> 2] : Gd
- Jd = o[(a + 176) >> 2]
- Lc = Jd
- Hd = a
- Gd = o[(o[(a + 156) >> 2] + (Gd << 2)) >> 2]
- if ((Gd | 0) >= (Lc | 0)) {
- a = o[(a + 180) >> 2]
- Lc = (Gd | 0) > (a | 0) ? a : Gd
- }
- o[(Hd + 172) >> 2] = Lc - Jd
- }
- function lh(a) {
- a = a | 0
- var Lc = 0,
- Ld = 0,
- Md = 0,
- Nd = 0,
- Od = 0
- o[a >> 2] = 8172
- Lc = (a + 368) | 0
- Md = o[Lc >> 2]
- o[Lc >> 2] = 0
- if (Md) {
- Ld = (Md + -4) | 0
- Lc = o[Ld >> 2]
- if (Lc) {
- Lc = (Md + (Lc << 4)) | 0
- while (1) {
- Lc = (Lc + -16) | 0
- if ((Md | 0) != (Lc | 0)) {
- continue
- }
- break
- }
- }
- ul(Ld)
- }
- Md = o[(a + 216) >> 2]
- if (Md) {
- Od = (a + 220) | 0
- Lc = o[Od >> 2]
- Ld = Md
- a: {
- if ((Md | 0) == (Lc | 0)) {
- break a
- }
- while (1) {
- Ld = o[(Lc + -12) >> 2]
- if (Ld) {
- o[(Lc + -8) >> 2] = Ld
- ul(Ld)
- }
- Ld = o[(Lc + -28) >> 2]
- if (Ld) {
- o[(Lc + -24) >> 2] = Ld
- ul(Ld)
- }
- Ld = (Lc + -144) | 0
- Nd = o[(Lc + -40) >> 2]
- if (Nd) {
- o[(Lc + -36) >> 2] = Nd
- ul(Nd)
- }
- Ug((Lc + -140) | 0)
- Lc = Ld
- if ((Md | 0) != (Lc | 0)) {
- continue
- }
- break
- }
- Ld = o[(a + 216) >> 2]
- }
- o[Od >> 2] = Md
- ul(Ld)
- }
- Lc = o[(a + 196) >> 2]
- if (Lc) {
- o[(a + 200) >> 2] = Lc
- ul(Lc)
- }
- Lc = o[(a + 184) >> 2]
- if (Lc) {
- o[(a + 188) >> 2] = Lc
- ul(Lc)
- }
- Lc = o[(a + 172) >> 2]
- if (Lc) {
- o[(a + 176) >> 2] = Lc
- ul(Lc)
- }
- Lc = o[(a + 160) >> 2]
- if (Lc) {
- o[(a + 164) >> 2] = Lc
- ul(Lc)
- }
- Lc = o[(a + 144) >> 2]
- if (Lc) {
- while (1) {
- Md = o[Lc >> 2]
- ul(Lc)
- Lc = Md
- if (Lc) {
- continue
- }
- break
- }
- }
- Md = (a + 136) | 0
- Lc = o[Md >> 2]
- o[Md >> 2] = 0
- if (Lc) {
- ul(Lc)
- }
- Lc = o[(a + 120) >> 2]
- if (Lc) {
- ul(Lc)
- }
- Lc = o[(a + 108) >> 2]
- if (Lc) {
- ul(Lc)
- }
- Lc = o[(a + 96) >> 2]
- if (Lc) {
- ul(Lc)
- }
- Lc = o[(a + 72) >> 2]
- if (Lc) {
- o[(a + 76) >> 2] = Lc
- ul(Lc)
- }
- Lc = o[(a + 60) >> 2]
- if (Lc) {
- ul(Lc)
- }
- Lc = o[(a + 48) >> 2]
- if (Lc) {
- o[(a + 52) >> 2] = Lc
- ul(Lc)
- }
- Lc = o[(a + 36) >> 2]
- if (Lc) {
- o[(a + 40) >> 2] = Lc
- ul(Lc)
- }
- Lc = o[(a + 24) >> 2]
- if (Lc) {
- o[(a + 28) >> 2] = Lc
- ul(Lc)
- }
- Lc = o[(a + 12) >> 2]
- if (Lc) {
- o[(a + 16) >> 2] = Lc
- ul(Lc)
- }
- Lc = o[(a + 8) >> 2]
- o[(a + 8) >> 2] = 0
- if (Lc) {
- ua((a + 8) | 0, Lc)
- }
- return a | 0
- }
- function mh(a) {
- a = a | 0
- ul(lh(a))
- }
- function nh(a) {
- a = a | 0
- var Pd = 0,
- Qd = 0,
- Rd = 0,
- Sd = 0,
- Td = 0
- o[a >> 2] = 8224
- oh((a + 232) | 0)
- Sd = o[(a + 216) >> 2]
- if (Sd) {
- Qd = Sd
- Td = (a + 220) | 0
- Pd = o[Td >> 2]
- Rd = Qd
- a: {
- if ((Qd | 0) == (Pd | 0)) {
- break a
- }
- while (1) {
- Qd = o[(Pd + -12) >> 2]
- if (Qd) {
- o[(Pd + -8) >> 2] = Qd
- ul(Qd)
- }
- Qd = o[(Pd + -28) >> 2]
- if (Qd) {
- o[(Pd + -24) >> 2] = Qd
- ul(Qd)
- }
- Qd = (Pd + -144) | 0
- Rd = o[(Pd + -40) >> 2]
- if (Rd) {
- o[(Pd + -36) >> 2] = Rd
- ul(Rd)
- }
- Ug((Pd + -140) | 0)
- Pd = Qd
- if ((Sd | 0) != (Pd | 0)) {
- continue
- }
- break
- }
- Rd = o[(a + 216) >> 2]
- }
- Qd = Rd
- o[Td >> 2] = Sd
- ul(Qd)
- }
- Pd = o[(a + 196) >> 2]
- if (Pd) {
- o[(a + 200) >> 2] = Pd
- ul(Pd)
- }
- Pd = o[(a + 184) >> 2]
- if (Pd) {
- o[(a + 188) >> 2] = Pd
- ul(Pd)
- }
- Pd = o[(a + 172) >> 2]
- if (Pd) {
- o[(a + 176) >> 2] = Pd
- ul(Pd)
- }
- Pd = o[(a + 160) >> 2]
- if (Pd) {
- o[(a + 164) >> 2] = Pd
- ul(Pd)
- }
- Pd = o[(a + 144) >> 2]
- if (Pd) {
- while (1) {
- Qd = o[Pd >> 2]
- ul(Pd)
- Pd = Qd
- if (Pd) {
- continue
- }
- break
- }
- }
- Pd = (a + 136) | 0
- Qd = o[Pd >> 2]
- o[Pd >> 2] = 0
- if (Qd) {
- ul(Qd)
- }
- Pd = o[(a + 120) >> 2]
- if (Pd) {
- ul(Pd)
- }
- Pd = o[(a + 108) >> 2]
- if (Pd) {
- ul(Pd)
- }
- Pd = o[(a + 96) >> 2]
- if (Pd) {
- ul(Pd)
- }
- Pd = o[(a + 72) >> 2]
- if (Pd) {
- o[(a + 76) >> 2] = Pd
- ul(Pd)
- }
- Pd = o[(a + 60) >> 2]
- if (Pd) {
- ul(Pd)
- }
- Pd = o[(a + 48) >> 2]
- if (Pd) {
- o[(a + 52) >> 2] = Pd
- ul(Pd)
- }
- Pd = o[(a + 36) >> 2]
- if (Pd) {
- o[(a + 40) >> 2] = Pd
- ul(Pd)
- }
- Pd = o[(a + 24) >> 2]
- if (Pd) {
- o[(a + 28) >> 2] = Pd
- ul(Pd)
- }
- Pd = o[(a + 12) >> 2]
- if (Pd) {
- o[(a + 16) >> 2] = Pd
- ul(Pd)
- }
- Pd = o[(a + 8) >> 2]
- o[(a + 8) >> 2] = 0
- if (Pd) {
- ua((a + 8) | 0, Pd)
- }
- return a | 0
- }
- function oh(a) {
- var Ud = 0,
- Vd = 0,
- Wd = 0,
- Xd = 0,
- Yd = 0
- Ud = o[(a + 196) >> 2]
- if (Ud) {
- o[(a + 200) >> 2] = Ud
- ul(Ud)
- }
- Ud = o[(a + 184) >> 2]
- if (Ud) {
- Yd = (a + 188) | 0
- Vd = o[Yd >> 2]
- Wd = Ud
- a: {
- if ((Ud | 0) == (Vd | 0)) {
- break a
- }
- while (1) {
- Wd = (Vd + -12) | 0
- Xd = o[Wd >> 2]
- if (Xd) {
- o[(Vd + -8) >> 2] = Xd
- ul(Xd)
- }
- Vd = Wd
- if ((Vd | 0) != (Ud | 0)) {
- continue
- }
- break
- }
- Wd = o[(a + 184) >> 2]
- }
- o[Yd >> 2] = Ud
- ul(Wd)
- }
- Ud = o[(a + 156) >> 2]
- if (Ud) {
- o[(a + 160) >> 2] = Ud
- ul(Ud)
- }
- Ud = (a + 136) | 0
- a = o[Ud >> 2]
- o[Ud >> 2] = 0
- if (a) {
- Vd = (a + -4) | 0
- Ud = o[Vd >> 2]
- if (Ud) {
- Ud = (a + (Ud << 4)) | 0
- while (1) {
- Ud = (Ud + -16) | 0
- if ((a | 0) != (Ud | 0)) {
- continue
- }
- break
- }
- }
- ul(Vd)
- }
- }
- function ph(a) {
- a = a | 0
- ul(nh(a))
- }
- function qh(a) {
- a = a | 0
- var Zd = 0
- o[a >> 2] = 8512
- Zd = o[(a + 48) >> 2]
- if (Zd) {
- o[(a + 52) >> 2] = Zd
- ul(Zd)
- }
- o[a >> 2] = 8764
- Zd = o[(a + 36) >> 2]
- if (Zd) {
- ul(Zd)
- }
- Zd = o[(a + 24) >> 2]
- if (Zd) {
- ul(Zd)
- }
- ul(a)
- }
- function rh(a) {
- a = a | 0
- var _d = 0
- o[a >> 2] = 8764
- _d = o[(a + 36) >> 2]
- if (_d) {
- ul(_d)
- }
- _d = o[(a + 24) >> 2]
- if (_d) {
- ul(_d)
- }
- return a | 0
- }
- function sh(a) {
- a = a | 0
- var $d = 0
- o[a >> 2] = 8764
- $d = o[(a + 36) >> 2]
- if ($d) {
- ul($d)
- }
- $d = o[(a + 24) >> 2]
- if ($d) {
- ul($d)
- }
- ul(a)
- }
- function th(a, ae, be) {
- a = a | 0
- ae = ae | 0
- be = be | 0
- var ce = 0,
- de = 0
- ce = (R - 16) | 0
- R = ce
- o[(a + 4) >> 2] = ae
- de = o[(ae + 4) >> 2]
- ae = o[ae >> 2]
- m[(ce + 15) | 0] = 0
- $a((a + 24) | 0, ((((de - ae) >> 2) >>> 0) / 3) | 0, (ce + 15) | 0)
- ae = o[(a + 4) >> 2]
- de = o[(ae + 28) >> 2]
- ae = o[(ae + 24) >> 2]
- m[(ce + 14) | 0] = 0
- $a((a + 36) | 0, (de - ae) >> 2, (ce + 14) | 0)
- ae = o[(be + 12) >> 2]
- o[(a + 16) >> 2] = o[(be + 8) >> 2]
- o[(a + 20) >> 2] = ae
- ae = o[(be + 4) >> 2]
- o[(a + 8) >> 2] = o[be >> 2]
- o[(a + 12) >> 2] = ae
- R = (ce + 16) | 0
- }
- function uh(a, ae) {
- var be = 0,
- ee = 0,
- fe = 0
- a: {
- if ((a | 0) != (ae | 0)) {
- fe = a
- be = o[(ae + 4) >> 2]
- ee = 0
- b: {
- if (!be) {
- break b
- }
- c: {
- if (be >>> 0 <= (o[(a + 8) >> 2] << 5) >>> 0) {
- ee = o[a >> 2]
- break c
- }
- ee = o[a >> 2]
- if (ee) {
- ul(ee)
- o[(a + 8) >> 2] = 0
- o[a >> 2] = 0
- o[(a + 4) >> 2] = 0
- be = o[(ae + 4) >> 2]
- }
- if ((be | 0) <= -1) {
- break a
- }
- be = (((be + -1) >>> 5) + 1) | 0
- ee = Hk(be << 2)
- o[(a + 8) >> 2] = be
- o[(a + 4) >> 2] = 0
- o[a >> 2] = ee
- be = o[(ae + 4) >> 2]
- }
- yl(ee, o[ae >> 2], ((((be + -1) >>> 3) & 536870908) + 4) | 0)
- ee = o[(ae + 4) >> 2]
- }
- o[(fe + 4) >> 2] = ee
- }
- return
- }
- Yk()
- D()
- }
- function vh(a) {
- a = a | 0
- var ae = 0
- o[a >> 2] = 9088
- ae = o[(a + 88) >> 2]
- if (ae) {
- o[(a + 92) >> 2] = ae
- ul(ae)
- }
- ae = o[(a + 72) >> 2]
- if (ae) {
- o[(a + 76) >> 2] = ae
- ul(ae)
- }
- ae = o[(a + 60) >> 2]
- if (ae) {
- o[(a - -64) >> 2] = ae
- ul(ae)
- }
- ae = o[(a + 48) >> 2]
- if (ae) {
- o[(a + 52) >> 2] = ae
- ul(ae)
- }
- o[a >> 2] = 9324
- ae = o[(a + 36) >> 2]
- if (ae) {
- ul(ae)
- }
- ae = o[(a + 24) >> 2]
- if (ae) {
- ul(ae)
- }
- return a | 0
- }
- function wh(a) {
- a = a | 0
- var ge = 0
- o[a >> 2] = 8876
- o[(a + 8) >> 2] = 9088
- ge = o[(a + 96) >> 2]
- if (ge) {
- o[(a + 100) >> 2] = ge
- ul(ge)
- }
- ge = o[(a + 80) >> 2]
- if (ge) {
- o[(a + 84) >> 2] = ge
- ul(ge)
- }
- ge = o[(a + 68) >> 2]
- if (ge) {
- o[(a + 72) >> 2] = ge
- ul(ge)
- }
- ge = o[(a + 56) >> 2]
- if (ge) {
- o[(a + 60) >> 2] = ge
- ul(ge)
- }
- o[(a + 8) >> 2] = 9324
- ge = o[(a + 44) >> 2]
- if (ge) {
- ul(ge)
- }
- ge = o[(a + 32) >> 2]
- if (ge) {
- ul(ge)
- }
- return a | 0
- }
- function xh(a) {
- a = a | 0
- var he = 0
- o[a >> 2] = 8876
- o[(a + 8) >> 2] = 9088
- he = o[(a + 96) >> 2]
- if (he) {
- o[(a + 100) >> 2] = he
- ul(he)
- }
- he = o[(a + 80) >> 2]
- if (he) {
- o[(a + 84) >> 2] = he
- ul(he)
- }
- he = o[(a + 68) >> 2]
- if (he) {
- o[(a + 72) >> 2] = he
- ul(he)
- }
- he = o[(a + 56) >> 2]
- if (he) {
- o[(a + 60) >> 2] = he
- ul(he)
- }
- o[(a + 8) >> 2] = 9324
- he = o[(a + 44) >> 2]
- if (he) {
- ul(he)
- }
- he = o[(a + 32) >> 2]
- if (he) {
- ul(he)
- }
- ul(a)
- }
- function yh(a, ie) {
- a = a | 0
- ie = ie | 0
- var je = 0,
- ke = 0,
- le = 0,
- me = 0,
- ne = 0,
- oe = 0,
- pe = 0,
- qe = 0,
- re = 0,
- se = 0,
- te = 0
- re = o[(a + 12) >> 2]
- je = o[(a + 108) >> 2]
- ke = o[(je + 80) >> 2]
- m[(ie + 84) | 0] = 0
- ne = o[(ie + 68) >> 2]
- le = (o[(ie + 72) >> 2] - ne) >> 2
- a: {
- if (ke >>> 0 > le >>> 0) {
- kd((ie + 68) | 0, (ke - le) | 0, 9076)
- je = o[(a + 108) >> 2]
- ke = o[(je + 80) >> 2]
- break a
- }
- if (ke >>> 0 >= le >>> 0) {
- break a
- }
- o[(ie + 72) >> 2] = ne + (ke << 2)
- }
- qe = o[(je + 96) >> 2]
- je = (o[(je + 100) >> 2] - qe) | 0
- se = ((je | 0) / 12) | 0
- if (!je) {
- return 1
- }
- te = (ie + 68) | 0
- ie = 0
- b: {
- while (1) {
- c: {
- if ((ie | 0) == 1431655765) {
- break c
- }
- je = (o[re >> 2] + (u(ie, 3) << 2)) | 0
- ne = o[je >> 2]
- if ((ne | 0) == -1) {
- break c
- }
- le = (u(ie, 12) + qe) | 0
- oe = o[le >> 2]
- if (oe >>> 0 >= ke >>> 0) {
- break c
- }
- me = ne << 2
- ne = o[(o[(a + 112) >> 2] + 12) >> 2]
- me = o[(me + ne) >> 2]
- if (me >>> 0 >= ke >>> 0) {
- break c
- }
- pe = oe << 2
- oe = o[te >> 2]
- o[(pe + oe) >> 2] = me
- me = o[(je + 4) >> 2]
- if ((me | 0) == -1) {
- break c
- }
- pe = o[(le + 4) >> 2]
- if (pe >>> 0 >= ke >>> 0) {
- break c
- }
- me = o[(ne + (me << 2)) >> 2]
- if (me >>> 0 >= ke >>> 0) {
- break c
- }
- o[(oe + (pe << 2)) >> 2] = me
- je = o[(je + 8) >> 2]
- if ((je | 0) == -1) {
- break c
- }
- le = o[(le + 8) >> 2]
- if (le >>> 0 >= ke >>> 0) {
- break c
- }
- je = o[(ne + (je << 2)) >> 2]
- if (je >>> 0 >= ke >>> 0) {
- break c
- }
- o[(oe + (le << 2)) >> 2] = je
- je = 1
- ie = (ie + 1) | 0
- if (ie >>> 0 < se >>> 0) {
- continue
- }
- break b
- }
- break
- }
- je = 0
- }
- return je | 0
- }
- function zh(a) {
- a = a | 0
- var ie = 0,
- ue = 0,
- ve = 0,
- we = 0,
- xe = 0,
- ye = 0,
- ze = 0,
- Ae = 0,
- Be = 0
- xe = (R - 16) | 0
- R = xe
- ue = o[(a + 4) >> 2]
- ie = o[ue >> 2]
- a: {
- Ae = (a + 12) | 0
- ve = o[Ae >> 2]
- we = (o[(ve + 28) >> 2] - o[(ve + 24) >> 2]) | 0
- ve = we >> 2
- b: {
- if (((o[(ue + 8) >> 2] - ie) >> 2) >>> 0 >= ve >>> 0) {
- break b
- }
- if (ve >>> 0 >= 1073741824) {
- break a
- }
- Be = (ue + 4) | 0
- ye = o[Be >> 2]
- ze = ve << 2
- ve = Hk(we)
- ze = (ze + ve) | 0
- we = (ye - ie) | 0
- ye = (we + ve) | 0
- if ((we | 0) >= 1) {
- wl(ve, ie, we)
- }
- o[ue >> 2] = ve
- o[(ue + 8) >> 2] = ze
- o[Be >> 2] = ye
- if (!ie) {
- break b
- }
- ul(ie)
- }
- ie = o[Ae >> 2]
- ue = o[(ie + 24) >> 2]
- ie = o[(ie + 28) >> 2]
- o[(xe + 12) >> 2] = 0
- ie = (ie - ue) >> 2
- ve = (a + 96) | 0
- we = o[ve >> 2]
- ue = (o[(a + 100) >> 2] - we) >> 2
- c: {
- if (ie >>> 0 > ue >>> 0) {
- yd(ve, (ie - ue) | 0, (xe + 12) | 0)
- break c
- }
- if (ie >>> 0 >= ue >>> 0) {
- break c
- }
- o[(a + 100) >> 2] = we + (ie << 2)
- }
- we = (a + 8) | 0
- d: {
- e: {
- ie = o[(a + 116) >> 2]
- if (ie) {
- ve = o[ie >> 2]
- ue = 1
- if ((ve | 0) == o[(ie + 4) >> 2]) {
- break d
- }
- ie = 0
- while (1) {
- if (!Ah(we, o[((ie << 2) + ve) >> 2])) {
- break e
- }
- ue = o[(a + 116) >> 2]
- ve = o[ue >> 2]
- ie = (ie + 1) | 0
- if (ie >>> 0 < ((o[(ue + 4) >> 2] - ve) >> 2) >>> 0) {
- continue
- }
- break
- }
- ue = 1
- break d
- }
- ie = 0
- a = o[(a + 12) >> 2]
- a = ((((o[(a + 4) >> 2] - o[a >> 2]) >> 2) >>> 0) / 3) | 0
- ue = 1
- if ((a | 0) <= 0) {
- break d
- }
- while (1) {
- if (!Ah(we, u(ie, 3))) {
- break e
- }
- ie = (ie + 1) | 0
- if (ie >>> 0 < a >>> 0) {
- continue
- }
- break
- }
- ue = 1
- break d
- }
- ue = 0
- }
- R = (xe + 16) | 0
- return ue | 0
- }
- _a(8776)
- D()
- }
- function Ah(a, Ce) {
- var De = 0,
- Ee = 0,
- Fe = 0,
- Ge = 0,
- He = 0,
- Ie = 0,
- Je = 0,
- Ke = 0,
- Le = 0,
- Me = 0,
- Ne = 0,
- Oe = 0,
- Pe = 0
- Ge = (R - 32) | 0
- R = Ge
- o[(Ge + 8) >> 2] = Ce
- a: {
- if (o[(a + 92) >> 2] == o[(a + 88) >> 2]) {
- break a
- }
- Fe = (a + 52) | 0
- De = o[Fe >> 2]
- b: {
- if ((De | 0) != o[(a + 56) >> 2]) {
- o[De >> 2] = Ce
- o[Fe >> 2] = De + 4
- break b
- }
- bh((a + 48) | 0, (Ge + 8) | 0)
- }
- o[(a + 84) >> 2] = 0
- Ce = -1
- Fe = -1
- De = o[(Ge + 8) >> 2]
- c: {
- if ((De | 0) == -1) {
- break c
- }
- Ee = o[(a + 4) >> 2]
- He = (De + 1) | 0
- He = (He >>> 0) % 3 | 0 ? He : (De + -2) | 0
- if ((He | 0) != -1) {
- Ce = o[(o[Ee >> 2] + (He << 2)) >> 2]
- }
- De = (De + ((De >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((De | 0) == -1) {
- break c
- }
- Fe = o[(o[Ee >> 2] + (De << 2)) >> 2]
- }
- De = o[(a + 36) >> 2]
- Ee = (De + ((Ce >>> 3) & 536870908)) | 0
- He = o[Ee >> 2]
- Je = 1 << (Ce & 31)
- if (!(He & Je)) {
- o[Ee >> 2] = He | Je
- De = -1
- Ee = o[(Ge + 8) >> 2]
- if ((Ee | 0) != -1) {
- De = (Ee + 1) | 0
- De = (De >>> 0) % 3 | 0 ? De : (Ee + -2) | 0
- }
- o[(Ge + 16) >> 2] = De
- Ee = o[(a + 20) >> 2]
- He = ((De >>> 0) / 3) | 0
- He = o[(((o[(o[(a + 16) >> 2] + 96) >> 2] + u(He, 12)) | 0) + ((De - u(He, 3)) << 2)) >> 2]
- o[(Ge + 24) >> 2] = He
- Ee = o[(Ee + 4) >> 2]
- Je = (Ee + 4) | 0
- De = o[Je >> 2]
- d: {
- if ((De | 0) != o[(Ee + 8) >> 2]) {
- o[De >> 2] = He
- o[Je >> 2] = De + 4
- break d
- }
- bh(Ee, (Ge + 24) | 0)
- }
- He = (a + 12) | 0
- De = o[He >> 2]
- Je = (De + 4) | 0
- Ee = o[Je >> 2]
- e: {
- if ((Ee | 0) != o[(De + 8) >> 2]) {
- o[Ee >> 2] = o[(Ge + 16) >> 2]
- o[Je >> 2] = Ee + 4
- break e
- }
- bh(De, (Ge + 16) | 0)
- De = o[He >> 2]
- }
- o[(o[(De + 12) >> 2] + (Ce << 2)) >> 2] = o[(De + 24) >> 2]
- o[(De + 24) >> 2] = o[(De + 24) >> 2] + 1
- De = o[(a + 36) >> 2]
- }
- Ce = (De + ((Fe >>> 3) & 536870908)) | 0
- De = o[Ce >> 2]
- Ee = 1 << (Fe & 31)
- if (!(De & Ee)) {
- o[Ce >> 2] = De | Ee
- Ce = Ge
- Ke = Ce
- Ee = o[(Ce + 8) >> 2]
- De = -1
- f: {
- if ((Ee | 0) == -1) {
- break f
- }
- De = (Ee + -1) | 0
- if ((Ee >>> 0) % 3) {
- break f
- }
- De = (Ee + 2) | 0
- }
- o[(Ke + 16) >> 2] = De
- Ce = o[(a + 20) >> 2]
- Ee = ((De >>> 0) / 3) | 0
- Ee = o[(((o[(o[(a + 16) >> 2] + 96) >> 2] + u(Ee, 12)) | 0) + ((De - u(Ee, 3)) << 2)) >> 2]
- o[(Ge + 24) >> 2] = Ee
- De = o[(Ce + 4) >> 2]
- He = (De + 4) | 0
- Ce = o[He >> 2]
- g: {
- if ((Ce | 0) != o[(De + 8) >> 2]) {
- o[Ce >> 2] = Ee
- o[He >> 2] = Ce + 4
- break g
- }
- bh(De, (Ge + 24) | 0)
- }
- Ee = (a + 12) | 0
- Ce = o[Ee >> 2]
- He = (Ce + 4) | 0
- De = o[He >> 2]
- h: {
- if ((De | 0) != o[(Ce + 8) >> 2]) {
- o[De >> 2] = o[(Ge + 16) >> 2]
- o[He >> 2] = De + 4
- break h
- }
- bh(Ce, (Ge + 16) | 0)
- Ce = o[Ee >> 2]
- }
- o[(o[(Ce + 12) >> 2] + (Fe << 2)) >> 2] = o[(Ce + 24) >> 2]
- o[(Ce + 24) >> 2] = o[(Ce + 24) >> 2] + 1
- }
- Ce = -1
- De = o[(Ge + 8) >> 2]
- if ((De | 0) != -1) {
- Ce = o[(o[o[(a + 4) >> 2] >> 2] + (De << 2)) >> 2]
- }
- De = (o[(a + 36) >> 2] + ((Ce >>> 3) & 536870908)) | 0
- Fe = o[De >> 2]
- Ee = 1 << (Ce & 31)
- if (!(Fe & Ee)) {
- o[De >> 2] = Ee | Fe
- De = o[(Ge + 8) >> 2]
- o[(Ge + 16) >> 2] = De
- Fe = o[(a + 20) >> 2]
- Ee = ((De >>> 0) / 3) | 0
- Ee = o[(((o[(o[(a + 16) >> 2] + 96) >> 2] + u(Ee, 12)) | 0) + ((De - u(Ee, 3)) << 2)) >> 2]
- o[(Ge + 24) >> 2] = Ee
- Fe = o[(Fe + 4) >> 2]
- He = (Fe + 4) | 0
- De = o[He >> 2]
- i: {
- if ((De | 0) != o[(Fe + 8) >> 2]) {
- o[De >> 2] = Ee
- o[He >> 2] = De + 4
- break i
- }
- bh(Fe, (Ge + 24) | 0)
- }
- Ee = (a + 12) | 0
- Fe = o[Ee >> 2]
- He = (Fe + 4) | 0
- De = o[He >> 2]
- j: {
- if ((De | 0) != o[(Fe + 8) >> 2]) {
- o[De >> 2] = o[(Ge + 16) >> 2]
- o[He >> 2] = De + 4
- break j
- }
- bh(Fe, (Ge + 16) | 0)
- Fe = o[Ee >> 2]
- }
- o[(o[(Fe + 12) >> 2] + (Ce << 2)) >> 2] = o[(Fe + 24) >> 2]
- o[(Fe + 24) >> 2] = o[(Fe + 24) >> 2] + 1
- }
- De = o[(a + 84) >> 2]
- k: {
- if ((De | 0) > 2) {
- break k
- }
- He = (a + 24) | 0
- Je = (a + 36) | 0
- Oe = (a + 16) | 0
- Pe = (a + 20) | 0
- Me = (a + 88) | 0
- while (1) {
- Fe = (u(De, 12) + a) | 0
- Ee = (Fe + 52) | 0
- Ce = o[Ee >> 2]
- if ((Ce | 0) == o[(Fe + 48) >> 2]) {
- Ce = (De | 0) < 2
- De = (De + 1) | 0
- if (Ce) {
- continue
- }
- break k
- }
- Fe = (Ce + -4) | 0
- Ce = o[Fe >> 2]
- o[Ee >> 2] = Fe
- o[(a + 84) >> 2] = De
- o[(Ge + 8) >> 2] = Ce
- if ((Ce | 0) == -1) {
- break a
- }
- Fe = o[He >> 2]
- Ee = ((Ce >>> 0) / 3) | 0
- l: {
- if ((o[(Fe + ((Ee >>> 3) & 268435452)) >> 2] >>> (Ee & 31)) & 1) {
- break l
- }
- m: {
- while (1) {
- Ce = ((Ce >>> 0) / 3) | 0
- De = (((Ce >>> 3) & 268435452) + Fe) | 0
- o[De >> 2] = o[De >> 2] | (1 << (Ce & 31))
- Ce = -1
- Fe = o[(Ge + 8) >> 2]
- if ((Fe | 0) != -1) {
- Ce = o[(o[o[(a + 4) >> 2] >> 2] + (Fe << 2)) >> 2]
- }
- De = (o[Je >> 2] + ((Ce >>> 3) & 536870908)) | 0
- Ee = o[De >> 2]
- Ie = 1 << (Ce & 31)
- if (!(Ee & Ie)) {
- o[De >> 2] = Ee | Ie
- De = o[(Ge + 8) >> 2]
- o[(Ge + 16) >> 2] = De
- Fe = o[Pe >> 2]
- Ee = ((De >>> 0) / 3) | 0
- Ee = o[(((o[(o[Oe >> 2] + 96) >> 2] + u(Ee, 12)) | 0) + ((De - u(Ee, 3)) << 2)) >> 2]
- o[(Ge + 24) >> 2] = Ee
- Fe = o[(Fe + 4) >> 2]
- Ie = (Fe + 4) | 0
- De = o[Ie >> 2]
- n: {
- if ((De | 0) != o[(Fe + 8) >> 2]) {
- o[De >> 2] = Ee
- o[Ie >> 2] = De + 4
- break n
- }
- bh(Fe, (Ge + 24) | 0)
- }
- Ee = (a + 12) | 0
- Fe = o[Ee >> 2]
- Ie = (Fe + 4) | 0
- De = o[Ie >> 2]
- o: {
- if ((De | 0) != o[(Fe + 8) >> 2]) {
- o[De >> 2] = o[(Ge + 16) >> 2]
- o[Ie >> 2] = De + 4
- break o
- }
- bh(Fe, (Ge + 16) | 0)
- Fe = o[Ee >> 2]
- }
- o[(o[(Fe + 12) >> 2] + (Ce << 2)) >> 2] = o[(Fe + 24) >> 2]
- o[(Fe + 24) >> 2] = o[(Fe + 24) >> 2] + 1
- Fe = o[(Ge + 8) >> 2]
- }
- if ((Fe | 0) == -1) {
- break m
- }
- Ne = (a + 4) | 0
- Ie = o[Ne >> 2]
- Ce = -1
- De = -1
- Ee = (Fe + 1) | 0
- Ee = (Ee >>> 0) % 3 | 0 ? Ee : (Fe + -2) | 0
- if ((Ee | 0) != -1) {
- De = o[(o[(Ie + 12) >> 2] + (Ee << 2)) >> 2]
- }
- Fe = (((Fe >>> 0) % 3 | 0 ? -1 : 2) + Fe) | 0
- if ((Fe | 0) != -1) {
- Ce = o[(o[(Ie + 12) >> 2] + (Fe << 2)) >> 2]
- }
- Ee = ((Ce >>> 0) / 3) | 0
- Le = ((De >>> 0) / 3) | 0
- Ke = (De | 0) == -1
- Fe = 1
- p: {
- if (Ke) {
- break p
- }
- Fe = Ke ? -1 : Le
- Fe = (o[(o[He >> 2] + ((Fe >>> 3) & 536870908)) >> 2] >>> (Fe & 31)) & 1
- }
- q: {
- r: {
- s: {
- if ((Ce | 0) == -1) {
- if (!Fe) {
- break s
- }
- break m
- }
- Ee = (Ce | 0) == -1 ? -1 : Ee
- t: {
- if ((o[(o[He >> 2] + ((Ee >>> 3) & 536870908)) >> 2] >>> (Ee & 31)) & 1) {
- break t
- }
- Ee = 0
- Ke = Fe
- Ie = o[(o[Ie >> 2] + (Ce << 2)) >> 2]
- if (!((o[(o[Je >> 2] + ((Ie >>> 3) & 536870908)) >> 2] >>> (Ie & 31)) & 1)) {
- Ie = (o[Me >> 2] + (Ie << 2)) | 0
- Ee = o[Ie >> 2]
- o[Ie >> 2] = Ee + 1
- Ee = (Ee | 0) < 1 ? 2 : 1
- }
- if ((Ee | 0) <= o[(a + 84) >> 2] ? Ke : 0) {
- break r
- }
- o[(Ge + 24) >> 2] = Ce
- Le = (u(Ee, 12) + a) | 0
- Ke = (Le + 52) | 0
- Ie = o[Ke >> 2]
- u: {
- if ((Ie | 0) != o[(Le + 56) >> 2]) {
- o[Ie >> 2] = Ce
- o[Ke >> 2] = Ie + 4
- break u
- }
- bh((Le + 48) | 0, (Ge + 24) | 0)
- }
- if (o[(a + 84) >> 2] <= (Ee | 0)) {
- break t
- }
- o[(a + 84) >> 2] = Ee
- }
- if (Fe) {
- break m
- }
- }
- Ce = -1
- Fe = 0
- Ce = (De | 0) != -1 ? o[(o[o[Ne >> 2] >> 2] + (De << 2)) >> 2] : Ce
- if (!((o[(o[Je >> 2] + ((Ce >>> 3) & 536870908)) >> 2] >>> (Ce & 31)) & 1)) {
- Fe = (o[Me >> 2] + (Ce << 2)) | 0
- Ce = o[Fe >> 2]
- o[Fe >> 2] = Ce + 1
- Fe = (Ce | 0) < 1 ? 2 : 1
- }
- if ((Fe | 0) > o[(a + 84) >> 2]) {
- break q
- }
- Ce = De
- }
- o[(Ge + 8) >> 2] = Ce
- Fe = o[He >> 2]
- continue
- }
- break
- }
- o[(Ge + 24) >> 2] = De
- Ee = (u(Fe, 12) + a) | 0
- Ie = (Ee + 52) | 0
- Ce = o[Ie >> 2]
- v: {
- if ((Ce | 0) != o[(Ee + 56) >> 2]) {
- o[Ce >> 2] = De
- o[Ie >> 2] = Ce + 4
- break v
- }
- bh((Ee + 48) | 0, (Ge + 24) | 0)
- }
- De = o[(a + 84) >> 2]
- if ((De | 0) <= (Fe | 0)) {
- break l
- }
- o[(a + 84) >> 2] = Fe
- De = Fe
- break l
- }
- De = o[(a + 84) >> 2]
- }
- if ((De | 0) < 3) {
- continue
- }
- break
- }
- }
- o[(Ge + 8) >> 2] = -1
- }
- R = (Ge + 32) | 0
- return 1
- }
- function Bh(a) {
- a = a | 0
- var Ce = 0
- o[a >> 2] = 9088
- Ce = o[(a + 88) >> 2]
- if (Ce) {
- o[(a + 92) >> 2] = Ce
- ul(Ce)
- }
- Ce = o[(a + 72) >> 2]
- if (Ce) {
- o[(a + 76) >> 2] = Ce
- ul(Ce)
- }
- Ce = o[(a + 60) >> 2]
- if (Ce) {
- o[(a - -64) >> 2] = Ce
- ul(Ce)
- }
- Ce = o[(a + 48) >> 2]
- if (Ce) {
- o[(a + 52) >> 2] = Ce
- ul(Ce)
- }
- o[a >> 2] = 9324
- Ce = o[(a + 36) >> 2]
- if (Ce) {
- ul(Ce)
- }
- Ce = o[(a + 24) >> 2]
- if (Ce) {
- ul(Ce)
- }
- ul(a)
- }
- function Ch(a) {
- a = a | 0
- var Qe = 0
- o[a >> 2] = 9324
- Qe = o[(a + 36) >> 2]
- if (Qe) {
- ul(Qe)
- }
- Qe = o[(a + 24) >> 2]
- if (Qe) {
- ul(Qe)
- }
- return a | 0
- }
- function Dh(a) {
- a = a | 0
- var Re = 0
- o[a >> 2] = 9324
- Re = o[(a + 36) >> 2]
- if (Re) {
- ul(Re)
- }
- Re = o[(a + 24) >> 2]
- if (Re) {
- ul(Re)
- }
- ul(a)
- }
- function Eh(a) {
- a = a | 0
- var Se = 0
- o[a >> 2] = 9508
- Se = o[(a + 48) >> 2]
- if (Se) {
- o[(a + 52) >> 2] = Se
- ul(Se)
- }
- o[a >> 2] = 9324
- Se = o[(a + 36) >> 2]
- if (Se) {
- ul(Se)
- }
- Se = o[(a + 24) >> 2]
- if (Se) {
- ul(Se)
- }
- return a | 0
- }
- function Fh(a) {
- a = a | 0
- var Te = 0,
- Ue = 0
- o[a >> 2] = 9344
- Ue = (a + 8) | 0
- o[Ue >> 2] = 9508
- Te = o[(a + 56) >> 2]
- if (Te) {
- o[(a + 60) >> 2] = Te
- ul(Te)
- }
- o[Ue >> 2] = 9324
- Te = o[(a + 44) >> 2]
- if (Te) {
- ul(Te)
- }
- Te = o[(a + 32) >> 2]
- if (Te) {
- ul(Te)
- }
- return a | 0
- }
- function Gh(a) {
- a = a | 0
- var Ve = 0,
- We = 0
- o[a >> 2] = 9344
- We = (a + 8) | 0
- o[We >> 2] = 9508
- Ve = o[(a + 56) >> 2]
- if (Ve) {
- o[(a + 60) >> 2] = Ve
- ul(Ve)
- }
- o[We >> 2] = 9324
- Ve = o[(a + 44) >> 2]
- if (Ve) {
- ul(Ve)
- }
- Ve = o[(a + 32) >> 2]
- if (Ve) {
- ul(Ve)
- }
- ul(a)
- }
- function Hh(a, Xe) {
- a = a | 0
- Xe = Xe | 0
- var Ye = 0,
- Ze = 0,
- _e = 0,
- $e = 0,
- af = 0,
- bf = 0,
- cf = 0,
- df = 0,
- ef = 0,
- ff = 0,
- gf = 0
- ef = o[(a + 12) >> 2]
- Ye = o[(a + 68) >> 2]
- Ze = o[(Ye + 80) >> 2]
- m[(Xe + 84) | 0] = 0
- af = o[(Xe + 68) >> 2]
- _e = (o[(Xe + 72) >> 2] - af) >> 2
- a: {
- if (Ze >>> 0 > _e >>> 0) {
- kd((Xe + 68) | 0, (Ze - _e) | 0, 9076)
- Ye = o[(a + 68) >> 2]
- Ze = o[(Ye + 80) >> 2]
- break a
- }
- if (Ze >>> 0 >= _e >>> 0) {
- break a
- }
- o[(Xe + 72) >> 2] = af + (Ze << 2)
- }
- df = o[(Ye + 96) >> 2]
- Ye = (o[(Ye + 100) >> 2] - df) | 0
- ff = ((Ye | 0) / 12) | 0
- if (!Ye) {
- return 1
- }
- gf = (Xe + 68) | 0
- Xe = 0
- b: {
- while (1) {
- c: {
- if ((Xe | 0) == 1431655765) {
- break c
- }
- Ye = (o[ef >> 2] + (u(Xe, 3) << 2)) | 0
- af = o[Ye >> 2]
- if ((af | 0) == -1) {
- break c
- }
- _e = (u(Xe, 12) + df) | 0
- bf = o[_e >> 2]
- if (bf >>> 0 >= Ze >>> 0) {
- break c
- }
- $e = af << 2
- af = o[(o[(a + 72) >> 2] + 12) >> 2]
- $e = o[($e + af) >> 2]
- if ($e >>> 0 >= Ze >>> 0) {
- break c
- }
- cf = bf << 2
- bf = o[gf >> 2]
- o[(cf + bf) >> 2] = $e
- $e = o[(Ye + 4) >> 2]
- if (($e | 0) == -1) {
- break c
- }
- cf = o[(_e + 4) >> 2]
- if (cf >>> 0 >= Ze >>> 0) {
- break c
- }
- $e = o[(af + ($e << 2)) >> 2]
- if ($e >>> 0 >= Ze >>> 0) {
- break c
- }
- o[(bf + (cf << 2)) >> 2] = $e
- Ye = o[(Ye + 8) >> 2]
- if ((Ye | 0) == -1) {
- break c
- }
- _e = o[(_e + 8) >> 2]
- if (_e >>> 0 >= Ze >>> 0) {
- break c
- }
- Ye = o[(af + (Ye << 2)) >> 2]
- if (Ye >>> 0 >= Ze >>> 0) {
- break c
- }
- o[(bf + (_e << 2)) >> 2] = Ye
- Ye = 1
- Xe = (Xe + 1) | 0
- if (Xe >>> 0 < ff >>> 0) {
- continue
- }
- break b
- }
- break
- }
- Ye = 0
- }
- return Ye | 0
- }
- function Ih(a) {
- a = a | 0
- var Xe = 0,
- hf = 0,
- jf = 0,
- kf = 0,
- lf = 0,
- mf = 0,
- nf = 0
- kf = o[(a + 4) >> 2]
- Xe = o[kf >> 2]
- a: {
- hf = o[(a + 12) >> 2]
- jf = (o[(hf + 28) >> 2] - o[(hf + 24) >> 2]) | 0
- hf = jf >> 2
- b: {
- if (((o[(kf + 8) >> 2] - Xe) >> 2) >>> 0 >= hf >>> 0) {
- break b
- }
- if (hf >>> 0 >= 1073741824) {
- break a
- }
- nf = (kf + 4) | 0
- lf = o[nf >> 2]
- mf = hf << 2
- hf = Hk(jf)
- mf = (mf + hf) | 0
- jf = (lf - Xe) | 0
- lf = (jf + hf) | 0
- if ((jf | 0) >= 1) {
- wl(hf, Xe, jf)
- }
- o[kf >> 2] = hf
- o[(kf + 8) >> 2] = mf
- o[nf >> 2] = lf
- if (!Xe) {
- break b
- }
- ul(Xe)
- }
- hf = (a + 8) | 0
- c: {
- d: {
- Xe = o[(a + 76) >> 2]
- if (Xe) {
- kf = o[Xe >> 2]
- jf = 1
- if ((kf | 0) == o[(Xe + 4) >> 2]) {
- break c
- }
- Xe = 0
- while (1) {
- if (!Jh(hf, o[((Xe << 2) + kf) >> 2])) {
- break d
- }
- jf = o[(a + 76) >> 2]
- kf = o[jf >> 2]
- Xe = (Xe + 1) | 0
- if (Xe >>> 0 < ((o[(jf + 4) >> 2] - kf) >> 2) >>> 0) {
- continue
- }
- break
- }
- return 1
- }
- Xe = 0
- a = o[(a + 12) >> 2]
- a = ((((o[(a + 4) >> 2] - o[a >> 2]) >> 2) >>> 0) / 3) | 0
- if ((a | 0) <= 0) {
- return 1
- }
- while (1) {
- if (!Jh(hf, u(Xe, 3))) {
- break d
- }
- Xe = (Xe + 1) | 0
- if (Xe >>> 0 < a >>> 0) {
- continue
- }
- break
- }
- return 1
- }
- jf = 0
- }
- return jf | 0
- }
- _a(8776)
- D()
- }
- function Jh(a, of) {
- var pf = 0,
- qf = 0,
- rf = 0,
- sf = 0,
- tf = 0,
- uf = 0,
- vf = 0,
- wf = 0,
- xf = 0,
- yf = 0,
- zf = 0,
- Af = 0,
- Bf = 0,
- Cf = 0,
- Df = 0
- tf = (R - 32) | 0
- R = tf
- o[(tf + 8) >> 2] = of
- a: {
- if ((of | 0) == -1) {
- sf = 1
- break a
- }
- sf = 1
- pf = ((of >>> 0) / 3) | 0
- if ((o[(o[(a + 24) >> 2] + ((pf >>> 3) & 268435452)) >> 2] >>> (pf & 31)) & 1) {
- break a
- }
- pf = (a + 52) | 0
- rf = o[(a + 48) >> 2]
- o[pf >> 2] = rf
- yf = (a + 48) | 0
- b: {
- if ((rf | 0) != o[(a + 56) >> 2]) {
- o[rf >> 2] = of
- o[pf >> 2] = rf + 4
- break b
- }
- bh(yf, (tf + 8) | 0)
- }
- sf = -1
- rf = o[(tf + 8) >> 2]
- if ((rf | 0) == -1) {
- sf = 0
- break a
- }
- pf = o[(a + 4) >> 2]
- of = (rf + 1) | 0
- of = (of >>> 0) % 3 | 0 ? of : (rf + -2) | 0
- if ((of | 0) != -1) {
- sf = o[(o[pf >> 2] + (of << 2)) >> 2]
- }
- of = (rf + ((rf >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((of | 0) == -1) {
- sf = 0
- break a
- }
- if ((sf | 0) == -1) {
- sf = 0
- break a
- }
- uf = o[(o[pf >> 2] + (of << 2)) >> 2]
- if ((uf | 0) == -1) {
- sf = 0
- break a
- }
- of = o[(a + 36) >> 2]
- qf = (of + ((sf >>> 3) & 536870908)) | 0
- rf = o[qf >> 2]
- pf = 1 << (sf & 31)
- if (!(rf & pf)) {
- o[qf >> 2] = pf | rf
- qf = -1
- pf = o[(tf + 8) >> 2]
- if ((pf | 0) != -1) {
- of = (pf + 1) | 0
- qf = (of >>> 0) % 3 | 0 ? of : (pf + -2) | 0
- }
- o[(tf + 16) >> 2] = qf
- rf = o[(a + 20) >> 2]
- of = ((qf >>> 0) / 3) | 0
- pf = o[(((o[(o[(a + 16) >> 2] + 96) >> 2] + u(of, 12)) | 0) + ((qf - u(of, 3)) << 2)) >> 2]
- o[(tf + 24) >> 2] = pf
- rf = o[(rf + 4) >> 2]
- of = (rf + 4) | 0
- qf = o[of >> 2]
- c: {
- if ((qf | 0) != o[(rf + 8) >> 2]) {
- o[qf >> 2] = pf
- o[of >> 2] = qf + 4
- break c
- }
- bh(rf, (tf + 24) | 0)
- }
- pf = (a + 12) | 0
- qf = o[pf >> 2]
- of = (qf + 4) | 0
- rf = o[of >> 2]
- d: {
- if ((rf | 0) != o[(qf + 8) >> 2]) {
- o[rf >> 2] = o[(tf + 16) >> 2]
- o[of >> 2] = rf + 4
- break d
- }
- bh(qf, (tf + 16) | 0)
- qf = o[pf >> 2]
- }
- o[(o[(qf + 12) >> 2] + (sf << 2)) >> 2] = o[(qf + 24) >> 2]
- o[(qf + 24) >> 2] = o[(qf + 24) >> 2] + 1
- of = o[(a + 36) >> 2]
- }
- rf = (((uf >>> 3) & 536870908) + of) | 0
- pf = o[rf >> 2]
- of = 1 << (uf & 31)
- if (!(pf & of)) {
- o[rf >> 2] = of | pf
- of = tf
- rf = of
- pf = o[(of + 8) >> 2]
- qf = -1
- e: {
- if ((pf | 0) == -1) {
- break e
- }
- qf = (pf + -1) | 0
- if ((pf >>> 0) % 3) {
- break e
- }
- qf = (pf + 2) | 0
- }
- o[(rf + 16) >> 2] = qf
- rf = o[(a + 20) >> 2]
- of = ((qf >>> 0) / 3) | 0
- pf = o[(((o[(o[(a + 16) >> 2] + 96) >> 2] + u(of, 12)) | 0) + ((qf - u(of, 3)) << 2)) >> 2]
- o[(tf + 24) >> 2] = pf
- rf = o[(rf + 4) >> 2]
- of = (rf + 4) | 0
- qf = o[of >> 2]
- f: {
- if ((qf | 0) != o[(rf + 8) >> 2]) {
- o[qf >> 2] = pf
- o[of >> 2] = qf + 4
- break f
- }
- bh(rf, (tf + 24) | 0)
- }
- pf = (a + 12) | 0
- sf = o[pf >> 2]
- of = (sf + 4) | 0
- rf = o[of >> 2]
- g: {
- if ((rf | 0) != o[(sf + 8) >> 2]) {
- o[rf >> 2] = o[(tf + 16) >> 2]
- o[of >> 2] = rf + 4
- break g
- }
- bh(sf, (tf + 16) | 0)
- sf = o[pf >> 2]
- }
- o[(o[(sf + 12) >> 2] + (uf << 2)) >> 2] = o[(sf + 24) >> 2]
- o[(sf + 24) >> 2] = o[(sf + 24) >> 2] + 1
- }
- wf = (a + 52) | 0
- of = o[wf >> 2]
- if ((of | 0) == o[(a + 48) >> 2]) {
- sf = 1
- break a
- }
- xf = (a + 24) | 0
- zf = (a + 4) | 0
- Af = (a + 36) | 0
- Bf = (a + 16) | 0
- Cf = (a + 20) | 0
- Df = (a + 56) | 0
- while (1) {
- qf = (of + -4) | 0
- pf = o[qf >> 2]
- o[(tf + 8) >> 2] = pf
- of = ((pf >>> 0) / 3) | 0
- h: {
- i: {
- j: {
- if ((pf | 0) == -1) {
- break j
- }
- rf = (o[xf >> 2] + ((of >>> 3) & 268435452)) | 0
- pf = o[rf >> 2]
- of = 1 << (of & 31)
- if (pf & of) {
- break j
- }
- o[rf >> 2] = of | pf
- of = o[(tf + 8) >> 2]
- if ((of | 0) != -1) {
- break i
- }
- sf = 0
- break a
- }
- o[wf >> 2] = qf
- break h
- }
- k: {
- l: {
- m: {
- while (1) {
- vf = o[zf >> 2]
- pf = o[(o[vf >> 2] + (of << 2)) >> 2]
- if ((pf | 0) == -1) {
- sf = 0
- break a
- }
- uf = (o[Af >> 2] + ((pf >>> 3) & 536870908)) | 0
- qf = o[uf >> 2]
- rf = 1 << (pf & 31)
- n: {
- if (!(qf & rf)) {
- sf = pf << 2
- pf = o[(sf + o[(vf + 24) >> 2]) >> 2]
- o: {
- p: {
- if ((pf | 0) == -1) {
- break p
- }
- of = (pf + 1) | 0
- of = (of >>> 0) % 3 | 0 ? of : (pf + -2) | 0
- if ((of | 0) == -1) {
- break p
- }
- vf = o[(o[(vf + 12) >> 2] + (of << 2)) >> 2]
- if ((vf | 0) == -1) {
- break p
- }
- of = (vf + 1) | 0
- pf = 0
- if ((((of >>> 0) % 3 | 0 ? of : (vf + -2) | 0) | 0) != -1) {
- break o
- }
- }
- pf = 1
- }
- o[uf >> 2] = rf | qf
- rf = o[(tf + 8) >> 2]
- o[(tf + 16) >> 2] = rf
- qf = o[Cf >> 2]
- of = ((rf >>> 0) / 3) | 0
- rf = o[(((o[(o[Bf >> 2] + 96) >> 2] + u(of, 12)) | 0) + ((rf - u(of, 3)) << 2)) >> 2]
- o[(tf + 24) >> 2] = rf
- qf = o[(qf + 4) >> 2]
- of = (qf + 4) | 0
- uf = o[of >> 2]
- q: {
- if ((uf | 0) != o[(qf + 8) >> 2]) {
- o[uf >> 2] = rf
- o[of >> 2] = uf + 4
- break q
- }
- bh(qf, (tf + 24) | 0)
- }
- qf = (a + 12) | 0
- of = o[qf >> 2]
- rf = (of + 4) | 0
- uf = o[rf >> 2]
- r: {
- if ((uf | 0) != o[(of + 8) >> 2]) {
- o[uf >> 2] = o[(tf + 16) >> 2]
- o[rf >> 2] = uf + 4
- break r
- }
- bh(of, (tf + 16) | 0)
- of = o[qf >> 2]
- }
- o[(o[(of + 12) >> 2] + sf) >> 2] = o[(of + 24) >> 2]
- o[(of + 24) >> 2] = o[(of + 24) >> 2] + 1
- vf = o[zf >> 2]
- of = o[(tf + 8) >> 2]
- if (!pf) {
- pf = tf
- qf = -1
- s: {
- if ((of | 0) == -1) {
- break s
- }
- rf = (of + 1) | 0
- of = (rf >>> 0) % 3 | 0 ? rf : (of + -2) | 0
- qf = -1
- if ((of | 0) == -1) {
- break s
- }
- qf = o[(o[(vf + 12) >> 2] + (of << 2)) >> 2]
- }
- o[(pf + 8) >> 2] = qf
- of = ((qf >>> 0) / 3) | 0
- break n
- }
- if ((of | 0) == -1) {
- break l
- }
- }
- qf = -1
- sf = -1
- pf = (of + 1) | 0
- pf = (pf >>> 0) % 3 | 0 ? pf : (of + -2) | 0
- if ((pf | 0) != -1) {
- sf = o[(o[(vf + 12) >> 2] + (pf << 2)) >> 2]
- }
- o[(tf + 24) >> 2] = sf
- of = (((of >>> 0) % 3 | 0 ? -1 : 2) + of) | 0
- if ((of | 0) != -1) {
- qf = o[(o[(vf + 12) >> 2] + (of << 2)) >> 2]
- }
- rf = ((qf >>> 0) / 3) | 0
- of = ((sf >>> 0) / 3) | 0
- pf = (sf | 0) == -1
- t: {
- if (pf) {
- of = -1
- pf = 1
- break t
- }
- pf = pf ? -1 : of
- pf = (o[(o[xf >> 2] + ((pf >>> 3) & 536870908)) >> 2] >>> (pf & 31)) & 1
- }
- u: {
- if ((qf | 0) != -1) {
- uf = (qf | 0) == -1 ? -1 : rf
- uf = o[(o[xf >> 2] + ((uf >>> 3) & 536870908)) >> 2] & (1 << (uf & 31))
- if (pf) {
- sf = qf
- of = rf
- if (!uf) {
- break u
- }
- break k
- }
- if (uf) {
- break u
- }
- of = o[wf >> 2]
- o[(of + -4) >> 2] = qf
- if ((of | 0) == o[Df >> 2]) {
- break m
- }
- o[of >> 2] = o[(tf + 24) >> 2]
- o[wf >> 2] = of + 4
- break h
- }
- if (pf) {
- break k
- }
- }
- o[(tf + 8) >> 2] = sf
- }
- pf = (o[xf >> 2] + ((of >>> 3) & 536870908)) | 0
- o[pf >> 2] = o[pf >> 2] | (1 << (of & 31))
- of = o[(tf + 8) >> 2]
- if ((of | 0) != -1) {
- continue
- }
- break
- }
- sf = 0
- break a
- }
- bh(yf, (tf + 24) | 0)
- break h
- }
- o[(tf + 24) >> 2] = -1
- }
- o[wf >> 2] = o[wf >> 2] + -4
- }
- sf = 1
- of = o[wf >> 2]
- if ((of | 0) != o[(a + 48) >> 2]) {
- continue
- }
- break
- }
- }
- R = (tf + 32) | 0
- return sf
- }
- function Kh(a) {
- a = a | 0
- var of = 0
- o[a >> 2] = 9508
- of = o[(a + 48) >> 2]
- if (of) {
- o[(a + 52) >> 2] = of
- ul(of)
- }
- o[a >> 2] = 9324
- of = o[(a + 36) >> 2]
- if (of) {
- ul(of)
- }
- of = o[(a + 24) >> 2]
- if (of) {
- ul(of)
- }
- ul(a)
- }
- function Lh(a) {
- a = a | 0
- var Ef = 0,
- Ff = 0
- o[a >> 2] = 9636
- Ff = (a + 8) | 0
- o[Ff >> 2] = 8512
- Ef = o[(a + 56) >> 2]
- if (Ef) {
- o[(a + 60) >> 2] = Ef
- ul(Ef)
- }
- o[Ff >> 2] = 8764
- Ef = o[(a + 44) >> 2]
- if (Ef) {
- ul(Ef)
- }
- Ef = o[(a + 32) >> 2]
- if (Ef) {
- ul(Ef)
- }
- return a | 0
- }
- function Mh(a) {
- a = a | 0
- var Gf = 0,
- Hf = 0
- o[a >> 2] = 9636
- Hf = (a + 8) | 0
- o[Hf >> 2] = 8512
- Gf = o[(a + 56) >> 2]
- if (Gf) {
- o[(a + 60) >> 2] = Gf
- ul(Gf)
- }
- o[Hf >> 2] = 8764
- Gf = o[(a + 44) >> 2]
- if (Gf) {
- ul(Gf)
- }
- Gf = o[(a + 32) >> 2]
- if (Gf) {
- ul(Gf)
- }
- ul(a)
- }
- function Nh(a, If) {
- a = a | 0
- If = If | 0
- var Jf = 0,
- Kf = 0,
- Lf = 0,
- Mf = 0,
- Nf = 0,
- Of = 0,
- Pf = 0,
- Qf = 0,
- Rf = 0,
- Sf = 0,
- Tf = 0
- Of = o[(a + 12) >> 2]
- Jf = o[(a + 68) >> 2]
- Kf = o[(Jf + 80) >> 2]
- m[(If + 84) | 0] = 0
- Nf = o[(If + 68) >> 2]
- Lf = (o[(If + 72) >> 2] - Nf) >> 2
- a: {
- if (Kf >>> 0 > Lf >>> 0) {
- kd((If + 68) | 0, (Kf - Lf) | 0, 9076)
- Jf = o[(a + 68) >> 2]
- Kf = o[(Jf + 80) >> 2]
- break a
- }
- if (Kf >>> 0 >= Lf >>> 0) {
- break a
- }
- o[(If + 72) >> 2] = Nf + (Kf << 2)
- }
- Qf = o[(Jf + 96) >> 2]
- Jf = (o[(Jf + 100) >> 2] - Qf) | 0
- Rf = ((Jf | 0) / 12) | 0
- if (!Jf) {
- return 1
- }
- Sf = o[(Of + 28) >> 2]
- Tf = (If + 68) | 0
- If = 0
- b: {
- while (1) {
- c: {
- Jf = ((u(If, 3) << 2) + Sf) | 0
- Of = o[Jf >> 2]
- if ((Of | 0) == -1) {
- break c
- }
- Lf = (u(If, 12) + Qf) | 0
- Nf = o[Lf >> 2]
- if (Nf >>> 0 >= Kf >>> 0) {
- break c
- }
- Mf = Of << 2
- Of = o[(o[(a + 72) >> 2] + 12) >> 2]
- Mf = o[(Mf + Of) >> 2]
- if (Mf >>> 0 >= Kf >>> 0) {
- break c
- }
- Pf = Nf << 2
- Nf = o[Tf >> 2]
- o[(Pf + Nf) >> 2] = Mf
- Mf = o[(Jf + 4) >> 2]
- if ((Mf | 0) == -1) {
- break c
- }
- Pf = o[(Lf + 4) >> 2]
- if (Pf >>> 0 >= Kf >>> 0) {
- break c
- }
- Mf = o[(Of + (Mf << 2)) >> 2]
- if (Mf >>> 0 >= Kf >>> 0) {
- break c
- }
- o[(Nf + (Pf << 2)) >> 2] = Mf
- Jf = o[(Jf + 8) >> 2]
- if ((Jf | 0) == -1) {
- break c
- }
- Lf = o[(Lf + 8) >> 2]
- if (Lf >>> 0 >= Kf >>> 0) {
- break c
- }
- Jf = o[(Of + (Jf << 2)) >> 2]
- if (Jf >>> 0 >= Kf >>> 0) {
- break c
- }
- o[(Nf + (Lf << 2)) >> 2] = Jf
- Jf = 1
- If = (If + 1) | 0
- if (If >>> 0 < Rf >>> 0) {
- continue
- }
- break b
- }
- break
- }
- Jf = 0
- }
- return Jf | 0
- }
- function Oh(a) {
- a = a | 0
- var If = 0,
- Uf = 0,
- Vf = 0,
- Wf = 0,
- Xf = 0,
- Yf = 0,
- Zf = 0
- Wf = o[(a + 4) >> 2]
- If = o[Wf >> 2]
- a: {
- Uf = o[(a + 12) >> 2]
- Vf = (o[(Uf + 56) >> 2] - o[(Uf + 52) >> 2]) | 0
- Uf = Vf >> 2
- b: {
- if (((o[(Wf + 8) >> 2] - If) >> 2) >>> 0 >= Uf >>> 0) {
- break b
- }
- if (Uf >>> 0 >= 1073741824) {
- break a
- }
- Zf = (Wf + 4) | 0
- Xf = o[Zf >> 2]
- Yf = Uf << 2
- Uf = Hk(Vf)
- Yf = (Yf + Uf) | 0
- Vf = (Xf - If) | 0
- Xf = (Vf + Uf) | 0
- if ((Vf | 0) >= 1) {
- wl(Uf, If, Vf)
- }
- o[Wf >> 2] = Uf
- o[(Wf + 8) >> 2] = Yf
- o[Zf >> 2] = Xf
- if (!If) {
- break b
- }
- ul(If)
- }
- Uf = (a + 8) | 0
- c: {
- d: {
- If = o[(a + 76) >> 2]
- if (If) {
- Wf = o[If >> 2]
- Vf = 1
- if ((Wf | 0) == o[(If + 4) >> 2]) {
- break c
- }
- If = 0
- while (1) {
- if (!Ph(Uf, o[((If << 2) + Wf) >> 2])) {
- break d
- }
- Vf = o[(a + 76) >> 2]
- Wf = o[Vf >> 2]
- If = (If + 1) | 0
- if (If >>> 0 < ((o[(Vf + 4) >> 2] - Wf) >> 2) >>> 0) {
- continue
- }
- break
- }
- return 1
- }
- If = 0
- a = o[(o[(a + 12) >> 2] + 64) >> 2]
- a = ((((o[(a + 4) >> 2] - o[a >> 2]) >> 2) >>> 0) / 3) | 0
- if ((a | 0) <= 0) {
- return 1
- }
- while (1) {
- if (!Ph(Uf, u(If, 3))) {
- break d
- }
- If = (If + 1) | 0
- if (If >>> 0 < a >>> 0) {
- continue
- }
- break
- }
- return 1
- }
- Vf = 0
- }
- return Vf | 0
- }
- _a(8776)
- D()
- }
- function Ph(a, _f) {
- var $f = 0,
- ag = 0,
- bg = 0,
- cg = 0,
- dg = 0,
- eg = 0,
- fg = 0,
- gg = 0,
- hg = 0,
- ig = 0,
- jg = 0,
- kg = 0,
- lg = 0,
- mg = 0,
- ng = 0
- dg = (R - 32) | 0
- R = dg
- o[(dg + 8) >> 2] = _f
- a: {
- if ((_f | 0) == -1) {
- $f = 1
- break a
- }
- $f = 1
- cg = ((_f >>> 0) / 3) | 0
- if ((o[(o[(a + 24) >> 2] + ((cg >>> 3) & 268435452)) >> 2] >>> (cg & 31)) & 1) {
- break a
- }
- cg = (a + 52) | 0
- $f = o[(a + 48) >> 2]
- o[cg >> 2] = $f
- ig = (a + 48) | 0
- b: {
- if (($f | 0) != o[(a + 56) >> 2]) {
- o[$f >> 2] = _f
- o[cg >> 2] = $f + 4
- break b
- }
- bh(ig, (dg + 8) | 0)
- }
- ag = -1
- $f = o[(a + 4) >> 2]
- _f = o[(dg + 8) >> 2]
- c: {
- if ((_f | 0) == -1) {
- cg = o[($f + 28) >> 2]
- $f = o[(cg + -4) >> 2]
- break c
- }
- cg = o[($f + 28) >> 2]
- $f = (_f + 1) | 0
- $f = o[(cg + ((($f >>> 0) % 3 | 0 ? $f : (_f + -2) | 0) << 2)) >> 2]
- if ((_f >>> 0) % 3) {
- ag = (_f + -1) | 0
- break c
- }
- ag = (_f + 2) | 0
- }
- if (($f | 0) == -1) {
- $f = 0
- break a
- }
- cg = o[((ag << 2) + cg) >> 2]
- if ((cg | 0) == -1) {
- $f = 0
- break a
- }
- _f = o[(a + 36) >> 2]
- bg = (_f + (($f >>> 3) & 536870908)) | 0
- ag = o[bg >> 2]
- eg = 1 << ($f & 31)
- if (!(ag & eg)) {
- o[bg >> 2] = ag | eg
- ag = -1
- _f = o[(dg + 8) >> 2]
- if ((_f | 0) != -1) {
- bg = (_f + 1) | 0
- ag = (bg >>> 0) % 3 | 0 ? bg : (_f + -2) | 0
- }
- o[(dg + 16) >> 2] = ag
- _f = o[(a + 20) >> 2]
- bg = ((ag >>> 0) / 3) | 0
- ag = o[(((o[(o[(a + 16) >> 2] + 96) >> 2] + u(bg, 12)) | 0) + ((ag - u(bg, 3)) << 2)) >> 2]
- o[(dg + 24) >> 2] = ag
- bg = o[(_f + 4) >> 2]
- eg = (bg + 4) | 0
- _f = o[eg >> 2]
- d: {
- if ((_f | 0) != o[(bg + 8) >> 2]) {
- o[_f >> 2] = ag
- o[eg >> 2] = _f + 4
- break d
- }
- bh(bg, (dg + 24) | 0)
- }
- bg = (a + 12) | 0
- ag = o[bg >> 2]
- eg = (ag + 4) | 0
- _f = o[eg >> 2]
- e: {
- if ((_f | 0) != o[(ag + 8) >> 2]) {
- o[_f >> 2] = o[(dg + 16) >> 2]
- o[eg >> 2] = _f + 4
- break e
- }
- bh(ag, (dg + 16) | 0)
- ag = o[bg >> 2]
- }
- o[(o[(ag + 12) >> 2] + ($f << 2)) >> 2] = o[(ag + 24) >> 2]
- o[(ag + 24) >> 2] = o[(ag + 24) >> 2] + 1
- _f = o[(a + 36) >> 2]
- }
- _f = (((cg >>> 3) & 536870908) + _f) | 0
- $f = o[_f >> 2]
- bg = 1 << (cg & 31)
- if (!($f & bg)) {
- o[_f >> 2] = $f | bg
- _f = dg
- ag = _f
- bg = o[(_f + 8) >> 2]
- $f = -1
- f: {
- if ((bg | 0) == -1) {
- break f
- }
- $f = (bg + -1) | 0
- if ((bg >>> 0) % 3) {
- break f
- }
- $f = (bg + 2) | 0
- }
- o[(ag + 16) >> 2] = $f
- _f = o[(a + 20) >> 2]
- bg = (($f >>> 0) / 3) | 0
- bg = o[(((o[(o[(a + 16) >> 2] + 96) >> 2] + u(bg, 12)) | 0) + (($f - u(bg, 3)) << 2)) >> 2]
- o[(dg + 24) >> 2] = bg
- $f = o[(_f + 4) >> 2]
- ag = ($f + 4) | 0
- _f = o[ag >> 2]
- g: {
- if ((_f | 0) != o[($f + 8) >> 2]) {
- o[_f >> 2] = bg
- o[ag >> 2] = _f + 4
- break g
- }
- bh($f, (dg + 24) | 0)
- }
- bg = (a + 12) | 0
- $f = o[bg >> 2]
- ag = ($f + 4) | 0
- _f = o[ag >> 2]
- h: {
- if ((_f | 0) != o[($f + 8) >> 2]) {
- o[_f >> 2] = o[(dg + 16) >> 2]
- o[ag >> 2] = _f + 4
- break h
- }
- bh($f, (dg + 16) | 0)
- $f = o[bg >> 2]
- }
- o[(o[($f + 12) >> 2] + (cg << 2)) >> 2] = o[($f + 24) >> 2]
- o[($f + 24) >> 2] = o[($f + 24) >> 2] + 1
- }
- eg = (a + 52) | 0
- _f = o[eg >> 2]
- if ((_f | 0) == o[(a + 48) >> 2]) {
- $f = 1
- break a
- }
- gg = (a + 24) | 0
- hg = (a + 4) | 0
- kg = (a + 36) | 0
- lg = (a + 16) | 0
- mg = (a + 20) | 0
- ng = (a + 56) | 0
- while (1) {
- cg = (_f + -4) | 0
- _f = o[cg >> 2]
- o[(dg + 8) >> 2] = _f
- $f = ((_f >>> 0) / 3) | 0
- i: {
- j: {
- k: {
- if ((_f | 0) == -1) {
- break k
- }
- _f = (o[gg >> 2] + (($f >>> 3) & 268435452)) | 0
- bg = o[_f >> 2]
- $f = 1 << ($f & 31)
- if (bg & $f) {
- break k
- }
- o[_f >> 2] = $f | bg
- ag = o[hg >> 2]
- _f = o[(dg + 8) >> 2]
- $f = o[(o[(ag + 28) >> 2] + (_f << 2)) >> 2]
- if (($f | 0) != -1) {
- break j
- }
- $f = 0
- break a
- }
- o[eg >> 2] = cg
- break i
- }
- l: {
- m: {
- n: {
- while (1) {
- o: {
- p: {
- cg = (o[kg >> 2] + (($f >>> 3) & 536870908)) | 0
- bg = o[cg >> 2]
- fg = 1 << ($f & 31)
- if (bg & fg) {
- break p
- }
- jg = $f << 2
- $f = o[(jg + o[(ag + 40) >> 2]) >> 2]
- _f = 1
- q: {
- if (($f | 0) == -1) {
- break q
- }
- _f = ($f + 1) | 0
- _f = (_f >>> 0) % 3 | 0 ? _f : ($f + -2) | 0
- r: {
- if (((_f | 0) == -1) | ((o[(o[ag >> 2] + ((_f >>> 3) & 536870908)) >> 2] >>> (_f & 31)) & 1)) {
- break r
- }
- $f = o[(o[(o[(ag + 64) >> 2] + 12) >> 2] + (_f << 2)) >> 2]
- if (($f | 0) == -1) {
- break r
- }
- ag = ($f + 1) | 0
- _f = 0
- if ((((ag >>> 0) % 3 | 0 ? ag : ($f + -2) | 0) | 0) != -1) {
- break q
- }
- }
- _f = 1
- }
- $f = _f
- o[cg >> 2] = bg | fg
- _f = o[(dg + 8) >> 2]
- o[(dg + 16) >> 2] = _f
- cg = o[mg >> 2]
- bg = ((_f >>> 0) / 3) | 0
- bg = o[(((o[(o[lg >> 2] + 96) >> 2] + u(bg, 12)) | 0) + ((_f - u(bg, 3)) << 2)) >> 2]
- o[(dg + 24) >> 2] = bg
- cg = o[(cg + 4) >> 2]
- ag = (cg + 4) | 0
- _f = o[ag >> 2]
- s: {
- if ((_f | 0) != o[(cg + 8) >> 2]) {
- o[_f >> 2] = bg
- o[ag >> 2] = _f + 4
- break s
- }
- bh(cg, (dg + 24) | 0)
- }
- bg = (a + 12) | 0
- _f = o[bg >> 2]
- ag = (_f + 4) | 0
- cg = o[ag >> 2]
- t: {
- if ((cg | 0) != o[(_f + 8) >> 2]) {
- o[cg >> 2] = o[(dg + 16) >> 2]
- o[ag >> 2] = cg + 4
- break t
- }
- bh(_f, (dg + 16) | 0)
- _f = o[bg >> 2]
- }
- o[(o[(_f + 12) >> 2] + jg) >> 2] = o[(_f + 24) >> 2]
- o[(_f + 24) >> 2] = o[(_f + 24) >> 2] + 1
- ag = o[hg >> 2]
- _f = o[(dg + 8) >> 2]
- if ($f) {
- break p
- }
- $f = -1
- u: {
- if ((_f | 0) == -1) {
- break u
- }
- cg = (_f + 1) | 0
- _f = (cg >>> 0) % 3 | 0 ? cg : (_f + -2) | 0
- if (((_f | 0) == -1) | ((o[(o[ag >> 2] + ((_f >>> 3) & 536870908)) >> 2] >>> (_f & 31)) & 1)) {
- break u
- }
- $f = o[(o[(o[(ag + 64) >> 2] + 12) >> 2] + (_f << 2)) >> 2]
- }
- o[(dg + 8) >> 2] = $f
- _f = (($f >>> 0) / 3) | 0
- break o
- }
- if ((_f | 0) == -1) {
- break m
- }
- cg = -1
- bg = dg
- fg = (_f + 1) | 0
- fg = (fg >>> 0) % 3 | 0 ? fg : (_f + -2) | 0
- $f = -1
- v: {
- if ((fg | 0) == -1) {
- break v
- }
- $f = -1
- if ((o[(o[ag >> 2] + ((fg >>> 3) & 536870908)) >> 2] >>> (fg & 31)) & 1) {
- break v
- }
- $f = o[(o[(o[(ag + 64) >> 2] + 12) >> 2] + (fg << 2)) >> 2]
- }
- o[(bg + 24) >> 2] = $f
- _f = (((_f >>> 0) % 3 | 0 ? -1 : 2) + _f) | 0
- if (!(((_f | 0) == -1) | ((o[(o[ag >> 2] + ((_f >>> 3) & 536870908)) >> 2] >>> (_f & 31)) & 1))) {
- cg = o[(o[(o[(ag + 64) >> 2] + 12) >> 2] + (_f << 2)) >> 2]
- }
- bg = ((cg >>> 0) / 3) | 0
- _f = (($f >>> 0) / 3) | 0
- ag = ($f | 0) == -1
- w: {
- if (ag) {
- _f = -1
- ag = 1
- break w
- }
- ag = ag ? -1 : _f
- ag = (o[(o[gg >> 2] + ((ag >>> 3) & 536870908)) >> 2] >>> (ag & 31)) & 1
- }
- x: {
- if ((cg | 0) != -1) {
- fg = (cg | 0) == -1 ? -1 : bg
- fg = o[(o[gg >> 2] + ((fg >>> 3) & 536870908)) >> 2] & (1 << (fg & 31))
- if (ag) {
- $f = cg
- _f = bg
- if (!fg) {
- break x
- }
- break l
- }
- if (fg) {
- break x
- }
- _f = o[eg >> 2]
- o[(_f + -4) >> 2] = cg
- if ((_f | 0) == o[ng >> 2]) {
- break n
- }
- o[_f >> 2] = o[(dg + 24) >> 2]
- o[eg >> 2] = _f + 4
- break i
- }
- if (ag) {
- break l
- }
- }
- o[(dg + 8) >> 2] = $f
- }
- $f = (o[gg >> 2] + ((_f >>> 3) & 536870908)) | 0
- o[$f >> 2] = o[$f >> 2] | (1 << (_f & 31))
- ag = o[hg >> 2]
- _f = o[(dg + 8) >> 2]
- $f = o[(o[(ag + 28) >> 2] + (_f << 2)) >> 2]
- if (($f | 0) != -1) {
- continue
- }
- break
- }
- $f = 0
- break a
- }
- bh(ig, (dg + 24) | 0)
- break i
- }
- o[(dg + 24) >> 2] = -1
- }
- o[eg >> 2] = o[eg >> 2] + -4
- }
- $f = 1
- _f = o[eg >> 2]
- if ((_f | 0) != o[(a + 48) >> 2]) {
- continue
- }
- break
- }
- }
- R = (dg + 32) | 0
- return $f
- }
- function Qh(a, _f) {
- var og = 0,
- pg = 0,
- qg = 0
- o[a >> 2] = o[_f >> 2]
- o[(a + 4) >> 2] = o[(_f + 4) >> 2]
- o[(a + 8) >> 2] = o[(_f + 8) >> 2]
- og = (_f + 12) | 0
- o[(a + 12) >> 2] = o[og >> 2]
- o[og >> 2] = 0
- o[(_f + 4) >> 2] = 0
- o[(_f + 8) >> 2] = 0
- og = (_f + 16) | 0
- o[(a + 16) >> 2] = o[og >> 2]
- o[(a + 20) >> 2] = o[(_f + 20) >> 2]
- pg = (_f + 24) | 0
- o[(a + 24) >> 2] = o[pg >> 2]
- o[pg >> 2] = 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- pg = p[(_f + 28) | 0]
- qg = (a + 40) | 0
- o[qg >> 2] = 0
- og = (a + 32) | 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- m[(a + 28) | 0] = pg
- pg = og
- og = (_f + 32) | 0
- o[pg >> 2] = o[og >> 2]
- o[(a + 36) >> 2] = o[(_f + 36) >> 2]
- pg = (_f + 40) | 0
- o[qg >> 2] = o[pg >> 2]
- o[pg >> 2] = 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- pg = (a + 52) | 0
- o[pg >> 2] = 0
- og = (a + 44) | 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- qg = og
- og = (_f + 44) | 0
- o[qg >> 2] = o[og >> 2]
- o[(a + 48) >> 2] = o[(_f + 48) >> 2]
- qg = pg
- pg = (_f + 52) | 0
- o[qg >> 2] = o[pg >> 2]
- o[pg >> 2] = 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- pg = (a - -64) | 0
- o[pg >> 2] = 0
- og = (a + 56) | 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- qg = og
- og = (_f + 56) | 0
- o[qg >> 2] = o[og >> 2]
- o[(a + 60) >> 2] = o[(_f + 60) >> 2]
- qg = pg
- pg = (_f - -64) | 0
- o[qg >> 2] = o[pg >> 2]
- o[pg >> 2] = 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- o[(a + 68) >> 2] = o[(_f + 68) >> 2]
- pg = o[(_f + 72) >> 2]
- qg = (a + 84) | 0
- o[qg >> 2] = 0
- og = (a + 76) | 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- o[(a + 72) >> 2] = pg
- pg = og
- og = (_f + 76) | 0
- o[pg >> 2] = o[og >> 2]
- o[(a + 80) >> 2] = o[(_f + 80) >> 2]
- pg = (_f + 84) | 0
- o[qg >> 2] = o[pg >> 2]
- o[pg >> 2] = 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- pg = (a + 96) | 0
- o[pg >> 2] = 0
- og = (a + 88) | 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- qg = og
- og = (_f + 88) | 0
- o[qg >> 2] = o[og >> 2]
- o[(a + 92) >> 2] = o[(_f + 92) >> 2]
- qg = pg
- pg = (_f + 96) | 0
- o[qg >> 2] = o[pg >> 2]
- o[pg >> 2] = 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- og = p[(_f + 100) | 0]
- pg = (a + 112) | 0
- o[pg >> 2] = 0
- o[(a + 104) >> 2] = 0
- o[(a + 108) >> 2] = 0
- m[(a + 100) | 0] = og
- o[(a + 104) >> 2] = o[(_f + 104) >> 2]
- o[(a + 108) >> 2] = o[(_f + 108) >> 2]
- og = (_f + 112) | 0
- o[pg >> 2] = o[og >> 2]
- o[og >> 2] = 0
- o[(_f + 104) >> 2] = 0
- o[(_f + 108) >> 2] = 0
- pg = (a + 124) | 0
- o[pg >> 2] = 0
- og = (a + 116) | 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- qg = og
- og = (_f + 116) | 0
- o[qg >> 2] = o[og >> 2]
- o[(a + 120) >> 2] = o[(_f + 120) >> 2]
- qg = pg
- pg = (_f + 124) | 0
- o[qg >> 2] = o[pg >> 2]
- o[pg >> 2] = 0
- o[og >> 2] = 0
- o[(og + 4) >> 2] = 0
- og = o[(_f + 128) >> 2]
- pg = (a + 140) | 0
- o[pg >> 2] = 0
- o[(a + 132) >> 2] = 0
- o[(a + 136) >> 2] = 0
- o[(a + 128) >> 2] = og
- o[(a + 132) >> 2] = o[(_f + 132) >> 2]
- o[(a + 136) >> 2] = o[(_f + 136) >> 2]
- og = (_f + 140) | 0
- o[pg >> 2] = o[og >> 2]
- o[og >> 2] = 0
- o[(_f + 132) >> 2] = 0
- o[(_f + 136) >> 2] = 0
- return a
- }
- function Rh(a) {
- var _f = 0,
- rg = 0,
- sg = 0
- rg = o[(a + 8) >> 2]
- sg = o[(a + 4) >> 2]
- if ((rg | 0) != (sg | 0)) {
- while (1) {
- _f = (rg + -144) | 0
- o[(a + 8) >> 2] = _f
- _f = o[(_f + 132) >> 2]
- if (_f) {
- o[(rg + -8) >> 2] = _f
- ul(_f)
- }
- _f = o[(rg + -28) >> 2]
- if (_f) {
- o[(rg + -24) >> 2] = _f
- ul(_f)
- }
- _f = o[(rg + -40) >> 2]
- if (_f) {
- o[(rg + -36) >> 2] = _f
- ul(_f)
- }
- Ug((rg + -140) | 0)
- rg = o[(a + 8) >> 2]
- if ((sg | 0) != (rg | 0)) {
- continue
- }
- break
- }
- }
- a = o[a >> 2]
- if (a) {
- ul(a)
- }
- }
- function Sh(a, tg) {
- var ug = 0,
- vg = 0,
- wg = v(0)
- ug = 2
- a: {
- if ((tg | 0) == 1) {
- break a
- }
- ug = tg
- if (!((tg + -1) & tg)) {
- break a
- }
- ug = ek(tg)
- }
- vg = o[(a + 4) >> 2]
- if (ug >>> 0 > vg >>> 0) {
- Th(a, ug)
- return
- }
- b: {
- if (ug >>> 0 >= vg >>> 0) {
- break b
- }
- wg = v(B(v(v(r[(a + 12) >> 2]) / s[(a + 16) >> 2])))
- c: {
- if ((wg < v(4294967296)) & (wg >= v(0))) {
- tg = ~~wg >>> 0
- break c
- }
- tg = 0
- }
- d: {
- e: {
- if (vg >>> 0 < 3) {
- break e
- }
- if (Yl(vg) >>> 0 > 1) {
- break e
- }
- tg = tg >>> 0 < 2 ? tg : 1 << (32 - x((tg + -1) | 0))
- break d
- }
- tg = ek(tg)
- }
- tg = ug >>> 0 < tg >>> 0 ? tg : ug
- if (tg >>> 0 >= vg >>> 0) {
- break b
- }
- Th(a, tg)
- }
- }
- function Th(a, tg) {
- var xg = 0,
- yg = 0,
- zg = 0,
- Ag = 0,
- Bg = 0,
- Cg = 0,
- Dg = 0,
- Eg = 0,
- Fg = 0
- a: {
- b: {
- if (tg) {
- if (tg >>> 0 >= 1073741824) {
- break a
- }
- xg = Hk(tg << 2)
- yg = o[a >> 2]
- o[a >> 2] = xg
- if (yg) {
- ul(yg)
- }
- o[(a + 4) >> 2] = tg
- xg = 0
- while (1) {
- o[(o[a >> 2] + (xg << 2)) >> 2] = 0
- xg = (xg + 1) | 0
- if ((xg | 0) != (tg | 0)) {
- continue
- }
- break
- }
- yg = (a + 8) | 0
- Ag = o[yg >> 2]
- if (!Ag) {
- break b
- }
- Bg = o[(Ag + 4) >> 2]
- xg = Yl(tg)
- c: {
- if (xg >>> 0 <= 1) {
- Bg = (tg + -1) & Bg
- break c
- }
- if (Bg >>> 0 < tg >>> 0) {
- break c
- }
- Bg = (Bg >>> 0) % (tg >>> 0) | 0
- }
- o[(o[a >> 2] + (Bg << 2)) >> 2] = yg
- yg = o[Ag >> 2]
- if (!yg) {
- break b
- }
- Eg = (tg + -1) | 0
- Fg = xg >>> 0 > 1
- while (1) {
- zg = o[(yg + 4) >> 2]
- d: {
- if (!Fg) {
- zg = zg & Eg
- break d
- }
- if (zg >>> 0 < tg >>> 0) {
- break d
- }
- zg = (zg >>> 0) % (tg >>> 0) | 0
- }
- e: {
- if ((zg | 0) == (Bg | 0)) {
- Ag = yg
- break e
- }
- xg = yg
- Cg = zg << 2
- Dg = (Cg + o[a >> 2]) | 0
- if (!o[Dg >> 2]) {
- o[Dg >> 2] = Ag
- Ag = yg
- Bg = zg
- break e
- }
- while (1) {
- zg = xg
- xg = o[xg >> 2]
- if (o[(yg + 8) >> 2] == o[(xg + 8) >> 2] ? xg : 0) {
- continue
- }
- break
- }
- o[Ag >> 2] = xg
- o[zg >> 2] = o[o[(o[a >> 2] + Cg) >> 2] >> 2]
- o[o[(o[a >> 2] + Cg) >> 2] >> 2] = yg
- }
- yg = o[Ag >> 2]
- if (yg) {
- continue
- }
- break
- }
- break b
- }
- tg = o[a >> 2]
- o[a >> 2] = 0
- if (tg) {
- ul(tg)
- }
- o[(a + 4) >> 2] = 0
- }
- return
- }
- _a(8776)
- D()
- }
- function Uh(a) {
- a = a | 0
- var tg = 0,
- Gg = 0,
- Hg = 0,
- Ig = 0,
- Jg = 0,
- Kg = 0,
- Lg = 0,
- Mg = 0,
- Ng = 0,
- Og = 0,
- Pg = 0,
- Qg = 0,
- Rg = 0,
- Sg = 0,
- Tg = 0,
- Ug = 0,
- Vg = 0,
- Wg = 0
- Hg = (R - 32) | 0
- R = Hg
- Gg = (a + 32) | 0
- a: {
- if (!Vh(1, (Hg + 28) | 0, o[Gg >> 2])) {
- break a
- }
- if (!Vh(1, (Hg + 24) | 0, o[Gg >> 2])) {
- break a
- }
- Rg = o[(Hg + 28) >> 2]
- if (Rg >>> 0 > 1431655765) {
- break a
- }
- Gg = Vl(Rg, 0, 3, 0)
- tg = T
- Vg = o[(Hg + 24) >> 2]
- if ((!tg & (Gg >>> 0 < Vg >>> 0)) | (tg >>> 0 < 0)) {
- break a
- }
- Ig = o[(a + 32) >> 2]
- Gg = Ig
- Kg = o[(Gg + 16) >> 2]
- Lg = r[(Gg + 8) >> 2] > Kg >>> 0 ? 0 : 1
- Jg = o[(Gg + 12) >> 2]
- tg = o[(Gg + 20) >> 2]
- if ((Jg | 0) < (tg | 0) ? 1 : (Jg | 0) <= (tg | 0) ? Lg : 0) {
- break a
- }
- Lg = p[(Kg + o[Ig >> 2]) | 0]
- Gg = tg
- Og = (Kg + 1) | 0
- if (Og >>> 0 < 1) {
- Gg = (Gg + 1) | 0
- }
- o[(Ig + 16) >> 2] = Og
- o[(Ig + 20) >> 2] = Gg
- b: {
- if (!Lg) {
- if (!Wh(a, Rg)) {
- break a
- }
- break b
- }
- c: {
- if (Vg >>> 0 <= 255) {
- if (!Rg) {
- break b
- }
- Kg = (Hg + 16) | 0
- o[Kg >> 2] = 0
- o[(Hg + 8) >> 2] = 0
- o[(Hg + 12) >> 2] = 0
- Lg = o[(Ig + 8) >> 2]
- Jg = o[(Ig + 12) >> 2]
- tg = Jg
- if ((tg | 0) < (Gg | 0) ? 1 : (tg | 0) <= (Gg | 0) ? (Lg >>> 0 > Og >>> 0 ? 0 : 1) : 0) {
- break c
- }
- Qg = (a + 44) | 0
- Tg = (a + 32) | 0
- while (1) {
- Pg = o[Ig >> 2]
- Ug = p[(Pg + Og) | 0]
- tg = Gg
- Mg = (Og + 1) | 0
- if (Mg >>> 0 < 1) {
- tg = (tg + 1) | 0
- }
- Ng = Ig
- o[(Ig + 16) >> 2] = Mg
- o[(Ig + 20) >> 2] = tg
- o[(Hg + 8) >> 2] = Ug
- if ((Jg | 0) < (tg | 0) ? 1 : (Jg | 0) <= (tg | 0) ? (Lg >>> 0 > Mg >>> 0 ? 0 : 1) : 0) {
- break c
- }
- Ug = p[(Mg + Pg) | 0]
- tg = Gg
- Mg = (Og + 2) | 0
- if (Mg >>> 0 < 2) {
- tg = (tg + 1) | 0
- }
- o[(Ig + 16) >> 2] = Mg
- o[(Ng + 20) >> 2] = tg
- o[(Hg + 12) >> 2] = Ug
- if ((Jg | 0) < (tg | 0) ? 1 : (Jg | 0) <= (tg | 0) ? (Lg >>> 0 > Mg >>> 0 ? 0 : 1) : 0) {
- break c
- }
- tg = p[(Mg + Pg) | 0]
- Jg = (Og + 3) | 0
- if (Jg >>> 0 < 3) {
- Gg = (Gg + 1) | 0
- }
- o[(Ig + 16) >> 2] = Jg
- o[(Ig + 20) >> 2] = Gg
- o[(Hg + 16) >> 2] = tg
- tg = o[Qg >> 2]
- Ig = (tg + 100) | 0
- Gg = o[Ig >> 2]
- d: {
- if ((Gg | 0) == o[(tg + 104) >> 2]) {
- Xh((tg + 96) | 0, (Hg + 8) | 0)
- break d
- }
- tg = o[(Hg + 12) >> 2]
- o[Gg >> 2] = o[(Hg + 8) >> 2]
- o[(Gg + 4) >> 2] = tg
- o[(Gg + 8) >> 2] = o[Kg >> 2]
- o[Ig >> 2] = o[Ig >> 2] + 12
- }
- Sg = (Sg + 1) | 0
- if ((Rg | 0) == (Sg | 0)) {
- break b
- }
- Ig = o[Tg >> 2]
- tg = Ig
- Og = o[(tg + 16) >> 2]
- Gg = o[(tg + 20) >> 2]
- o[Kg >> 2] = 0
- o[(Hg + 8) >> 2] = 0
- o[(Hg + 12) >> 2] = 0
- Lg = o[(tg + 8) >> 2]
- Jg = o[(tg + 12) >> 2]
- tg = Jg
- if ((tg | 0) > (Gg | 0) ? 1 : (tg | 0) >= (Gg | 0) ? (Lg >>> 0 <= Og >>> 0 ? 0 : 1) : 0) {
- continue
- }
- break
- }
- break c
- }
- if (Vg >>> 0 <= 65535) {
- if (!Rg) {
- break b
- }
- Mg = (Hg + 16) | 0
- o[Mg >> 2] = 0
- o[(Hg + 8) >> 2] = 0
- o[(Hg + 12) >> 2] = 0
- Ng = o[(Ig + 12) >> 2]
- Qg = Ng
- Jg = (Kg + 3) | 0
- if (Jg >>> 0 < 3) {
- tg = (tg + 1) | 0
- }
- Pg = o[(Ig + 8) >> 2]
- Lg = Jg
- Jg = tg
- if ((Qg | 0) < (tg | 0) ? 1 : (Qg | 0) <= (tg | 0) ? (Pg >>> 0 >= Lg >>> 0 ? 0 : 1) : 0) {
- break c
- }
- Ug = (a + 44) | 0
- Wg = (a + 32) | 0
- while (1) {
- Qg = o[Ig >> 2]
- tg = (Qg + Og) | 0
- tg = p[tg | 0] | (p[(tg + 1) | 0] << 8)
- o[(Ig + 16) >> 2] = Lg
- o[(Ig + 20) >> 2] = Jg
- o[(Hg + 8) >> 2] = tg
- Jg = Ng
- tg = Gg
- Kg = (Og + 4) | 0
- if (Kg >>> 0 < 4) {
- tg = (tg + 1) | 0
- }
- Tg = Kg
- Kg = tg
- if ((Jg | 0) < (tg | 0) ? 1 : (Jg | 0) <= (tg | 0) ? (Pg >>> 0 >= Tg >>> 0 ? 0 : 1) : 0) {
- break c
- }
- tg = (Lg + Qg) | 0
- tg = p[tg | 0] | (p[(tg + 1) | 0] << 8)
- o[(Ig + 16) >> 2] = Tg
- o[(Ig + 20) >> 2] = Kg
- o[(Hg + 12) >> 2] = tg
- tg = (Og + 6) | 0
- if (tg >>> 0 < 6) {
- Gg = (Gg + 1) | 0
- }
- Jg = tg
- tg = Gg
- if ((Ng | 0) < (tg | 0) ? 1 : (Ng | 0) <= (tg | 0) ? (Pg >>> 0 >= Jg >>> 0 ? 0 : 1) : 0) {
- break c
- }
- Gg = (Qg + Tg) | 0
- Gg = p[Gg | 0] | (p[(Gg + 1) | 0] << 8)
- o[(Ig + 16) >> 2] = Jg
- o[(Ig + 20) >> 2] = tg
- o[(Hg + 16) >> 2] = Gg
- tg = o[Ug >> 2]
- Ig = (tg + 100) | 0
- Gg = o[Ig >> 2]
- e: {
- if ((Gg | 0) == o[(tg + 104) >> 2]) {
- Xh((tg + 96) | 0, (Hg + 8) | 0)
- break e
- }
- tg = o[(Hg + 12) >> 2]
- o[Gg >> 2] = o[(Hg + 8) >> 2]
- o[(Gg + 4) >> 2] = tg
- o[(Gg + 8) >> 2] = o[Mg >> 2]
- o[Ig >> 2] = o[Ig >> 2] + 12
- }
- Sg = (Sg + 1) | 0
- if ((Rg | 0) == (Sg | 0)) {
- break b
- }
- Ig = o[Wg >> 2]
- tg = Ig
- Og = o[(tg + 16) >> 2]
- Gg = o[(tg + 20) >> 2]
- o[Mg >> 2] = 0
- o[(Hg + 8) >> 2] = 0
- o[(Hg + 12) >> 2] = 0
- Kg = o[(tg + 12) >> 2]
- Ng = Kg
- Pg = o[(tg + 8) >> 2]
- Qg = Pg
- tg = Gg
- Jg = (Og + 2) | 0
- if (Jg >>> 0 < 2) {
- tg = (tg + 1) | 0
- }
- Lg = Jg
- Jg = tg
- if ((Kg | 0) > (tg | 0) ? 1 : (Kg | 0) >= (tg | 0) ? (Qg >>> 0 < Lg >>> 0 ? 0 : 1) : 0) {
- continue
- }
- break
- }
- break c
- }
- f: {
- if (r[(o[(a + 44) >> 2] + 80) >> 2] > 2097151) {
- break f
- }
- Jg = q[(a + 36) >> 1]
- if ((((Jg << 24) | ((Jg << 8) & 16711680)) >>> 16) >>> 0 < 514) {
- break f
- }
- if (!Rg) {
- break b
- }
- Jg = (Hg + 16) | 0
- o[Jg >> 2] = 0
- o[(Hg + 8) >> 2] = 0
- o[(Hg + 12) >> 2] = 0
- if (!Vh(1, (Hg + 4) | 0, Ig)) {
- break c
- }
- tg = (a + 32) | 0
- Kg = (a + 44) | 0
- while (1) {
- o[(Hg + 8) >> 2] = o[(Hg + 4) >> 2]
- if (!Vh(1, (Hg + 4) | 0, o[tg >> 2])) {
- break c
- }
- o[(Hg + 12) >> 2] = o[(Hg + 4) >> 2]
- if (!Vh(1, (Hg + 4) | 0, o[tg >> 2])) {
- break c
- }
- o[(Hg + 16) >> 2] = o[(Hg + 4) >> 2]
- Ig = o[Kg >> 2]
- Ng = (Ig + 100) | 0
- Gg = o[Ng >> 2]
- g: {
- if ((Gg | 0) == o[(Ig + 104) >> 2]) {
- Xh((Ig + 96) | 0, (Hg + 8) | 0)
- break g
- }
- Ig = o[(Hg + 12) >> 2]
- o[Gg >> 2] = o[(Hg + 8) >> 2]
- o[(Gg + 4) >> 2] = Ig
- o[(Gg + 8) >> 2] = o[Jg >> 2]
- o[Ng >> 2] = o[Ng >> 2] + 12
- }
- Pg = (Pg + 1) | 0
- if ((Rg | 0) == (Pg | 0)) {
- break b
- }
- Gg = o[tg >> 2]
- o[Jg >> 2] = 0
- o[(Hg + 8) >> 2] = 0
- o[(Hg + 12) >> 2] = 0
- if (Vh(1, (Hg + 4) | 0, Gg)) {
- continue
- }
- break
- }
- break c
- }
- if (!Rg) {
- break b
- }
- Sg = (Hg + 16) | 0
- o[Sg >> 2] = 0
- o[(Hg + 8) >> 2] = 0
- o[(Hg + 12) >> 2] = 0
- Ng = o[(Ig + 12) >> 2]
- Mg = Ng
- Jg = (Kg + 5) | 0
- if (Jg >>> 0 < 5) {
- tg = (tg + 1) | 0
- }
- Pg = o[(Ig + 8) >> 2]
- Lg = Jg
- Jg = tg
- if ((Mg | 0) < (tg | 0) ? 1 : (Mg | 0) <= (tg | 0) ? (Pg >>> 0 >= Lg >>> 0 ? 0 : 1) : 0) {
- break c
- }
- Tg = (a + 44) | 0
- Ug = (a + 32) | 0
- while (1) {
- Mg = o[Ig >> 2]
- tg = (Mg + Og) | 0
- tg = p[tg | 0] | (p[(tg + 1) | 0] << 8) | ((p[(tg + 2) | 0] << 16) | (p[(tg + 3) | 0] << 24))
- o[(Ig + 16) >> 2] = Lg
- o[(Ig + 20) >> 2] = Jg
- o[(Hg + 8) >> 2] = tg
- Jg = Ng
- tg = Gg
- Kg = (Og + 8) | 0
- if (Kg >>> 0 < 8) {
- tg = (tg + 1) | 0
- }
- Qg = Kg
- Kg = tg
- if ((Jg | 0) < (tg | 0) ? 1 : (Jg | 0) <= (tg | 0) ? (Pg >>> 0 >= Qg >>> 0 ? 0 : 1) : 0) {
- break c
- }
- tg = (Mg + Lg) | 0
- tg = p[tg | 0] | (p[(tg + 1) | 0] << 8) | ((p[(tg + 2) | 0] << 16) | (p[(tg + 3) | 0] << 24))
- o[(Ig + 16) >> 2] = Qg
- o[(Ig + 20) >> 2] = Kg
- o[(Hg + 12) >> 2] = tg
- tg = Gg
- Gg = (Og + 12) | 0
- if (Gg >>> 0 < 12) {
- tg = (tg + 1) | 0
- }
- Jg = Gg
- Gg = tg
- if ((Ng | 0) < (tg | 0) ? 1 : (Ng | 0) <= (tg | 0) ? (Pg >>> 0 >= Jg >>> 0 ? 0 : 1) : 0) {
- break c
- }
- tg = (Mg + Qg) | 0
- tg = p[tg | 0] | (p[(tg + 1) | 0] << 8) | ((p[(tg + 2) | 0] << 16) | (p[(tg + 3) | 0] << 24))
- o[(Ig + 16) >> 2] = Jg
- o[(Ig + 20) >> 2] = Gg
- o[(Hg + 16) >> 2] = tg
- tg = o[Tg >> 2]
- Ig = (tg + 100) | 0
- Gg = o[Ig >> 2]
- h: {
- if ((Gg | 0) == o[(tg + 104) >> 2]) {
- Xh((tg + 96) | 0, (Hg + 8) | 0)
- break h
- }
- tg = o[(Hg + 12) >> 2]
- o[Gg >> 2] = o[(Hg + 8) >> 2]
- o[(Gg + 4) >> 2] = tg
- o[(Gg + 8) >> 2] = o[Sg >> 2]
- o[Ig >> 2] = o[Ig >> 2] + 12
- }
- Wg = (Wg + 1) | 0
- if ((Rg | 0) == (Wg | 0)) {
- break b
- }
- Ig = o[Ug >> 2]
- tg = Ig
- Og = o[(tg + 16) >> 2]
- Gg = o[(tg + 20) >> 2]
- o[Sg >> 2] = 0
- o[(Hg + 8) >> 2] = 0
- o[(Hg + 12) >> 2] = 0
- Kg = o[(tg + 12) >> 2]
- Ng = Kg
- Pg = o[(tg + 8) >> 2]
- Qg = Pg
- tg = Gg
- Jg = (Og + 4) | 0
- if (Jg >>> 0 < 4) {
- tg = (tg + 1) | 0
- }
- Lg = Jg
- Jg = tg
- if ((Kg | 0) > (tg | 0) ? 1 : (Kg | 0) >= (tg | 0) ? (Qg >>> 0 < Lg >>> 0 ? 0 : 1) : 0) {
- continue
- }
- break
- }
- }
- Ng = 0
- break a
- }
- o[(o[(a + 4) >> 2] + 80) >> 2] = Vg
- Ng = 1
- }
- R = (Hg + 32) | 0
- return Ng | 0
- }
- function Vh(a, Xg, Yg) {
- var Zg = 0,
- _g = 0,
- $g = 0,
- ah = 0
- a: {
- if (a >>> 0 > 5) {
- break a
- }
- $g = o[(Yg + 16) >> 2]
- Zg = o[(Yg + 12) >> 2]
- _g = o[(Yg + 20) >> 2]
- if ((Zg | 0) < (_g | 0) ? 1 : (Zg | 0) <= (_g | 0) ? (r[(Yg + 8) >> 2] > $g >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Zg = p[($g + o[Yg >> 2]) | 0]
- $g = ($g + 1) | 0
- if ($g >>> 0 < 1) {
- _g = (_g + 1) | 0
- }
- o[(Yg + 16) >> 2] = $g
- o[(Yg + 20) >> 2] = _g
- _g = Xg
- if (Zg & 128) {
- if (!Vh((a + 1) | 0, Xg, Yg)) {
- break a
- }
- a = o[Xg >> 2] << 7
- o[Xg >> 2] = a
- Zg = a | (Zg & 127)
- }
- o[_g >> 2] = Zg
- ah = 1
- }
- return ah
- }
- function Wh(a, Xg) {
- var Yg = 0,
- bh = 0,
- ch = 0,
- dh = 0,
- eh = 0,
- fh = 0,
- gh = 0,
- hh = 0,
- ih = 0,
- jh = 0
- Yg = (R - 32) | 0
- R = Yg
- o[(Yg + 24) >> 2] = 0
- o[(Yg + 16) >> 2] = 0
- o[(Yg + 20) >> 2] = 0
- a: {
- dh = u(Xg, 3)
- if (dh) {
- if (dh >>> 0 >= 1073741824) {
- break a
- }
- bh = u(Xg, 12)
- eh = Hk(bh)
- o[(Yg + 16) >> 2] = eh
- o[(Yg + 24) >> 2] = (dh << 2) + eh
- ;(ih = Yg), (jh = (xl(eh, 0, bh) + bh) | 0), (o[(ih + 20) >> 2] = jh)
- }
- b: {
- if (!_f(dh, 1, o[(a + 32) >> 2], eh)) {
- break b
- }
- ch = 1
- if (!Xg) {
- break b
- }
- hh = (a + 44) | 0
- eh = 0
- while (1) {
- dh = (Yg + 8) | 0
- o[dh >> 2] = 0
- o[Yg >> 2] = 0
- o[(Yg + 4) >> 2] = 0
- a = (o[(Yg + 16) >> 2] + (eh << 2)) | 0
- bh = o[a >> 2]
- ch = bh >>> 1
- bh = ((bh & 1 ? (0 - ch) | 0 : ch) + fh) | 0
- o[Yg >> 2] = bh
- ch = o[(a + 4) >> 2]
- fh = ch >>> 1
- bh = (bh + (ch & 1 ? (0 - fh) | 0 : fh)) | 0
- o[(Yg + 4) >> 2] = bh
- a = o[(a + 8) >> 2]
- ch = a >>> 1
- fh = (bh + (a & 1 ? (0 - ch) | 0 : ch)) | 0
- o[dh >> 2] = fh
- bh = o[hh >> 2]
- ch = (bh + 100) | 0
- a = o[ch >> 2]
- c: {
- if ((a | 0) != o[(bh + 104) >> 2]) {
- bh = o[(Yg + 4) >> 2]
- o[a >> 2] = o[Yg >> 2]
- o[(a + 4) >> 2] = bh
- o[(a + 8) >> 2] = o[dh >> 2]
- o[ch >> 2] = o[ch >> 2] + 12
- break c
- }
- Xh((bh + 96) | 0, Yg)
- }
- eh = (eh + 3) | 0
- ch = 1
- gh = (gh + 1) | 0
- if ((gh | 0) != (Xg | 0)) {
- continue
- }
- break
- }
- }
- a = o[(Yg + 16) >> 2]
- if (a) {
- o[(Yg + 20) >> 2] = a
- ul(a)
- }
- R = (Yg + 32) | 0
- return ch
- }
- Yk()
- D()
- }
- function Xh(a, Xg) {
- var kh = 0,
- lh = 0,
- mh = 0,
- nh = 0,
- oh = 0,
- ph = 0
- a: {
- nh = o[a >> 2]
- oh = (o[(a + 4) >> 2] - nh) | 0
- kh = ((oh | 0) / 12) | 0
- lh = (kh + 1) | 0
- if (lh >>> 0 < 357913942) {
- ph = u(kh, 12)
- mh = (((o[(a + 8) >> 2] - nh) | 0) / 12) | 0
- kh = mh << 1
- mh = mh >>> 0 < 178956970 ? (kh >>> 0 < lh >>> 0 ? lh : kh) : 357913941
- kh = 0
- b: {
- if (!mh) {
- break b
- }
- if (mh >>> 0 >= 357913942) {
- break a
- }
- kh = Hk(u(mh, 12))
- }
- lh = (ph + kh) | 0
- ph = o[(Xg + 4) >> 2]
- o[lh >> 2] = o[Xg >> 2]
- o[(lh + 4) >> 2] = ph
- o[(lh + 8) >> 2] = o[(Xg + 8) >> 2]
- Xg = (lh + u(((oh | 0) / -12) | 0, 12)) | 0
- kh = (kh + u(mh, 12)) | 0
- lh = (lh + 12) | 0
- if ((oh | 0) >= 1) {
- wl(Xg, nh, oh)
- }
- o[a >> 2] = Xg
- o[(a + 8) >> 2] = kh
- o[(a + 4) >> 2] = lh
- if (nh) {
- ul(nh)
- }
- return
- }
- Yk()
- D()
- }
- _a(9912)
- D()
- }
- function Yh(a, Xg) {
- a = a | 0
- Xg = Xg | 0
- var qh = 0,
- rh = 0,
- sh = 0,
- th = 0,
- uh = 0,
- vh = 0,
- wh = 0
- th = (R - 16) | 0
- R = th
- uh = Hk(64)
- qh = Hk(12)
- o[(qh + 8) >> 2] = o[(o[(a + 4) >> 2] + 80) >> 2]
- o[qh >> 2] = 9988
- o[(qh + 4) >> 2] = 0
- o[(th + 8) >> 2] = qh
- Qd(uh, (th + 8) | 0)
- a: {
- if ((Xg | 0) >= 0) {
- qh = o[(a + 12) >> 2]
- vh = (a + 8) | 0
- wh = o[vh >> 2]
- rh = (qh - wh) >> 2
- b: {
- if ((rh | 0) > (Xg | 0)) {
- break b
- }
- sh = (Xg + 1) | 0
- if (rh >>> 0 <= Xg >>> 0) {
- Og(vh, (sh - rh) | 0)
- break b
- }
- if (sh >>> 0 >= rh >>> 0) {
- break b
- }
- sh = (wh + (sh << 2)) | 0
- if ((sh | 0) != (qh | 0)) {
- while (1) {
- qh = (qh + -4) | 0
- rh = o[qh >> 2]
- o[qh >> 2] = 0
- if (rh) {
- l[o[(o[rh >> 2] + 4) >> 2]](rh)
- }
- if ((qh | 0) != (sh | 0)) {
- continue
- }
- break
- }
- }
- o[(a + 12) >> 2] = sh
- }
- Xg = (o[vh >> 2] + (Xg << 2)) | 0
- a = o[Xg >> 2]
- o[Xg >> 2] = uh
- rh = 1
- if (!a) {
- break a
- }
- l[o[(o[a >> 2] + 4) >> 2]](a)
- break a
- }
- l[o[(o[uh >> 2] + 4) >> 2]](uh)
- }
- a = o[(th + 8) >> 2]
- o[(th + 8) >> 2] = 0
- if (a) {
- l[o[(o[a >> 2] + 4) >> 2]](a)
- }
- R = (th + 16) | 0
- return rh | 0
- }
- function Zh(a) {
- a = a | 0
- var Xg = 0,
- xh = 0,
- yh = 0,
- zh = 0,
- Ah = 0
- o[a >> 2] = 10052
- Xg = o[(a + 20) >> 2]
- if (Xg) {
- o[(a + 24) >> 2] = Xg
- ul(Xg)
- }
- yh = o[(a + 8) >> 2]
- if (yh) {
- Xg = yh
- Ah = (a + 12) | 0
- xh = o[Ah >> 2]
- zh = Xg
- a: {
- if ((Xg | 0) == (xh | 0)) {
- break a
- }
- while (1) {
- xh = (xh + -4) | 0
- Xg = o[xh >> 2]
- o[xh >> 2] = 0
- if (Xg) {
- l[o[(o[Xg >> 2] + 4) >> 2]](Xg)
- }
- if ((xh | 0) != (yh | 0)) {
- continue
- }
- break
- }
- zh = o[(a + 8) >> 2]
- }
- Xg = zh
- o[Ah >> 2] = yh
- ul(Xg)
- }
- ul(a)
- }
- function _h(a, Bh) {
- a = a | 0
- Bh = Bh | 0
- m[(Bh + 84) | 0] = 1
- o[(Bh + 72) >> 2] = o[(Bh + 68) >> 2]
- return 1
- }
- function $h(a) {
- a = a | 0
- var Bh = 0,
- Ch = 0,
- Dh = 0,
- Eh = 0
- a: {
- Bh = o[(a + 8) >> 2]
- b: {
- if ((Bh | 0) < 0) {
- break b
- }
- Ch = o[(a + 4) >> 2]
- Eh = o[Ch >> 2]
- Dh = (o[(Ch + 4) >> 2] - Eh) >> 2
- c: {
- if (Bh >>> 0 > Dh >>> 0) {
- ai(Ch, (Bh - Dh) | 0)
- Bh = o[(a + 8) >> 2]
- break c
- }
- if (Bh >>> 0 >= Dh >>> 0) {
- break c
- }
- o[(Ch + 4) >> 2] = Eh + (Bh << 2)
- }
- Eh = 1
- if ((Bh | 0) < 1) {
- break b
- }
- a = o[(a + 4) >> 2]
- Ch = o[a >> 2]
- Dh = (o[(a + 4) >> 2] - Ch) >> 2
- a = 0
- while (1) {
- if ((a | 0) == (Dh | 0)) {
- break a
- }
- o[(Ch + (a << 2)) >> 2] = a
- a = (a + 1) | 0
- if ((a | 0) < (Bh | 0)) {
- continue
- }
- break
- }
- }
- return Eh | 0
- }
- Zk()
- D()
- }
- function ai(a, Fh) {
- var Gh = 0,
- Hh = 0,
- Ih = 0,
- Jh = 0,
- Kh = 0,
- Lh = 0,
- Mh = 0,
- Nh = 0,
- Oh = 0
- Hh = o[(a + 8) >> 2]
- Ih = (a + 4) | 0
- Gh = o[Ih >> 2]
- if (((Hh - Gh) >> 2) >>> 0 >= Fh >>> 0) {
- a = Fh << 2
- ;(Nh = Ih), (Oh = (xl(Gh, 0, a) + a) | 0), (o[Nh >> 2] = Oh)
- return
- }
- a: {
- Ih = o[a >> 2]
- Kh = (Gh - Ih) | 0
- Gh = Kh >> 2
- Jh = (Gh + Fh) | 0
- if (Jh >>> 0 < 1073741824) {
- Mh = Gh << 2
- Hh = (Hh - Ih) | 0
- Gh = Hh >> 1
- Hh = (Hh >> 2) >>> 0 < 536870911 ? (Gh >>> 0 < Jh >>> 0 ? Jh : Gh) : 1073741823
- Gh = 0
- b: {
- if (!Hh) {
- break b
- }
- if (Hh >>> 0 >= 1073741824) {
- break a
- }
- Lh = Hk(Hh << 2)
- Gh = Lh
- }
- xl((Mh + Gh) | 0, 0, Fh << 2)
- Fh = (Gh + (Jh << 2)) | 0
- Jh = (Gh + (Hh << 2)) | 0
- if ((Kh | 0) >= 1) {
- wl(Lh, Ih, Kh)
- }
- o[a >> 2] = Gh
- o[(a + 8) >> 2] = Jh
- o[(a + 4) >> 2] = Fh
- if (Ih) {
- ul(Ih)
- }
- return
- }
- Yk()
- D()
- }
- _a(9912)
- D()
- }
- function bi(a) {
- o[(a + 40) >> 2] = 0
- o[a >> 2] = 10052
- o[(a + 4) >> 2] = 0
- o[(a + 8) >> 2] = 0
- o[(a + 12) >> 2] = 0
- o[(a + 16) >> 2] = 0
- o[(a + 20) >> 2] = 0
- o[(a + 24) >> 2] = 0
- o[(a + 28) >> 2] = 0
- o[(a + 32) >> 2] = 0
- n[(a + 36) >> 1] = 0
- }
- function ci(a, Fh, Ph) {
- var Qh = 0,
- Rh = 0,
- Sh = 0,
- Th = 0,
- Uh = 0,
- Vh = 0
- Rh = (R - 16) | 0
- R = Rh
- Th = o[(Fh + 12) >> 2]
- Qh = o[(Fh + 20) >> 2]
- Sh = o[(Fh + 16) >> 2]
- Uh = (Sh + 5) | 0
- if (Uh >>> 0 < 5) {
- Qh = (Qh + 1) | 0
- }
- a: {
- if ((Th | 0) < (Qh | 0) ? 1 : (Th | 0) <= (Qh | 0) ? (r[(Fh + 8) >> 2] >= Uh >>> 0 ? 0 : 1) : 0) {
- Fh = Hk(32)
- o[Rh >> 2] = Fh
- o[(Rh + 4) >> 2] = 29
- o[(Rh + 8) >> 2] = -2147483616
- m[(Fh + 29) | 0] = 0
- Ph = p[10121] | (p[10122] << 8) | ((p[10123] << 16) | (p[10124] << 24))
- Qh = p[10117] | (p[10118] << 8) | ((p[10119] << 16) | (p[10120] << 24))
- m[(Fh + 21) | 0] = Qh
- m[(Fh + 22) | 0] = Qh >>> 8
- m[(Fh + 23) | 0] = Qh >>> 16
- m[(Fh + 24) | 0] = Qh >>> 24
- m[(Fh + 25) | 0] = Ph
- m[(Fh + 26) | 0] = Ph >>> 8
- m[(Fh + 27) | 0] = Ph >>> 16
- m[(Fh + 28) | 0] = Ph >>> 24
- Ph = o[2529]
- Qh = o[2528]
- m[(Fh + 16) | 0] = Qh
- m[(Fh + 17) | 0] = Qh >>> 8
- m[(Fh + 18) | 0] = Qh >>> 16
- m[(Fh + 19) | 0] = Qh >>> 24
- m[(Fh + 20) | 0] = Ph
- m[(Fh + 21) | 0] = Ph >>> 8
- m[(Fh + 22) | 0] = Ph >>> 16
- m[(Fh + 23) | 0] = Ph >>> 24
- Ph = o[2527]
- Qh = o[2526]
- m[(Fh + 8) | 0] = Qh
- m[(Fh + 9) | 0] = Qh >>> 8
- m[(Fh + 10) | 0] = Qh >>> 16
- m[(Fh + 11) | 0] = Qh >>> 24
- m[(Fh + 12) | 0] = Ph
- m[(Fh + 13) | 0] = Ph >>> 8
- m[(Fh + 14) | 0] = Ph >>> 16
- m[(Fh + 15) | 0] = Ph >>> 24
- Ph = o[2525]
- Qh = o[2524]
- m[Fh | 0] = Qh
- m[(Fh + 1) | 0] = Qh >>> 8
- m[(Fh + 2) | 0] = Qh >>> 16
- m[(Fh + 3) | 0] = Qh >>> 24
- m[(Fh + 4) | 0] = Ph
- m[(Fh + 5) | 0] = Ph >>> 8
- m[(Fh + 6) | 0] = Ph >>> 16
- m[(Fh + 7) | 0] = Ph >>> 24
- o[a >> 2] = -2
- Mk((a + 4) | 0, Rh)
- if (m[(Rh + 11) | 0] > -1) {
- break a
- }
- ul(o[Rh >> 2])
- break a
- }
- Qh = (Sh + o[Fh >> 2]) | 0
- Th = p[Qh | 0] | (p[(Qh + 1) | 0] << 8) | ((p[(Qh + 2) | 0] << 16) | (p[(Qh + 3) | 0] << 24))
- m[Ph | 0] = Th
- m[(Ph + 1) | 0] = Th >>> 8
- m[(Ph + 2) | 0] = Th >>> 16
- m[(Ph + 3) | 0] = Th >>> 24
- m[(Ph + 4) | 0] = p[(Qh + 4) | 0]
- Th = Fh
- Qh = o[(Fh + 20) >> 2]
- Sh = (o[(Fh + 16) >> 2] + 5) | 0
- if (Sh >>> 0 < 5) {
- Qh = (Qh + 1) | 0
- }
- Uh = Sh
- Sh = Qh
- o[(Th + 16) >> 2] = Uh
- o[(Th + 20) >> 2] = Qh
- if (Zj(Ph, 10126, 5)) {
- Fh = Hk(32)
- o[Rh >> 2] = Fh
- o[(Rh + 4) >> 2] = 17
- o[(Rh + 8) >> 2] = -2147483616
- m[(Fh + 17) | 0] = 0
- m[(Fh + 16) | 0] = p[10148]
- Ph = p[10144] | (p[10145] << 8) | ((p[10146] << 16) | (p[10147] << 24))
- Qh = p[10140] | (p[10141] << 8) | ((p[10142] << 16) | (p[10143] << 24))
- m[(Fh + 8) | 0] = Qh
- m[(Fh + 9) | 0] = Qh >>> 8
- m[(Fh + 10) | 0] = Qh >>> 16
- m[(Fh + 11) | 0] = Qh >>> 24
- m[(Fh + 12) | 0] = Ph
- m[(Fh + 13) | 0] = Ph >>> 8
- m[(Fh + 14) | 0] = Ph >>> 16
- m[(Fh + 15) | 0] = Ph >>> 24
- Ph = p[10136] | (p[10137] << 8) | ((p[10138] << 16) | (p[10139] << 24))
- Qh = p[10132] | (p[10133] << 8) | ((p[10134] << 16) | (p[10135] << 24))
- m[Fh | 0] = Qh
- m[(Fh + 1) | 0] = Qh >>> 8
- m[(Fh + 2) | 0] = Qh >>> 16
- m[(Fh + 3) | 0] = Qh >>> 24
- m[(Fh + 4) | 0] = Ph
- m[(Fh + 5) | 0] = Ph >>> 8
- m[(Fh + 6) | 0] = Ph >>> 16
- m[(Fh + 7) | 0] = Ph >>> 24
- o[a >> 2] = -1
- Mk((a + 4) | 0, Rh)
- if (m[(Rh + 11) | 0] > -1) {
- break a
- }
- ul(o[Rh >> 2])
- break a
- }
- Qh = o[(Fh + 12) >> 2]
- if ((Qh | 0) < (Sh | 0) ? 1 : (Qh | 0) <= (Sh | 0) ? (r[(Fh + 8) >> 2] > Uh >>> 0 ? 0 : 1) : 0) {
- Fh = Hk(32)
- o[Rh >> 2] = Fh
- o[(Rh + 4) >> 2] = 29
- o[(Rh + 8) >> 2] = -2147483616
- m[(Fh + 29) | 0] = 0
- Ph = p[10121] | (p[10122] << 8) | ((p[10123] << 16) | (p[10124] << 24))
- Qh = p[10117] | (p[10118] << 8) | ((p[10119] << 16) | (p[10120] << 24))
- m[(Fh + 21) | 0] = Qh
- m[(Fh + 22) | 0] = Qh >>> 8
- m[(Fh + 23) | 0] = Qh >>> 16
- m[(Fh + 24) | 0] = Qh >>> 24
- m[(Fh + 25) | 0] = Ph
- m[(Fh + 26) | 0] = Ph >>> 8
- m[(Fh + 27) | 0] = Ph >>> 16
- m[(Fh + 28) | 0] = Ph >>> 24
- Ph = o[2529]
- Qh = o[2528]
- m[(Fh + 16) | 0] = Qh
- m[(Fh + 17) | 0] = Qh >>> 8
- m[(Fh + 18) | 0] = Qh >>> 16
- m[(Fh + 19) | 0] = Qh >>> 24
- m[(Fh + 20) | 0] = Ph
- m[(Fh + 21) | 0] = Ph >>> 8
- m[(Fh + 22) | 0] = Ph >>> 16
- m[(Fh + 23) | 0] = Ph >>> 24
- Ph = o[2527]
- Qh = o[2526]
- m[(Fh + 8) | 0] = Qh
- m[(Fh + 9) | 0] = Qh >>> 8
- m[(Fh + 10) | 0] = Qh >>> 16
- m[(Fh + 11) | 0] = Qh >>> 24
- m[(Fh + 12) | 0] = Ph
- m[(Fh + 13) | 0] = Ph >>> 8
- m[(Fh + 14) | 0] = Ph >>> 16
- m[(Fh + 15) | 0] = Ph >>> 24
- Ph = o[2525]
- Qh = o[2524]
- m[Fh | 0] = Qh
- m[(Fh + 1) | 0] = Qh >>> 8
- m[(Fh + 2) | 0] = Qh >>> 16
- m[(Fh + 3) | 0] = Qh >>> 24
- m[(Fh + 4) | 0] = Ph
- m[(Fh + 5) | 0] = Ph >>> 8
- m[(Fh + 6) | 0] = Ph >>> 16
- m[(Fh + 7) | 0] = Ph >>> 24
- o[a >> 2] = -2
- Mk((a + 4) | 0, Rh)
- if (m[(Rh + 11) | 0] > -1) {
- break a
- }
- ul(o[Rh >> 2])
- break a
- }
- m[(Ph + 5) | 0] = p[(Uh + o[Fh >> 2]) | 0]
- Qh = o[(Fh + 20) >> 2]
- Sh = (o[(Fh + 16) >> 2] + 1) | 0
- if (Sh >>> 0 < 1) {
- Qh = (Qh + 1) | 0
- }
- o[(Fh + 16) >> 2] = Sh
- o[(Th + 20) >> 2] = Qh
- Th = o[(Fh + 12) >> 2]
- if ((Th | 0) < (Qh | 0) ? 1 : (Th | 0) <= (Qh | 0) ? (r[(Fh + 8) >> 2] > Sh >>> 0 ? 0 : 1) : 0) {
- Fh = Hk(32)
- o[Rh >> 2] = Fh
- o[(Rh + 4) >> 2] = 29
- o[(Rh + 8) >> 2] = -2147483616
- m[(Fh + 29) | 0] = 0
- Ph = p[10121] | (p[10122] << 8) | ((p[10123] << 16) | (p[10124] << 24))
- Qh = p[10117] | (p[10118] << 8) | ((p[10119] << 16) | (p[10120] << 24))
- m[(Fh + 21) | 0] = Qh
- m[(Fh + 22) | 0] = Qh >>> 8
- m[(Fh + 23) | 0] = Qh >>> 16
- m[(Fh + 24) | 0] = Qh >>> 24
- m[(Fh + 25) | 0] = Ph
- m[(Fh + 26) | 0] = Ph >>> 8
- m[(Fh + 27) | 0] = Ph >>> 16
- m[(Fh + 28) | 0] = Ph >>> 24
- Ph = o[2529]
- Qh = o[2528]
- m[(Fh + 16) | 0] = Qh
- m[(Fh + 17) | 0] = Qh >>> 8
- m[(Fh + 18) | 0] = Qh >>> 16
- m[(Fh + 19) | 0] = Qh >>> 24
- m[(Fh + 20) | 0] = Ph
- m[(Fh + 21) | 0] = Ph >>> 8
- m[(Fh + 22) | 0] = Ph >>> 16
- m[(Fh + 23) | 0] = Ph >>> 24
- Ph = o[2527]
- Qh = o[2526]
- m[(Fh + 8) | 0] = Qh
- m[(Fh + 9) | 0] = Qh >>> 8
- m[(Fh + 10) | 0] = Qh >>> 16
- m[(Fh + 11) | 0] = Qh >>> 24
- m[(Fh + 12) | 0] = Ph
- m[(Fh + 13) | 0] = Ph >>> 8
- m[(Fh + 14) | 0] = Ph >>> 16
- m[(Fh + 15) | 0] = Ph >>> 24
- Ph = o[2525]
- Qh = o[2524]
- m[Fh | 0] = Qh
- m[(Fh + 1) | 0] = Qh >>> 8
- m[(Fh + 2) | 0] = Qh >>> 16
- m[(Fh + 3) | 0] = Qh >>> 24
- m[(Fh + 4) | 0] = Ph
- m[(Fh + 5) | 0] = Ph >>> 8
- m[(Fh + 6) | 0] = Ph >>> 16
- m[(Fh + 7) | 0] = Ph >>> 24
- o[a >> 2] = -2
- Mk((a + 4) | 0, Rh)
- if (m[(Rh + 11) | 0] > -1) {
- break a
- }
- ul(o[Rh >> 2])
- break a
- }
- m[(Ph + 6) | 0] = p[(Sh + o[Fh >> 2]) | 0]
- Qh = o[(Fh + 20) >> 2]
- Sh = (o[(Fh + 16) >> 2] + 1) | 0
- if (Sh >>> 0 < 1) {
- Qh = (Qh + 1) | 0
- }
- o[(Fh + 16) >> 2] = Sh
- o[(Fh + 20) >> 2] = Qh
- Th = o[(Fh + 12) >> 2]
- if ((Th | 0) < (Qh | 0) ? 1 : (Th | 0) <= (Qh | 0) ? (r[(Fh + 8) >> 2] > Sh >>> 0 ? 0 : 1) : 0) {
- Fh = Hk(32)
- o[Rh >> 2] = Fh
- o[(Rh + 4) >> 2] = 29
- o[(Rh + 8) >> 2] = -2147483616
- m[(Fh + 29) | 0] = 0
- Ph = p[10121] | (p[10122] << 8) | ((p[10123] << 16) | (p[10124] << 24))
- Qh = p[10117] | (p[10118] << 8) | ((p[10119] << 16) | (p[10120] << 24))
- m[(Fh + 21) | 0] = Qh
- m[(Fh + 22) | 0] = Qh >>> 8
- m[(Fh + 23) | 0] = Qh >>> 16
- m[(Fh + 24) | 0] = Qh >>> 24
- m[(Fh + 25) | 0] = Ph
- m[(Fh + 26) | 0] = Ph >>> 8
- m[(Fh + 27) | 0] = Ph >>> 16
- m[(Fh + 28) | 0] = Ph >>> 24
- Ph = o[2529]
- Qh = o[2528]
- m[(Fh + 16) | 0] = Qh
- m[(Fh + 17) | 0] = Qh >>> 8
- m[(Fh + 18) | 0] = Qh >>> 16
- m[(Fh + 19) | 0] = Qh >>> 24
- m[(Fh + 20) | 0] = Ph
- m[(Fh + 21) | 0] = Ph >>> 8
- m[(Fh + 22) | 0] = Ph >>> 16
- m[(Fh + 23) | 0] = Ph >>> 24
- Ph = o[2527]
- Qh = o[2526]
- m[(Fh + 8) | 0] = Qh
- m[(Fh + 9) | 0] = Qh >>> 8
- m[(Fh + 10) | 0] = Qh >>> 16
- m[(Fh + 11) | 0] = Qh >>> 24
- m[(Fh + 12) | 0] = Ph
- m[(Fh + 13) | 0] = Ph >>> 8
- m[(Fh + 14) | 0] = Ph >>> 16
- m[(Fh + 15) | 0] = Ph >>> 24
- Ph = o[2525]
- Qh = o[2524]
- m[Fh | 0] = Qh
- m[(Fh + 1) | 0] = Qh >>> 8
- m[(Fh + 2) | 0] = Qh >>> 16
- m[(Fh + 3) | 0] = Qh >>> 24
- m[(Fh + 4) | 0] = Ph
- m[(Fh + 5) | 0] = Ph >>> 8
- m[(Fh + 6) | 0] = Ph >>> 16
- m[(Fh + 7) | 0] = Ph >>> 24
- o[a >> 2] = -2
- Mk((a + 4) | 0, Rh)
- if (m[(Rh + 11) | 0] > -1) {
- break a
- }
- ul(o[Rh >> 2])
- break a
- }
- m[(Ph + 7) | 0] = p[(Sh + o[Fh >> 2]) | 0]
- Qh = o[(Fh + 20) >> 2]
- Sh = (o[(Fh + 16) >> 2] + 1) | 0
- if (Sh >>> 0 < 1) {
- Qh = (Qh + 1) | 0
- }
- o[(Fh + 16) >> 2] = Sh
- o[(Fh + 20) >> 2] = Qh
- Th = o[(Fh + 12) >> 2]
- if ((Th | 0) < (Qh | 0) ? 1 : (Th | 0) <= (Qh | 0) ? (r[(Fh + 8) >> 2] > Sh >>> 0 ? 0 : 1) : 0) {
- Fh = Hk(32)
- o[Rh >> 2] = Fh
- o[(Rh + 4) >> 2] = 29
- o[(Rh + 8) >> 2] = -2147483616
- m[(Fh + 29) | 0] = 0
- Ph = p[10121] | (p[10122] << 8) | ((p[10123] << 16) | (p[10124] << 24))
- Qh = p[10117] | (p[10118] << 8) | ((p[10119] << 16) | (p[10120] << 24))
- m[(Fh + 21) | 0] = Qh
- m[(Fh + 22) | 0] = Qh >>> 8
- m[(Fh + 23) | 0] = Qh >>> 16
- m[(Fh + 24) | 0] = Qh >>> 24
- m[(Fh + 25) | 0] = Ph
- m[(Fh + 26) | 0] = Ph >>> 8
- m[(Fh + 27) | 0] = Ph >>> 16
- m[(Fh + 28) | 0] = Ph >>> 24
- Ph = o[2529]
- Qh = o[2528]
- m[(Fh + 16) | 0] = Qh
- m[(Fh + 17) | 0] = Qh >>> 8
- m[(Fh + 18) | 0] = Qh >>> 16
- m[(Fh + 19) | 0] = Qh >>> 24
- m[(Fh + 20) | 0] = Ph
- m[(Fh + 21) | 0] = Ph >>> 8
- m[(Fh + 22) | 0] = Ph >>> 16
- m[(Fh + 23) | 0] = Ph >>> 24
- Ph = o[2527]
- Qh = o[2526]
- m[(Fh + 8) | 0] = Qh
- m[(Fh + 9) | 0] = Qh >>> 8
- m[(Fh + 10) | 0] = Qh >>> 16
- m[(Fh + 11) | 0] = Qh >>> 24
- m[(Fh + 12) | 0] = Ph
- m[(Fh + 13) | 0] = Ph >>> 8
- m[(Fh + 14) | 0] = Ph >>> 16
- m[(Fh + 15) | 0] = Ph >>> 24
- Ph = o[2525]
- Qh = o[2524]
- m[Fh | 0] = Qh
- m[(Fh + 1) | 0] = Qh >>> 8
- m[(Fh + 2) | 0] = Qh >>> 16
- m[(Fh + 3) | 0] = Qh >>> 24
- m[(Fh + 4) | 0] = Ph
- m[(Fh + 5) | 0] = Ph >>> 8
- m[(Fh + 6) | 0] = Ph >>> 16
- m[(Fh + 7) | 0] = Ph >>> 24
- o[a >> 2] = -2
- Mk((a + 4) | 0, Rh)
- if (m[(Rh + 11) | 0] > -1) {
- break a
- }
- ul(o[Rh >> 2])
- break a
- }
- m[(Ph + 8) | 0] = p[(Sh + o[Fh >> 2]) | 0]
- Qh = o[(Fh + 20) >> 2]
- Sh = Qh
- Vh = o[(Fh + 16) >> 2]
- Uh = (Vh + 1) | 0
- if (Uh >>> 0 < 1) {
- Qh = (Qh + 1) | 0
- }
- o[(Fh + 16) >> 2] = Uh
- o[(Fh + 20) >> 2] = Qh
- Th = o[(Fh + 12) >> 2]
- Qh = Sh
- Sh = (Vh + 3) | 0
- if (Sh >>> 0 < 3) {
- Qh = (Qh + 1) | 0
- }
- if ((Th | 0) < (Qh | 0) ? 1 : (Th | 0) <= (Qh | 0) ? (r[(Fh + 8) >> 2] >= Sh >>> 0 ? 0 : 1) : 0) {
- Fh = Hk(32)
- o[Rh >> 2] = Fh
- o[(Rh + 4) >> 2] = 29
- o[(Rh + 8) >> 2] = -2147483616
- m[(Fh + 29) | 0] = 0
- Ph = p[10121] | (p[10122] << 8) | ((p[10123] << 16) | (p[10124] << 24))
- Qh = p[10117] | (p[10118] << 8) | ((p[10119] << 16) | (p[10120] << 24))
- m[(Fh + 21) | 0] = Qh
- m[(Fh + 22) | 0] = Qh >>> 8
- m[(Fh + 23) | 0] = Qh >>> 16
- m[(Fh + 24) | 0] = Qh >>> 24
- m[(Fh + 25) | 0] = Ph
- m[(Fh + 26) | 0] = Ph >>> 8
- m[(Fh + 27) | 0] = Ph >>> 16
- m[(Fh + 28) | 0] = Ph >>> 24
- Ph = o[2529]
- Qh = o[2528]
- m[(Fh + 16) | 0] = Qh
- m[(Fh + 17) | 0] = Qh >>> 8
- m[(Fh + 18) | 0] = Qh >>> 16
- m[(Fh + 19) | 0] = Qh >>> 24
- m[(Fh + 20) | 0] = Ph
- m[(Fh + 21) | 0] = Ph >>> 8
- m[(Fh + 22) | 0] = Ph >>> 16
- m[(Fh + 23) | 0] = Ph >>> 24
- Ph = o[2527]
- Qh = o[2526]
- m[(Fh + 8) | 0] = Qh
- m[(Fh + 9) | 0] = Qh >>> 8
- m[(Fh + 10) | 0] = Qh >>> 16
- m[(Fh + 11) | 0] = Qh >>> 24
- m[(Fh + 12) | 0] = Ph
- m[(Fh + 13) | 0] = Ph >>> 8
- m[(Fh + 14) | 0] = Ph >>> 16
- m[(Fh + 15) | 0] = Ph >>> 24
- Ph = o[2525]
- Qh = o[2524]
- m[Fh | 0] = Qh
- m[(Fh + 1) | 0] = Qh >>> 8
- m[(Fh + 2) | 0] = Qh >>> 16
- m[(Fh + 3) | 0] = Qh >>> 24
- m[(Fh + 4) | 0] = Ph
- m[(Fh + 5) | 0] = Ph >>> 8
- m[(Fh + 6) | 0] = Ph >>> 16
- m[(Fh + 7) | 0] = Ph >>> 24
- o[a >> 2] = -2
- Mk((a + 4) | 0, Rh)
- if (m[(Rh + 11) | 0] > -1) {
- break a
- }
- ul(o[Rh >> 2])
- break a
- }
- Sh = Ph
- Ph = (Uh + o[Fh >> 2]) | 0
- n[(Sh + 10) >> 1] = p[Ph | 0] | (p[(Ph + 1) | 0] << 8)
- Ph = Fh
- Sh = Fh
- Qh = o[(Fh + 20) >> 2]
- Fh = (o[(Fh + 16) >> 2] + 2) | 0
- if (Fh >>> 0 < 2) {
- Qh = (Qh + 1) | 0
- }
- o[(Sh + 16) >> 2] = Fh
- o[(Ph + 20) >> 2] = Qh
- o[(a + 8) >> 2] = 0
- o[(a + 12) >> 2] = 0
- o[a >> 2] = 0
- o[(a + 4) >> 2] = 0
- }
- R = (Rh + 16) | 0
- }
- function di(a, Fh) {
- var Ph = 0,
- Wh = 0,
- Xh = 0,
- Yh = 0
- Wh = (R - 48) | 0
- R = Wh
- Ph = Hk(36)
- Xh = (Ph + 4) | 0
- o[Xh >> 2] = 0
- o[(Xh + 4) >> 2] = 0
- Yh = (Ph + 16) | 0
- o[Yh >> 2] = 0
- o[(Yh + 4) >> 2] = 0
- o[Ph >> 2] = Xh
- o[(Ph + 32) >> 2] = 0
- o[(Ph + 24) >> 2] = 0
- o[(Ph + 28) >> 2] = 0
- o[(Ph + 12) >> 2] = Yh
- o[(Wh + 40) >> 2] = Ph
- Ph = (Wh + 32) | 0
- o[Ph >> 2] = 0
- a: {
- if (!cj(Ph, o[(Fh + 32) >> 2], o[(Wh + 40) >> 2])) {
- o[(Wh + 24) >> 2] = 0
- o[(Wh + 16) >> 2] = 0
- o[(Wh + 20) >> 2] = 0
- Fh = Hk(32)
- o[(Wh + 16) >> 2] = Fh
- o[(Wh + 20) >> 2] = 26
- o[(Wh + 24) >> 2] = -2147483616
- m[(Fh + 26) | 0] = 0
- Ph = p[10174] | (p[10175] << 8)
- m[(Fh + 24) | 0] = Ph
- m[(Fh + 25) | 0] = Ph >>> 8
- Ph = p[10170] | (p[10171] << 8) | ((p[10172] << 16) | (p[10173] << 24))
- Xh = p[10166] | (p[10167] << 8) | ((p[10168] << 16) | (p[10169] << 24))
- m[(Fh + 16) | 0] = Xh
- m[(Fh + 17) | 0] = Xh >>> 8
- m[(Fh + 18) | 0] = Xh >>> 16
- m[(Fh + 19) | 0] = Xh >>> 24
- m[(Fh + 20) | 0] = Ph
- m[(Fh + 21) | 0] = Ph >>> 8
- m[(Fh + 22) | 0] = Ph >>> 16
- m[(Fh + 23) | 0] = Ph >>> 24
- Ph = p[10162] | (p[10163] << 8) | ((p[10164] << 16) | (p[10165] << 24))
- Xh = p[10158] | (p[10159] << 8) | ((p[10160] << 16) | (p[10161] << 24))
- m[(Fh + 8) | 0] = Xh
- m[(Fh + 9) | 0] = Xh >>> 8
- m[(Fh + 10) | 0] = Xh >>> 16
- m[(Fh + 11) | 0] = Xh >>> 24
- m[(Fh + 12) | 0] = Ph
- m[(Fh + 13) | 0] = Ph >>> 8
- m[(Fh + 14) | 0] = Ph >>> 16
- m[(Fh + 15) | 0] = Ph >>> 24
- Ph = p[10154] | (p[10155] << 8) | ((p[10156] << 16) | (p[10157] << 24))
- Xh = p[10150] | (p[10151] << 8) | ((p[10152] << 16) | (p[10153] << 24))
- m[Fh | 0] = Xh
- m[(Fh + 1) | 0] = Xh >>> 8
- m[(Fh + 2) | 0] = Xh >>> 16
- m[(Fh + 3) | 0] = Xh >>> 24
- m[(Fh + 4) | 0] = Ph
- m[(Fh + 5) | 0] = Ph >>> 8
- m[(Fh + 6) | 0] = Ph >>> 16
- m[(Fh + 7) | 0] = Ph >>> 24
- o[a >> 2] = -1
- Mk((a + 4) | 0, (Wh + 16) | 0)
- if (m[(Wh + 27) | 0] > -1) {
- break a
- }
- ul(o[(Wh + 16) >> 2])
- break a
- }
- Fh = o[(Fh + 4) >> 2]
- o[(Wh + 8) >> 2] = 0
- Xh = o[(Wh + 40) >> 2]
- o[(Wh + 40) >> 2] = 0
- Ph = o[(Fh + 4) >> 2]
- o[(Fh + 4) >> 2] = Xh
- b: {
- if (!Ph) {
- o[(Wh + 8) >> 2] = 0
- break b
- }
- ei(Ph)
- Fh = o[(Wh + 8) >> 2]
- o[(Wh + 8) >> 2] = 0
- if (!Fh) {
- break b
- }
- ei(Fh)
- }
- o[a >> 2] = 0
- o[(a + 4) >> 2] = 0
- o[(a + 8) >> 2] = 0
- o[(a + 12) >> 2] = 0
- }
- a = o[(Wh + 40) >> 2]
- o[(Wh + 40) >> 2] = 0
- if (a) {
- ei(a)
- }
- R = (Wh + 48) | 0
- }
- function ei(a) {
- var Fh = 0,
- Zh = 0,
- _h = 0,
- $h = 0,
- ai = 0
- if (a) {
- _h = o[(a + 24) >> 2]
- if (_h) {
- Fh = _h
- ai = (a + 28) | 0
- Zh = o[ai >> 2]
- $h = Fh
- a: {
- if ((Zh | 0) == (Fh | 0)) {
- break a
- }
- while (1) {
- Zh = (Zh + -4) | 0
- Fh = o[Zh >> 2]
- o[Zh >> 2] = 0
- if (Fh) {
- Fc((Fh + 12) | 0, o[(Fh + 16) >> 2])
- Gc(Fh, o[(Fh + 4) >> 2])
- ul(Fh)
- }
- if ((Zh | 0) != (_h | 0)) {
- continue
- }
- break
- }
- $h = o[(a + 24) >> 2]
- }
- Fh = $h
- o[ai >> 2] = _h
- ul(Fh)
- }
- Fc((a + 12) | 0, o[(a + 16) >> 2])
- Gc(a, o[(a + 4) >> 2])
- ul(a)
- }
- }
- function fi(a, bi, ei, fi, gi) {
- var hi = 0,
- ii = 0
- hi = (R - 32) | 0
- R = hi
- o[(bi + 32) >> 2] = fi
- o[(bi + 40) >> 2] = ei
- o[(bi + 4) >> 2] = gi
- ci(a, fi, (hi + 16) | 0)
- a: {
- if (o[a >> 2]) {
- break a
- }
- ei = (a + 4) | 0
- if (m[(a + 15) | 0] <= -1) {
- ul(o[ei >> 2])
- }
- gi = p[(hi + 23) | 0]
- if ((l[o[(o[bi >> 2] + 8) >> 2]](bi) | 0) != (gi | 0)) {
- bi = Hk(64)
- o[hi >> 2] = bi
- o[(hi + 4) >> 2] = 50
- o[(hi + 8) >> 2] = -2147483584
- m[(bi + 50) | 0] = 0
- fi = p[10225] | (p[10226] << 8)
- m[(bi + 48) | 0] = fi
- m[(bi + 49) | 0] = fi >>> 8
- fi = p[10221] | (p[10222] << 8) | ((p[10223] << 16) | (p[10224] << 24))
- gi = p[10217] | (p[10218] << 8) | ((p[10219] << 16) | (p[10220] << 24))
- m[(bi + 40) | 0] = gi
- m[(bi + 41) | 0] = gi >>> 8
- m[(bi + 42) | 0] = gi >>> 16
- m[(bi + 43) | 0] = gi >>> 24
- m[(bi + 44) | 0] = fi
- m[(bi + 45) | 0] = fi >>> 8
- m[(bi + 46) | 0] = fi >>> 16
- m[(bi + 47) | 0] = fi >>> 24
- fi = p[10213] | (p[10214] << 8) | ((p[10215] << 16) | (p[10216] << 24))
- gi = p[10209] | (p[10210] << 8) | ((p[10211] << 16) | (p[10212] << 24))
- m[(bi + 32) | 0] = gi
- m[(bi + 33) | 0] = gi >>> 8
- m[(bi + 34) | 0] = gi >>> 16
- m[(bi + 35) | 0] = gi >>> 24
- m[(bi + 36) | 0] = fi
- m[(bi + 37) | 0] = fi >>> 8
- m[(bi + 38) | 0] = fi >>> 16
- m[(bi + 39) | 0] = fi >>> 24
- fi = p[10205] | (p[10206] << 8) | ((p[10207] << 16) | (p[10208] << 24))
- gi = p[10201] | (p[10202] << 8) | ((p[10203] << 16) | (p[10204] << 24))
- m[(bi + 24) | 0] = gi
- m[(bi + 25) | 0] = gi >>> 8
- m[(bi + 26) | 0] = gi >>> 16
- m[(bi + 27) | 0] = gi >>> 24
- m[(bi + 28) | 0] = fi
- m[(bi + 29) | 0] = fi >>> 8
- m[(bi + 30) | 0] = fi >>> 16
- m[(bi + 31) | 0] = fi >>> 24
- fi = p[10197] | (p[10198] << 8) | ((p[10199] << 16) | (p[10200] << 24))
- gi = p[10193] | (p[10194] << 8) | ((p[10195] << 16) | (p[10196] << 24))
- m[(bi + 16) | 0] = gi
- m[(bi + 17) | 0] = gi >>> 8
- m[(bi + 18) | 0] = gi >>> 16
- m[(bi + 19) | 0] = gi >>> 24
- m[(bi + 20) | 0] = fi
- m[(bi + 21) | 0] = fi >>> 8
- m[(bi + 22) | 0] = fi >>> 16
- m[(bi + 23) | 0] = fi >>> 24
- fi = p[10189] | (p[10190] << 8) | ((p[10191] << 16) | (p[10192] << 24))
- gi = p[10185] | (p[10186] << 8) | ((p[10187] << 16) | (p[10188] << 24))
- m[(bi + 8) | 0] = gi
- m[(bi + 9) | 0] = gi >>> 8
- m[(bi + 10) | 0] = gi >>> 16
- m[(bi + 11) | 0] = gi >>> 24
- m[(bi + 12) | 0] = fi
- m[(bi + 13) | 0] = fi >>> 8
- m[(bi + 14) | 0] = fi >>> 16
- m[(bi + 15) | 0] = fi >>> 24
- fi = p[10181] | (p[10182] << 8) | ((p[10183] << 16) | (p[10184] << 24))
- gi = p[10177] | (p[10178] << 8) | ((p[10179] << 16) | (p[10180] << 24))
- m[bi | 0] = gi
- m[(bi + 1) | 0] = gi >>> 8
- m[(bi + 2) | 0] = gi >>> 16
- m[(bi + 3) | 0] = gi >>> 24
- m[(bi + 4) | 0] = fi
- m[(bi + 5) | 0] = fi >>> 8
- m[(bi + 6) | 0] = fi >>> 16
- m[(bi + 7) | 0] = fi >>> 24
- o[a >> 2] = -1
- Mk(ei, hi)
- if (m[(hi + 11) | 0] > -1) {
- break a
- }
- ul(o[hi >> 2])
- break a
- }
- fi = p[(hi + 21) | 0]
- m[(bi + 36) | 0] = fi
- ii = p[(hi + 22) | 0]
- m[(bi + 37) | 0] = ii
- if (((fi + -1) & 255) >>> 0 >= 2) {
- bi = Hk(32)
- o[hi >> 2] = bi
- o[(hi + 4) >> 2] = 22
- o[(hi + 8) >> 2] = -2147483616
- m[(bi + 22) | 0] = 0
- fi = p[10246] | (p[10247] << 8) | ((p[10248] << 16) | (p[10249] << 24))
- gi = p[10242] | (p[10243] << 8) | ((p[10244] << 16) | (p[10245] << 24))
- m[(bi + 14) | 0] = gi
- m[(bi + 15) | 0] = gi >>> 8
- m[(bi + 16) | 0] = gi >>> 16
- m[(bi + 17) | 0] = gi >>> 24
- m[(bi + 18) | 0] = fi
- m[(bi + 19) | 0] = fi >>> 8
- m[(bi + 20) | 0] = fi >>> 16
- m[(bi + 21) | 0] = fi >>> 24
- fi = p[10240] | (p[10241] << 8) | ((p[10242] << 16) | (p[10243] << 24))
- gi = p[10236] | (p[10237] << 8) | ((p[10238] << 16) | (p[10239] << 24))
- m[(bi + 8) | 0] = gi
- m[(bi + 9) | 0] = gi >>> 8
- m[(bi + 10) | 0] = gi >>> 16
- m[(bi + 11) | 0] = gi >>> 24
- m[(bi + 12) | 0] = fi
- m[(bi + 13) | 0] = fi >>> 8
- m[(bi + 14) | 0] = fi >>> 16
- m[(bi + 15) | 0] = fi >>> 24
- fi = p[10232] | (p[10233] << 8) | ((p[10234] << 16) | (p[10235] << 24))
- gi = p[10228] | (p[10229] << 8) | ((p[10230] << 16) | (p[10231] << 24))
- m[bi | 0] = gi
- m[(bi + 1) | 0] = gi >>> 8
- m[(bi + 2) | 0] = gi >>> 16
- m[(bi + 3) | 0] = gi >>> 24
- m[(bi + 4) | 0] = fi
- m[(bi + 5) | 0] = fi >>> 8
- m[(bi + 6) | 0] = fi >>> 16
- m[(bi + 7) | 0] = fi >>> 24
- o[a >> 2] = -5
- Mk(ei, hi)
- if (m[(hi + 11) | 0] > -1) {
- break a
- }
- ul(o[hi >> 2])
- break a
- }
- if (!(((fi | 0) != 2) | ((gi ? 2 : 3) >>> 0 >= ii >>> 0))) {
- bi = Hk(32)
- o[hi >> 2] = bi
- o[(hi + 4) >> 2] = 22
- o[(hi + 8) >> 2] = -2147483616
- m[(bi + 22) | 0] = 0
- fi = p[10269] | (p[10270] << 8) | ((p[10271] << 16) | (p[10272] << 24))
- gi = p[10265] | (p[10266] << 8) | ((p[10267] << 16) | (p[10268] << 24))
- m[(bi + 14) | 0] = gi
- m[(bi + 15) | 0] = gi >>> 8
- m[(bi + 16) | 0] = gi >>> 16
- m[(bi + 17) | 0] = gi >>> 24
- m[(bi + 18) | 0] = fi
- m[(bi + 19) | 0] = fi >>> 8
- m[(bi + 20) | 0] = fi >>> 16
- m[(bi + 21) | 0] = fi >>> 24
- fi = p[10263] | (p[10264] << 8) | ((p[10265] << 16) | (p[10266] << 24))
- gi = p[10259] | (p[10260] << 8) | ((p[10261] << 16) | (p[10262] << 24))
- m[(bi + 8) | 0] = gi
- m[(bi + 9) | 0] = gi >>> 8
- m[(bi + 10) | 0] = gi >>> 16
- m[(bi + 11) | 0] = gi >>> 24
- m[(bi + 12) | 0] = fi
- m[(bi + 13) | 0] = fi >>> 8
- m[(bi + 14) | 0] = fi >>> 16
- m[(bi + 15) | 0] = fi >>> 24
- fi = p[10255] | (p[10256] << 8) | ((p[10257] << 16) | (p[10258] << 24))
- gi = p[10251] | (p[10252] << 8) | ((p[10253] << 16) | (p[10254] << 24))
- m[bi | 0] = gi
- m[(bi + 1) | 0] = gi >>> 8
- m[(bi + 2) | 0] = gi >>> 16
- m[(bi + 3) | 0] = gi >>> 24
- m[(bi + 4) | 0] = fi
- m[(bi + 5) | 0] = fi >>> 8
- m[(bi + 6) | 0] = fi >>> 16
- m[(bi + 7) | 0] = fi >>> 24
- o[a >> 2] = -5
- Mk(ei, hi)
- if (m[(hi + 11) | 0] > -1) {
- break a
- }
- ul(o[hi >> 2])
- break a
- }
- fi = (fi << 8) | ii
- n[(o[(bi + 32) >> 2] + 38) >> 1] = fi
- b: {
- if (((fi & 65535) >>> 0 < 259) | (n[(hi + 26) >> 1] > -1)) {
- break b
- }
- di(a, bi)
- if (o[a >> 2]) {
- break a
- }
- if (m[(ei + 11) | 0] > -1) {
- break b
- }
- ul(o[ei >> 2])
- }
- if (!l[o[(o[bi >> 2] + 12) >> 2]](bi)) {
- bi = Hk(48)
- o[hi >> 2] = bi
- o[(hi + 4) >> 2] = 33
- o[(hi + 8) >> 2] = -2147483600
- m[(bi + 33) | 0] = 0
- m[(bi + 32) | 0] = p[10306]
- fi = p[10302] | (p[10303] << 8) | ((p[10304] << 16) | (p[10305] << 24))
- gi = p[10298] | (p[10299] << 8) | ((p[10300] << 16) | (p[10301] << 24))
- m[(bi + 24) | 0] = gi
- m[(bi + 25) | 0] = gi >>> 8
- m[(bi + 26) | 0] = gi >>> 16
- m[(bi + 27) | 0] = gi >>> 24
- m[(bi + 28) | 0] = fi
- m[(bi + 29) | 0] = fi >>> 8
- m[(bi + 30) | 0] = fi >>> 16
- m[(bi + 31) | 0] = fi >>> 24
- fi = p[10294] | (p[10295] << 8) | ((p[10296] << 16) | (p[10297] << 24))
- gi = p[10290] | (p[10291] << 8) | ((p[10292] << 16) | (p[10293] << 24))
- m[(bi + 16) | 0] = gi
- m[(bi + 17) | 0] = gi >>> 8
- m[(bi + 18) | 0] = gi >>> 16
- m[(bi + 19) | 0] = gi >>> 24
- m[(bi + 20) | 0] = fi
- m[(bi + 21) | 0] = fi >>> 8
- m[(bi + 22) | 0] = fi >>> 16
- m[(bi + 23) | 0] = fi >>> 24
- fi = p[10286] | (p[10287] << 8) | ((p[10288] << 16) | (p[10289] << 24))
- gi = p[10282] | (p[10283] << 8) | ((p[10284] << 16) | (p[10285] << 24))
- m[(bi + 8) | 0] = gi
- m[(bi + 9) | 0] = gi >>> 8
- m[(bi + 10) | 0] = gi >>> 16
- m[(bi + 11) | 0] = gi >>> 24
- m[(bi + 12) | 0] = fi
- m[(bi + 13) | 0] = fi >>> 8
- m[(bi + 14) | 0] = fi >>> 16
- m[(bi + 15) | 0] = fi >>> 24
- fi = p[10278] | (p[10279] << 8) | ((p[10280] << 16) | (p[10281] << 24))
- gi = p[10274] | (p[10275] << 8) | ((p[10276] << 16) | (p[10277] << 24))
- m[bi | 0] = gi
- m[(bi + 1) | 0] = gi >>> 8
- m[(bi + 2) | 0] = gi >>> 16
- m[(bi + 3) | 0] = gi >>> 24
- m[(bi + 4) | 0] = fi
- m[(bi + 5) | 0] = fi >>> 8
- m[(bi + 6) | 0] = fi >>> 16
- m[(bi + 7) | 0] = fi >>> 24
- o[a >> 2] = -1
- Mk(ei, hi)
- if (m[(hi + 11) | 0] > -1) {
- break a
- }
- ul(o[hi >> 2])
- break a
- }
- if (!l[o[(o[bi >> 2] + 20) >> 2]](bi)) {
- bi = Hk(32)
- o[hi >> 2] = bi
- o[(hi + 4) >> 2] = 31
- o[(hi + 8) >> 2] = -2147483616
- m[(bi + 31) | 0] = 0
- fi = p[10335] | (p[10336] << 8) | ((p[10337] << 16) | (p[10338] << 24))
- gi = p[10331] | (p[10332] << 8) | ((p[10333] << 16) | (p[10334] << 24))
- m[(bi + 23) | 0] = gi
- m[(bi + 24) | 0] = gi >>> 8
- m[(bi + 25) | 0] = gi >>> 16
- m[(bi + 26) | 0] = gi >>> 24
- m[(bi + 27) | 0] = fi
- m[(bi + 28) | 0] = fi >>> 8
- m[(bi + 29) | 0] = fi >>> 16
- m[(bi + 30) | 0] = fi >>> 24
- fi = p[10328] | (p[10329] << 8) | ((p[10330] << 16) | (p[10331] << 24))
- gi = p[10324] | (p[10325] << 8) | ((p[10326] << 16) | (p[10327] << 24))
- m[(bi + 16) | 0] = gi
- m[(bi + 17) | 0] = gi >>> 8
- m[(bi + 18) | 0] = gi >>> 16
- m[(bi + 19) | 0] = gi >>> 24
- m[(bi + 20) | 0] = fi
- m[(bi + 21) | 0] = fi >>> 8
- m[(bi + 22) | 0] = fi >>> 16
- m[(bi + 23) | 0] = fi >>> 24
- fi = p[10320] | (p[10321] << 8) | ((p[10322] << 16) | (p[10323] << 24))
- gi = p[10316] | (p[10317] << 8) | ((p[10318] << 16) | (p[10319] << 24))
- m[(bi + 8) | 0] = gi
- m[(bi + 9) | 0] = gi >>> 8
- m[(bi + 10) | 0] = gi >>> 16
- m[(bi + 11) | 0] = gi >>> 24
- m[(bi + 12) | 0] = fi
- m[(bi + 13) | 0] = fi >>> 8
- m[(bi + 14) | 0] = fi >>> 16
- m[(bi + 15) | 0] = fi >>> 24
- fi = p[10312] | (p[10313] << 8) | ((p[10314] << 16) | (p[10315] << 24))
- gi = p[10308] | (p[10309] << 8) | ((p[10310] << 16) | (p[10311] << 24))
- m[bi | 0] = gi
- m[(bi + 1) | 0] = gi >>> 8
- m[(bi + 2) | 0] = gi >>> 16
- m[(bi + 3) | 0] = gi >>> 24
- m[(bi + 4) | 0] = fi
- m[(bi + 5) | 0] = fi >>> 8
- m[(bi + 6) | 0] = fi >>> 16
- m[(bi + 7) | 0] = fi >>> 24
- o[a >> 2] = -1
- Mk(ei, hi)
- if (m[(hi + 11) | 0] > -1) {
- break a
- }
- ul(o[hi >> 2])
- break a
- }
- if (!l[o[(o[bi >> 2] + 24) >> 2]](bi)) {
- bi = Hk(48)
- o[hi >> 2] = bi
- o[(hi + 4) >> 2] = 34
- o[(hi + 8) >> 2] = -2147483600
- m[(bi + 34) | 0] = 0
- fi = p[10372] | (p[10373] << 8)
- m[(bi + 32) | 0] = fi
- m[(bi + 33) | 0] = fi >>> 8
- fi = p[10368] | (p[10369] << 8) | ((p[10370] << 16) | (p[10371] << 24))
- gi = p[10364] | (p[10365] << 8) | ((p[10366] << 16) | (p[10367] << 24))
- m[(bi + 24) | 0] = gi
- m[(bi + 25) | 0] = gi >>> 8
- m[(bi + 26) | 0] = gi >>> 16
- m[(bi + 27) | 0] = gi >>> 24
- m[(bi + 28) | 0] = fi
- m[(bi + 29) | 0] = fi >>> 8
- m[(bi + 30) | 0] = fi >>> 16
- m[(bi + 31) | 0] = fi >>> 24
- fi = p[10360] | (p[10361] << 8) | ((p[10362] << 16) | (p[10363] << 24))
- gi = p[10356] | (p[10357] << 8) | ((p[10358] << 16) | (p[10359] << 24))
- m[(bi + 16) | 0] = gi
- m[(bi + 17) | 0] = gi >>> 8
- m[(bi + 18) | 0] = gi >>> 16
- m[(bi + 19) | 0] = gi >>> 24
- m[(bi + 20) | 0] = fi
- m[(bi + 21) | 0] = fi >>> 8
- m[(bi + 22) | 0] = fi >>> 16
- m[(bi + 23) | 0] = fi >>> 24
- fi = p[10352] | (p[10353] << 8) | ((p[10354] << 16) | (p[10355] << 24))
- gi = p[10348] | (p[10349] << 8) | ((p[10350] << 16) | (p[10351] << 24))
- m[(bi + 8) | 0] = gi
- m[(bi + 9) | 0] = gi >>> 8
- m[(bi + 10) | 0] = gi >>> 16
- m[(bi + 11) | 0] = gi >>> 24
- m[(bi + 12) | 0] = fi
- m[(bi + 13) | 0] = fi >>> 8
- m[(bi + 14) | 0] = fi >>> 16
- m[(bi + 15) | 0] = fi >>> 24
- fi = p[10344] | (p[10345] << 8) | ((p[10346] << 16) | (p[10347] << 24))
- gi = p[10340] | (p[10341] << 8) | ((p[10342] << 16) | (p[10343] << 24))
- m[bi | 0] = gi
- m[(bi + 1) | 0] = gi >>> 8
- m[(bi + 2) | 0] = gi >>> 16
- m[(bi + 3) | 0] = gi >>> 24
- m[(bi + 4) | 0] = fi
- m[(bi + 5) | 0] = fi >>> 8
- m[(bi + 6) | 0] = fi >>> 16
- m[(bi + 7) | 0] = fi >>> 24
- o[a >> 2] = -1
- Mk(ei, hi)
- if (m[(hi + 11) | 0] > -1) {
- break a
- }
- ul(o[hi >> 2])
- break a
- }
- o[a >> 2] = 0
- o[(a + 4) >> 2] = 0
- o[(a + 8) >> 2] = 0
- o[(a + 12) >> 2] = 0
- }
- R = (hi + 32) | 0
- }
- function gi(a) {
- a = a | 0
- var bi = 0,
- ci = 0,
- di = 0,
- ei = 0,
- fi = 0,
- gi = 0,
- ji = 0,
- ki = 0,
- li = 0,
- mi = 0,
- ni = 0,
- oi = 0
- a: {
- bi = o[(a + 32) >> 2]
- ei = o[(bi + 16) >> 2]
- gi = o[(bi + 12) >> 2]
- di = o[(bi + 20) >> 2]
- b: {
- if ((gi | 0) < (di | 0) ? 1 : (gi | 0) <= (di | 0) ? (r[(bi + 8) >> 2] > ei >>> 0 ? 0 : 1) : 0) {
- break b
- }
- fi = p[(ei + o[bi >> 2]) | 0]
- ji = (ei + 1) | 0
- if (ji >>> 0 < 1) {
- di = (di + 1) | 0
- }
- o[(bi + 16) >> 2] = ji
- o[(bi + 20) >> 2] = di
- c: {
- if (!fi) {
- break c
- }
- while (1) {
- if (l[o[(o[a >> 2] + 16) >> 2]](a, ci)) {
- ci = (ci + 1) | 0
- if ((fi | 0) != (ci | 0)) {
- continue
- }
- break c
- }
- break
- }
- return 0
- }
- ci = o[(a + 8) >> 2]
- di = o[(a + 12) >> 2]
- if ((ci | 0) != (di | 0)) {
- while (1) {
- bi = o[ci >> 2]
- if (!l[o[(o[bi >> 2] + 8) >> 2]](bi, a, o[(a + 4) >> 2])) {
- break b
- }
- ci = (ci + 4) | 0
- if ((di | 0) != (ci | 0)) {
- continue
- }
- break
- }
- }
- d: {
- if (!fi) {
- break d
- }
- ci = 0
- di = (a + 8) | 0
- while (1) {
- bi = o[(o[di >> 2] + (ci << 2)) >> 2]
- if (!l[o[(o[bi >> 2] + 12) >> 2]](bi, o[(a + 32) >> 2])) {
- break a
- }
- ci = (ci + 1) | 0
- if ((fi | 0) != (ci | 0)) {
- continue
- }
- break
- }
- if (!fi) {
- break d
- }
- ei = (a + 20) | 0
- ki = (a + 8) | 0
- gi = (a + 24) | 0
- while (1) {
- ci = 0
- ji = li << 2
- bi = o[(ji + o[ki >> 2]) >> 2]
- di = l[o[(o[bi >> 2] + 24) >> 2]](bi) | 0
- if ((di | 0) > 0) {
- while (1) {
- bi = o[(o[ki >> 2] + ji) >> 2]
- bi = l[o[(o[bi >> 2] + 20) >> 2]](bi, ci) | 0
- mi = o[(a + 20) >> 2]
- ni = (o[gi >> 2] - mi) >> 2
- e: {
- if (bi >>> 0 < ni >>> 0) {
- break e
- }
- oi = (bi + 1) | 0
- if (oi >>> 0 > ni >>> 0) {
- Da(ei, (oi - ni) | 0)
- mi = o[ei >> 2]
- break e
- }
- if (oi >>> 0 >= ni >>> 0) {
- break e
- }
- o[gi >> 2] = (oi << 2) + mi
- }
- o[((bi << 2) + mi) >> 2] = li
- ci = (ci + 1) | 0
- if ((di | 0) != (ci | 0)) {
- continue
- }
- break
- }
- }
- li = (li + 1) | 0
- if ((li | 0) != (fi | 0)) {
- continue
- }
- break
- }
- }
- ki = 0
- if (!l[o[(o[a >> 2] + 28) >> 2]](a)) {
- break b
- }
- ki = l[o[(o[a >> 2] + 32) >> 2]](a) | 0
- }
- return ki | 0
- }
- return 0
- }
- function hi(a) {
- a = a | 0
- var pi = 0,
- qi = 0,
- ri = 0,
- si = 0
- qi = 1
- pi = o[(a + 8) >> 2]
- ri = o[(a + 12) >> 2]
- a: {
- if ((pi | 0) == (ri | 0)) {
- break a
- }
- while (1) {
- si = o[pi >> 2]
- if (l[o[(o[si >> 2] + 16) >> 2]](si, o[(a + 32) >> 2])) {
- pi = (pi + 4) | 0
- if ((ri | 0) != (pi | 0)) {
- continue
- }
- break a
- }
- break
- }
- qi = 0
- }
- return qi | 0
- }
- function ii(a, ti) {
- var ui = 0,
- vi = 0
- a: {
- if ((ti | 0) < 0) {
- break a
- }
- ui = o[(a + 4) >> 2]
- if ((o[(ui + 12) >> 2] - o[(ui + 8) >> 2]) >> 2 <= (ti | 0)) {
- break a
- }
- a = o[(o[(a + 8) >> 2] + (o[(o[(a + 20) >> 2] + (ti << 2)) >> 2] << 2)) >> 2]
- vi = l[o[(o[a >> 2] + 32) >> 2]](a, ti) | 0
- }
- return vi
- }
- function ji(a, ti, wi) {
- var xi = 0,
- yi = 0,
- zi = 0
- if ((ti | 0) > 0) {
- while (1) {
- yi = xi << 2
- zi = o[(yi + a) >> 2]
- o[(wi + yi) >> 2] = (0 - (zi & 1)) ^ (zi >>> 1)
- xi = (xi + 1) | 0
- if ((xi | 0) != (ti | 0)) {
- continue
- }
- break
- }
- }
- }
- function ki(a) {
- o[(a + 16) >> 2] = 0
- o[(a + 20) >> 2] = 0
- o[a >> 2] = 0
- o[(a + 4) >> 2] = 0
- o[(a + 8) >> 2] = 0
- o[(a + 24) >> 2] = 0
- o[(a + 28) >> 2] = 0
- }
- function li(a, o, ti, wi) {
- return mi(a, o, ti, wi)
- }
- function mi(a, ti, wi, Ai) {
- var Bi = 0,
- Ci = 0,
- Di = 0
- a: {
- if (!ti) {
- ti = wi
- Ai = ti >>> 0 < 0 ? (Ai + 1) | 0 : Ai
- if ((Ai | 0) < 0 ? 1 : (Ai | 0) <= 0 ? (ti >>> 0 >= 0 ? 0 : 1) : 0) {
- return 0
- }
- Ai = o[a >> 2]
- wi = (o[(a + 4) >> 2] - Ai) | 0
- if (wi >>> 0 < ti >>> 0) {
- Fa(a, (ti - wi) | 0)
- break a
- }
- if (wi >>> 0 <= ti >>> 0) {
- break a
- }
- o[(a + 4) >> 2] = ti + Ai
- break a
- }
- if ((Ai | 0) < 0 ? 1 : (Ai | 0) <= 0 ? (wi >>> 0 >= 0 ? 0 : 1) : 0) {
- return 0
- }
- Ci = wi
- if (wi >>> 0 < 0) {
- Ai = (Ai + 1) | 0
- }
- Di = o[a >> 2]
- Bi = (o[(a + 4) >> 2] - Di) | 0
- b: {
- if ((Ai | 0) < 0 ? 1 : (Ai | 0) <= 0 ? (Ci >>> 0 > Bi >>> 0 ? 0 : 1) : 0) {
- break b
- }
- Ai = Ci
- if (Bi >>> 0 < Ai >>> 0) {
- Fa(a, (Ai - Bi) | 0)
- break b
- }
- if (Bi >>> 0 <= Ai >>> 0) {
- break b
- }
- o[(a + 4) >> 2] = Ai + Di
- }
- if (!wi) {
- break a
- }
- yl(o[a >> 2], ti, wi)
- }
- ti = (a + 24) | 0
- wi = ti
- Ai = ti
- a = o[(ti + 4) >> 2]
- ti = (o[ti >> 2] + 1) | 0
- if (ti >>> 0 < 1) {
- a = (a + 1) | 0
- }
- o[Ai >> 2] = ti
- o[(wi + 4) >> 2] = a
- return 1
- }
- function ni(a, ti) {
- var wi = 0,
- Ai = 0
- Ai = o[a >> 2]
- wi = (o[(a + 4) >> 2] - Ai) | 0
- a: {
- if (wi >>> 0 < ti >>> 0) {
- Fa(a, (ti - wi) | 0)
- break a
- }
- if (wi >>> 0 <= ti >>> 0) {
- break a
- }
- o[(a + 4) >> 2] = ti + Ai
- }
- ti = (a + 24) | 0
- wi = ti
- Ai = ti
- a = o[(ti + 4) >> 2]
- ti = (o[ti >> 2] + 1) | 0
- if (ti >>> 0 < 1) {
- a = (a + 1) | 0
- }
- o[Ai >> 2] = ti
- o[(wi + 4) >> 2] = a
- }
- function oi(a) {
- n[(a + 38) >> 1] = 0
- o[a >> 2] = 0
- o[(a + 8) >> 2] = 0
- o[(a + 12) >> 2] = 0
- o[(a + 16) >> 2] = 0
- o[(a + 20) >> 2] = 0
- o[(a + 24) >> 2] = 0
- o[(a + 28) >> 2] = 0
- m[(a + 29) | 0] = 0
- m[(a + 30) | 0] = 0
- m[(a + 31) | 0] = 0
- m[(a + 32) | 0] = 0
- m[(a + 33) | 0] = 0
- m[(a + 34) | 0] = 0
- m[(a + 35) | 0] = 0
- m[(a + 36) | 0] = 0
- return a
- }
- function pi(a, ti, Ei, Fi) {
- n[(a + 38) >> 1] = Fi
- o[a >> 2] = ti
- o[(a + 16) >> 2] = 0
- o[(a + 20) >> 2] = 0
- o[(a + 8) >> 2] = Ei
- o[(a + 12) >> 2] = 0
- }
- function qi(a, ti, Ei) {
- var Fi = 0
- a: {
- if (ti) {
- ti = 0
- if (!ri(1, Ei, a)) {
- break a
- }
- }
- m[(a + 36) | 0] = 1
- o[(a + 32) >> 2] = 0
- ti = o[(a + 16) >> 2]
- Ei = (ti + o[a >> 2]) | 0
- o[(a + 24) >> 2] = Ei
- Fi = a
- a = o[(a + 8) >> 2]
- o[(Fi + 28) >> 2] = Ei + ((a - ti) | 0)
- ti = 1
- }
- return ti
- }
- function ri(a, ti, Ei) {
- var Gi = 0,
- Hi = 0,
- Ii = 0,
- Ji = 0,
- Ki = 0,
- Li = 0
- a: {
- if (a >>> 0 > 10) {
- break a
- }
- Ii = o[(Ei + 16) >> 2]
- Gi = o[(Ei + 12) >> 2]
- Hi = o[(Ei + 20) >> 2]
- Ji = Hi
- if ((Gi | 0) < (Ji | 0) ? 1 : (Gi | 0) <= (Ji | 0) ? (r[(Ei + 8) >> 2] > Ii >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Ki = m[(Ii + o[Ei >> 2]) | 0]
- Gi = (Ii + 1) | 0
- if (Gi >>> 0 < 1) {
- Hi = (Hi + 1) | 0
- }
- o[(Ei + 16) >> 2] = Gi
- o[(Ei + 20) >> 2] = Hi
- Ji = ti
- Ii = ti
- Gi = Ki
- b: {
- if ((Gi | 0) <= -1) {
- if (!ri((a + 1) | 0, ti, Ei)) {
- break a
- }
- a = ti
- Ei = o[(ti + 4) >> 2]
- ti = o[ti >> 2]
- Hi = (Ei << 7) | (ti >>> 25)
- ti = ti << 7
- o[a >> 2] = ti
- o[(a + 4) >> 2] = Hi
- a = (Gi & 127) | ti
- break b
- }
- Hi = 0
- a = Gi & 255
- }
- o[Ii >> 2] = a
- o[(Ji + 4) >> 2] = Hi
- Li = 1
- }
- return Li
- }
- function si(a) {
- var ti = 0,
- Ei = 0,
- Mi = 0,
- Ni = 0,
- Oi = 0,
- Pi = 0
- m[(a + 36) | 0] = 0
- Mi = o[(a + 20) >> 2]
- Ni = a
- Oi = a
- Pi = o[(a + 16) >> 2]
- a = (o[(a + 32) >> 2] + 7) | 0
- if (a >>> 0 < 7) {
- ti = 1
- }
- Ei = ti >>> 3
- a = (ti << 29) | (a >>> 3)
- ti = (Pi + a) | 0
- Ei = (Ei + Mi) | 0
- o[(Oi + 16) >> 2] = ti
- o[(Ni + 20) >> 2] = ti >>> 0 < a >>> 0 ? (Ei + 1) | 0 : Ei
- }
- function ti(a) {
- a = (a + -1) | 0
- if (a >>> 0 <= 10) {
- return o[((a << 2) + 10412) >> 2]
- }
- return -1
- }
- function ui(a) {
- var Qi = 0
- Qi = (a + 4) | 0
- o[Qi >> 2] = 0
- o[(Qi + 4) >> 2] = 0
- o[a >> 2] = Qi
- return a
- }
- function vi(a, Ri, Si, Ti) {
- var Ui = 0,
- Vi = 0,
- Wi = 0,
- Xi = 0
- Ui = (R - 16) | 0
- R = Ui
- Xi = a
- Vi = Zf(Ri, (Ui + 12) | 0, Si)
- Si = o[Vi >> 2]
- if (Si) {
- Ri = 0
- } else {
- Si = Hk(40)
- Mk((Si + 16) | 0, o[Ti >> 2])
- o[(Si + 36) >> 2] = 0
- o[(Si + 28) >> 2] = 0
- o[(Si + 32) >> 2] = 0
- o[(Si + 8) >> 2] = o[(Ui + 12) >> 2]
- o[Si >> 2] = 0
- o[(Si + 4) >> 2] = 0
- o[Vi >> 2] = Si
- Ti = Si
- Wi = o[o[Ri >> 2] >> 2]
- if (Wi) {
- o[Ri >> 2] = Wi
- Ti = o[Vi >> 2]
- }
- Xf(o[(Ri + 4) >> 2], Ti)
- Ri = (Ri + 8) | 0
- o[Ri >> 2] = o[Ri >> 2] + 1
- Ri = 1
- }
- m[(Xi + 4) | 0] = Ri
- o[a >> 2] = Si
- R = (Ui + 16) | 0
- }
- function wi(a, Ri) {
- var Si = 0
- Si = (R - 48) | 0
- R = Si
- Wk((Si + 8) | 0)
- o[(Si + 32) >> 2] = Ri
- vi((Si + 40) | 0, a, Ri, (Si + 32) | 0)
- a = o[(Si + 40) >> 2]
- Ri = (a + 28) | 0
- a: {
- if (m[(a + 39) | 0] >= 0) {
- m[(Ri + 11) | 0] = 0
- m[Ri | 0] = 0
- break a
- }
- m[o[(a + 28) >> 2]] = 0
- o[(a + 32) >> 2] = 0
- if (m[(a + 39) | 0] > -1) {
- break a
- }
- ul(o[(a + 28) >> 2])
- o[(a + 36) >> 2] = 0
- }
- a = o[(Si + 12) >> 2]
- o[Ri >> 2] = o[(Si + 8) >> 2]
- o[(Ri + 4) >> 2] = a
- o[(Ri + 8) >> 2] = o[(Si + 16) >> 2]
- R = (Si + 48) | 0
- }
- function xi(a, Ri) {
- var Ti = 0,
- Yi = 0,
- Zi = 0,
- _i = 0,
- $i = 0,
- aj = 0,
- bj = 0,
- cj = 0
- $i = (a + 4) | 0
- a = o[$i >> 2]
- a: {
- b: {
- if (!a) {
- break b
- }
- Ti = p[(Ri + 11) | 0]
- Yi = (Ti << 24) >> 24 < 0
- Zi = Yi ? o[(Ri + 4) >> 2] : Ti
- bj = Yi ? o[Ri >> 2] : Ri
- Ti = $i
- while (1) {
- Ri = p[(a + 27) | 0]
- cj = (Ri << 24) >> 24 < 0
- aj = cj ? o[(a + 20) >> 2] : Ri
- _i = Zi >>> 0 < aj >>> 0
- Yi = _i ? Zi : aj
- c: {
- if (Yi) {
- Ri = (a + 16) | 0
- Ri = Zj(cj ? o[Ri >> 2] : Ri, bj, Yi)
- if (Ri) {
- break c
- }
- }
- Ri = aj >>> 0 < Zi >>> 0 ? -1 : _i
- }
- Ti = (Ri | 0) < 0 ? Ti : a
- a = o[(((Ri >>> 29) & 4) + a) >> 2]
- if (a) {
- continue
- }
- break
- }
- if ((Ti | 0) == ($i | 0)) {
- break b
- }
- a = p[(Ti + 27) | 0]
- _i = (a << 24) >> 24 < 0
- d: {
- Yi = _i ? o[(Ti + 20) >> 2] : a
- Ri = Yi >>> 0 < Zi >>> 0 ? Yi : Zi
- if (Ri) {
- a = (Ti + 16) | 0
- a = Zj(bj, _i ? o[a >> 2] : a, Ri)
- if (a) {
- break d
- }
- }
- if (Zi >>> 0 < Yi >>> 0) {
- break b
- }
- break a
- }
- if ((a | 0) > -1) {
- break a
- }
- }
- Ti = $i
- }
- return Ti
- }
- function yi(a, Ri) {
- var dj = 0
- Ri = xi(a, Ri)
- a: {
- if ((Ri | 0) == ((a + 4) | 0)) {
- break a
- }
- a = (Ri + 28) | 0
- if (m[(Ri + 39) | 0] <= -1) {
- a = o[a >> 2]
- }
- a = Yj(a)
- if ((a | 0) == -1) {
- break a
- }
- dj = (a | 0) != 0
- }
- return dj
- }
- function zi(a) {
- var Ri = 0
- o[a >> 2] = 0
- o[(a + 4) >> 2] = 0
- o[(a + 56) >> 2] = 0
- o[(a + 48) >> 2] = 0
- o[(a + 52) >> 2] = 0
- o[(a + 40) >> 2] = 0
- o[(a + 44) >> 2] = 0
- o[(a + 32) >> 2] = 0
- o[(a + 36) >> 2] = 0
- o[(a + 24) >> 2] = 0
- o[(a + 28) >> 2] = 0
- o[(a + 16) >> 2] = 0
- o[(a + 20) >> 2] = 0
- o[(a + 8) >> 2] = 0
- o[(a + 12) >> 2] = 0
- Ri = (a - -64) | 0
- o[Ri >> 2] = 0
- o[(Ri + 4) >> 2] = 0
- o[(a + 72) >> 2] = 0
- o[(a + 76) >> 2] = 0
- o[(a + 80) >> 2] = 0
- o[(a + 84) >> 2] = 0
- o[(a + 60) >> 2] = a
- }
- function Ai(a, ej) {
- var fj = 0,
- gj = 0,
- hj = 0
- hj = (R - 16) | 0
- R = hj
- gj = Hk(88)
- fj = gj
- o[fj >> 2] = 0
- o[(fj + 4) >> 2] = 0
- o[(fj + 56) >> 2] = 0
- o[(fj + 48) >> 2] = 0
- o[(fj + 52) >> 2] = 0
- o[(fj + 40) >> 2] = 0
- o[(fj + 44) >> 2] = 0
- o[(fj + 32) >> 2] = 0
- o[(fj + 36) >> 2] = 0
- o[(fj + 24) >> 2] = 0
- o[(fj + 28) >> 2] = 0
- o[(fj + 16) >> 2] = 0
- o[(fj + 20) >> 2] = 0
- o[(fj + 8) >> 2] = 0
- o[(fj + 12) >> 2] = 0
- fj = (fj - -64) | 0
- o[fj >> 2] = 0
- o[(fj + 4) >> 2] = 0
- o[(gj + 72) >> 2] = 0
- o[(gj + 76) >> 2] = 0
- o[(gj + 80) >> 2] = 0
- o[(gj + 84) >> 2] = 0
- o[(gj + 60) >> 2] = gj
- o[(hj + 8) >> 2] = gj
- a: {
- if (Bi(gj, ej)) {
- o[a >> 2] = o[(hj + 8) >> 2]
- o[(hj + 8) >> 2] = 0
- break a
- }
- o[a >> 2] = 0
- a = o[(hj + 8) >> 2]
- o[(hj + 8) >> 2] = 0
- if (!a) {
- break a
- }
- ua((hj + 8) | 0, a)
- }
- R = (hj + 16) | 0
- }
- function Bi(a, ej) {
- var ij = 0,
- jj = 0,
- kj = 0,
- lj = 0,
- mj = 0,
- nj = 0,
- oj = 0
- lj = (R - 16) | 0
- R = lj
- o[(a + 80) >> 2] = 0
- o[(a + 84) >> 2] = 0
- ij = (a + 76) | 0
- jj = o[ij >> 2]
- o[ij >> 2] = 0
- if (jj) {
- ul(jj)
- }
- o[(a + 68) >> 2] = 0
- o[(a + 72) >> 2] = 0
- ij = (a - -64) | 0
- jj = o[ij >> 2]
- o[ij >> 2] = 0
- if (jj) {
- ul(jj)
- }
- nj = (ej + 4) | 0
- ij = o[nj >> 2]
- jj = o[ej >> 2]
- kj = u((((ij - jj) | 0) / 12) | 0, 3)
- oj = o[a >> 2]
- mj = (o[(a + 4) >> 2] - oj) >> 2
- a: {
- if (kj >>> 0 > mj >>> 0) {
- Ci(a, (kj - mj) | 0)
- ij = o[nj >> 2]
- jj = o[ej >> 2]
- break a
- }
- if (kj >>> 0 >= mj >>> 0) {
- break a
- }
- o[(a + 4) >> 2] = (kj << 2) + oj
- }
- if ((ij | 0) != (jj | 0)) {
- mj = (((ij - jj) | 0) / 12) | 0
- nj = o[a >> 2]
- ej = 0
- while (1) {
- kj = u(ej, 12)
- ij = (kj + nj) | 0
- kj = (jj + kj) | 0
- o[ij >> 2] = o[kj >> 2]
- o[(ij + 4) >> 2] = o[(kj + 4) >> 2]
- o[(ij + 8) >> 2] = o[(kj + 8) >> 2]
- ej = (ej + 1) | 0
- if (ej >>> 0 < mj >>> 0) {
- continue
- }
- break
- }
- }
- o[(lj + 12) >> 2] = -1
- ej = 0
- if (Di(a, (lj + 12) | 0)) {
- Ei(a)
- Fi(a, o[(lj + 12) >> 2])
- ej = 1
- }
- R = (lj + 16) | 0
- return ej
- }
- function Ci(a, ej) {
- var pj = 0,
- qj = 0,
- rj = 0,
- sj = 0,
- tj = 0,
- uj = 0,
- vj = 0,
- wj = 0,
- xj = 0
- qj = o[(a + 8) >> 2]
- rj = (a + 4) | 0
- pj = o[rj >> 2]
- if (((qj - pj) >> 2) >>> 0 >= ej >>> 0) {
- a = ej << 2
- ;(wj = rj), (xj = (xl(pj, 0, a) + a) | 0), (o[wj >> 2] = xj)
- return
- }
- a: {
- rj = o[a >> 2]
- tj = (pj - rj) | 0
- pj = tj >> 2
- sj = (pj + ej) | 0
- if (sj >>> 0 < 1073741824) {
- vj = pj << 2
- qj = (qj - rj) | 0
- pj = qj >> 1
- qj = (qj >> 2) >>> 0 < 536870911 ? (pj >>> 0 < sj >>> 0 ? sj : pj) : 1073741823
- pj = 0
- b: {
- if (!qj) {
- break b
- }
- if (qj >>> 0 >= 1073741824) {
- break a
- }
- uj = Hk(qj << 2)
- pj = uj
- }
- xl((vj + pj) | 0, 0, ej << 2)
- ej = (pj + (sj << 2)) | 0
- sj = (pj + (qj << 2)) | 0
- if ((tj | 0) >= 1) {
- wl(uj, rj, tj)
- }
- o[a >> 2] = pj
- o[(a + 8) >> 2] = sj
- o[(a + 4) >> 2] = ej
- if (rj) {
- ul(rj)
- }
- return
- }
- Yk()
- D()
- }
- _a(10468)
- D()
- }
- function Di(a, ej) {
- var yj = 0,
- zj = 0,
- Aj = 0,
- Bj = 0,
- Cj = 0,
- Dj = 0,
- Ej = 0,
- Fj = 0,
- Gj = 0,
- Hj = 0,
- Ij = 0,
- Jj = 0,
- Kj = 0,
- Lj = 0,
- Mj = 0,
- Nj = 0,
- Oj = 0,
- Pj = 0,
- Qj = 0,
- Rj = 0,
- Sj = 0
- Aj = (R - 48) | 0
- R = Aj
- if (ej) {
- Pj = (a + 12) | 0
- zj = (a + 4) | 0
- Fj = o[zj >> 2]
- Gj = o[a >> 2]
- Dj = (Fj - Gj) | 0
- Bj = Dj >> 2
- yj = o[(a + 12) >> 2]
- Cj = (o[(a + 16) >> 2] - yj) >> 2
- a: {
- if (Bj >>> 0 > Cj >>> 0) {
- Gi(Pj, (Bj - Cj) | 0)
- Fj = o[zj >> 2]
- Gj = o[a >> 2]
- Dj = (Fj - Gj) | 0
- Bj = Dj >> 2
- break a
- }
- if (Bj >>> 0 >= Cj >>> 0) {
- break a
- }
- o[(a + 16) >> 2] = yj + (Bj << 2)
- }
- zj = 0
- o[(Aj + 40) >> 2] = 0
- o[(Aj + 32) >> 2] = 0
- o[(Aj + 36) >> 2] = 0
- b: {
- c: {
- d: {
- if (!Bj) {
- yj = 0
- Cj = 0
- break d
- }
- if (Bj >>> 0 >= 1073741824) {
- break c
- }
- yj = Hk(Dj)
- o[(Aj + 36) >> 2] = yj
- o[(Aj + 32) >> 2] = yj
- o[(Aj + 40) >> 2] = (Bj << 2) + yj
- Cj = yj
- }
- e: {
- if (!Dj) {
- break e
- }
- Ej = (a + 4) | 0
- zj = Cj
- Ij = zj
- Dj = 0
- while (1) {
- Hj = o[((Dj << 2) + Gj) >> 2]
- Ij = (Ij - zj) >> 2
- if (Hj >>> 0 >= Ij >>> 0) {
- o[(Aj + 16) >> 2] = 0
- yj = (Hj + 1) | 0
- f: {
- if (yj >>> 0 > Ij >>> 0) {
- yd((Aj + 32) | 0, (yj - Ij) | 0, (Aj + 16) | 0)
- Fj = o[Ej >> 2]
- Gj = o[a >> 2]
- break f
- }
- if (yj >>> 0 >= Ij >>> 0) {
- break f
- }
- o[(Aj + 36) >> 2] = (yj << 2) + zj
- }
- yj = o[(Aj + 32) >> 2]
- Cj = yj
- }
- zj = ((Hj << 2) + yj) | 0
- o[zj >> 2] = o[zj >> 2] + 1
- Dj = (Dj + 1) | 0
- zj = (Fj - Gj) | 0
- Bj = zj >> 2
- if (Dj >>> 0 >= Bj >>> 0) {
- break e
- }
- Ij = o[(Aj + 36) >> 2]
- zj = yj
- continue
- }
- }
- o[(Aj + 24) >> 2] = 0
- o[(Aj + 16) >> 2] = 0
- o[(Aj + 20) >> 2] = 0
- Dj = 0
- g: {
- if (zj) {
- if (Bj >>> 0 >= 536870912) {
- break g
- }
- Dj = Hk(zj << 1)
- o[(Aj + 16) >> 2] = Dj
- o[(Aj + 20) >> 2] = Dj
- zj = Bj << 3
- o[(Aj + 24) >> 2] = zj + Dj
- zj = xl(Dj, 255, zj)
- while (1) {
- zj = (zj + 8) | 0
- Bj = (Bj + -1) | 0
- if (Bj) {
- continue
- }
- break
- }
- o[(Aj + 20) >> 2] = zj
- }
- o[(Aj + 8) >> 2] = 0
- o[Aj >> 2] = 0
- o[(Aj + 4) >> 2] = 0
- zj = (o[(Aj + 36) >> 2] - Cj) | 0
- Mj = zj >> 2
- h: {
- if (zj) {
- if (Mj >>> 0 >= 1073741824) {
- break h
- }
- Jj = Hk(zj)
- o[Aj >> 2] = Jj
- o[(Aj + 8) >> 2] = (Mj << 2) + Jj
- Bj = 0
- Ej = xl(Jj, 0, zj)
- o[(Aj + 4) >> 2] = Ej + zj
- zj = 0
- while (1) {
- Cj = zj << 2
- o[(Cj + Ej) >> 2] = Bj
- Bj = (o[(yj + Cj) >> 2] + Bj) | 0
- zj = (zj + 1) | 0
- if (zj >>> 0 < Mj >>> 0) {
- continue
- }
- break
- }
- }
- if ((Fj | 0) == (Gj | 0)) {
- break b
- }
- Sj = (Fj - Gj) >> 2
- Ej = 0
- Qj = o[(Aj + 32) >> 2]
- while (1) {
- Nj = Ej << 2
- Ij = o[(Nj + Gj) >> 2]
- Fj = -1
- zj = (Ej + 1) | 0
- yj = (zj >>> 0) % 3 | 0 ? zj : (Ej + -2) | 0
- if ((yj | 0) != -1) {
- Fj = o[((yj << 2) + Gj) >> 2]
- }
- Kj = -1
- Cj = (Ej >>> 0) % 3 | 0
- yj = ((Cj ? -1 : 2) + Ej) | 0
- if ((yj | 0) != -1) {
- Kj = o[((yj << 2) + Gj) >> 2]
- }
- i: {
- j: {
- if (Cj) {
- break j
- }
- k: {
- if ((Fj | 0) == (Kj | 0)) {
- break k
- }
- yj = o[(Gj + Nj) >> 2]
- if ((yj | 0) == (Fj | 0)) {
- break k
- }
- if ((yj | 0) != (Kj | 0)) {
- break j
- }
- }
- o[(a + 40) >> 2] = o[(a + 40) >> 2] + 1
- zj = (Ej + 3) | 0
- break i
- }
- yj = Kj << 2
- Oj = o[(yj + Qj) >> 2]
- l: {
- m: {
- if ((Oj | 0) < 1) {
- break m
- }
- yj = o[(yj + Jj) >> 2]
- Bj = 0
- while (1) {
- Hj = ((yj << 3) + Dj) | 0
- Cj = o[Hj >> 2]
- if ((Cj | 0) == -1) {
- break m
- }
- n: {
- if ((Cj | 0) != (Fj | 0)) {
- break n
- }
- Lj = o[(Hj + 4) >> 2]
- if ((Lj | 0) != -1) {
- Cj = o[((Lj << 2) + Gj) >> 2]
- } else {
- Cj = -1
- }
- if ((Cj | 0) == (Ij | 0)) {
- break n
- }
- while (1) {
- Cj = yj
- Bj = (Bj + 1) | 0
- o: {
- if ((Bj | 0) >= (Oj | 0)) {
- break o
- }
- Rj = ((Cj << 3) + Dj) | 0
- yj = (Cj + 1) | 0
- Ij = ((yj << 3) + Dj) | 0
- Hj = o[Ij >> 2]
- o[Rj >> 2] = Hj
- o[(Rj + 4) >> 2] = o[(Ij + 4) >> 2]
- if ((Hj | 0) != -1) {
- continue
- }
- }
- break
- }
- o[((Cj << 3) + Dj) >> 2] = -1
- if ((Lj | 0) == -1) {
- break m
- }
- yj = o[Pj >> 2]
- o[(yj + Nj) >> 2] = Lj
- o[(yj + (Lj << 2)) >> 2] = Ej
- break l
- }
- yj = (yj + 1) | 0
- Bj = (Bj + 1) | 0
- if ((Oj | 0) != (Bj | 0)) {
- continue
- }
- break
- }
- }
- yj = Fj << 2
- Cj = o[(yj + Qj) >> 2]
- if ((Cj | 0) < 1) {
- break l
- }
- yj = o[(yj + Jj) >> 2]
- Bj = 0
- while (1) {
- Hj = ((yj << 3) + Dj) | 0
- if (o[Hj >> 2] == -1) {
- o[Hj >> 2] = Kj
- o[(Hj + 4) >> 2] = Ej
- break l
- }
- yj = (yj + 1) | 0
- Bj = (Bj + 1) | 0
- if ((Cj | 0) != (Bj | 0)) {
- continue
- }
- break
- }
- }
- }
- Ej = zj
- if (Ej >>> 0 < Sj >>> 0) {
- continue
- }
- break
- }
- break b
- }
- Yk()
- D()
- }
- Yk()
- D()
- }
- _a(10468)
- D()
- }
- o[ej >> 2] = Mj
- if (Jj) {
- o[(Aj + 4) >> 2] = Jj
- ul(Jj)
- }
- a = o[(Aj + 16) >> 2]
- if (a) {
- o[(Aj + 20) >> 2] = a
- ul(a)
- }
- a = o[(Aj + 32) >> 2]
- if (a) {
- o[(Aj + 36) >> 2] = a
- ul(a)
- }
- a = 1
- } else {
- a = 0
- }
- R = (Aj + 48) | 0
- return a
- }
- function Ei(a) {
- var ej = 0,
- Tj = 0,
- Uj = 0,
- Vj = 0,
- Wj = 0,
- Xj = 0,
- Yj = 0,
- Zj = 0,
- _j = 0,
- $j = 0,
- ak = 0,
- bk = 0,
- ck = 0,
- dk = 0,
- ek = 0
- Uj = (R - 48) | 0
- R = Uj
- ak = (a + 4) | 0
- ej = o[ak >> 2]
- _j = o[a >> 2]
- m[(Uj + 16) | 0] = 0
- bk = Hi((Uj + 32) | 0, (ej - _j) >> 2, (Uj + 16) | 0)
- o[(Uj + 24) >> 2] = 0
- o[(Uj + 16) >> 2] = 0
- o[(Uj + 20) >> 2] = 0
- ej = o[ak >> 2]
- Yj = o[a >> 2]
- Zj = (a + 12) | 0
- while (1) {
- ck = 0
- Xj = 0
- a: {
- if ((ej | 0) == (Yj | 0)) {
- break a
- }
- while (1) {
- Vj = o[bk >> 2]
- b: {
- if ((o[(Vj + ((Xj >>> 3) & 536870908)) >> 2] >>> (Xj & 31)) & 1) {
- break b
- }
- Wj = o[(Uj + 16) >> 2]
- o[(Uj + 20) >> 2] = Wj
- ej = Xj
- while (1) {
- Tj = (ej + 1) | 0
- _j = ej
- ej = (Tj >>> 0) % 3 | 0 ? Tj : (ej + -2) | 0
- c: {
- if ((ej | 0) == -1) {
- break c
- }
- ej = o[(o[Zj >> 2] + (ej << 2)) >> 2]
- if ((ej | 0) == -1) {
- break c
- }
- Tj = (ej + 1) | 0
- ej = (Tj >>> 0) % 3 | 0 ? Tj : (ej + -2) | 0
- if (((Xj | 0) == (ej | 0)) | ((ej | 0) == -1)) {
- break c
- }
- if (!((o[(((ej >>> 3) & 536870908) + Vj) >> 2] >>> (ej & 31)) & 1)) {
- continue
- }
- }
- break
- }
- ej = Wj
- Tj = _j
- while (1) {
- Vj = (((Tj >>> 3) & 536870908) + Vj) | 0
- o[Vj >> 2] = o[Vj >> 2] | (1 << (Tj & 31))
- Vj = (Tj + 1) | 0
- dk = (Vj >>> 0) % 3 | 0 ? Vj : (Tj + -2) | 0
- Vj = (((Tj >>> 0) % 3 | 0 ? -1 : 2) + Tj) | 0
- if ((ej | 0) != (Wj | 0)) {
- ek = o[((dk << 2) + Yj) >> 2]
- while (1) {
- d: {
- if ((ek | 0) != o[ej >> 2]) {
- break d
- }
- Tj = -1
- $j = o[(ej + 4) >> 2]
- Tj = (Vj | 0) != -1 ? o[(o[Zj >> 2] + (Vj << 2)) >> 2] : Tj
- if (($j | 0) == (Tj | 0)) {
- break d
- }
- Wj = -1
- Wj = ($j | 0) != -1 ? o[(o[Zj >> 2] + ($j << 2)) >> 2] : Wj
- if ((Tj | 0) != -1) {
- o[(o[Zj >> 2] + (Tj << 2)) >> 2] = -1
- }
- ej = o[Zj >> 2]
- if ((Wj | 0) != -1) {
- o[(ej + (Wj << 2)) >> 2] = -1
- }
- o[(ej + (Vj << 2)) >> 2] = -1
- o[(ej + ($j << 2)) >> 2] = -1
- ck = 1
- break b
- }
- ej = (ej + 8) | 0
- if ((Wj | 0) != (ej | 0)) {
- continue
- }
- break
- }
- }
- o[(Uj + 8) >> 2] = 0
- ej = Vj << 2
- Tj = o[(ej + Yj) >> 2]
- o[(Uj + 12) >> 2] = dk
- o[(Uj + 8) >> 2] = Tj
- e: {
- if (o[(Uj + 24) >> 2] != (Wj | 0)) {
- Tj = o[(Uj + 12) >> 2]
- o[Wj >> 2] = o[(Uj + 8) >> 2]
- o[(Wj + 4) >> 2] = Tj
- o[(Uj + 20) >> 2] = o[(Uj + 20) >> 2] + 8
- break e
- }
- Ii((Uj + 16) | 0, (Uj + 8) | 0)
- }
- f: {
- if ((Vj | 0) == -1) {
- break f
- }
- ej = o[(ej + o[Zj >> 2]) >> 2]
- if ((ej | 0) == -1) {
- break f
- }
- Tj = (ej + ((ej >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if (((_j | 0) == (Tj | 0)) | ((Tj | 0) == -1)) {
- break f
- }
- Yj = o[a >> 2]
- Vj = o[bk >> 2]
- Wj = o[(Uj + 20) >> 2]
- ej = o[(Uj + 16) >> 2]
- continue
- }
- break
- }
- Yj = o[a >> 2]
- }
- Xj = (Xj + 1) | 0
- ej = o[ak >> 2]
- if (Xj >>> 0 < ((ej - Yj) >> 2) >>> 0) {
- continue
- }
- break
- }
- if (ck) {
- continue
- }
- }
- break
- }
- a = o[(Uj + 16) >> 2]
- if (a) {
- o[(Uj + 20) >> 2] = a
- ul(a)
- }
- a = o[bk >> 2]
- if (a) {
- ul(a)
- }
- R = (Uj + 48) | 0
- }
- function Fi(a, fk) {
- var gk = 0,
- hk = 0,
- ik = 0,
- jk = 0,
- kk = 0,
- lk = 0,
- mk = 0,
- nk = 0,
- ok = 0,
- pk = 0,
- qk = 0,
- rk = 0,
- sk = 0,
- tk = 0,
- uk = 0,
- vk = 0,
- wk = 0,
- xk = 0,
- yk = 0,
- zk = 0,
- Ak = 0,
- Bk = 0,
- Ck = 0
- lk = (R - 48) | 0
- R = lk
- o[(a + 36) >> 2] = fk
- rk = (a + 24) | 0
- ik = o[(a + 24) >> 2]
- gk = (o[(a + 28) >> 2] - ik) >> 2
- a: {
- if (gk >>> 0 < fk >>> 0) {
- Gi(rk, (fk - gk) | 0)
- break a
- }
- if (gk >>> 0 <= fk >>> 0) {
- break a
- }
- o[(a + 28) >> 2] = ik + (fk << 2)
- }
- m[(lk + 16) | 0] = 0
- mk = Hi((lk + 32) | 0, fk, (lk + 16) | 0)
- sk = (a + 4) | 0
- gk = o[sk >> 2]
- ik = o[a >> 2]
- m[(lk + 8) | 0] = 0
- ok = Hi((lk + 16) | 0, (gk - ik) >> 2, (lk + 8) | 0)
- b: {
- gk = o[a >> 2]
- if (((o[sk >> 2] - gk) >> 2) >>> 0 < 3) {
- break b
- }
- yk = (a + 48) | 0
- tk = (a + 12) | 0
- zk = (a + 32) | 0
- vk = (a + 28) | 0
- Ak = (a + 56) | 0
- wk = (a + 52) | 0
- while (1) {
- pk = u(uk, 3)
- jk = o[((pk << 2) + gk) >> 2]
- kk = 0
- hk = -1
- ik = (pk + 1) | 0
- c: {
- if ((ik | 0) != -1) {
- hk = o[((ik << 2) + gk) >> 2]
- kk = (pk + 2) | 0
- ik = -1
- if ((kk | 0) == -1) {
- break c
- }
- }
- ik = o[((kk << 2) + gk) >> 2]
- }
- d: {
- if (!(((ik | 0) == (hk | 0)) | ((hk | 0) == (jk | 0)) | ((ik | 0) == (jk | 0)))) {
- nk = o[ok >> 2]
- qk = 0
- while (1) {
- ik = (pk + qk) | 0
- e: {
- if ((o[(((ik >>> 3) & 536870908) + nk) >> 2] >>> (ik & 31)) & 1) {
- break e
- }
- kk = o[(o[a >> 2] + (ik << 2)) >> 2]
- o[(lk + 8) >> 2] = kk
- gk = 1 << (kk & 31)
- hk = o[mk >> 2]
- kk = kk >>> 5
- nk = o[(hk + (kk << 2)) >> 2]
- jk = 0
- f: {
- if (!(gk & nk)) {
- break f
- }
- gk = o[vk >> 2]
- g: {
- if ((gk | 0) != o[zk >> 2]) {
- o[gk >> 2] = -1
- o[vk >> 2] = gk + 4
- break g
- }
- bh(rk, 10464)
- }
- gk = o[wk >> 2]
- h: {
- if ((gk | 0) != o[Ak >> 2]) {
- o[gk >> 2] = o[(lk + 8) >> 2]
- o[wk >> 2] = gk + 4
- break h
- }
- bh(yk, (lk + 8) | 0)
- }
- gk = o[(mk + 4) >> 2]
- jk = o[(mk + 8) >> 2]
- if ((gk | 0) == jk << 5) {
- if (((gk + 1) | 0) <= -1) {
- break d
- }
- hk = mk
- if (gk >>> 0 <= 1073741822) {
- gk = (gk + 32) & -32
- jk = jk << 6
- gk = jk >>> 0 < gk >>> 0 ? gk : jk
- } else {
- gk = 2147483647
- }
- ab(hk, gk)
- gk = o[(mk + 4) >> 2]
- }
- o[(mk + 4) >> 2] = gk + 1
- hk = o[mk >> 2]
- jk = (hk + ((gk >>> 3) & 536870908)) | 0
- kk = o[jk >> 2]
- ;(Bk = jk), (Ck = Zl(gk) & kk), (o[Bk >> 2] = Ck)
- o[(lk + 8) >> 2] = fk
- gk = 1 << (fk & 31)
- kk = fk >>> 5
- nk = o[((kk << 2) + hk) >> 2]
- fk = (fk + 1) | 0
- jk = 1
- }
- o[((kk << 2) + hk) >> 2] = gk | nk
- nk = o[ok >> 2]
- gk = ik
- i: {
- while (1) {
- if ((gk | 0) == -1) {
- break i
- }
- hk = (((gk >>> 3) & 536870908) + nk) | 0
- o[hk >> 2] = o[hk >> 2] | (1 << (gk & 31))
- hk = o[(lk + 8) >> 2]
- o[(o[rk >> 2] + (hk << 2)) >> 2] = gk
- if (jk) {
- o[(o[a >> 2] + (gk << 2)) >> 2] = hk
- }
- kk = ik
- hk = (gk + 1) | 0
- gk = (hk >>> 0) % 3 | 0 ? hk : (gk + -2) | 0
- hk = -1
- j: {
- if ((gk | 0) == -1) {
- break j
- }
- gk = o[(o[tk >> 2] + (gk << 2)) >> 2]
- hk = -1
- if ((gk | 0) == -1) {
- break j
- }
- hk = (gk + 1) | 0
- hk = (hk >>> 0) % 3 | 0 ? hk : (gk + -2) | 0
- }
- gk = hk
- if ((kk | 0) != (gk | 0)) {
- continue
- }
- break
- }
- if ((ik | 0) != -1) {
- break e
- }
- }
- gk = (ik + ((ik >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((gk | 0) == -1) {
- break e
- }
- gk = o[(o[tk >> 2] + (gk << 2)) >> 2]
- if ((gk | 0) == -1) {
- break e
- }
- gk = (gk + ((gk >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((gk | 0) == -1) {
- break e
- }
- nk = o[ok >> 2]
- while (1) {
- ik = (((gk >>> 3) & 536870908) + nk) | 0
- o[ik >> 2] = o[ik >> 2] | (1 << (gk & 31))
- if (jk) {
- o[(o[a >> 2] + (gk << 2)) >> 2] = o[(lk + 8) >> 2]
- }
- gk = (((gk >>> 0) % 3 | 0 ? -1 : 2) + gk) | 0
- if ((gk | 0) == -1) {
- break e
- }
- gk = o[(o[tk >> 2] + (gk << 2)) >> 2]
- if ((gk | 0) == -1) {
- break e
- }
- gk = (gk + ((gk >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((gk | 0) != -1) {
- continue
- }
- break
- }
- }
- qk = (qk + 1) | 0
- if ((qk | 0) != 3) {
- continue
- }
- break
- }
- }
- uk = (uk + 1) | 0
- gk = o[a >> 2]
- if (uk >>> 0 < ((((o[sk >> 2] - gk) >> 2) >>> 0) / 3) >>> 0) {
- continue
- }
- break b
- }
- break
- }
- Yk()
- D()
- }
- o[(a + 44) >> 2] = 0
- fk = o[mk >> 2]
- gk = o[(mk + 4) >> 2]
- ik = gk >>> 5
- jk = gk & 31
- if (ik | jk) {
- ik = ((ik << 2) + fk) | 0
- hk = fk
- gk = 0
- while (1) {
- if (!((o[hk >> 2] >>> gk) & 1)) {
- xk = (xk + 1) | 0
- o[(a + 44) >> 2] = xk
- }
- kk = (gk | 0) == 31
- gk = kk ? 0 : (gk + 1) | 0
- hk = kk ? (hk + 4) | 0 : hk
- if (((ik | 0) != (hk | 0)) | ((gk | 0) != (jk | 0))) {
- continue
- }
- break
- }
- }
- a = o[ok >> 2]
- if (a) {
- ul(a)
- fk = o[mk >> 2]
- }
- if (fk) {
- ul(fk)
- }
- R = (lk + 48) | 0
- }
- function Gi(a, fk) {
- var Dk = 0,
- Ek = 0,
- Fk = 0,
- Gk = 0,
- Ik = 0,
- Jk = 0
- Fk = o[(a + 8) >> 2]
- Dk = o[(a + 4) >> 2]
- if (((Fk - Dk) >> 2) >>> 0 >= fk >>> 0) {
- while (1) {
- o[Dk >> 2] = o[2616]
- Dk = (Dk + 4) | 0
- fk = (fk + -1) | 0
- if (fk) {
- continue
- }
- break
- }
- o[(a + 4) >> 2] = Dk
- return
- }
- a: {
- Gk = o[a >> 2]
- Ik = (Dk - Gk) | 0
- Jk = Ik >> 2
- Dk = (Jk + fk) | 0
- if (Dk >>> 0 < 1073741824) {
- Fk = (Fk - Gk) | 0
- Ek = Fk >> 1
- Dk = (Fk >> 2) >>> 0 < 536870911 ? (Ek >>> 0 < Dk >>> 0 ? Dk : Ek) : 1073741823
- Ek = 0
- b: {
- if (!Dk) {
- break b
- }
- if (Dk >>> 0 >= 1073741824) {
- break a
- }
- Ek = Hk(Dk << 2)
- }
- Fk = (Ek + (Dk << 2)) | 0
- Dk = (Ek + (Jk << 2)) | 0
- while (1) {
- o[Dk >> 2] = o[2616]
- Dk = (Dk + 4) | 0
- fk = (fk + -1) | 0
- if (fk) {
- continue
- }
- break
- }
- if ((Ik | 0) >= 1) {
- wl(Ek, Gk, Ik)
- }
- o[a >> 2] = Ek
- o[(a + 8) >> 2] = Fk
- o[(a + 4) >> 2] = Dk
- if (Gk) {
- ul(Gk)
- }
- return
- }
- Yk()
- D()
- }
- _a(10468)
- D()
- }
- function Hi(a, fk, Kk) {
- var Lk = 0,
- Mk = 0,
- Nk = 0
- o[a >> 2] = 0
- o[(a + 4) >> 2] = 0
- o[(a + 8) >> 2] = 0
- a: {
- b: {
- if (!fk) {
- break b
- }
- if ((fk | 0) <= -1) {
- break a
- }
- Mk = (fk + -1) >>> 5
- Nk = (Mk + 1) | 0
- Lk = Hk(Nk << 2)
- o[(a + 8) >> 2] = Nk
- o[a >> 2] = Lk
- Nk = p[Kk | 0]
- o[(a + 4) >> 2] = fk
- o[(fk >>> 0 < 33 ? Lk : (Lk + (Mk << 2)) | 0) >> 2] = 0
- Kk = fk >>> 5
- Mk = Kk << 2
- if (Nk) {
- Lk = xl(Lk, 255, Mk)
- fk = fk & 31
- if (!fk) {
- break b
- }
- Kk = (Lk + (Kk << 2)) | 0
- o[Kk >> 2] = o[Kk >> 2] | (-1 >>> (32 - fk))
- return a
- }
- Lk = xl(Lk, 0, Mk)
- fk = fk & 31
- if (!fk) {
- break b
- }
- Kk = (Lk + (Kk << 2)) | 0
- o[Kk >> 2] = o[Kk >> 2] & ((-1 >>> (32 - fk)) ^ -1)
- }
- return a
- }
- Yk()
- D()
- }
- function Ii(a, fk) {
- var Kk = 0,
- Ok = 0,
- Pk = 0,
- Qk = 0,
- Rk = 0,
- Sk = 0
- a: {
- Pk = o[a >> 2]
- Sk = (o[(a + 4) >> 2] - Pk) | 0
- Kk = Sk >> 3
- Ok = (Kk + 1) | 0
- if (Ok >>> 0 < 536870912) {
- Qk = Kk << 3
- Rk = (o[(a + 8) >> 2] - Pk) | 0
- Kk = Rk >> 2
- Ok = (Rk >> 3) >>> 0 < 268435455 ? (Kk >>> 0 < Ok >>> 0 ? Ok : Kk) : 536870911
- Kk = 0
- b: {
- if (!Ok) {
- break b
- }
- if (Ok >>> 0 >= 536870912) {
- break a
- }
- Kk = Hk(Ok << 3)
- }
- Qk = (Qk + Kk) | 0
- Rk = o[(fk + 4) >> 2]
- o[Qk >> 2] = o[fk >> 2]
- o[(Qk + 4) >> 2] = Rk
- fk = (Kk + (Ok << 3)) | 0
- Ok = (Qk + 8) | 0
- if ((Sk | 0) >= 1) {
- wl(Kk, Pk, Sk)
- }
- o[a >> 2] = Kk
- o[(a + 8) >> 2] = fk
- o[(a + 4) >> 2] = Ok
- if (Pk) {
- ul(Pk)
- }
- return
- }
- Yk()
- D()
- }
- _a(10468)
- D()
- }
- function Ji(a, fk, Tk) {
- var Uk = 0,
- Vk = 0,
- Wk = 0,
- Xk = 0
- a: {
- b: {
- if (((fk | Tk) < 0) | (fk >>> 0 > 1431655765)) {
- break b
- }
- fk = u(fk, 3)
- Ki(a, fk, 10460)
- Ki((a + 12) | 0, fk, 10464)
- fk = o[(a + 24) >> 2]
- c: {
- if (((o[(a + 32) >> 2] - fk) >> 2) >>> 0 >= Tk >>> 0) {
- break c
- }
- if (Tk >>> 0 >= 1073741824) {
- break a
- }
- Wk = (a + 28) | 0
- Uk = o[Wk >> 2]
- Vk = Tk << 2
- Tk = Hk(Vk)
- Vk = (Tk + Vk) | 0
- Uk = (Uk - fk) | 0
- Xk = (Uk + Tk) | 0
- if ((Uk | 0) >= 1) {
- wl(Tk, fk, Uk)
- }
- o[(a + 24) >> 2] = Tk
- o[(a + 32) >> 2] = Vk
- o[Wk >> 2] = Xk
- if (!fk) {
- break c
- }
- ul(fk)
- }
- o[(a + 80) >> 2] = 0
- o[(a + 84) >> 2] = 0
- Tk = (a + 76) | 0
- fk = o[Tk >> 2]
- o[Tk >> 2] = 0
- if (fk) {
- ul(fk)
- }
- o[(a + 68) >> 2] = 0
- o[(a + 72) >> 2] = 0
- fk = (a - -64) | 0
- a = o[fk >> 2]
- o[fk >> 2] = 0
- Uk = 1
- if (!a) {
- break b
- }
- ul(a)
- }
- return Uk
- }
- _a(10468)
- D()
- }
- function Ki(a, fk, Tk) {
- var Zk = 0,
- _k = 0,
- $k = 0,
- al = 0,
- bl = 0
- Zk = o[(a + 8) >> 2]
- _k = o[a >> 2]
- if (((Zk - _k) >> 2) >>> 0 >= fk >>> 0) {
- $k = o[(a + 4) >> 2]
- al = ($k - _k) >> 2
- bl = al >>> 0 < fk >>> 0 ? al : fk
- if (bl) {
- Zk = _k
- while (1) {
- o[Zk >> 2] = o[Tk >> 2]
- Zk = (Zk + 4) | 0
- bl = (bl + -1) | 0
- if (bl) {
- continue
- }
- break
- }
- }
- if (al >>> 0 < fk >>> 0) {
- Zk = (fk - al) | 0
- while (1) {
- o[$k >> 2] = o[Tk >> 2]
- $k = ($k + 4) | 0
- Zk = (Zk + -1) | 0
- if (Zk) {
- continue
- }
- break
- }
- o[(a + 4) >> 2] = $k
- return
- }
- o[(a + 4) >> 2] = (fk << 2) + _k
- return
- }
- if (_k) {
- o[(a + 4) >> 2] = _k
- ul(_k)
- o[(a + 8) >> 2] = 0
- o[a >> 2] = 0
- o[(a + 4) >> 2] = 0
- Zk = 0
- }
- a: {
- if (fk >>> 0 >= 1073741824) {
- break a
- }
- _k = Zk >> 1
- _k = (Zk >> 2) >>> 0 < 536870911 ? (_k >>> 0 < fk >>> 0 ? fk : _k) : 1073741823
- if (_k >>> 0 >= 1073741824) {
- break a
- }
- _k = _k << 2
- Zk = Hk(_k)
- o[a >> 2] = Zk
- o[(a + 4) >> 2] = Zk
- o[(a + 8) >> 2] = Zk + _k
- while (1) {
- o[Zk >> 2] = o[Tk >> 2]
- Zk = (Zk + 4) | 0
- fk = (fk + -1) | 0
- if (fk) {
- continue
- }
- break
- }
- o[(a + 4) >> 2] = Zk
- return
- }
- Yk()
- D()
- }
- function Li(a) {
- qj(a)
- o[(a + 84) >> 2] = 0
- o[(a + 88) >> 2] = 0
- o[a >> 2] = 10544
- o[(a + 92) >> 2] = 0
- o[(a + 96) >> 2] = 0
- o[(a + 100) >> 2] = 0
- o[(a + 104) >> 2] = 0
- return a
- }
- function Mi(a) {
- a = a | 0
- var fk = 0,
- Hk = 0,
- Tk = 0,
- Yk = 0,
- cl = 0
- o[a >> 2] = 10944
- fk = o[(a + 68) >> 2]
- if (fk) {
- o[(a + 72) >> 2] = fk
- ul(fk)
- }
- fk = o[(a + 56) >> 2]
- if (fk) {
- o[(a + 60) >> 2] = fk
- ul(fk)
- }
- fk = o[(a + 44) >> 2]
- if (fk) {
- o[(a + 48) >> 2] = fk
- ul(fk)
- }
- fk = o[(a + 32) >> 2]
- if (fk) {
- o[(a + 36) >> 2] = fk
- ul(fk)
- }
- fk = o[(a + 20) >> 2]
- if (fk) {
- o[(a + 24) >> 2] = fk
- ul(fk)
- }
- Tk = o[(a + 8) >> 2]
- if (Tk) {
- fk = Tk
- cl = (a + 12) | 0
- Hk = o[cl >> 2]
- Yk = fk
- a: {
- if ((fk | 0) == (Hk | 0)) {
- break a
- }
- while (1) {
- Hk = (Hk + -4) | 0
- fk = o[Hk >> 2]
- o[Hk >> 2] = 0
- if (fk) {
- Fb(fk)
- }
- if ((Hk | 0) != (Tk | 0)) {
- continue
- }
- break
- }
- Yk = o[(a + 8) >> 2]
- }
- fk = Yk
- o[cl >> 2] = Tk
- ul(fk)
- }
- fk = o[(a + 4) >> 2]
- o[(a + 4) >> 2] = 0
- if (fk) {
- ei(fk)
- }
- return a | 0
- }
- function Ni(a) {
- a = a | 0
- var dl = 0
- o[a >> 2] = 10544
- dl = o[(a + 96) >> 2]
- if (dl) {
- o[(a + 100) >> 2] = dl
- ul(dl)
- }
- dl = o[(a + 84) >> 2]
- if (dl) {
- o[(a + 88) >> 2] = dl
- ul(dl)
- }
- Mi(a)
- return a | 0
- }
- function Oi(a) {
- a = a | 0
- var el = 0
- o[a >> 2] = 10544
- el = o[(a + 96) >> 2]
- if (el) {
- o[(a + 100) >> 2] = el
- ul(el)
- }
- el = o[(a + 84) >> 2]
- if (el) {
- o[(a + 88) >> 2] = el
- ul(el)
- }
- Mi(a)
- ul(a)
- }
- function Pi(a, fl, gl) {
- a = a | 0
- fl = fl | 0
- gl = gl | 0
- var hl = 0,
- il = 0
- hl = (R - 16) | 0
- R = hl
- il = o[gl >> 2]
- o[gl >> 2] = 0
- o[(hl + 8) >> 2] = il
- wj(a, fl, (hl + 8) | 0)
- gl = o[(hl + 8) >> 2]
- o[(hl + 8) >> 2] = 0
- if (gl) {
- Fb(gl)
- }
- il = o[(a + 84) >> 2]
- gl = (o[(a + 88) >> 2] - il) >> 2
- a: {
- if ((gl | 0) > (fl | 0)) {
- break a
- }
- fl = (fl + 1) | 0
- if (fl >>> 0 > gl >>> 0) {
- Qi((a + 84) | 0, (fl - gl) | 0)
- break a
- }
- if (fl >>> 0 >= gl >>> 0) {
- break a
- }
- o[(a + 88) >> 2] = il + (fl << 2)
- }
- R = (hl + 16) | 0
- }
- function Qi(a, fl) {
- var gl = 0,
- jl = 0,
- kl = 0,
- ll = 0,
- ml = 0,
- nl = 0
- kl = o[(a + 8) >> 2]
- gl = o[(a + 4) >> 2]
- if (((kl - gl) >> 2) >>> 0 >= fl >>> 0) {
- while (1) {
- o[gl >> 2] = 1
- gl = (gl + 4) | 0
- fl = (fl + -1) | 0
- if (fl) {
- continue
- }
- break
- }
- o[(a + 4) >> 2] = gl
- return
- }
- a: {
- ll = o[a >> 2]
- ml = (gl - ll) | 0
- nl = ml >> 2
- gl = (nl + fl) | 0
- if (gl >>> 0 < 1073741824) {
- kl = (kl - ll) | 0
- jl = kl >> 1
- gl = (kl >> 2) >>> 0 < 536870911 ? (jl >>> 0 < gl >>> 0 ? gl : jl) : 1073741823
- jl = 0
- b: {
- if (!gl) {
- break b
- }
- if (gl >>> 0 >= 1073741824) {
- break a
- }
- jl = Hk(gl << 2)
- }
- kl = (jl + (gl << 2)) | 0
- gl = (jl + (nl << 2)) | 0
- while (1) {
- o[gl >> 2] = 1
- gl = (gl + 4) | 0
- fl = (fl + -1) | 0
- if (fl) {
- continue
- }
- break
- }
- if ((ml | 0) >= 1) {
- wl(jl, ll, ml)
- }
- o[a >> 2] = jl
- o[(a + 8) >> 2] = kl
- o[(a + 4) >> 2] = gl
- if (ll) {
- ul(ll)
- }
- return
- }
- Yk()
- D()
- }
- _a(10588)
- D()
- }
- function Ri(a, fl) {
- a = a | 0
- fl = fl | 0
- var ol = 0,
- pl = 0,
- ql = 0
- zj(a, fl)
- a: {
- if ((fl | 0) < 0) {
- break a
- }
- ol = o[(a + 88) >> 2]
- pl = o[(a + 84) >> 2]
- if ((ol - pl) >> 2 <= (fl | 0)) {
- break a
- }
- fl = (pl + (fl << 2)) | 0
- pl = (fl + 4) | 0
- ol = (ol - pl) | 0
- ql = ol >> 2
- if (ol) {
- yl(fl, pl, ol)
- }
- o[(a + 88) >> 2] = fl + (ql << 2)
- }
- }
- function Si(a, fl) {
- var rl = 0,
- sl = 0,
- tl = 0,
- vl = 0,
- xl = 0,
- yl = 0
- a: {
- tl = o[a >> 2]
- xl = (o[(a + 4) >> 2] - tl) | 0
- rl = xl >> 2
- sl = (rl + 1) | 0
- if (sl >>> 0 < 1073741824) {
- yl = rl << 2
- rl = (o[(a + 8) >> 2] - tl) | 0
- vl = rl >> 1
- sl = (rl >> 2) >>> 0 < 536870911 ? (vl >>> 0 < sl >>> 0 ? sl : vl) : 1073741823
- rl = 0
- b: {
- if (!sl) {
- break b
- }
- if (sl >>> 0 >= 1073741824) {
- break a
- }
- rl = Hk(sl << 2)
- }
- vl = (yl + rl) | 0
- o[vl >> 2] = o[fl >> 2]
- fl = (rl + (sl << 2)) | 0
- sl = (vl + 4) | 0
- if ((xl | 0) >= 1) {
- wl(rl, tl, xl)
- }
- o[a >> 2] = rl
- o[(a + 8) >> 2] = fl
- o[(a + 4) >> 2] = sl
- if (tl) {
- ul(tl)
- }
- return
- }
- Yk()
- D()
- }
- _a(10656)
- D()
- }
- function Ti(a) {
- o[a >> 2] = 0
- o[(a + 4) >> 2] = 0
- m[(a + 24) | 0] = 1
- o[(a + 16) >> 2] = 0
- o[(a + 20) >> 2] = 0
- o[(a + 8) >> 2] = 0
- o[(a + 12) >> 2] = 0
- o[(a + 28) >> 2] = 0
- o[(a + 32) >> 2] = 0
- o[(a + 36) >> 2] = 0
- o[(a + 40) >> 2] = 0
- o[(a + 44) >> 2] = 0
- o[(a + 48) >> 2] = 0
- o[(a + 52) >> 2] = 0
- o[(a + 56) >> 2] = 0
- o[(a + 60) >> 2] = 0
- o[(a + 64) >> 2] = 0
- o[(a + 72) >> 2] = 0
- o[(a + 76) >> 2] = 0
- o[(a + 80) >> 2] = 0
- o[(a + 84) >> 2] = 0
- o[(a + 88) >> 2] = 0
- o[(a + 92) >> 2] = 0
- o[(a + 68) >> 2] = a
- }
- function Ui(a, fl) {
- var zl = 0,
- Al = 0,
- Bl = 0,
- Cl = 0,
- Dl = 0,
- El = 0,
- Fl = 0,
- Gl = 0
- El = (R - 16) | 0
- R = El
- a: {
- b: {
- if (fl) {
- o[(a + 88) >> 2] = 0
- o[(a + 92) >> 2] = 0
- zl = (a + 84) | 0
- Al = o[zl >> 2]
- o[zl >> 2] = 0
- if (Al) {
- ul(Al)
- }
- o[(a + 76) >> 2] = 0
- o[(a + 80) >> 2] = 0
- zl = (a + 72) | 0
- Al = o[zl >> 2]
- o[zl >> 2] = 0
- if (Al) {
- ul(Al)
- }
- Al = (fl + 4) | 0
- zl = o[Al >> 2]
- Bl = o[fl >> 2]
- m[(El + 15) | 0] = 0
- $a(a, (zl - Bl) >> 2, (El + 15) | 0)
- Bl = (fl + 28) | 0
- zl = o[Bl >> 2]
- Cl = o[(fl + 24) >> 2]
- m[(El + 14) | 0] = 0
- $a((a + 12) | 0, (zl - Cl) >> 2, (El + 14) | 0)
- Ki((a + 28) | 0, (o[Al >> 2] - o[fl >> 2]) >> 2, 10724)
- Al = o[(a + 52) >> 2]
- Cl = (o[Bl >> 2] - o[(fl + 24) >> 2]) | 0
- zl = Cl >> 2
- c: {
- if (((o[(a + 60) >> 2] - Al) >> 2) >>> 0 >= zl >>> 0) {
- break c
- }
- if (zl >>> 0 >= 1073741824) {
- break b
- }
- Fl = (a + 56) | 0
- Dl = o[Fl >> 2]
- Gl = zl << 2
- zl = Hk(Cl)
- Gl = (Gl + zl) | 0
- Cl = (Dl - Al) | 0
- Dl = (Cl + zl) | 0
- if ((Cl | 0) >= 1) {
- wl(zl, Al, Cl)
- }
- o[(a + 52) >> 2] = zl
- o[(a + 60) >> 2] = Gl
- o[Fl >> 2] = Dl
- if (!Al) {
- break c
- }
- ul(Al)
- }
- Al = o[(a + 40) >> 2]
- Bl = (o[Bl >> 2] - o[(fl + 24) >> 2]) | 0
- zl = Bl >> 2
- d: {
- if (((o[(a + 48) >> 2] - Al) >> 2) >>> 0 >= zl >>> 0) {
- break d
- }
- if (zl >>> 0 >= 1073741824) {
- break a
- }
- Cl = (a + 44) | 0
- Fl = o[Cl >> 2]
- Dl = zl << 2
- zl = Hk(Bl)
- Dl = (Dl + zl) | 0
- Bl = (Fl - Al) | 0
- Fl = (Bl + zl) | 0
- if ((Bl | 0) >= 1) {
- wl(zl, Al, Bl)
- }
- o[(a + 40) >> 2] = zl
- o[(a + 48) >> 2] = Dl
- o[Cl >> 2] = Fl
- if (!Al) {
- break d
- }
- ul(Al)
- }
- m[(a + 24) | 0] = 1
- o[(a + 64) >> 2] = fl
- }
- R = (El + 16) | 0
- return
- }
- _a(10728)
- D()
- }
- _a(10728)
- D()
- }
- function Vi(a) {
- var fl = 0,
- ul = 0,
- wl = 0,
- Hl = 0,
- Il = 0,
- Jl = 0,
- Kl = 0,
- Ll = 0,
- Ml = 0,
- Nl = 0,
- Ol = 0,
- Pl = 0,
- Ql = 0
- wl = (R - 32) | 0
- R = wl
- Jl = (a + 56) | 0
- o[Jl >> 2] = o[(a + 52) >> 2]
- Kl = (a + 44) | 0
- o[Kl >> 2] = o[(a + 40) >> 2]
- fl = o[(a + 64) >> 2]
- if (o[(fl + 28) >> 2] != o[(fl + 24) >> 2]) {
- Ml = (a + 40) | 0
- Nl = (a + 52) | 0
- Ol = (a + 60) | 0
- Pl = (a + 48) | 0
- while (1) {
- ul = o[(o[(fl + 24) >> 2] + (Ll << 2)) >> 2]
- a: {
- if ((ul | 0) == -1) {
- break a
- }
- o[(wl + 24) >> 2] = Il
- fl = o[Jl >> 2]
- b: {
- if ((fl | 0) != o[Ol >> 2]) {
- o[fl >> 2] = Il
- o[Jl >> 2] = fl + 4
- break b
- }
- Xi(Nl, (wl + 24) | 0)
- }
- o[(wl + 16) >> 2] = ul
- o[(wl + 8) >> 2] = 0
- c: {
- if (!((o[(o[(a + 12) >> 2] + ((Ll >>> 3) & 536870908)) >> 2] >>> (Ll & 31)) & 1)) {
- break c
- }
- d: {
- fl = (ul + 1) | 0
- fl = (fl >>> 0) % 3 | 0 ? fl : (ul + -2) | 0
- if (!(((fl | 0) == -1) | ((o[(o[a >> 2] + ((fl >>> 3) & 536870908)) >> 2] >>> (fl & 31)) & 1))) {
- fl = o[(o[(o[(a + 64) >> 2] + 12) >> 2] + (fl << 2)) >> 2]
- if ((fl | 0) != -1) {
- break d
- }
- }
- o[(wl + 8) >> 2] = -1
- break c
- }
- Hl = (fl + 1) | 0
- fl = (Hl >>> 0) % 3 | 0 ? Hl : (fl + -2) | 0
- o[(wl + 8) >> 2] = fl
- if ((fl | 0) == -1) {
- break c
- }
- while (1) {
- o[(wl + 16) >> 2] = fl
- e: {
- Hl = (fl + 1) | 0
- ul = fl
- fl = (Hl >>> 0) % 3 | 0 ? Hl : (fl + -2) | 0
- if (!(((fl | 0) == -1) | ((o[(o[a >> 2] + ((fl >>> 3) & 536870908)) >> 2] >>> (fl & 31)) & 1))) {
- fl = o[(o[(o[(a + 64) >> 2] + 12) >> 2] + (fl << 2)) >> 2]
- if ((fl | 0) != -1) {
- break e
- }
- }
- o[(wl + 8) >> 2] = -1
- break c
- }
- Hl = (fl + 1) | 0
- fl = (Hl >>> 0) % 3 | 0 ? Hl : (fl + -2) | 0
- o[(wl + 8) >> 2] = fl
- if ((fl | 0) != -1) {
- continue
- }
- break
- }
- }
- Ql = (a + 28) | 0
- o[(o[Ql >> 2] + (ul << 2)) >> 2] = o[(wl + 24) >> 2]
- fl = o[Kl >> 2]
- f: {
- if ((fl | 0) != o[Pl >> 2]) {
- o[fl >> 2] = o[(wl + 16) >> 2]
- o[Kl >> 2] = fl + 4
- break f
- }
- bh(Ml, (wl + 16) | 0)
- }
- Il = (Il + 1) | 0
- fl = o[(a + 64) >> 2]
- g: {
- Hl = o[(wl + 16) >> 2]
- if ((Hl | 0) == -1) {
- break g
- }
- ul = (Hl + ((Hl >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((ul | 0) == -1) {
- break g
- }
- ul = o[(o[(fl + 12) >> 2] + (ul << 2)) >> 2]
- if ((ul | 0) == -1) {
- break g
- }
- ul = (ul + ((ul >>> 0) % 3 | 0 ? -1 : 2)) | 0
- o[(wl + 8) >> 2] = ul
- if (((ul | 0) == -1) | ((ul | 0) == (Hl | 0))) {
- break a
- }
- while (1) {
- fl = (ul + 1) | 0
- fl = (fl >>> 0) % 3 | 0 ? fl : (ul + -2) | 0
- h: {
- if (!((o[(o[a >> 2] + ((fl >>> 3) & 536870908)) >> 2] >>> (fl & 31)) & 1)) {
- break h
- }
- o[(wl + 24) >> 2] = Il
- fl = o[Jl >> 2]
- i: {
- if ((fl | 0) != o[Ol >> 2]) {
- o[fl >> 2] = Il
- o[Jl >> 2] = fl + 4
- break i
- }
- Xi(Nl, (wl + 24) | 0)
- }
- Il = (Il + 1) | 0
- fl = o[Kl >> 2]
- if ((fl | 0) != o[Pl >> 2]) {
- o[fl >> 2] = o[(wl + 8) >> 2]
- o[Kl >> 2] = fl + 4
- break h
- }
- bh(Ml, (wl + 8) | 0)
- }
- o[(o[Ql >> 2] + (o[(wl + 8) >> 2] << 2)) >> 2] = o[(wl + 24) >> 2]
- fl = o[(a + 64) >> 2]
- ul = o[(wl + 8) >> 2]
- if ((ul | 0) == -1) {
- break g
- }
- ul = (ul + ((ul >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((ul | 0) == -1) {
- break g
- }
- ul = o[(o[(fl + 12) >> 2] + (ul << 2)) >> 2]
- if ((ul | 0) == -1) {
- break g
- }
- ul = (ul + ((ul >>> 0) % 3 | 0 ? -1 : 2)) | 0
- o[(wl + 8) >> 2] = ul
- if ((ul | 0) == -1) {
- break a
- }
- if (o[(wl + 16) >> 2] != (ul | 0)) {
- continue
- }
- break
- }
- break a
- }
- o[(wl + 8) >> 2] = -1
- }
- Ll = (Ll + 1) | 0
- if (Ll >>> 0 < ((o[(fl + 28) >> 2] - o[(fl + 24) >> 2]) >> 2) >>> 0) {
- continue
- }
- break
- }
- }
- R = (wl + 32) | 0
- }
- function Wi(a, Rl) {
- var Sl = 0,
- Tl = 0,
- Ul = 0,
- Vl = 0,
- Wl = 0,
- Xl = 0
- Ul = o[a >> 2]
- Sl = (Ul + ((Rl >>> 3) & 536870908)) | 0
- o[Sl >> 2] = o[Sl >> 2] | (1 << (Rl & 31))
- Wl = o[(a + 64) >> 2]
- Vl = (Rl | 0) == -1
- Sl = -1
- a: {
- if (Vl) {
- break a
- }
- Tl = (Rl + 1) | 0
- Tl = (Tl >>> 0) % 3 | 0 ? Tl : (Rl + -2) | 0
- Sl = -1
- if ((Tl | 0) == -1) {
- break a
- }
- Sl = o[(o[Wl >> 2] + (Tl << 2)) >> 2]
- }
- Tl = o[(a + 12) >> 2]
- Xl = (((Sl >>> 3) & 536870908) + Tl) | 0
- o[Xl >> 2] = o[Xl >> 2] | (1 << (Sl & 31))
- b: {
- c: {
- if (!Vl) {
- Sl = -1
- Vl = (((Rl >>> 0) % 3 | 0 ? -1 : 2) + Rl) | 0
- if ((Vl | 0) != -1) {
- Sl = o[(o[Wl >> 2] + (Vl << 2)) >> 2]
- }
- Vl = (Tl + ((Sl >>> 3) & 536870908)) | 0
- o[Vl >> 2] = o[Vl >> 2] | (1 << (Sl & 31))
- Rl = o[(o[(Wl + 12) >> 2] + (Rl << 2)) >> 2]
- if ((Rl | 0) == -1) {
- break b
- }
- m[(a + 24) | 0] = 0
- a = (((Rl >>> 3) & 536870908) + Ul) | 0
- o[a >> 2] = o[a >> 2] | (1 << (Rl & 31))
- a = -1
- Sl = -1
- Ul = (Rl + 1) | 0
- Ul = (Ul >>> 0) % 3 | 0 ? Ul : (Rl + -2) | 0
- if ((Ul | 0) != -1) {
- Sl = o[(o[Wl >> 2] + (Ul << 2)) >> 2]
- }
- Ul = (Tl + ((Sl >>> 3) & 536870908)) | 0
- o[Ul >> 2] = o[Ul >> 2] | (1 << (Sl & 31))
- Rl = (Rl + ((Rl >>> 0) % 3 | 0 ? -1 : 2)) | 0
- if ((Rl | 0) != -1) {
- a = o[(o[Wl >> 2] + (Rl << 2)) >> 2]
- }
- Rl = 1 << (a & 31)
- a = (Tl + ((a >>> 3) & 536870908)) | 0
- Sl = o[a >> 2]
- break c
- }
- a = (Tl + 536870908) | 0
- Rl = o[(Tl + 536870908) >> 2]
- Sl = -2147483648
- }
- o[a >> 2] = Rl | Sl
- }
- }
- function Xi(a, Rl) {
- var Yl = 0,
- Zl = 0,
- _l = 0,
- $l = 0,
- am = 0,
- bm = 0
- a: {
- _l = o[a >> 2]
- am = (o[(a + 4) >> 2] - _l) | 0
- Yl = am >> 2
- Zl = (Yl + 1) | 0
- if (Zl >>> 0 < 1073741824) {
- bm = Yl << 2
- Yl = (o[(a + 8) >> 2] - _l) | 0
- $l = Yl >> 1
- Zl = (Yl >> 2) >>> 0 < 536870911 ? ($l >>> 0 < Zl >>> 0 ? Zl : $l) : 1073741823
- Yl = 0
- b: {
- if (!Zl) {
- break b
- }
- if (Zl >>> 0 >= 1073741824) {
- break a
- }
- Yl = Hk(Zl << 2)
- }
- $l = (bm + Yl) | 0
- o[$l >> 2] = o[Rl >> 2]
- Rl = (Yl + (Zl << 2)) | 0
- Zl = ($l + 4) | 0
- if ((am | 0) >= 1) {
- wl(Yl, _l, am)
- }
- o[a >> 2] = Yl
- o[(a + 8) >> 2] = Rl
- o[(a + 4) >> 2] = Zl
- if (_l) {
- ul(_l)
- }
- return
- }
- Yk()
- D()
- }
- _a(10728)
- D()
- }
- function Yi(a, Rl) {
- var cm = 0,
- dm = 0,
- em = 0,
- fm = 0,
- gm = 0,
- hm = 0,
- im = 0,
- jm = 0,
- km = 0,
- lm = 0,
- mm = 0
- dm = (R - 16) | 0
- R = dm
- a: {
- em = sj(Rl)
- if (!em) {
- o[a >> 2] = 0
- break a
- }
- fm = o[(Rl + 100) >> 2]
- jm = o[(Rl + 96) >> 2]
- o[(dm + 8) >> 2] = 0
- o[dm >> 2] = 0
- o[(dm + 4) >> 2] = 0
- Rl = (fm - jm) | 0
- im = ((Rl | 0) / 12) | 0
- b: {
- if (Rl) {
- if (im >>> 0 >= 357913942) {
- break b
- }
- gm = Hk(Rl)
- o[dm >> 2] = gm
- o[(dm + 4) >> 2] = gm
- o[(dm + 8) >> 2] = u(im, 12) + gm
- Rl = xl(gm, 0, Rl)
- cm = im
- while (1) {
- Rl = (Rl + 12) | 0
- cm = (cm + -1) | 0
- if (cm) {
- continue
- }
- break
- }
- o[(dm + 4) >> 2] = Rl
- }
- if ((fm | 0) != (jm | 0)) {
- Rl = 0
- lm = p[(em + 84) | 0]
- mm = (em + 68) | 0
- while (1) {
- km = u(Rl, 12)
- cm = (km + jm) | 0
- em = o[cm >> 2]
- c: {
- if (lm) {
- fm = (cm + 8) | 0
- cm = (cm + 4) | 0
- break c
- }
- hm = o[mm >> 2]
- fm = (hm + (o[(cm + 8) >> 2] << 2)) | 0
- em = o[(hm + (em << 2)) >> 2]
- cm = (hm + (o[(cm + 4) >> 2] << 2)) | 0
- }
- hm = o[cm >> 2]
- cm = (gm + km) | 0
- o[(cm + 8) >> 2] = o[fm >> 2]
- o[(cm + 4) >> 2] = hm
- o[cm >> 2] = em
- Rl = (Rl + 1) | 0
- if (Rl >>> 0 < im >>> 0) {
- continue
- }
- break
- }
- }
- Ai(a, dm)
- a = o[dm >> 2]
- if (!a) {
- break a
- }
- o[(dm + 4) >> 2] = a
- ul(a)
- break a
- }
- Yk()
- D()
- }
- R = (dm + 16) | 0
- }
- function Zi(a, Rl, nm) {
- var om = 0,
- pm = 0,
- qm = 0,
- rm = 0,
- sm = 0,
- tm = 0,
- um = 0,
- vm = 0,
- wm = 0,
- xm = 0,
- ym = 0,
- zm = 0,
- Am = 0,
- Bm = 0,
- Cm = 0,
- Dm = 0
- tm = (R - 16) | 0
- R = tm
- sm = (u(Rl, 12) + a) | 0
- um = (sm + 12) | 0
- zm = (sm + 8) | 0
- o[um >> 2] = o[zm >> 2]
- o[(tm + 8) >> 2] = (nm | 0) == -1 ? -1 : ((nm >>> 0) / 3) | 0
- Am = (sm + 16) | 0
- Bm = (a + 4) | 0
- qm = nm
- while (1) {
- sm = pm
- vm = (pm | 0) == 1
- a: {
- b: {
- if (!vm) {
- pm = o[(tm + 8) >> 2]
- break b
- }
- if ((qm | 0) == -1) {
- qm = -1
- _i(a, -1)
- break a
- }
- if (((qm | 0) == -1) | ((_i(a, (((qm >>> 0) % 3 | 0 ? -1 : 2) + qm) | 0) | 0) == -1)) {
- break a
- }
- nm = (qm + 1) | 0
- om = (nm >>> 0) % 3 | 0 ? nm : (qm + -2) | 0
- if ((om | 0) == -1) {
- break a
- }
- nm = (om + 1) | 0
- nm = (nm >>> 0) % 3 | 0 ? nm : (om + -2) | 0
- if ((nm | 0) == -1) {
- break a
- }
- om = o[(o[(o[Bm >> 2] + 12) >> 2] + (nm << 2)) >> 2]
- if ((om | 0) == -1) {
- break a
- }
- nm = (om + 1) | 0
- nm = (nm >>> 0) % 3 | 0 ? nm : (om + -2) | 0
- if ((nm | 0) == -1) {
- break a
- }
- pm = ((nm >>> 0) / 3) | 0
- o[(tm + 8) >> 2] = pm
- }
- wm = 1 << (pm & 31)
- xm = (o[(a + 56) >> 2] + ((pm >>> 3) & 536870908)) | 0
- ym = o[xm >> 2]
- c: {
- if (wm & ym) {
- break c
- }
- rm = 0
- while (1) {
- o[xm >> 2] = wm | ym
- om = o[um >> 2]
- d: {
- if ((om | 0) != o[Am >> 2]) {
- o[om >> 2] = pm
- o[um >> 2] = om + 4
- break d
- }
- Si(zm, (tm + 8) | 0)
- }
- om = (rm + 1) | 0
- e: {
- if (!rm) {
- break e
- }
- if (om & 1) {
- if ((nm | 0) == -1) {
- nm = -1
- break e
- }
- rm = (nm + 1) | 0
- nm = (rm >>> 0) % 3 | 0 ? rm : (nm + -2) | 0
- break e
- }
- qm = vm ? nm : qm
- if ((nm | 0) == -1) {
- nm = -1
- break e
- }
- if ((nm >>> 0) % 3) {
- nm = (nm + -1) | 0
- break e
- }
- nm = (nm + 2) | 0
- }
- nm = _i(a, nm)
- if ((nm | 0) != -1) {
- pm = ((nm >>> 0) / 3) | 0
- o[(tm + 8) >> 2] = pm
- rm = om
- wm = 1 << (pm & 31)
- xm = (o[(a + 56) >> 2] + ((pm >>> 3) & 268435452)) | 0
- ym = o[xm >> 2]
- if (!(wm & ym)) {
- continue
- }
- }
- break
- }
- if (!(om & 1) | ((sm | 0) != 1)) {
- break c
- }
- vm = (o[um >> 2] + -4) | 0
- pm = o[vm >> 2]
- rm = (o[(a + 56) >> 2] + ((pm >>> 3) & 536870908)) | 0
- om = o[rm >> 2]
- ;(Cm = rm), (Dm = Zl(pm) & om), (o[Cm >> 2] = Dm)
- o[um >> 2] = vm
- }
- pm = 1
- if (!sm) {
- continue
- }
- }
- break
- }
- o[((((Rl << 2) + a) | 0) + 44) >> 2] = qm
- Rl = o[um >> 2]
- qm = o[zm >> 2]
- if ((Rl | 0) != (qm | 0)) {
- rm = (Rl - qm) >> 2
- om = o[(a + 56) >> 2]
- nm = 0
- while (1) {
- sm = o[(qm + (nm << 2)) >> 2]
- Rl = (om + ((sm >>> 3) & 536870908)) | 0
- a = o[Rl >> 2]
- ;(Cm = Rl), (Dm = Zl(sm) & a), (o[Cm >> 2] = Dm)
- nm = (nm + 1) | 0
- if (nm >>> 0 < rm >>> 0) {
- continue
- }
- break
- }
- }
- R = (tm + 16) | 0
- }
- function _i(a, Rl) {
- var nm = 0,
- Em = 0,
- Fm = 0,
- Gm = 0,
- Hm = 0
- Em = -1
- Gm = -1
- Fm = -1
- a: {
- b: {
- if ((Rl | 0) == -1) {
- break b
- }
- Hm = 1
- Gm = o[(o[(o[(a + 4) >> 2] + 12) >> 2] + (Rl << 2)) >> 2]
- nm = (Rl + 1) | 0
- nm = (nm >>> 0) % 3 | 0 ? nm : (Rl + -2) | 0
- if ((nm | 0) >= 0) {
- Fm = ((nm >>> 0) / 3) | 0
- Fm = o[(((o[(o[a >> 2] + 96) >> 2] + u(Fm, 12)) | 0) + ((nm - u(Fm, 3)) << 2)) >> 2]
- }
- c: {
- if ((Gm | 0) == -1) {
- break c
- }
- Hm = 0
- nm = (((Gm >>> 0) % 3 | 0 ? -1 : 2) + Gm) | 0
- if ((nm | 0) < 0) {
- break c
- }
- Em = ((nm >>> 0) / 3) | 0
- Em = o[(((o[(o[a >> 2] + 96) >> 2] + u(Em, 12)) | 0) + ((nm - u(Em, 3)) << 2)) >> 2]
- }
- nm = -1
- if ((Em | 0) != (Fm | 0)) {
- break a
- }
- Fm = -1
- d: {
- Rl = (((Rl >>> 0) % 3 | 0 ? -1 : 2) + Rl) | 0
- if ((Rl | 0) >= 0) {
- Em = ((Rl >>> 0) / 3) | 0
- Em = o[(((o[(o[a >> 2] + 96) >> 2] + u(Em, 12)) | 0) + ((Rl - u(Em, 3)) << 2)) >> 2]
- if (Hm) {
- break b
- }
- break d
- }
- Em = -1
- if (!Hm) {
- break d
- }
- break b
- }
- Rl = (Gm + 1) | 0
- Rl = (Rl >>> 0) % 3 | 0 ? Rl : (Gm + -2) | 0
- if ((Rl | 0) < 0) {
- break b
- }
- Fm = o[(o[a >> 2] + 96) >> 2]
- a = ((Rl >>> 0) / 3) | 0
- Fm = o[(((Fm + u(a, 12)) | 0) + ((Rl - u(a, 3)) << 2)) >> 2]
- }
- nm = (Em | 0) == (Fm | 0) ? Gm : -1
- }
- return nm
- }
- function $i(a, Rl) {
- var Im = 0,
- Jm = 0,
- Km = 0,
- Lm = 0,
- Mm = 0,
- Nm = 0,
- Om = 0,
- Pm = 0,
- Qm = 0,
- Rm = 0,
- Sm = 0
- Jm = (R - 48) | 0
- R = Jm
- o[(Jm + 40) >> 2] = 0
- o[(Jm + 32) >> 2] = 0
- o[(Jm + 36) >> 2] = 0
- Im = Hk(8)
- o[(Im + 4) >> 2] = Rl
- o[Im >> 2] = 0
- Rl = (Im + 8) | 0
- o[(Jm + 40) >> 2] = Rl
- o[(Jm + 36) >> 2] = Rl
- o[(Jm + 32) >> 2] = Im
- a: {
- b: {
- c: {
- d: {
- while (1) {
- Rl = (Rl + -8) | 0
- Nm = o[(Rl + 4) >> 2]
- Sm = o[Rl >> 2]
- o[(Jm + 36) >> 2] = Rl
- if (Sm) {
- o[(Jm + 24) >> 2] = 0
- o[(Jm + 16) >> 2] = 0
- o[(Jm + 20) >> 2] = 0
- Pm = 1
- Rl = o[a >> 2]
- Mm = o[(Rl + 16) >> 2]
- Lm = o[(Rl + 12) >> 2]
- Im = o[(Rl + 20) >> 2]
- e: {
- if ((Lm | 0) < (Im | 0) ? 1 : (Lm | 0) <= (Im | 0) ? (r[(Rl + 8) >> 2] > Mm >>> 0 ? 0 : 1) : 0) {
- break e
- }
- Km = p[(Mm + o[Rl >> 2]) | 0]
- Lm = (Mm + 1) | 0
- if (Lm >>> 0 < 1) {
- Im = (Im + 1) | 0
- }
- o[(Rl + 16) >> 2] = Lm
- o[(Rl + 20) >> 2] = Im
- Rk((Jm + 16) | 0, Km)
- if (Km) {
- Lm = o[a >> 2]
- Rm = Vk((Jm + 16) | 0)
- Om = o[(Lm + 12) >> 2]
- Mm = o[(Lm + 20) >> 2]
- Qm = o[(Lm + 16) >> 2]
- Rl = Km
- Im = (Qm + Rl) | 0
- if (Im >>> 0 < Rl >>> 0) {
- Mm = (Mm + 1) | 0
- }
- if ((Om | 0) < (Mm | 0) ? 1 : (Om | 0) <= (Mm | 0) ? (r[(Lm + 8) >> 2] >= Im >>> 0 ? 0 : 1) : 0) {
- break e
- }
- wl(Rm, (Qm + o[Lm >> 2]) | 0, Km)
- Im = Lm
- Lm = Im
- Mm = o[(Im + 20) >> 2]
- Km = (Rl + o[(Im + 16) >> 2]) | 0
- if (Km >>> 0 < Rl >>> 0) {
- Mm = (Mm + 1) | 0
- }
- o[(Lm + 16) >> 2] = Km
- o[(Im + 20) >> 2] = Mm
- }
- Nm = Hk(24)
- Im = (Nm + 4) | 0
- o[Im >> 2] = 0
- o[(Im + 4) >> 2] = 0
- Rl = (Nm + 16) | 0
- o[Rl >> 2] = 0
- o[(Rl + 4) >> 2] = 0
- o[Nm >> 2] = Im
- o[(Nm + 12) >> 2] = Rl
- o[(Jm + 8) >> 2] = Nm
- oj(Sm, (Jm + 16) | 0, (Jm + 8) | 0)
- Rl = o[(Jm + 8) >> 2]
- Pm = 0
- o[(Jm + 8) >> 2] = 0
- if (!Rl) {
- break e
- }
- Fc((Rl + 12) | 0, o[(Rl + 16) >> 2])
- Gc(Rl, o[(Rl + 4) >> 2])
- ul(Rl)
- }
- if (m[(Jm + 27) | 0] <= -1) {
- ul(o[(Jm + 16) >> 2])
- }
- if (Pm) {
- break b
- }
- }
- if (!Nm) {
- break b
- }
- o[(Jm + 16) >> 2] = 0
- if (!aj(1, (Jm + 16) | 0, o[a >> 2])) {
- break b
- }
- Rl = 0
- Im = o[(Jm + 16) >> 2]
- if (Im) {
- while (1) {
- if (!bj(a, Nm)) {
- break b
- }
- Rl = (Rl + 1) | 0
- if (Rl >>> 0 < Im >>> 0) {
- continue
- }
- break
- }
- }
- o[(Jm + 4) >> 2] = 0
- if (!aj(1, (Jm + 4) | 0, o[a >> 2])) {
- break b
- }
- Mm = o[(Jm + 4) >> 2]
- if (Mm) {
- Pm = 0
- while (1) {
- Rl = o[(Jm + 36) >> 2]
- Im = o[(Jm + 40) >> 2]
- f: {
- if (Rl >>> 0 < Im >>> 0) {
- o[(Rl + 4) >> 2] = 0
- o[Rl >> 2] = Nm
- o[(Jm + 36) >> 2] = o[(Jm + 36) >> 2] + 8
- break f
- }
- Om = o[(Jm + 32) >> 2]
- Rm = (Rl - Om) | 0
- Rl = Rm >> 3
- Qm = (Rl + 1) | 0
- if (Qm >>> 0 >= 536870912) {
- break d
- }
- Lm = Rl << 3
- Km = (Im - Om) | 0
- Im = Km >> 2
- Km = (Km >> 3) >>> 0 < 268435455 ? (Im >>> 0 < Qm >>> 0 ? Qm : Im) : 536870911
- Rl = 0
- g: {
- if (!Km) {
- break g
- }
- if (Km >>> 0 >= 536870912) {
- break c
- }
- Rl = Hk(Km << 3)
- }
- Im = (Lm + Rl) | 0
- o[(Im + 4) >> 2] = 0
- o[Im >> 2] = Nm
- Km = (Rl + (Km << 3)) | 0
- Im = (Im + 8) | 0
- if ((Rm | 0) >= 1) {
- wl(Rl, Om, Rm)
- }
- o[(Jm + 40) >> 2] = Km
- o[(Jm + 36) >> 2] = Im
- o[(Jm + 32) >> 2] = Rl
- if (!Om) {
- break f
- }
- ul(Om)
- }
- Pm = (Pm + 1) | 0
- if (Pm >>> 0 < Mm >>> 0) {
- continue
- }
- break
- }
- }
- Rl = o[(Jm + 36) >> 2]
- Im = o[(Jm + 32) >> 2]
- if ((Rl | 0) != (Im | 0)) {
- continue
- }
- break
- }
- a = 1
- break a
- }
- Yk()
- D()
- }
- _a(10796)
- D()
- }
- Im = o[(Jm + 32) >> 2]
- a = 0
- }
- if (Im) {
- o[(Jm + 36) >> 2] = Im
- ul(Im)
- }
- R = (Jm + 48) | 0
- return a
- }
- function aj(a, Rl, Tm) {
- var Um = 0,
- Vm = 0,
- Wm = 0,
- Xm = 0
- a: {
- if (a >>> 0 > 5) {
- break a
- }
- Wm = o[(Tm + 16) >> 2]
- Um = o[(Tm + 12) >> 2]
- Vm = o[(Tm + 20) >> 2]
- if ((Um | 0) < (Vm | 0) ? 1 : (Um | 0) <= (Vm | 0) ? (r[(Tm + 8) >> 2] > Wm >>> 0 ? 0 : 1) : 0) {
- break a
- }
- Um = p[(Wm + o[Tm >> 2]) | 0]
- Wm = (Wm + 1) | 0
- if (Wm >>> 0 < 1) {
- Vm = (Vm + 1) | 0
- }
- o[(Tm + 16) >> 2] = Wm
- o[(Tm + 20) >> 2] = Vm
- Vm = Rl
- if (Um & 128) {
- if (!aj((a + 1) | 0, Rl, Tm)) {
- break a
- }
- a = o[Rl >> 2] << 7
- o[Rl >> 2] = a
- Um = a | (Um & 127)
- }
- o[Vm >> 2] = Um
- Xm = 1
- }
- return Xm
- }
- function bj(a, Rl) {
- var Tm = 0,
- Ym = 0,
- Zm = 0,
- _m = 0,
- $m = 0,
- an = 0,
- bn = 0,
- cn = 0,
- dn = 0,
- en = 0
- Ym = (R - 32) | 0
- R = Ym
- o[(Ym + 24) >> 2] = 0
- o[(Ym + 16) >> 2] = 0
- o[(Ym + 20) >> 2] = 0
- a: {
- Zm = o[a >> 2]
- Tm = Zm
- $m = o[(Tm + 16) >> 2]
- an = r[(Tm + 8) >> 2] > $m >>> 0 ? 0 : 1
- _m = o[(Tm + 12) >> 2]
- Tm = o[(Tm + 20) >> 2]
- b: {
- if ((_m | 0) < (Tm | 0) ? 1 : (_m | 0) <= (Tm | 0) ? an : 0) {
- break b
- }
- an = p[($m + o[Zm >> 2]) | 0]
- _m = Tm
- Tm = ($m + 1) | 0
- if (Tm >>> 0 < 1) {
- _m = (_m + 1) | 0
- }
- o[(Zm + 16) >> 2] = Tm
- o[(Zm + 20) >> 2] = _m
- Rk((Ym + 16) | 0, an)
- if (an) {
- _m = o[a >> 2]
- cn = Vk((Ym + 16) | 0)
- en = o[(_m + 12) >> 2]
- $m = o[(_m + 20) >> 2]
- dn = o[(_m + 16) >> 2]
- Zm = an
- Tm = (dn + Zm) | 0
- if (Tm >>> 0 < Zm >>> 0) {
- $m = ($m + 1) | 0
- }
- if ((en | 0) < ($m | 0) ? 1 : (en | 0) <= ($m | 0) ? (r[(_m + 8) >> 2] >= Tm >>> 0 ? 0 : 1) : 0) {
- break b
- }
- wl(cn, (dn + o[_m >> 2]) | 0, an)
- Tm = _m
- _m = Tm
- $m = o[(Tm + 20) >> 2]
- an = (Zm + o[(Tm + 16) >> 2]) | 0
- if (an >>> 0 < Zm >>> 0) {
- $m = ($m + 1) | 0
- }
- o[(_m + 16) >> 2] = an
- o[(Tm + 20) >> 2] = $m
- }
- o[(Ym + 12) >> 2] = 0
- Tm = aj(1, (Ym + 12) | 0, o[a >> 2])
- Zm = o[(Ym + 12) >> 2]
- if (!Zm | !Tm) {
- break b
- }
- o[(Ym + 8) >> 2] = 0
- o[Ym >> 2] = 0
- o[(Ym + 4) >> 2] = 0
- if ((Zm | 0) <= -1) {
- break a
- }
- bn = Hk(Zm)
- o[Ym >> 2] = bn
- o[(Ym + 4) >> 2] = bn
- o[(Ym + 8) >> 2] = Zm + bn
- Tm = Zm
- while (1) {
- m[bn | 0] = 0
- bn = (o[(Ym + 4) >> 2] + 1) | 0
- o[(Ym + 4) >> 2] = bn
- Tm = (Tm + -1) | 0
- if (Tm) {
- continue
- }
- break
- }
- bn = 0
- Tm = o[a >> 2]
- a = o[(Tm + 8) >> 2]
- dn = o[(Tm + 12) >> 2]
- _m = a
- cn = o[(Tm + 20) >> 2]
- $m = o[(Tm + 16) >> 2]
- a = Zm
- an = ($m + Zm) | 0
- if (an >>> 0 < Zm >>> 0) {
- cn = (cn + 1) | 0
- }
- if ((dn | 0) > (cn | 0) ? 1 : (dn | 0) >= (cn | 0) ? (_m >>> 0 < an >>> 0 ? 0 : 1) : 0) {
- wl(o[Ym >> 2], ($m + o[Tm >> 2]) | 0, Zm)
- Zm = Tm
- an = Tm
- _m = o[(Tm + 20) >> 2]
- Tm = (a + o[(Tm + 16) >> 2]) | 0
- if (Tm >>> 0 < a >>> 0) {
- _m = (_m + 1) | 0
- }
- o[(an + 16) >> 2] = Tm
- o[(Zm + 20) >> 2] = _m
- nj(Rl, (Ym + 16) | 0, Ym)
- bn = 1
- }
- a = o[Ym >> 2]
- if (!a) {
- break b
- }
- o[(Ym + 4) >> 2] = a
- ul(a)
- }
- if (m[(Ym + 27) | 0] <= -1) {
- ul(o[(Ym + 16) >> 2])
- }
- R = (Ym + 32) | 0
- return bn
- }
- Yk()
- D()
- }
- function cj(a, Rl, fn) {
- var gn = 0,
- hn = 0,
- jn = 0,
- kn = 0,
- ln = 0
- hn = (R - 16) | 0
- R = hn
- a: {
- b: {
- if (!fn) {
- break b
- }
- o[a >> 2] = Rl
- o[(hn + 12) >> 2] = 0
- gn = 0
- if (!aj(1, (hn + 12) | 0, Rl)) {
- break a
- }
- c: {
- ln = o[(hn + 12) >> 2]
- if (ln) {
- Rl = 0
- while (1) {
- if (!aj(1, (hn + 8) | 0, o[a >> 2])) {
- break b
- }
- gn = Hk(28)
- jn = (gn + 4) | 0
- o[jn >> 2] = 0
- o[(jn + 4) >> 2] = 0
- kn = (gn + 16) | 0
- o[kn >> 2] = 0
- o[(kn + 4) >> 2] = 0
- o[gn >> 2] = jn
- jn = (gn + 12) | 0
- o[jn >> 2] = kn
- o[(gn + 24) >> 2] = o[(hn + 8) >> 2]
- if (!$i(a, gn)) {
- break c
- }
- o[hn >> 2] = gn
- ej(fn, hn)
- gn = o[hn >> 2]
- o[hn >> 2] = 0
- if (gn) {
- Fc((gn + 12) | 0, o[(gn + 16) >> 2])
- Gc(gn, o[(gn + 4) >> 2])
- ul(gn)
- }
- Rl = (Rl + 1) | 0
- if (Rl >>> 0 < ln >>> 0) {
- continue
- }
- break
- }
- }
- gn = $i(a, fn)
- break a
- }
- Fc(jn, o[(gn + 16) >> 2])
- Gc(gn, o[(gn + 4) >> 2])
- ul(gn)
- }
- gn = 0
- }
- R = (hn + 16) | 0
- return gn
- }
- function dj(a, Rl, fn) {
- var mn = 0,
- nn = 0,
- on = 0,
- pn = 0,
- qn = 0,
- rn = 0,
- sn = 0,
- tn = 0,
- un = 0,
- vn = 0,
- wn = 0,
- xn = 0
- mn = (R - 16) | 0
- R = mn
- pn = o[(a + 24) >> 2]
- un = o[(a + 28) >> 2]
- a: {
- if ((pn | 0) != (un | 0)) {
- wn = (mn + 8) | 0
- xn = (fn + 4) | 0
- while (1) {
- o[wn >> 2] = 0
- o[mn >> 2] = 0
- o[(mn + 4) >> 2] = 0
- a = mj(o[pn >> 2], Rl, mn)
- qn = p[(mn + 11) | 0]
- tn = (qn << 24) >> 24
- b: {
- c: {
- d: {
- if (!a) {
- a = 3
- break d
- }
- a = 0
- nn = p[(fn + 11) | 0]
- on = (nn << 24) >> 24
- sn = (tn | 0) < 0 ? o[(mn + 4) >> 2] : qn
- if ((sn | 0) != (((on | 0) < 0 ? o[xn >> 2] : nn) | 0)) {
- break d
- }
- rn = (on | 0) < 0 ? o[fn >> 2] : fn
- on = o[mn >> 2]
- nn = (tn | 0) < 0
- e: {
- if (!nn) {
- if (!sn) {
- break e
- }
- nn = mn
- if (p[rn | 0] != (on & 255)) {
- break d
- }
- while (1) {
- qn = (qn + -1) | 0
- if (!qn) {
- break e
- }
- on = p[(rn + 1) | 0]
- rn = (rn + 1) | 0
- nn = (nn + 1) | 0
- if ((on | 0) == p[nn | 0]) {
- continue
- }
- break
- }
- break d
- }
- if (!sn) {
- break e
- }
- if (Zj(nn ? on : mn, rn, sn)) {
- break c
- }
- }
- vn = o[pn >> 2]
- a = 1
- }
- if ((tn | 0) > -1) {
- break b
- }
- }
- ul(o[mn >> 2])
- }
- if (a >>> 0 > 3) {
- break a
- }
- f: {
- switch ((a - 1) | 0) {
- case 0:
- case 1:
- break a
- default:
- break f
- }
- }
- pn = (pn + 4) | 0
- if ((un | 0) != (pn | 0)) {
- continue
- }
- break
- }
- }
- vn = 0
- }
- R = (mn + 16) | 0
- return vn
- }
- function ej(a, Rl) {
- var fn = 0,
- yn = 0,
- zn = 0
- yn = o[Rl >> 2]
- if (!yn) {
- return
- }
- fn = (a + 28) | 0
- zn = o[fn >> 2]
- if (zn >>> 0 < r[(a + 32) >> 2]) {
- o[Rl >> 2] = 0
- o[zn >> 2] = yn
- o[fn >> 2] = o[fn >> 2] + 4
- return
- }
- fj((a + 24) | 0, Rl)
- }
- function fj(a, Rl) {
- var An = 0,
- Bn = 0,
- Cn = 0,
- Dn = 0,
- En = 0
- a: {
- b: {
- c: {
- Cn = o[a >> 2]
- Dn = (o[(a + 4) >> 2] - Cn) >> 2
- An = (Dn + 1) | 0
- if (An >>> 0 < 1073741824) {
- Cn = (o[(a + 8) >> 2] - Cn) | 0
- En = Cn >> 1
- An = (Cn >> 2) >>> 0 < 536870911 ? (En >>> 0 < An >>> 0 ? An : En) : 1073741823
- if (An) {
- if (An >>> 0 >= 1073741824) {
- break c
- }
- Bn = Hk(An << 2)
- }
- Cn = o[Rl >> 2]
- o[Rl >> 2] = 0
- Rl = ((Dn << 2) + Bn) | 0
- o[Rl >> 2] = Cn
- Cn = ((An << 2) + Bn) | 0
- Dn = (Rl + 4) | 0
- An = o[(a + 4) >> 2]
- Bn = o[a >> 2]
- if ((An | 0) == (Bn | 0)) {
- break b
- }
- while (1) {
- An = (An + -4) | 0
- En = o[An >> 2]
- o[An >> 2] = 0
- Rl = (Rl + -4) | 0
- o[Rl >> 2] = En
- if ((An | 0) != (Bn | 0)) {
- continue
- }
- break
- }
- Bn = o[(a + 4) >> 2]
- An = o[a >> 2]
- break a
- }
- Yk()
- D()
- }
- _a(10864)
- D()
- }
- An = Bn
- }
- o[a >> 2] = Rl
- o[(a + 8) >> 2] = Cn
- o[(a + 4) >> 2] = Dn
- if ((An | 0) != (Bn | 0)) {
- while (1) {
- Bn = (Bn + -4) | 0
- a = o[Bn >> 2]
- o[Bn >> 2] = 0
- if (a) {
- Fc((a + 12) | 0, o[(a + 16) >> 2])
- Gc(a, o[(a + 4) >> 2])
- ul(a)
- }
- if ((An | 0) != (Bn | 0)) {
- continue
- }
- break
- }
- }
- if (An) {
- ul(An)
- }
- }
- function gj(a, Rl, Fn, Gn) {
- var Hn = 0,
- In = 0,
- Jn = 0,
- Kn = 0
- Hn = (R - 16) | 0
- R = Hn
- Kn = a
- In = Zf(Rl, (Hn + 12) | 0, Fn)
- Fn = o[In >> 2]
- if (Fn) {
- Rl = 0
- } else {
- Fn = Hk(32)
- Mk((Fn + 16) | 0, o[Gn >> 2])
- o[(Fn + 28) >> 2] = 0
- o[(Fn + 8) >> 2] = o[(Hn + 12) >> 2]
- o[Fn >> 2] = 0
- o[(Fn + 4) >> 2] = 0
- o[In >> 2] = Fn
- Gn = Fn
- Jn = o[o[Rl >> 2] >> 2]
- if (Jn) {
- o[Rl >> 2] = Jn
- Gn = o[In >> 2]
- }
- Xf(o[(Rl + 4) >> 2], Gn)
- Rl = (Rl + 8) | 0
- o[Rl >> 2] = o[Rl >> 2] + 1
- Rl = 1
- }
- m[(Kn + 4) | 0] = Rl
- o[a >> 2] = Fn
- R = (Hn + 16) | 0
- }
- function hj(a, Rl) {
- var Fn = 0,
- Gn = 0,
- Ln = 0
- Fn = o[(Rl + 4) >> 2]
- a: {
- if (!Fn) {
- Gn = o[(Rl + 8) >> 2]
- if (o[Gn >> 2] == (Rl | 0)) {
- break a
- }
- Ln = (Rl + 8) | 0
- while (1) {
- Fn = o[Ln >> 2]
- Ln = (Fn + 8) | 0
- Gn = o[(Fn + 8) >> 2]
- if ((Fn | 0) != o[Gn >> 2]) {
- continue
- }
- break
- }
- break a
- }
- while (1) {
- Gn = Fn
- Fn = o[Fn >> 2]
- if (Fn) {
- continue
- }
- break
- }
- }
- if (o[a >> 2] == (Rl | 0)) {
- o[a >> 2] = Gn
- }
- Gn = (a + 8) | 0
- o[Gn >> 2] = o[Gn >> 2] + -1
- pj(o[(a + 4) >> 2], Rl)
- a = o[(Rl + 28) >> 2]
- if (a) {
- o[(Rl + 32) >> 2] = a
- ul(a)
- }
- if (m[(Rl + 27) | 0] <= -1) {
- ul(o[(Rl + 16) >> 2])
- }
- ul(Rl)
- }
- function ij(a, Rl, Mn) {
- var Nn = 0,
- On = 0,
- Pn = 0,
- Qn = 0,
- Rn = 0
- Nn = Hk(40)
- m[(a + 8) | 0] = 0
- o[(a + 4) >> 2] = Rl + 4
- o[a >> 2] = Nn
- Rl = (Mn + 8) | 0
- o[(Nn + 24) >> 2] = o[Rl >> 2]
- On = o[(Mn + 4) >> 2]
- o[(Nn + 16) >> 2] = o[Mn >> 2]
- o[(Nn + 20) >> 2] = On
- o[Mn >> 2] = 0
- o[(Mn + 4) >> 2] = 0
- o[Rl >> 2] = 0
- o[(Nn + 36) >> 2] = 0
- o[(Nn + 28) >> 2] = 0
- o[(Nn + 32) >> 2] = 0
- Pn = (Mn + 16) | 0
- On = o[Pn >> 2]
- Rl = o[(Mn + 12) >> 2]
- Qn = (On - Rl) | 0
- if (Qn) {
- Rl = (Nn + 28) | 0
- Fa(Rl, Qn)
- On = o[Pn >> 2]
- Rn = o[Rl >> 2]
- Rl = o[(Mn + 12) >> 2]
- }
- wl(Rn, Rl, (On - Rl) | 0)
- m[(a + 8) | 0] = 1
- }
- function jj(a, Rl, Mn) {
- var Sn = 0
- Sn = (a + 4) | 0
- a = xi(a, Rl)
- a: {
- if ((Sn | 0) == (a | 0)) {
- break a
- }
- Rl = o[(a + 32) >> 2]
- a = o[(a + 28) >> 2]
- if (((Rl - a) | 0) != 4) {
- break a
- }
- o[Mn >> 2] = p[a | 0] | (p[(a + 1) | 0] << 8) | ((p[(a + 2) | 0] << 16) | (p[(a + 3) | 0] << 24))
- }
- }
- function kj(a, Rl, Mn) {
- var Tn = 0,
- Un = 0,
- Vn = 0,
- Wn = 0
- a: {
- Rl = xi(a, Rl)
- b: {
- if ((Rl | 0) == ((a + 4) | 0)) {
- break b
- }
- a = o[(Rl + 28) >> 2]
- Tn = o[(Rl + 32) >> 2]
- if ((a | 0) == (Tn | 0)) {
- break b
- }
- a = (Tn - a) | 0
- if (a & 3) {
- break b
- }
- Tn = a >>> 2
- Wn = (Mn + 4) | 0
- Un = o[Wn >> 2]
- a = o[Mn >> 2]
- Vn = (Un - a) >> 2
- c: {
- if (Tn >>> 0 > Vn >>> 0) {
- Da(Mn, (Tn - Vn) | 0)
- Un = o[Wn >> 2]
- a = o[Mn >> 2]
- break c
- }
- if (Tn >>> 0 >= Vn >>> 0) {
- break c
- }
- Un = ((Tn << 2) + a) | 0
- o[(Mn + 4) >> 2] = Un
- }
- if ((a | 0) == (Un | 0)) {
- break a
- }
- Mn = a
- a = o[(Rl + 28) >> 2]
- wl(Mn, a, (o[(Rl + 32) >> 2] - a) | 0)
- }
- return
- }
- Zk()
- D()
- }
- function lj(a, Rl, Mn) {
- var Xn = 0
- Xn = (a + 4) | 0
- a = xi(a, Rl)
- a: {
- if ((Xn | 0) == (a | 0)) {
- break a
- }
- Rl = o[(a + 32) >> 2]
- a = o[(a + 28) >> 2]
- if (((Rl - a) | 0) != 8) {
- break a
- }
- Rl = p[(a + 4) | 0] | (p[(a + 5) | 0] << 8) | ((p[(a + 6) | 0] << 16) | (p[(a + 7) | 0] << 24))
- o[Mn >> 2] = p[a | 0] | (p[(a + 1) | 0] << 8) | ((p[(a + 2) | 0] << 16) | (p[(a + 3) | 0] << 24))
- o[(Mn + 4) >> 2] = Rl
- }
- }
- function mj(a, Rl, Mn) {
- var Yn = 0,
- Zn = 0,
- _n = 0
- Yn = (a + 4) | 0
- a = xi(a, Rl)
- a: {
- if ((Yn | 0) == (a | 0)) {
- break a
- }
- Rl = (a + 32) | 0
- Yn = o[Rl >> 2]
- Zn = o[(a + 28) >> 2]
- if ((Yn | 0) == (Zn | 0)) {
- break a
- }
- Rk(Mn, (Yn - Zn) | 0)
- Mn = Vk(Mn)
- a = o[(a + 28) >> 2]
- wl(Mn, a, (o[Rl >> 2] - a) | 0)
- _n = 1
- }
- return _n
- }
- function nj(a, Rl, Mn) {
- var $n = 0,
- ao = 0,
- bo = 0,
- co = 0
- $n = (R + -64) | 0
- R = $n
- ao = xi(a, Rl)
- if ((ao | 0) != ((a + 4) | 0)) {
- hj(a, ao)
- }
- ao = 0
- o[($n + 16) >> 2] = 0
- o[($n + 8) >> 2] = 0
- o[($n + 12) >> 2] = 0
- co = o[Mn >> 2]
- bo = (o[(Mn + 4) >> 2] - co) | 0
- if (bo) {
- Fa(($n + 8) | 0, bo)
- co = o[Mn >> 2]
- Mn = o[($n + 8) >> 2]
- } else {
- Mn = 0
- }
- wl(Mn, co, bo)
- co = Mk(($n + 24) | 0, Rl)
- o[($n + 44) >> 2] = 0
- o[($n + 36) >> 2] = 0
- o[($n + 40) >> 2] = 0
- Rl = o[($n + 12) >> 2]
- Mn = o[($n + 8) >> 2]
- bo = (Rl - Mn) | 0
- if (bo) {
- Fa(($n + 36) | 0, bo)
- Mn = o[($n + 8) >> 2]
- ao = o[($n + 36) >> 2]
- Rl = o[($n + 12) >> 2]
- }
- wl(ao, Mn, (Rl - Mn) | 0)
- Rl = Zf(a, ($n + 60) | 0, co)
- if (!o[Rl >> 2]) {
- ij(($n + 48) | 0, a, ($n + 24) | 0)
- Mn = o[($n + 48) >> 2]
- o[(Mn + 8) >> 2] = o[($n + 60) >> 2]
- o[Mn >> 2] = 0
- o[(Mn + 4) >> 2] = 0
- o[Rl >> 2] = Mn
- ao = o[o[a >> 2] >> 2]
- if (ao) {
- o[a >> 2] = ao
- Mn = o[Rl >> 2]
- }
- Xf(o[(a + 4) >> 2], Mn)
- a = (a + 8) | 0
- o[a >> 2] = o[a >> 2] + 1
- }
- a = o[($n + 36) >> 2]
- if (a) {
- o[($n + 40) >> 2] = a
- ul(a)
- }
- if (m[($n + 35) | 0] <= -1) {
- ul(o[($n + 24) >> 2])
- }
- a = o[($n + 8) >> 2]
- if (a) {
- o[($n + 12) >> 2] = a
- ul(a)
- }
- R = ($n - -64) | 0
- }
- function oj(a, Rl, Mn) {
- var eo = 0,
- fo = 0
- eo = (R - 32) | 0
- R = eo
- fo = (a + 12) | 0
- a: {
- if ((xi(fo, Rl) | 0) != ((a + 16) | 0)) {
- break a
- }
- o[(eo + 16) >> 2] = Rl
- gj((eo + 24) | 0, fo, Rl, (eo + 16) | 0)
- a = o[(eo + 24) >> 2]
- Rl = o[Mn >> 2]
- o[Mn >> 2] = 0
- Mn = (a + 28) | 0
- a = o[Mn >> 2]
- o[Mn >> 2] = Rl
- if (!a) {
- break a
- }
- Fc((a + 12) | 0, o[(a + 16) >> 2])
- Gc(a, o[(a + 4) >> 2])
- ul(a)
- }
- R = (eo + 32) | 0
- }
- function pj(a, Rl) {
- var Mn = 0,
- go = 0,
- ho = 0,
- io = 0,
- jo = 0,
- ko = 0
- a: {
- b: {
- go = Rl
- ho = o[Rl >> 2]
- if (ho) {
- Mn = o[(Rl + 4) >> 2]
- if (!Mn) {
- break b
- }
- while (1) {
- go = Mn
- Mn = o[Mn >> 2]
- if (Mn) {
- continue
- }
- break
- }
- }
- ho = o[(go + 4) >> 2]
- if (ho) {
- break b
- }
- ho = 0
- jo = 0
- break a
- }
- o[(ho + 8) >> 2] = o[(go + 8) >> 2]
- jo = 1
- }
- io = o[(go + 8) >> 2]
- Mn = o[io >> 2]
- c: {
- if ((Mn | 0) == (go | 0)) {
- o[io >> 2] = ho
- if ((a | 0) == (go | 0)) {
- Mn = 0
- a = ho
- break c
- }
- Mn = o[(io + 4) >> 2]
- break c
- }
- o[(io + 4) >> 2] = ho
- }
- d: {
- e: {
- f: {
- ko = !p[(go + 12) | 0]
- if ((Rl | 0) != (go | 0)) {
- io = o[(Rl + 8) >> 2]
- o[(go + 8) >> 2] = io
- o[(io + ((o[o[(Rl + 8) >> 2] >> 2] != (Rl | 0)) << 2)) >> 2] = go
- io = o[Rl >> 2]
- o[go >> 2] = io
- o[(io + 8) >> 2] = go
- io = o[(Rl + 4) >> 2]
- o[(go + 4) >> 2] = io
- if (io) {
- o[(io + 8) >> 2] = go
- }
- m[(go + 12) | 0] = p[(Rl + 12) | 0]
- a = (a | 0) == (Rl | 0) ? go : a
- }
- if (!(ko | !a)) {
- if (!jo) {
- while (1) {
- Rl = p[(Mn + 12) | 0]
- g: {
- ho = o[(Mn + 8) >> 2]
- if (o[ho >> 2] != (Mn | 0)) {
- if (!Rl) {
- m[(Mn + 12) | 0] = 1
- m[(ho + 12) | 0] = 0
- Rl = (ho + 4) | 0
- jo = o[Rl >> 2]
- go = o[jo >> 2]
- o[Rl >> 2] = go
- if (go) {
- o[(go + 8) >> 2] = ho
- }
- o[(jo + 8) >> 2] = o[(ho + 8) >> 2]
- Rl = o[(ho + 8) >> 2]
- o[((ho | 0) == o[Rl >> 2] ? Rl : (Rl + 4) | 0) >> 2] = jo
- o[jo >> 2] = ho
- o[(ho + 8) >> 2] = jo
- Rl = o[Mn >> 2]
- a = (Rl | 0) == (a | 0) ? Mn : a
- Mn = o[(Rl + 4) >> 2]
- }
- go = o[Mn >> 2]
- if (!(p[(go + 12) | 0] ? 0 : go)) {
- Rl = o[(Mn + 4) >> 2]
- if (p[(Rl + 12) | 0] ? 0 : Rl) {
- break f
- }
- m[(Mn + 12) | 0] = 0
- Mn = o[(Mn + 8) >> 2]
- h: {
- if ((Mn | 0) == (a | 0)) {
- Mn = a
- break h
- }
- if (p[(Mn + 12) | 0]) {
- break g
- }
- }
- m[(Mn + 12) | 0] = 1
- return
- }
- Rl = o[(Mn + 4) >> 2]
- if (Rl) {
- break f
- }
- break e
- }
- i: {
- if (Rl) {
- Rl = Mn
- break i
- }
- m[(Mn + 12) | 0] = 1
- m[(ho + 12) | 0] = 0
- Rl = o[(Mn + 4) >> 2]
- o[ho >> 2] = Rl
- if (Rl) {
- o[(Rl + 8) >> 2] = ho
- }
- o[(Mn + 8) >> 2] = o[(ho + 8) >> 2]
- go = o[(ho + 8) >> 2]
- j: {
- if ((ho | 0) == o[go >> 2]) {
- o[go >> 2] = Mn
- Rl = o[ho >> 2]
- break j
- }
- o[(go + 4) >> 2] = Mn
- }
- o[(Mn + 4) >> 2] = ho
- o[(ho + 8) >> 2] = Mn
- a = (a | 0) == (ho | 0) ? Mn : a
- }
- go = o[Rl >> 2]
- k: {
- if (!(!go | p[(go + 12) | 0])) {
- Mn = Rl
- break k
- }
- Mn = o[(Rl + 4) >> 2]
- if (!(p[(Mn + 12) | 0] ? 0 : Mn)) {
- m[(Rl + 12) | 0] = 0
- Mn = o[(Rl + 8) >> 2]
- if (p[(Mn + 12) | 0] ? (Mn | 0) != (a | 0) : 0) {
- break g
- }
- m[(Mn + 12) | 0] = 1
- return
- }
- if (go) {
- if (!p[(go + 12) | 0]) {
- Mn = Rl
- break k
- }
- Mn = o[(Rl + 4) >> 2]
- }
- m[(Mn + 12) | 0] = 1
- m[(Rl + 12) | 0] = 0
- a = o[Mn >> 2]
- o[(Rl + 4) >> 2] = a
- if (a) {
- o[(a + 8) >> 2] = Rl
- }
- o[(Mn + 8) >> 2] = o[(Rl + 8) >> 2]
- a = o[(Rl + 8) >> 2]
- o[(o[a >> 2] == (Rl | 0) ? a : (a + 4) | 0) >> 2] = Mn
- o[Mn >> 2] = Rl
- o[(Rl + 8) >> 2] = Mn
- go = Rl
- }
- a = Mn
- Mn = o[(Mn + 8) >> 2]
- m[(a + 12) | 0] = p[(Mn + 12) | 0]
- m[(Mn + 12) | 0] = 1
- m[(go + 12) | 0] = 1
- Rl = o[Mn >> 2]
- a = o[(Rl + 4) >> 2]
- o[Mn >> 2] = a
- if (a) {
- o[(a + 8) >> 2] = Mn
- }
- o[(Rl + 8) >> 2] = o[(Mn + 8) >> 2]
- a = o[(Mn + 8) >> 2]
- o[((Mn | 0) == o[a >> 2] ? a : (a + 4) | 0) >> 2] = Rl
- o[(Rl + 4) >> 2] = Mn
- o[(Mn + 8) >> 2] = Rl
- return
- }
- Rl = o[(Mn + 8) >> 2]
- Mn = o[(o[Rl >> 2] == (Mn | 0) ? (Rl + 4) | 0 : Rl) >> 2]
- continue
- }
- }
- m[(ho + 12) | 0] = 1
- }
- return
- }
- if (p[(Rl + 12) | 0]) {
- break e
- }
- go = Mn
- break d
- }
- m[(go + 12) | 0] = 1
- m[(Mn + 12) | 0] = 0
- a = o[(go + 4) >> 2]
- o[Mn >> 2] = a
- if (a) {
- o[(a + 8) >> 2] = Mn
- }
- o[(go + 8) >> 2] = o[(Mn + 8) >> 2]
- a = o[(Mn + 8) >> 2]
- o[(o[a >> 2] == (Mn | 0) ? a : (a + 4) | 0) >> 2] = go
- o[(go + 4) >> 2] = Mn
- o[(Mn + 8) >> 2] = go
- Rl = Mn
- }
- Mn = o[(go + 8) >> 2]
- m[(go + 12) | 0] = p[(Mn + 12) | 0]
- m[(Mn + 12) | 0] = 1
- m[(Rl + 12) | 0] = 1
- Rl = o[(Mn + 4) >> 2]
- a = o[Rl >> 2]
- o[(Mn + 4) >> 2] = a
- if (a) {
- o[(a + 8) >> 2] = Mn
- }
- o[(Rl + 8) >> 2] = o[(Mn + 8) >> 2]
- a = o[(Mn + 8) >> 2]
- o[((Mn | 0) == o[a >> 2] ? a : (a + 4) | 0) >> 2] = Rl
- o[Rl >> 2] = Mn
- o[(Mn + 8) >> 2] = Rl
- }
- function qj(a) {
- o[a >> 2] = 10944
- xl((a + 4) | 0, 0, 80)
- return a
- }
- function rj(a, Rl) {
- var lo = 0
- lo = -1
- a: {
- if (((Rl | 0) == -1) | ((Rl | 0) > 4)) {
- break a
- }
- Rl = (u(Rl, 12) + a) | 0
- a = o[(Rl + 20) >> 2]
- if (((o[(Rl + 24) >> 2] - a) | 0) < 1) {
- break a
- }
- lo = o[a >> 2]
- }
- return lo
- }
- function sj(a) {
- var Rl = 0,
- mo = 0
- Rl = o[(a + 20) >> 2]
- a: {
- if (((o[(a + 24) >> 2] - Rl) | 0) < 1) {
- break a
- }
- Rl = o[Rl >> 2]
- if ((Rl | 0) == -1) {
- break a
- }
- mo = o[(o[(a + 8) >> 2] + (Rl << 2)) >> 2]
- }
- return mo
- }
- function tj(a, no) {
- var oo = 0,
- po = 0,
- qo = 0
- oo = o[(a + 8) >> 2]
- a = o[(a + 12) >> 2]
- a: {
- if ((oo | 0) == (a | 0)) {
- break a
- }
- qo = (a - oo) >> 2
- a = 0
- while (1) {
- po = o[((a << 2) + oo) >> 2]
- if (o[(po + 60) >> 2] == (no | 0)) {
- break a
- }
- a = (a + 1) | 0
- if (a >>> 0 < qo >>> 0) {
- continue
- }
- break
- }
- po = 0
- }
- return po
- }
- function uj(a, no) {
- var ro = 0,
- so = 0
- ro = o[(a + 8) >> 2]
- a = o[(a + 12) >> 2]
- if ((ro | 0) != (a | 0)) {
- so = (a - ro) >> 2
- a = 0
- while (1) {
- if (o[(o[((a << 2) + ro) >> 2] + 60) >> 2] == (no | 0)) {
- return a
- }
- a = (a + 1) | 0
- if (a >>> 0 < so >>> 0) {
- continue
- }
- break
- }
- }
- return -1
- }
- function vj(a, no) {
- var to = 0,
- uo = 0,
- vo = 0,
- wo = 0,
- xo = 0
- to = (R - 16) | 0
- R = to
- uo = (a + 12) | 0
- vo = o[uo >> 2]
- wo = o[(a + 8) >> 2]
- xo = o[no >> 2]
- o[no >> 2] = 0
- o[(to + 8) >> 2] = xo
- l[o[(o[a >> 2] + 8) >> 2]](a, (vo - wo) >> 2, (to + 8) | 0)
- no = o[(to + 8) >> 2]
- o[(to + 8) >> 2] = 0
- if (no) {
- Fb(no)
- }
- R = (to + 16) | 0
- return (((o[uo >> 2] - o[(a + 8) >> 2]) >> 2) + -1) | 0
- }
- function wj(a, no, yo) {
- a = a | 0
- no = no | 0
- yo = yo | 0
- var zo = 0,
- Ao = 0,
- Bo = 0,
- Co = 0,
- Do = 0,
- Eo = 0
- Co = (R - 16) | 0
- R = Co
- o[(Co + 12) >> 2] = no
- Do = (a + 8) | 0
- zo = o[(a + 12) >> 2]
- Eo = o[(a + 8) >> 2]
- Ao = (zo - Eo) >> 2
- a: {
- if ((Ao | 0) > (no | 0)) {
- break a
- }
- Bo = (no + 1) | 0
- if (Bo >>> 0 > Ao >>> 0) {
- xj(Do, (Bo - Ao) | 0)
- break a
- }
- if (Bo >>> 0 >= Ao >>> 0) {
- break a
- }
- Ao = (Eo + (Bo << 2)) | 0
- if ((Ao | 0) != (zo | 0)) {
- while (1) {
- zo = (zo + -4) | 0
- Bo = o[zo >> 2]
- o[zo >> 2] = 0
- if (Bo) {
- Fb(Bo)
- }
- if ((zo | 0) != (Ao | 0)) {
- continue
- }
- break
- }
- }
- o[(a + 12) >> 2] = Ao
- }
- zo = o[(o[yo >> 2] + 56) >> 2]
- b: {
- if ((zo | 0) > 4) {
- break b
- }
- zo = (u(zo, 12) + a) | 0
- Ao = (zo + 24) | 0
- a = o[Ao >> 2]
- if ((a | 0) != o[(zo + 28) >> 2]) {
- o[a >> 2] = no
- o[Ao >> 2] = a + 4
- break b
- }
- yj((zo + 20) | 0, (Co + 12) | 0)
- }
- no = o[yo >> 2]
- a = o[(Co + 12) >> 2]
- o[(no + 60) >> 2] = a
- zo = o[Do >> 2]
- o[yo >> 2] = 0
- yo = (zo + (a << 2)) | 0
- a = o[yo >> 2]
- o[yo >> 2] = no
- if (a) {
- Fb(a)
- }
- R = (Co + 16) | 0
- }
- function xj(a, no) {
- var yo = 0,
- Fo = 0,
- Go = 0,
- Ho = 0,
- Io = 0,
- Jo = 0,
- Ko = 0,
- Lo = 0,
- Mo = 0
- Fo = o[(a + 8) >> 2]
- Go = (a + 4) | 0
- yo = o[Go >> 2]
- if (((Fo - yo) >> 2) >>> 0 >= no >>> 0) {
- a = no << 2
- ;(Lo = Go), (Mo = (xl(yo, 0, a) + a) | 0), (o[Lo >> 2] = Mo)
- return
- }
- a: {
- Go = o[a >> 2]
- Ho = (yo - Go) >> 2
- Io = (Ho + no) | 0
- if (Io >>> 0 < 1073741824) {
- Ho = Ho << 2
- Fo = (Fo - Go) | 0
- Ko = Fo >> 1
- Fo = (Fo >> 2) >>> 0 < 536870911 ? (Ko >>> 0 < Io >>> 0 ? Io : Ko) : 1073741823
- if (Fo) {
- if (Fo >>> 0 >= 1073741824) {
- break a
- }
- Jo = Hk(Fo << 2)
- }
- Ho = (Ho + Jo) | 0
- xl(Ho, 0, no << 2)
- no = ((Io << 2) + Jo) | 0
- Io = ((Fo << 2) + Jo) | 0
- if ((yo | 0) != (Go | 0)) {
- while (1) {
- yo = (yo + -4) | 0
- Fo = o[yo >> 2]
- o[yo >> 2] = 0
- Ho = (Ho + -4) | 0
- o[Ho >> 2] = Fo
- if ((yo | 0) != (Go | 0)) {
- continue
- }
- break
- }
- Go = o[a >> 2]
- yo = o[(a + 4) >> 2]
- }
- o[a >> 2] = Ho
- o[(a + 8) >> 2] = Io
- o[(a + 4) >> 2] = no
- if ((yo | 0) != (Go | 0)) {
- while (1) {
- yo = (yo + -4) | 0
- a = o[yo >> 2]
- o[yo >> 2] = 0
- if (a) {
- Fb(a)
- }
- if ((yo | 0) != (Go | 0)) {
- continue
- }
- break
- }
- }
- if (Go) {
- ul(Go)
- }
- return
- }
- Yk()
- D()
- }
- _a(10992)
- D()
- }
- function yj(a, no) {
- var No = 0,
- Oo = 0,
- Po = 0,
- Qo = 0,
- Ro = 0,
- So = 0
- a: {
- Po = o[a >> 2]
- Ro = (o[(a + 4) >> 2] - Po) | 0
- No = Ro >> 2
- Oo = (No + 1) | 0
- if (Oo >>> 0 < 1073741824) {
- So = No << 2
- No = (o[(a + 8) >> 2] - Po) | 0
- Qo = No >> 1
- Oo = (No >> 2) >>> 0 < 536870911 ? (Qo >>> 0 < Oo >>> 0 ? Oo : Qo) : 1073741823
- No = 0
- b: {
- if (!Oo) {
- break b
- }
- if (Oo >>> 0 >= 1073741824) {
- break a
- }
- No = Hk(Oo << 2)
- }
- Qo = (So + No) | 0
- o[Qo >> 2] = o[no >> 2]
- no = (No + (Oo << 2)) | 0
- Oo = (Qo + 4) | 0
- if ((Ro | 0) >= 1) {
- wl(No, Po, Ro)
- }
- o[a >> 2] = No
- o[(a + 8) >> 2] = no
- o[(a + 4) >> 2] = Oo
- if (Po) {
- ul(Po)
- }
- return
- }
- Yk()
- D()
- }
- _a(10992)
- D()
- }
- function zj(a, no) {
- a = a | 0
- no = no | 0
- var To = 0,
- Uo = 0,
- Vo = 0,
- Wo = 0,
- Xo = 0,
- Yo = 0,
- Zo = 0
- a: {
- if ((no | 0) < 0) {
- break a
- }
- To = o[(a + 12) >> 2]
- Uo = o[(a + 8) >> 2]
- if (((To - Uo) >> 2) >>> 0 <= no >>> 0) {
- break a
- }
- Uo = (Uo + (no << 2)) | 0
- Vo = o[Uo >> 2]
- Yo = o[(Vo + 60) >> 2]
- Wo = o[(Vo + 56) >> 2]
- Vo = (Uo + 4) | 0
- b: {
- if ((Vo | 0) != (To | 0)) {
- while (1) {
- Zo = o[Vo >> 2]
- o[Vo >> 2] = 0
- Xo = o[Uo >> 2]
- o[Uo >> 2] = Zo
- if (Xo) {
- Fb(Xo)
- }
- Uo = (Uo + 4) | 0
- Vo = (Vo + 4) | 0
- if ((Vo | 0) != (To | 0)) {
- continue
- }
- break
- }
- To = o[(a + 12) >> 2]
- if ((Uo | 0) == (To | 0)) {
- break b
- }
- }
- while (1) {
- To = (To + -4) | 0
- Vo = o[To >> 2]
- o[To >> 2] = 0
- if (Vo) {
- Fb(Vo)
- }
- if ((To | 0) != (Uo | 0)) {
- continue
- }
- break
- }
- }
- o[(a + 12) >> 2] = Uo
- To = o[(a + 4) >> 2]
- if (To) {
- Aj(To, Yo)
- }
- c: {
- if ((Wo | 0) > 4) {
- break c
- }
- d: {
- Uo = (u(Wo, 12) + a) | 0
- To = o[(Uo + 20) >> 2]
- Vo = (Uo + 24) | 0
- Uo = o[Vo >> 2]
- if ((To | 0) == (Uo | 0)) {
- break d
- }
- while (1) {
- if (o[To >> 2] == (no | 0)) {
- break d
- }
- To = (To + 4) | 0
- if ((Uo | 0) != (To | 0)) {
- continue
- }
- break
- }
- break c
- }
- if ((To | 0) == (Uo | 0)) {
- break c
- }
- Wo = (To + 4) | 0
- Uo = (Uo - Wo) | 0
- Xo = Uo >> 2
- if (Uo) {
- yl(To, Wo, Uo)
- }
- o[Vo >> 2] = (Xo << 2) + To
- }
- To = o[(a + 24) >> 2]
- Uo = o[(a + 20) >> 2]
- if ((To | 0) != (Uo | 0)) {
- Vo = (To - Uo) >> 2
- To = 0
- while (1) {
- Wo = (Uo + (To << 2)) | 0
- Xo = o[Wo >> 2]
- if ((Xo | 0) > (no | 0)) {
- o[Wo >> 2] = Xo + -1
- }
- To = (To + 1) | 0
- if (To >>> 0 < Vo >>> 0) {
- continue
- }
- break
- }
- }
- To = o[(a + 36) >> 2]
- Uo = o[(a + 32) >> 2]
- if ((To | 0) != (Uo | 0)) {
- Vo = (To - Uo) >> 2
- To = 0
- while (1) {
- Wo = (Uo + (To << 2)) | 0
- Xo = o[Wo >> 2]
- if ((Xo | 0) > (no | 0)) {
- o[Wo >> 2] = Xo + -1
- }
- To = (To + 1) | 0
- if (To >>> 0 < Vo >>> 0) {
- continue
- }
- break
- }
- }
- To = o[(a + 48) >> 2]
- Uo = o[(a + 44) >> 2]
- if ((To | 0) != (Uo | 0)) {
- Vo = (To - Uo) >> 2
- To = 0
- while (1) {
- Wo = (Uo + (To << 2)) | 0
- Xo = o[Wo >> 2]
- if ((Xo | 0) > (no | 0)) {
- o[Wo >> 2] = Xo + -1
- }
- To = (To + 1) | 0
- if (To >>> 0 < Vo >>> 0) {
- continue
- }
- break
- }
- }
- To = o[(a + 60) >> 2]
- Uo = o[(a + 56) >> 2]
- if ((To | 0) != (Uo | 0)) {
- Vo = (To - Uo) >> 2
- To = 0
- while (1) {
- Wo = (Uo + (To << 2)) | 0
- Xo = o[Wo >> 2]
- if ((Xo | 0) > (no | 0)) {
- o[Wo >> 2] = Xo + -1
- }
- To = (To + 1) | 0
- if (To >>> 0 < Vo >>> 0) {
- continue
- }
- break
- }
- }
- To = o[(a + 72) >> 2]
- a = o[(a + 68) >> 2]
- if ((To | 0) == (a | 0)) {
- break a
- }
- Uo = (To - a) >> 2
- To = 0
- while (1) {
- Vo = (a + (To << 2)) | 0
- Wo = o[Vo >> 2]
- if ((Wo | 0) > (no | 0)) {
- o[Vo >> 2] = Wo + -1
- }
- To = (To + 1) | 0
- if (To >>> 0 < Uo >>> 0) {
- continue
- }
- break
- }
- }
- }
- function Aj(a, no) {
- var _o = 0,
- $o = 0,
- ap = 0,
- bp = 0
- a: {
- if ((no | 0) < 0) {
- break a
- }
- _o = o[(a + 28) >> 2]
- ap = o[(a + 24) >> 2]
- while (1) {
- $o = ap
- if ((_o | 0) == ($o | 0)) {
- break a
- }
- ap = ($o + 4) | 0
- if (o[(o[$o >> 2] + 24) >> 2] != (no | 0)) {
- continue
- }
- break
- }
- b: {
- if ((_o | 0) != (ap | 0)) {
- while (1) {
- no = o[ap >> 2]
- o[ap >> 2] = 0
- bp = o[$o >> 2]
- o[$o >> 2] = no
- if (bp) {
- Fc((bp + 12) | 0, o[(bp + 16) >> 2])
- Gc(bp, o[(bp + 4) >> 2])
- ul(bp)
- }
- $o = ($o + 4) | 0
- ap = (ap + 4) | 0
- if ((_o | 0) != (ap | 0)) {
- continue
- }
- break
- }
- _o = o[(a + 28) >> 2]
- if ((_o | 0) == ($o | 0)) {
- break b
- }
- }
- while (1) {
- _o = (_o + -4) | 0
- no = o[_o >> 2]
- o[_o >> 2] = 0
- if (no) {
- Fc((no + 12) | 0, o[(no + 16) >> 2])
- Gc(no, o[(no + 4) >> 2])
- ul(no)
- }
- if (($o | 0) != (_o | 0)) {
- continue
- }
- break
- }
- }
- o[(a + 28) >> 2] = $o
- }
- }
- function Bj(a) {
- a = a | 0
- ul(Mi(a))
- }
- function Cj(a) {
- a = a | 0
- }
- function Dj(a) {
- var no = 0
- no = p[(a + 74) | 0]
- m[(a + 74) | 0] = (no + -1) | no
- no = o[a >> 2]
- if (no & 8) {
- o[a >> 2] = no | 32
- return -1
- }
- o[(a + 4) >> 2] = 0
- o[(a + 8) >> 2] = 0
- no = o[(a + 44) >> 2]
- o[(a + 28) >> 2] = no
- o[(a + 20) >> 2] = no
- o[(a + 16) >> 2] = no + o[(a + 48) >> 2]
- return 0
- }
- function Ej(a, cp, dp) {
- var ep = 0,
- fp = 0,
- gp = 0
- ep = o[(dp + 16) >> 2]
- a: {
- if (!ep) {
- if (Dj(dp)) {
- break a
- }
- ep = o[(dp + 16) >> 2]
- }
- gp = o[(dp + 20) >> 2]
- if ((ep - gp) >>> 0 < cp >>> 0) {
- l[o[(dp + 36) >> 2]](dp, a, cp) | 0
- return
- }
- b: {
- if (m[(dp + 75) | 0] < 0) {
- break b
- }
- ep = cp
- while (1) {
- fp = ep
- if (!fp) {
- break b
- }
- ep = (fp + -1) | 0
- if (p[(ep + a) | 0] != 10) {
- continue
- }
- break
- }
- if (l[o[(dp + 36) >> 2]](dp, a, fp) >>> 0 < fp >>> 0) {
- break a
- }
- cp = (cp - fp) | 0
- a = (a + fp) | 0
- gp = o[(dp + 20) >> 2]
- }
- wl(gp, a, cp)
- o[(dp + 20) >> 2] = o[(dp + 20) >> 2] + cp
- }
- }
- function Fj(a, cp, dp) {
- var hp = 0,
- ip = 0,
- jp = 0,
- kp = 0
- hp = (R - 208) | 0
- R = hp
- o[(hp + 204) >> 2] = dp
- dp = 0
- xl((hp + 160) | 0, 0, 40)
- o[(hp + 200) >> 2] = o[(hp + 204) >> 2]
- a: {
- if ((Gj(0, cp, (hp + 200) | 0, (hp + 80) | 0, (hp + 160) | 0) | 0) < 0) {
- cp = -1
- break a
- }
- dp = o[(a + 76) >> 2] >= 0 ? 1 : dp
- ip = o[a >> 2]
- if (m[(a + 74) | 0] <= 0) {
- o[a >> 2] = ip & -33
- }
- kp = ip & 32
- b: {
- if (o[(a + 48) >> 2]) {
- cp = Gj(a, cp, (hp + 200) | 0, (hp + 80) | 0, (hp + 160) | 0)
- break b
- }
- o[(a + 48) >> 2] = 80
- o[(a + 16) >> 2] = hp + 80
- o[(a + 28) >> 2] = hp
- o[(a + 20) >> 2] = hp
- ip = o[(a + 44) >> 2]
- o[(a + 44) >> 2] = hp
- jp = Gj(a, cp, (hp + 200) | 0, (hp + 80) | 0, (hp + 160) | 0)
- cp = jp
- if (!ip) {
- break b
- }
- l[o[(a + 36) >> 2]](a, 0, 0) | 0
- o[(a + 48) >> 2] = 0
- o[(a + 44) >> 2] = ip
- o[(a + 28) >> 2] = 0
- o[(a + 16) >> 2] = 0
- cp = o[(a + 20) >> 2]
- o[(a + 20) >> 2] = 0
- cp = cp ? jp : -1
- }
- jp = a
- a = o[a >> 2]
- o[jp >> 2] = a | kp
- cp = a & 32 ? -1 : cp
- if (!dp) {
- break a
- }
- }
- R = (hp + 208) | 0
- return cp
- }
- function Gj(a, cp, dp, lp, mp) {
- var np = 0,
- op = 0,
- pp = 0,
- qp = 0,
- rp = 0,
- sp = 0,
- tp = 0,
- up = 0,
- vp = 0,
- wp = 0,
- xp = 0,
- yp = 0,
- zp = 0,
- Ap = 0,
- Bp = 0
- np = (R - 80) | 0
- R = np
- o[(np + 76) >> 2] = cp
- Bp = (np + 55) | 0
- yp = (np + 56) | 0
- cp = 0
- a: {
- b: while (1) {
- c: {
- if ((vp | 0) < 0) {
- break c
- }
- if ((cp | 0) > ((2147483647 - vp) | 0)) {
- o[3269] = 61
- vp = -1
- break c
- }
- vp = (cp + vp) | 0
- }
- d: {
- e: {
- f: {
- g: {
- h: {
- i: {
- j: {
- k: {
- l: {
- m: {
- n: {
- o: {
- p: {
- q: {
- rp = o[(np + 76) >> 2]
- cp = rp
- qp = p[cp | 0]
- if (qp) {
- while (1) {
- r: {
- s: {
- op = qp & 255
- t: {
- if (!op) {
- qp = cp
- break t
- }
- if ((op | 0) != 37) {
- break s
- }
- qp = cp
- while (1) {
- if (p[(cp + 1) | 0] != 37) {
- break t
- }
- op = (cp + 2) | 0
- o[(np + 76) >> 2] = op
- qp = (qp + 1) | 0
- pp = p[(cp + 2) | 0]
- cp = op
- if ((pp | 0) == 37) {
- continue
- }
- break
- }
- }
- cp = (qp - rp) | 0
- if (a) {
- Hj(a, rp, cp)
- }
- if (cp) {
- continue b
- }
- wp = -1
- qp = 1
- op = np
- sp = !Uj(m[(o[(np + 76) >> 2] + 1) | 0])
- cp = o[(np + 76) >> 2]
- if (!(sp | (p[(cp + 2) | 0] != 36))) {
- wp = (m[(cp + 1) | 0] + -48) | 0
- zp = 1
- qp = 3
- }
- cp = (qp + cp) | 0
- o[(op + 76) >> 2] = cp
- qp = 0
- xp = m[cp | 0]
- pp = (xp + -32) | 0
- u: {
- if (pp >>> 0 > 31) {
- op = cp
- break u
- }
- op = cp
- pp = 1 << pp
- if (!(pp & 75913)) {
- break u
- }
- while (1) {
- op = (cp + 1) | 0
- o[(np + 76) >> 2] = op
- qp = pp | qp
- xp = m[(cp + 1) | 0]
- pp = (xp + -32) | 0
- if (pp >>> 0 > 31) {
- break u
- }
- cp = op
- pp = 1 << pp
- if (pp & 75913) {
- continue
- }
- break
- }
- }
- v: {
- if ((xp | 0) == 42) {
- sp = np
- w: {
- x: {
- if (!Uj(m[(op + 1) | 0])) {
- break x
- }
- cp = o[(np + 76) >> 2]
- if (p[(cp + 2) | 0] != 36) {
- break x
- }
- o[((((m[(cp + 1) | 0] << 2) + mp) | 0) + -192) >> 2] = 10
- tp = o[((((m[(cp + 1) | 0] << 3) + lp) | 0) + -384) >> 2]
- zp = 1
- cp = (cp + 3) | 0
- break w
- }
- if (zp) {
- break q
- }
- zp = 0
- tp = 0
- if (a) {
- cp = o[dp >> 2]
- o[dp >> 2] = cp + 4
- tp = o[cp >> 2]
- }
- cp = (o[(np + 76) >> 2] + 1) | 0
- }
- o[(sp + 76) >> 2] = cp
- if ((tp | 0) > -1) {
- break v
- }
- tp = (0 - tp) | 0
- qp = qp | 8192
- break v
- }
- tp = Ij((np + 76) | 0)
- if ((tp | 0) < 0) {
- break q
- }
- cp = o[(np + 76) >> 2]
- }
- pp = -1
- y: {
- if (p[cp | 0] != 46) {
- break y
- }
- if (p[(cp + 1) | 0] == 42) {
- z: {
- if (!Uj(m[(cp + 2) | 0])) {
- break z
- }
- cp = o[(np + 76) >> 2]
- if (p[(cp + 3) | 0] != 36) {
- break z
- }
- o[((((m[(cp + 2) | 0] << 2) + mp) | 0) + -192) >> 2] = 10
- pp = o[((((m[(cp + 2) | 0] << 3) + lp) | 0) + -384) >> 2]
- cp = (cp + 4) | 0
- o[(np + 76) >> 2] = cp
- break y
- }
- if (zp) {
- break q
- }
- if (a) {
- cp = o[dp >> 2]
- o[dp >> 2] = cp + 4
- pp = o[cp >> 2]
- } else {
- pp = 0
- }
- cp = (o[(np + 76) >> 2] + 2) | 0
- o[(np + 76) >> 2] = cp
- break y
- }
- o[(np + 76) >> 2] = cp + 1
- pp = Ij((np + 76) | 0)
- cp = o[(np + 76) >> 2]
- }
- op = 0
- while (1) {
- Ap = op
- up = -1
- if ((m[cp | 0] + -65) >>> 0 > 57) {
- break a
- }
- xp = (cp + 1) | 0
- o[(np + 76) >> 2] = xp
- op = m[cp | 0]
- cp = xp
- op = p[(((op + u(Ap, 58)) | 0) + 11023) | 0]
- if ((op + -1) >>> 0 < 8) {
- continue
- }
- break
- }
- if (!op) {
- break a
- }
- A: {
- B: {
- C: {
- if ((op | 0) == 19) {
- if ((wp | 0) <= -1) {
- break C
- }
- break a
- }
- if ((wp | 0) < 0) {
- break B
- }
- o[((wp << 2) + mp) >> 2] = op
- cp = ((wp << 3) + lp) | 0
- op = o[(cp + 4) >> 2]
- o[(np + 64) >> 2] = o[cp >> 2]
- o[(np + 68) >> 2] = op
- }
- cp = 0
- if (!a) {
- continue b
- }
- break A
- }
- if (!a) {
- break d
- }
- Jj((np - -64) | 0, op, dp)
- xp = o[(np + 76) >> 2]
- }
- sp = qp & -65537
- qp = qp & 8192 ? sp : qp
- up = 0
- wp = 11060
- op = yp
- cp = m[(xp + -1) | 0]
- cp = Ap ? ((cp & 15) == 3 ? cp & -33 : cp) : cp
- xp = (cp + -88) | 0
- if (xp >>> 0 <= 32) {
- break r
- }
- D: {
- E: {
- F: {
- G: {
- sp = (cp + -65) | 0
- if (sp >>> 0 > 6) {
- if ((cp | 0) != 83) {
- break e
- }
- if (!pp) {
- break G
- }
- op = o[(np + 64) >> 2]
- break E
- }
- switch ((sp - 1) | 0) {
- case 1:
- break F
- case 0:
- case 2:
- break e
- default:
- break p
- }
- }
- cp = 0
- Kj(a, 32, tp, 0, qp)
- break D
- }
- o[(np + 12) >> 2] = 0
- o[(np + 8) >> 2] = o[(np + 64) >> 2]
- o[(np + 64) >> 2] = np + 8
- pp = -1
- op = (np + 8) | 0
- }
- cp = 0
- H: {
- while (1) {
- rp = o[op >> 2]
- if (!rp) {
- break H
- }
- rp = Vj((np + 4) | 0, rp)
- sp = (rp | 0) < 0
- if (!(sp | (rp >>> 0 > (pp - cp) >>> 0))) {
- op = (op + 4) | 0
- cp = (cp + rp) | 0
- if (pp >>> 0 > cp >>> 0) {
- continue
- }
- break H
- }
- break
- }
- up = -1
- if (sp) {
- break a
- }
- }
- Kj(a, 32, tp, cp, qp)
- if (!cp) {
- cp = 0
- break D
- }
- pp = 0
- op = o[(np + 64) >> 2]
- while (1) {
- rp = o[op >> 2]
- if (!rp) {
- break D
- }
- rp = Vj((np + 4) | 0, rp)
- pp = (rp + pp) | 0
- if ((pp | 0) > (cp | 0)) {
- break D
- }
- Hj(a, (np + 4) | 0, rp)
- op = (op + 4) | 0
- if (pp >>> 0 < cp >>> 0) {
- continue
- }
- break
- }
- }
- Kj(a, 32, tp, cp, qp ^ 8192)
- cp = (tp | 0) > (cp | 0) ? tp : cp
- continue b
- }
- op = (cp + 1) | 0
- o[(np + 76) >> 2] = op
- qp = p[(cp + 1) | 0]
- cp = op
- continue
- }
- break
- }
- switch ((xp - 1) | 0) {
- case 21:
- break i
- case 23:
- break k
- case 22:
- break l
- case 11:
- case 16:
- break m
- case 10:
- break n
- case 26:
- break o
- case 8:
- case 12:
- case 13:
- case 14:
- break p
- case 0:
- case 1:
- case 2:
- case 3:
- case 4:
- case 5:
- case 6:
- case 7:
- case 9:
- case 15:
- case 17:
- case 18:
- case 19:
- case 20:
- case 24:
- case 25:
- case 27:
- case 29:
- case 30:
- break e
- case 28:
- break h
- default:
- break j
- }
- }
- up = vp
- if (a) {
- break a
- }
- if (!zp) {
- break d
- }
- cp = 1
- while (1) {
- a = o[((cp << 2) + mp) >> 2]
- if (a) {
- Jj(((cp << 3) + lp) | 0, a, dp)
- up = 1
- cp = (cp + 1) | 0
- if ((cp | 0) != 10) {
- continue
- }
- break a
- }
- break
- }
- up = 1
- if (cp >>> 0 >= 10) {
- break a
- }
- while (1) {
- if (o[((cp << 2) + mp) >> 2]) {
- break q
- }
- a = cp >>> 0 > 8
- cp = (cp + 1) | 0
- if (!a) {
- continue
- }
- break
- }
- break a
- }
- up = -1
- break a
- }
- cp = l[269](a, t[(np + 64) >> 3], tp, pp, qp, cp) | 0
- continue
- }
- cp = o[(np + 64) >> 2]
- rp = cp ? cp : 11070
- cp = $j(rp, pp)
- op = cp ? cp : (pp + rp) | 0
- qp = sp
- pp = cp ? (cp - rp) | 0 : pp
- break e
- }
- m[(np + 55) | 0] = o[(np + 64) >> 2]
- pp = 1
- rp = Bp
- qp = sp
- break e
- }
- sp = o[(np + 68) >> 2]
- cp = sp
- rp = o[(np + 64) >> 2]
- if ((cp | 0) < -1 ? 1 : (cp | 0) <= -1 ? (rp >>> 0 > 4294967295 ? 0 : 1) : 0) {
- cp = (0 - ((cp + (0 < rp >>> 0)) | 0)) | 0
- rp = (0 - rp) | 0
- o[(np + 64) >> 2] = rp
- o[(np + 68) >> 2] = cp
- up = 1
- wp = 11060
- break g
- }
- if (qp & 2048) {
- up = 1
- wp = 11061
- break g
- }
- up = qp & 1
- wp = up ? 11062 : 11060
- break g
- }
- rp = Lj(o[(np + 64) >> 2], o[(np + 68) >> 2], yp)
- if (!(qp & 8)) {
- break f
- }
- cp = (yp - rp) | 0
- pp = (pp | 0) > (cp | 0) ? pp : (cp + 1) | 0
- break f
- }
- pp = pp >>> 0 > 8 ? pp : 8
- qp = qp | 8
- cp = 120
- }
- rp = Mj(o[(np + 64) >> 2], o[(np + 68) >> 2], yp, cp & 32)
- if (!(qp & 8) | !(o[(np + 64) >> 2] | o[(np + 68) >> 2])) {
- break f
- }
- wp = ((cp >>> 4) + 11060) | 0
- up = 2
- break f
- }
- cp = 0
- op = Ap & 255
- if (op >>> 0 > 7) {
- continue
- }
- I: {
- switch ((op - 1) | 0) {
- default:
- o[o[(np + 64) >> 2] >> 2] = vp
- continue
- case 0:
- o[o[(np + 64) >> 2] >> 2] = vp
- continue
- case 1:
- op = o[(np + 64) >> 2]
- o[op >> 2] = vp
- o[(op + 4) >> 2] = vp >> 31
- continue
- case 2:
- n[o[(np + 64) >> 2] >> 1] = vp
- continue
- case 3:
- m[o[(np + 64) >> 2]] = vp
- continue
- case 5:
- o[o[(np + 64) >> 2] >> 2] = vp
- continue
- case 4:
- continue
- case 6:
- break I
- }
- }
- op = o[(np + 64) >> 2]
- o[op >> 2] = vp
- o[(op + 4) >> 2] = vp >> 31
- continue
- }
- rp = o[(np + 64) >> 2]
- cp = o[(np + 68) >> 2]
- wp = 11060
- }
- rp = Nj(rp, cp, yp)
- }
- qp = (pp | 0) > -1 ? qp & -65537 : qp
- cp = o[(np + 64) >> 2]
- sp = o[(np + 68) >> 2]
- J: {
- if (!(!!(cp | sp) | pp)) {
- rp = yp
- pp = 0
- break J
- }
- cp = (!(cp | sp) + ((yp - rp) | 0)) | 0
- pp = (pp | 0) > (cp | 0) ? pp : cp
- }
- }
- sp = (op - rp) | 0
- pp = (pp | 0) < (sp | 0) ? sp : pp
- op = (pp + up) | 0
- cp = (tp | 0) < (op | 0) ? op : tp
- Kj(a, 32, cp, op, qp)
- Hj(a, wp, up)
- Kj(a, 48, cp, op, qp ^ 65536)
- Kj(a, 48, pp, sp, 0)
- Hj(a, rp, sp)
- Kj(a, 32, cp, op, qp ^ 8192)
- continue
- }
- break
- }
- up = 0
- }
- R = (np + 80) | 0
- return up
- }
- function Hj(a, o, cp) {
- if (!(p[a | 0] & 32)) {
- Ej(o, cp, a)
- }
- }
- function Ij(a) {
- var cp = 0,
- dp = 0,
- lp = 0
- if (Uj(m[o[a >> 2]])) {
- while (1) {
- cp = o[a >> 2]
- lp = m[cp | 0]
- o[a >> 2] = cp + 1
- dp = (((u(dp, 10) + lp) | 0) + -48) | 0
- if (Uj(m[(cp + 1) | 0])) {
- continue
- }
- break
- }
- }
- return dp
- }
- function Jj(a, mp, Cp) {
- a: {
- b: {
- if (mp >>> 0 > 20) {
- break b
- }
- mp = (mp + -9) | 0
- if (mp >>> 0 > 9) {
- break b
- }
- c: {
- switch ((mp - 1) | 0) {
- default:
- mp = o[Cp >> 2]
- o[Cp >> 2] = mp + 4
- o[a >> 2] = o[mp >> 2]
- return
- case 0:
- mp = o[Cp >> 2]
- o[Cp >> 2] = mp + 4
- mp = o[mp >> 2]
- o[a >> 2] = mp
- o[(a + 4) >> 2] = mp >> 31
- return
- case 1:
- mp = o[Cp >> 2]
- o[Cp >> 2] = mp + 4
- o[a >> 2] = o[mp >> 2]
- o[(a + 4) >> 2] = 0
- return
- case 3:
- mp = o[Cp >> 2]
- o[Cp >> 2] = mp + 4
- mp = n[mp >> 1]
- o[a >> 2] = mp
- o[(a + 4) >> 2] = mp >> 31
- return
- case 4:
- mp = o[Cp >> 2]
- o[Cp >> 2] = mp + 4
- o[a >> 2] = q[mp >> 1]
- o[(a + 4) >> 2] = 0
- return
- case 5:
- mp = o[Cp >> 2]
- o[Cp >> 2] = mp + 4
- mp = m[mp | 0]
- o[a >> 2] = mp
- o[(a + 4) >> 2] = mp >> 31
- return
- case 6:
- mp = o[Cp >> 2]
- o[Cp >> 2] = mp + 4
- o[a >> 2] = p[mp | 0]
- o[(a + 4) >> 2] = 0
- return
- case 2:
- case 7:
- break a
- case 8:
- break c
- }
- }
- l[270](a, Cp)
- }
- return
- }
- mp = (o[Cp >> 2] + 7) & -8
- o[Cp >> 2] = mp + 8
- Cp = o[(mp + 4) >> 2]
- o[a >> 2] = o[mp >> 2]
- o[(a + 4) >> 2] = Cp
- }
- function Kj(a, o, mp, Cp, Dp) {
- var Ep = 0,
- Fp = 0,
- Gp = 0
- Ep = (R - 256) | 0
- R = Ep
- if (!((Dp & 73728) | ((mp | 0) <= (Cp | 0)))) {
- Dp = (mp - Cp) | 0
- Fp = Dp >>> 0 < 256
- xl(Ep, o, Fp ? Dp : 256)
- o = a
- Gp = Ep
- if (!Fp) {
- mp = (mp - Cp) | 0
- while (1) {
- Hj(a, Ep, 256)
- Dp = (Dp + -256) | 0
- if (Dp >>> 0 > 255) {
- continue
- }
- break
- }
- Dp = mp & 255
- }
- Hj(o, Gp, Dp)
- }
- R = (Ep + 256) | 0
- }
- function Lj(a, o, mp) {
- if (a | o) {
- while (1) {
- mp = (mp + -1) | 0
- m[mp | 0] = (a & 7) | 48
- a = ((o & 7) << 29) | (a >>> 3)
- o = o >>> 3
- if (a | o) {
- continue
- }
- break
- }
- }
- return mp
- }
- function Mj(a, o, mp, Cp) {
- if (a | o) {
- while (1) {
- mp = (mp + -1) | 0
- m[mp | 0] = p[((a & 15) + 11552) | 0] | Cp
- a = ((o & 15) << 28) | (a >>> 4)
- o = o >>> 4
- if (a | o) {
- continue
- }
- break
- }
- }
- return mp
- }
- function Nj(a, o, mp) {
- var Cp = 0,
- Dp = 0,
- Hp = 0
- a: {
- if ((((o | 0) == 1) & (a >>> 0 < 0)) | (o >>> 0 < 1)) {
- Cp = a
- break a
- }
- while (1) {
- Cp = Xl(a, o, 10, 0)
- Dp = T
- Hp = Dp
- Dp = Vl(Cp, Dp, 10, 0)
- mp = (mp + -1) | 0
- m[mp | 0] = (a - Dp) | 48
- Dp = (((o | 0) == 9) & (a >>> 0 > 4294967295)) | (o >>> 0 > 9)
- a = Cp
- o = Hp
- if (Dp) {
- continue
- }
- break
- }
- }
- if (Cp) {
- while (1) {
- mp = (mp + -1) | 0
- a = ((Cp >>> 0) / 10) | 0
- m[mp | 0] = (Cp - u(a, 10)) | 48
- o = Cp >>> 0 > 9
- Cp = a
- if (o) {
- continue
- }
- break
- }
- }
- return mp
- }
- function Oj(a, o, mp) {
- return Fj(a, o, mp)
- }
- function Pj(a, mp, Ip, Jp, Kp, Lp) {
- a = a | 0
- mp = +mp
- Ip = Ip | 0
- Jp = Jp | 0
- Kp = Kp | 0
- Lp = Lp | 0
- var Mp = 0,
- Np = 0,
- Op = 0,
- Pp = 0,
- Qp = 0,
- Rp = 0,
- Sp = 0,
- Tp = 0,
- Up = 0,
- Vp = 0,
- Wp = 0,
- Xp = 0,
- Yp = 0,
- Zp = 0,
- _p = 0,
- $p = 0,
- aq = 0,
- bq = 0,
- cq = 0,
- dq = 0,
- eq = 0,
- fq = 0,
- gq = 0,
- hq = 0,
- iq = 0
- Qp = (R - 560) | 0
- R = Qp
- o[(Qp + 44) >> 2] = 0
- h(+mp)
- Mp = e(1) | 0
- a: {
- if (((dq = 1), (eq = ((gq = e(0) >>> 0 > 4294967295 ? 0 : 1), (hq = 0), (iq = (Mp | 0) <= -1), iq ? gq : hq)), (fq = (Mp | 0) < -1), fq ? dq : eq)) {
- mp = -mp
- h(+mp)
- Mp = e(1) | 0
- e(0) | 0
- _p = 1
- $p = 11568
- break a
- }
- if (Kp & 2048) {
- _p = 1
- $p = 11571
- break a
- }
- _p = Kp & 1
- $p = _p ? 11574 : 11569
- }
- b: {
- if ((Mp & 2146435072) == 2146435072) {
- Sp = (_p + 3) | 0
- Kj(a, 32, Ip, Sp, Kp & -65537)
- Hj(a, $p, _p)
- Jp = (Lp >>> 5) & 1
- Hj(a, mp != mp ? (Jp ? 11595 : 11599) : Jp ? 11587 : 11591, 3)
- break b
- }
- mp = Xj(mp, (Qp + 44) | 0)
- mp = mp + mp
- if (mp != 0) {
- o[(Qp + 44) >> 2] = o[(Qp + 44) >> 2] + -1
- }
- Xp = (Qp + 16) | 0
- aq = Lp | 32
- if ((aq | 0) == 97) {
- Rp = Lp & 32
- Np = Rp ? ($p + 9) | 0 : $p
- c: {
- if (Jp >>> 0 > 11) {
- break c
- }
- Mp = (12 - Jp) | 0
- if (!Mp) {
- break c
- }
- Yp = 8
- while (1) {
- Yp = Yp * 16
- Mp = (Mp + -1) | 0
- if (Mp) {
- continue
- }
- break
- }
- if (p[Np | 0] == 45) {
- mp = -(Yp + (-mp - Yp))
- break c
- }
- mp = mp + Yp - Yp
- }
- Pp = o[(Qp + 44) >> 2]
- Mp = Pp >> 31
- Mp = Nj(Mp ^ (Mp + Pp), 0, Xp)
- if ((Xp | 0) == (Mp | 0)) {
- m[(Qp + 15) | 0] = 48
- Mp = (Qp + 15) | 0
- }
- Pp = _p | 2
- Op = o[(Qp + 44) >> 2]
- Up = (Mp + -2) | 0
- m[Up | 0] = Lp + 15
- m[(Mp + -1) | 0] = (Op | 0) < 0 ? 45 : 43
- $p = Kp & 8
- Op = (Qp + 16) | 0
- while (1) {
- Lp = Op
- Sp = Rp
- if (w(mp) < 2147483648) {
- Mp = ~~mp
- } else {
- Mp = -2147483648
- }
- m[Op | 0] = Sp | p[(Mp + 11552) | 0]
- mp = (mp - +(Mp | 0)) * 16
- Op = (Lp + 1) | 0
- if (!((((Op - ((Qp + 16) | 0)) | 0) != 1) | (mp == 0 ? !(((Jp | 0) > 0) | $p) : 0))) {
- m[(Lp + 1) | 0] = 46
- Op = (Lp + 2) | 0
- }
- if (mp != 0) {
- continue
- }
- break
- }
- Lp = a
- Mp = Ip
- if (!Jp | (((((Op - Qp) | 0) + -18) | 0) >= (Jp | 0))) {
- Rp = (((((Xp - ((Qp + 16) | 0)) | 0) - Up) | 0) + Op) | 0
- } else {
- Rp = (((((Jp + Xp) | 0) - Up) | 0) + 2) | 0
- }
- Jp = Rp
- Sp = (Jp + Pp) | 0
- Kj(Lp, 32, Mp, Sp, Kp)
- Hj(a, Np, Pp)
- Kj(a, 48, Ip, Sp, Kp ^ 65536)
- Lp = (Op - ((Qp + 16) | 0)) | 0
- Hj(a, (Qp + 16) | 0, Lp)
- Jp = (Xp - Up) | 0
- Kj(a, 48, (Rp - ((Jp + Lp) | 0)) | 0, 0, 0)
- Hj(a, Up, Jp)
- break b
- }
- Mp = (Jp | 0) < 0
- d: {
- if (mp == 0) {
- Np = o[(Qp + 44) >> 2]
- break d
- }
- Np = (o[(Qp + 44) >> 2] + -28) | 0
- o[(Qp + 44) >> 2] = Np
- mp = mp * 268435456
- }
- Rp = Mp ? 6 : Jp
- Up = (Np | 0) < 0 ? (Qp + 48) | 0 : (Qp + 336) | 0
- Pp = Up
- while (1) {
- Jp = Pp
- if ((mp < 4294967296) & (mp >= 0)) {
- Mp = ~~mp >>> 0
- } else {
- Mp = 0
- }
- o[Jp >> 2] = Mp
- Pp = (Pp + 4) | 0
- mp = (mp - +(Mp >>> 0)) * 1e9
- if (mp != 0) {
- continue
- }
- break
- }
- e: {
- if ((Np | 0) < 1) {
- Mp = Pp
- Op = Up
- break e
- }
- Op = Up
- while (1) {
- Tp = (Np | 0) < 29 ? Np : 29
- Mp = (Pp + -4) | 0
- f: {
- if (Mp >>> 0 < Op >>> 0) {
- break f
- }
- Jp = Tp
- Np = 0
- while (1) {
- Sp = Mp
- bq = Np
- Wp = o[Mp >> 2]
- Vp = Jp & 31
- if (32 <= (Jp & 63) >>> 0) {
- Np = Wp << Vp
- Wp = 0
- } else {
- Np = ((1 << Vp) - 1) & (Wp >>> (32 - Vp))
- Wp = Wp << Vp
- }
- Vp = (bq + Wp) | 0
- Np = (Np + cq) | 0
- Np = Vp >>> 0 < Wp >>> 0 ? (Np + 1) | 0 : Np
- Np = Xl(Vp, Np, 1e9, 0)
- Wp = Sp
- Sp = Vl(Np, T, 1e9, 0)
- o[Wp >> 2] = Vp - Sp
- Mp = (Mp + -4) | 0
- if (Mp >>> 0 >= Op >>> 0) {
- continue
- }
- break
- }
- if (!Np) {
- break f
- }
- Op = (Op + -4) | 0
- o[Op >> 2] = Np
- }
- while (1) {
- Mp = Pp
- if (Mp >>> 0 > Op >>> 0) {
- Pp = (Mp + -4) | 0
- if (!o[Pp >> 2]) {
- continue
- }
- }
- break
- }
- Np = (o[(Qp + 44) >> 2] - Tp) | 0
- o[(Qp + 44) >> 2] = Np
- Pp = Mp
- if ((Np | 0) > 0) {
- continue
- }
- break
- }
- }
- if ((Np | 0) <= -1) {
- Zp = (((((Rp + 25) | 0) / 9) | 0) + 1) | 0
- Tp = (aq | 0) == 102
- while (1) {
- Jp = (Np | 0) < -9 ? 9 : (0 - Np) | 0
- g: {
- if (Op >>> 0 >= Mp >>> 0) {
- Op = o[Op >> 2] ? Op : (Op + 4) | 0
- break g
- }
- Sp = 1e9 >>> Jp
- Vp = (-1 << Jp) ^ -1
- Np = 0
- Pp = Op
- while (1) {
- Wp = Np
- Np = o[Pp >> 2]
- o[Pp >> 2] = Wp + (Np >>> Jp)
- Np = u(Sp, Np & Vp)
- Pp = (Pp + 4) | 0
- if (Pp >>> 0 < Mp >>> 0) {
- continue
- }
- break
- }
- Op = o[Op >> 2] ? Op : (Op + 4) | 0
- if (!Np) {
- break g
- }
- o[Mp >> 2] = Np
- Mp = (Mp + 4) | 0
- }
- Np = (Jp + o[(Qp + 44) >> 2]) | 0
- o[(Qp + 44) >> 2] = Np
- Jp = Tp ? Up : Op
- Mp = (Mp - Jp) >> 2 > (Zp | 0) ? (Jp + (Zp << 2)) | 0 : Mp
- if ((Np | 0) < 0) {
- continue
- }
- break
- }
- }
- Pp = 0
- h: {
- if (Op >>> 0 >= Mp >>> 0) {
- break h
- }
- Pp = u((Up - Op) >> 2, 9)
- Np = 10
- Jp = o[Op >> 2]
- if (Jp >>> 0 < 10) {
- break h
- }
- while (1) {
- Pp = (Pp + 1) | 0
- Np = u(Np, 10)
- if (Jp >>> 0 >= Np >>> 0) {
- continue
- }
- break
- }
- }
- Jp = (((Rp - ((aq | 0) == 102 ? 0 : Pp)) | 0) - (((aq | 0) == 103) & ((Rp | 0) != 0))) | 0
- if ((Jp | 0) < ((u((Mp - Up) >> 2, 9) + -9) | 0)) {
- Np = (Jp + 9216) | 0
- Sp = ((Np | 0) / 9) | 0
- Tp = (((Up + (Sp << 2)) | 0) + -4092) | 0
- Jp = 10
- Np = (Np - u(Sp, 9)) | 0
- if ((Np | 0) <= 7) {
- while (1) {
- Jp = u(Jp, 10)
- Sp = (Np | 0) < 7
- Np = (Np + 1) | 0
- if (Sp) {
- continue
- }
- break
- }
- }
- Sp = o[Tp >> 2]
- Vp = ((Sp >>> 0) / (Jp >>> 0)) | 0
- Zp = (Tp + 4) | 0
- Np = (Sp - u(Jp, Vp)) | 0
- i: {
- if (Np ? 0 : (Zp | 0) == (Mp | 0)) {
- break i
- }
- Wp = Jp >>> 1
- Yp = Np >>> 0 < Wp >>> 0 ? 0.5 : (Mp | 0) == (Zp | 0) ? ((Wp | 0) == (Np | 0) ? 1 : 1.5) : 1.5
- mp = Vp & 1 ? 9007199254740994 : 9007199254740992
- if (!(!_p | (p[$p | 0] != 45))) {
- Yp = -Yp
- mp = -mp
- }
- Np = (Sp - Np) | 0
- o[Tp >> 2] = Np
- if (mp + Yp == mp) {
- break i
- }
- Jp = (Jp + Np) | 0
- o[Tp >> 2] = Jp
- if (Jp >>> 0 >= 1e9) {
- while (1) {
- o[Tp >> 2] = 0
- Tp = (Tp + -4) | 0
- if (Tp >>> 0 < Op >>> 0) {
- Op = (Op + -4) | 0
- o[Op >> 2] = 0
- }
- Jp = (o[Tp >> 2] + 1) | 0
- o[Tp >> 2] = Jp
- if (Jp >>> 0 > 999999999) {
- continue
- }
- break
- }
- }
- Pp = u((Up - Op) >> 2, 9)
- Np = 10
- Jp = o[Op >> 2]
- if (Jp >>> 0 < 10) {
- break i
- }
- while (1) {
- Pp = (Pp + 1) | 0
- Np = u(Np, 10)
- if (Jp >>> 0 >= Np >>> 0) {
- continue
- }
- break
- }
- }
- Jp = (Tp + 4) | 0
- Mp = Mp >>> 0 > Jp >>> 0 ? Jp : Mp
- }
- j: {
- while (1) {
- Np = Mp
- Tp = 0
- if (Mp >>> 0 <= Op >>> 0) {
- break j
- }
- Mp = (Np + -4) | 0
- if (!o[Mp >> 2]) {
- continue
- }
- break
- }
- Tp = 1
- }
- k: {
- if ((aq | 0) != 103) {
- Vp = Kp & 8
- break k
- }
- Jp = Rp ? Rp : 1
- Mp = ((Jp | 0) > (Pp | 0)) & ((Pp | 0) > -5)
- Rp = ((Mp ? Pp ^ -1 : -1) + Jp) | 0
- Lp = ((Mp ? -1 : -2) + Lp) | 0
- Vp = Kp & 8
- if (Vp) {
- break k
- }
- Mp = 9
- l: {
- if (!Tp) {
- break l
- }
- Sp = o[(Np + -4) >> 2]
- if (!Sp) {
- break l
- }
- Jp = 10
- Mp = 0
- if ((Sp >>> 0) % 10) {
- break l
- }
- while (1) {
- Mp = (Mp + 1) | 0
- Jp = u(Jp, 10)
- if (!((Sp >>> 0) % (Jp >>> 0))) {
- continue
- }
- break
- }
- }
- Jp = (u((Np - Up) >> 2, 9) + -9) | 0
- if ((Lp | 32) == 102) {
- Vp = 0
- Jp = (Jp - Mp) | 0
- Jp = (Jp | 0) > 0 ? Jp : 0
- Rp = (Rp | 0) < (Jp | 0) ? Rp : Jp
- break k
- }
- Vp = 0
- Jp = (((Jp + Pp) | 0) - Mp) | 0
- Jp = (Jp | 0) > 0 ? Jp : 0
- Rp = (Rp | 0) < (Jp | 0) ? Rp : Jp
- }
- aq = Rp | Vp
- Wp = (aq | 0) != 0
- Jp = a
- bq = Ip
- cq = Lp | 32
- Mp = (Pp | 0) > 0 ? Pp : 0
- m: {
- if ((cq | 0) == 102) {
- break m
- }
- Mp = Pp >> 31
- Mp = Nj((Mp + Pp) ^ Mp, 0, Xp)
- if (((Xp - Mp) | 0) <= 1) {
- while (1) {
- Mp = (Mp + -1) | 0
- m[Mp | 0] = 48
- if (((Xp - Mp) | 0) < 2) {
- continue
- }
- break
- }
- }
- Zp = (Mp + -2) | 0
- m[Zp | 0] = Lp
- m[(Mp + -1) | 0] = (Pp | 0) < 0 ? 45 : 43
- Mp = (Xp - Zp) | 0
- }
- Sp = (((Mp + ((Wp + ((Rp + _p) | 0)) | 0)) | 0) + 1) | 0
- Kj(Jp, 32, bq, Sp, Kp)
- Hj(a, $p, _p)
- Kj(a, 48, Ip, Sp, Kp ^ 65536)
- n: {
- o: {
- p: {
- if ((cq | 0) == 102) {
- Jp = (Qp + 16) | 8
- Lp = (Qp + 16) | 9
- Pp = Op >>> 0 > Up >>> 0 ? Up : Op
- Op = Pp
- while (1) {
- Mp = Nj(o[Op >> 2], 0, Lp)
- q: {
- if ((Op | 0) != (Pp | 0)) {
- if (Mp >>> 0 <= (Qp + 16) >>> 0) {
- break q
- }
- while (1) {
- Mp = (Mp + -1) | 0
- m[Mp | 0] = 48
- if (Mp >>> 0 > (Qp + 16) >>> 0) {
- continue
- }
- break
- }
- break q
- }
- if ((Lp | 0) != (Mp | 0)) {
- break q
- }
- m[(Qp + 24) | 0] = 48
- Mp = Jp
- }
- Hj(a, Mp, (Lp - Mp) | 0)
- Op = (Op + 4) | 0
- if (Op >>> 0 <= Up >>> 0) {
- continue
- }
- break
- }
- if (aq) {
- Hj(a, 11603, 1)
- }
- if (((Rp | 0) < 1) | (Op >>> 0 >= Np >>> 0)) {
- break p
- }
- while (1) {
- Mp = Nj(o[Op >> 2], 0, Lp)
- if (Mp >>> 0 > (Qp + 16) >>> 0) {
- while (1) {
- Mp = (Mp + -1) | 0
- m[Mp | 0] = 48
- if (Mp >>> 0 > (Qp + 16) >>> 0) {
- continue
- }
- break
- }
- }
- Hj(a, Mp, (Rp | 0) < 9 ? Rp : 9)
- Mp = (Rp + -9) | 0
- Op = (Op + 4) | 0
- if (Op >>> 0 >= Np >>> 0) {
- break o
- }
- Jp = (Rp | 0) > 9
- Rp = Mp
- if (Jp) {
- continue
- }
- break
- }
- break o
- }
- r: {
- if ((Rp | 0) < 0) {
- break r
- }
- Up = Tp ? Np : (Op + 4) | 0
- Jp = (Qp + 16) | 8
- Lp = (Qp + 16) | 9
- Pp = Op
- while (1) {
- Mp = Nj(o[Pp >> 2], 0, Lp)
- if ((Lp | 0) == (Mp | 0)) {
- m[(Qp + 24) | 0] = 48
- Mp = Jp
- }
- s: {
- if ((Op | 0) != (Pp | 0)) {
- if (Mp >>> 0 <= (Qp + 16) >>> 0) {
- break s
- }
- while (1) {
- Mp = (Mp + -1) | 0
- m[Mp | 0] = 48
- if (Mp >>> 0 > (Qp + 16) >>> 0) {
- continue
- }
- break
- }
- break s
- }
- Hj(a, Mp, 1)
- Mp = (Mp + 1) | 0
- if ((Rp | 0) < 1 ? !Vp : 0) {
- break s
- }
- Hj(a, 11603, 1)
- }
- Np = Mp
- Mp = (Lp - Mp) | 0
- Hj(a, Np, (Rp | 0) > (Mp | 0) ? Mp : Rp)
- Rp = (Rp - Mp) | 0
- Pp = (Pp + 4) | 0
- if (Pp >>> 0 >= Up >>> 0) {
- break r
- }
- if ((Rp | 0) > -1) {
- continue
- }
- break
- }
- }
- Kj(a, 48, (Rp + 18) | 0, 18, 0)
- Hj(a, Zp, (Xp - Zp) | 0)
- break n
- }
- Mp = Rp
- }
- Kj(a, 48, (Mp + 9) | 0, 9, 0)
- }
- }
- Kj(a, 32, Ip, Sp, Kp ^ 8192)
- R = (Qp + 560) | 0
- return ((Sp | 0) < (Ip | 0) ? Ip : Sp) | 0
- }
- function Qj(a, mp) {
- a = a | 0
- mp = mp | 0
- var Ip = 0,
- Jp = 0,
- Kp = 0
- Ip = mp
- mp = (o[mp >> 2] + 15) & -16
- o[Ip >> 2] = mp + 16
- ;(Jp = a), (Kp = dk(o[mp >> 2], o[(mp + 4) >> 2], o[(mp + 8) >> 2], o[(mp + 12) >> 2])), (t[Jp >> 3] = Kp)
- }
- function Rj(a, mp, Lp) {
- a = a | 0
- mp = mp | 0
- Lp = Lp | 0
- var jq = 0,
- kq = 0,
- lq = 0,
- mq = 0,
- nq = 0,
- oq = 0
- jq = (R - 32) | 0
- R = jq
- kq = o[(a + 28) >> 2]
- o[(jq + 16) >> 2] = kq
- lq = o[(a + 20) >> 2]
- o[(jq + 28) >> 2] = Lp
- o[(jq + 24) >> 2] = mp
- mp = (lq - kq) | 0
- o[(jq + 20) >> 2] = mp
- lq = (mp + Lp) | 0
- nq = 2
- mp = (jq + 16) | 0
- while (1) {
- a: {
- b: {
- if (ak(I(o[(a + 60) >> 2], mp | 0, nq | 0, (jq + 12) | 0) | 0)) {
- o[(jq + 12) >> 2] = -1
- kq = -1
- break b
- }
- kq = o[(jq + 12) >> 2]
- }
- c: {
- if ((kq | 0) == (lq | 0)) {
- mp = o[(a + 44) >> 2]
- o[(a + 28) >> 2] = mp
- o[(a + 20) >> 2] = mp
- o[(a + 16) >> 2] = mp + o[(a + 48) >> 2]
- a = Lp
- break c
- }
- if ((kq | 0) > -1) {
- break a
- }
- o[(a + 28) >> 2] = 0
- o[(a + 16) >> 2] = 0
- o[(a + 20) >> 2] = 0
- o[a >> 2] = o[a >> 2] | 32
- a = 0
- if ((nq | 0) == 2) {
- break c
- }
- a = (Lp - o[(mp + 4) >> 2]) | 0
- }
- R = (jq + 32) | 0
- return a | 0
- }
- mq = o[(mp + 4) >> 2]
- oq = kq >>> 0 > mq >>> 0
- mp = oq ? (mp + 8) | 0 : mp
- mq = (kq - (oq ? mq : 0)) | 0
- o[mp >> 2] = mq + o[mp >> 2]
- o[(mp + 4) >> 2] = o[(mp + 4) >> 2] - mq
- lq = (lq - kq) | 0
- nq = (nq - oq) | 0
- continue
- }
- }
- function Sj(a, mp, Lp, pq) {
- a = a | 0
- mp = mp | 0
- Lp = Lp | 0
- pq = pq | 0
- var qq = 0
- qq = (R - 16) | 0
- R = qq
- a: {
- if (!ak(Q(o[(a + 60) >> 2], mp | 0, Lp | 0, pq & 255, (qq + 8) | 0) | 0)) {
- mp = o[(qq + 12) >> 2]
- a = o[(qq + 8) >> 2]
- break a
- }
- o[(qq + 8) >> 2] = -1
- o[(qq + 12) >> 2] = -1
- mp = -1
- a = -1
- }
- R = (qq + 16) | 0
- T = mp
- return a | 0
- }
- function Tj(a) {
- a = a | 0
- return J(o[(a + 60) >> 2]) | 0
- }
- function Uj(a) {
- return (a + -48) >>> 0 < 10
- }
- function Vj(a, o) {
- if (!a) {
- return 0
- }
- return Wj(a, o)
- }
- function Wj(a, mp) {
- a: {
- if (a) {
- if (mp >>> 0 <= 127) {
- break a
- }
- b: {
- if (!o[o[3253] >> 2]) {
- if ((mp & -128) == 57216) {
- break a
- }
- break b
- }
- if (mp >>> 0 <= 2047) {
- m[(a + 1) | 0] = (mp & 63) | 128
- m[a | 0] = (mp >>> 6) | 192
- return 2
- }
- if (!((mp & -8192) != 57344 ? mp >>> 0 >= 55296 : 0)) {
- m[(a + 2) | 0] = (mp & 63) | 128
- m[a | 0] = (mp >>> 12) | 224
- m[(a + 1) | 0] = ((mp >>> 6) & 63) | 128
- return 3
- }
- if ((mp + -65536) >>> 0 <= 1048575) {
- m[(a + 3) | 0] = (mp & 63) | 128
- m[a | 0] = (mp >>> 18) | 240
- m[(a + 2) | 0] = ((mp >>> 6) & 63) | 128
- m[(a + 1) | 0] = ((mp >>> 12) & 63) | 128
- return 4
- }
- }
- o[3269] = 25
- a = -1
- } else {
- a = 1
- }
- return a
- }
- m[a | 0] = mp
- return 1
- }
- function Xj(a, mp) {
- var Lp = 0,
- pq = 0,
- rq = 0
- h(+a)
- Lp = e(1) | 0
- pq = e(0) | 0
- rq = Lp
- Lp = (Lp >>> 20) & 2047
- if ((Lp | 0) != 2047) {
- if (!Lp) {
- Lp = mp
- if (a == 0) {
- mp = 0
- } else {
- a = Xj(a * 0x10000000000000000, mp)
- mp = (o[mp >> 2] + -64) | 0
- }
- o[Lp >> 2] = mp
- return a
- }
- o[mp >> 2] = Lp + -1022
- f(0, pq | 0)
- f(1, (rq & -2146435073) | 1071644672)
- a = +g()
- }
- return a
- }
- function Yj(a) {
- var o = 0,
- mp = 0,
- sq = 0,
- tq = 0,
- uq = 0,
- vq = 0
- while (1) {
- o = a
- a = (o + 1) | 0
- mp = m[o | 0]
- if (((mp | 0) == 32) | ((mp + -9) >>> 0 < 5)) {
- continue
- }
- break
- }
- mp = m[o | 0]
- tq = (mp + -43) | 0
- a: {
- if (tq >>> 0 > 2) {
- break a
- }
- b: {
- switch ((tq - 1) | 0) {
- case 1:
- uq = 1
- break
- case 0:
- break a
- default:
- break b
- }
- }
- mp = m[a | 0]
- o = a
- vq = uq
- }
- if (Uj(mp)) {
- while (1) {
- sq = (((u(sq, 10) - m[o | 0]) | 0) + 48) | 0
- a = m[(o + 1) | 0]
- o = (o + 1) | 0
- if (Uj(a)) {
- continue
- }
- break
- }
- }
- return vq ? sq : (0 - sq) | 0
- }
- function Zj(a, wq, xq) {
- var yq = 0,
- zq = 0,
- Aq = 0
- a: {
- if (!xq) {
- break a
- }
- while (1) {
- yq = p[a | 0]
- zq = p[wq | 0]
- if ((yq | 0) == (zq | 0)) {
- wq = (wq + 1) | 0
- a = (a + 1) | 0
- xq = (xq + -1) | 0
- if (xq) {
- continue
- }
- break a
- }
- break
- }
- Aq = (yq - zq) | 0
- }
- return Aq
- }
- function _j(a) {
- var wq = 0,
- xq = 0,
- Bq = 0
- a: {
- b: {
- wq = a
- if (!(wq & 3)) {
- break b
- }
- if (!p[a | 0]) {
- break a
- }
- while (1) {
- wq = (wq + 1) | 0
- if (!(wq & 3)) {
- break b
- }
- if (p[wq | 0]) {
- continue
- }
- break
- }
- break a
- }
- while (1) {
- xq = wq
- wq = (wq + 4) | 0
- Bq = o[xq >> 2]
- if (!((Bq ^ -1) & (Bq + -16843009) & -2139062144)) {
- continue
- }
- break
- }
- if (!(Bq & 255)) {
- wq = xq
- break a
- }
- while (1) {
- Bq = p[(xq + 1) | 0]
- wq = (xq + 1) | 0
- xq = wq
- if (Bq) {
- continue
- }
- break
- }
- }
- return (wq - a) | 0
- }
- function $j(a, Cq) {
- var Dq = 0,
- Eq = 0,
- Fq = 0
- Dq = (Cq | 0) != 0
- a: {
- b: {
- c: {
- d: {
- if (!Cq | !(a & 3)) {
- break d
- }
- while (1) {
- if (!p[a | 0]) {
- break c
- }
- a = (a + 1) | 0
- Cq = (Cq + -1) | 0
- Dq = (Cq | 0) != 0
- if (!Cq) {
- break d
- }
- if (a & 3) {
- continue
- }
- break
- }
- }
- if (!Dq) {
- break b
- }
- }
- if (!p[a | 0]) {
- break a
- }
- e: {
- if (Cq >>> 0 >= 4) {
- Dq = (Cq + -4) | 0
- Eq = Dq & -4
- Dq = (Dq - Eq) | 0
- Eq = (((a + Eq) | 0) + 4) | 0
- while (1) {
- Fq = o[a >> 2]
- if ((Fq ^ -1) & (Fq + -16843009) & -2139062144) {
- break e
- }
- a = (a + 4) | 0
- Cq = (Cq + -4) | 0
- if (Cq >>> 0 > 3) {
- continue
- }
- break
- }
- Cq = Dq
- a = Eq
- }
- if (!Cq) {
- break b
- }
- }
- while (1) {
- if (!p[a | 0]) {
- break a
- }
- a = (a + 1) | 0
- Cq = (Cq + -1) | 0
- if (Cq) {
- continue
- }
- break
- }
- }
- return 0
- }
- return a
- }
- function ak(a) {
- if (!a) {
- return 0
- }
- o[3269] = a
- return -1
- }
- function bk(a, Cq, Gq, Hq, Iq, Jq) {
- var Kq = 0,
- Lq = 0,
- Mq = 0,
- Nq = 0
- a: {
- if (Jq & 64) {
- Hq = Cq
- Iq = (Jq + -64) | 0
- Cq = Iq & 31
- if (32 <= (Iq & 63) >>> 0) {
- Iq = Hq << Cq
- Hq = 0
- } else {
- Iq = (((1 << Cq) - 1) & (Hq >>> (32 - Cq))) | (Gq << Cq)
- Hq = Hq << Cq
- }
- Cq = 0
- Gq = 0
- break a
- }
- if (!Jq) {
- break a
- }
- Kq = Hq
- Mq = Jq
- Hq = Jq & 31
- if (32 <= (Jq & 63) >>> 0) {
- Lq = Kq << Hq
- Nq = 0
- } else {
- Lq = (((1 << Hq) - 1) & (Kq >>> (32 - Hq))) | (Iq << Hq)
- Nq = Kq << Hq
- }
- Hq = Gq
- Kq = Cq
- Jq = (64 - Jq) | 0
- Iq = Jq & 31
- if (32 <= (Jq & 63) >>> 0) {
- Jq = 0
- Hq = Hq >>> Iq
- } else {
- Jq = Hq >>> Iq
- Hq = ((((1 << Iq) - 1) & Hq) << (32 - Iq)) | (Kq >>> Iq)
- }
- Hq = Nq | Hq
- Iq = Jq | Lq
- Jq = Cq
- Cq = Mq & 31
- if (32 <= (Mq & 63) >>> 0) {
- Lq = Jq << Cq
- Cq = 0
- } else {
- Lq = (((1 << Cq) - 1) & (Jq >>> (32 - Cq))) | (Gq << Cq)
- Cq = Jq << Cq
- }
- Gq = Lq
- }
- o[a >> 2] = Cq
- o[(a + 4) >> 2] = Gq
- o[(a + 8) >> 2] = Hq
- o[(a + 12) >> 2] = Iq
- }
- function ck(a, Cq, Gq, Hq, Iq, Jq) {
- var Oq = 0,
- Pq = 0,
- Qq = 0,
- Rq = 0
- a: {
- b: {
- if (Jq & 64) {
- Gq = (Jq + -64) | 0
- Cq = Gq & 31
- if (32 <= (Gq & 63) >>> 0) {
- Gq = 0
- Cq = Iq >>> Cq
- } else {
- Gq = Iq >>> Cq
- Cq = ((((1 << Cq) - 1) & Iq) << (32 - Cq)) | (Hq >>> Cq)
- }
- Hq = 0
- Iq = 0
- break b
- }
- if (!Jq) {
- break a
- }
- Pq = Iq
- Qq = Hq
- Rq = (64 - Jq) | 0
- Oq = Rq & 31
- if (32 <= (Rq & 63) >>> 0) {
- Pq = Qq << Oq
- Rq = 0
- } else {
- Pq = (((1 << Oq) - 1) & (Qq >>> (32 - Oq))) | (Pq << Oq)
- Rq = Qq << Oq
- }
- Qq = Cq
- Oq = Jq
- Cq = Oq & 31
- if (32 <= (Oq & 63) >>> 0) {
- Oq = 0
- Cq = Gq >>> Cq
- } else {
- Oq = Gq >>> Cq
- Cq = ((((1 << Cq) - 1) & Gq) << (32 - Cq)) | (Qq >>> Cq)
- }
- Cq = Rq | Cq
- Gq = Oq | Pq
- Oq = Hq
- Hq = Jq & 31
- if (32 <= (Jq & 63) >>> 0) {
- Pq = 0
- Hq = Iq >>> Hq
- } else {
- Pq = Iq >>> Hq
- Hq = ((((1 << Hq) - 1) & Iq) << (32 - Hq)) | (Oq >>> Hq)
- }
- Iq = Pq
- }
- }
- o[a >> 2] = Cq
- o[(a + 4) >> 2] = Gq
- o[(a + 8) >> 2] = Hq
- o[(a + 12) >> 2] = Iq
- }
- function dk(a, Cq, Gq, Hq) {
- var Iq = 0,
- Jq = 0,
- Sq = 0,
- Tq = 0,
- Uq = 0,
- Vq = 0,
- Wq = 0
- Sq = (R - 32) | 0
- R = Sq
- Iq = Hq & 2147483647
- Uq = Iq
- Iq = (Iq + -1006698496) | 0
- Tq = Gq
- Jq = Gq
- if (Gq >>> 0 < 0) {
- Iq = (Iq + 1) | 0
- }
- Vq = Jq
- Jq = Iq
- Iq = (Uq + -1140785152) | 0
- Wq = Tq
- if (Tq >>> 0 < 0) {
- Iq = (Iq + 1) | 0
- }
- a: {
- if ((((Iq | 0) == (Jq | 0)) & (Vq >>> 0 < Wq >>> 0)) | (Jq >>> 0 < Iq >>> 0)) {
- Iq = (Hq << 4) | (Gq >>> 28)
- Gq = (Gq << 4) | (Cq >>> 28)
- Cq = Cq & 268435455
- Tq = Cq
- if ((((Cq | 0) == 134217728) & (a >>> 0 >= 1)) | (Cq >>> 0 > 134217728)) {
- Iq = (Iq + 1073741824) | 0
- a = (Gq + 1) | 0
- if (a >>> 0 < 1) {
- Iq = (Iq + 1) | 0
- }
- Jq = a
- break a
- }
- Jq = Gq
- Iq = (Iq - (((Gq >>> 0 < 0) + -1073741824) | 0)) | 0
- if (a | (Tq ^ 134217728)) {
- break a
- }
- a = (Jq + (Jq & 1)) | 0
- if (a >>> 0 < Jq >>> 0) {
- Iq = (Iq + 1) | 0
- }
- Jq = a
- break a
- }
- if (!(!Tq & ((Uq | 0) == 2147418112) ? !(a | Cq) : (((Uq | 0) == 2147418112) & (Tq >>> 0 < 0)) | (Uq >>> 0 < 2147418112))) {
- Iq = (Hq << 4) | (Gq >>> 28)
- Jq = (Gq << 4) | (Cq >>> 28)
- Iq = (Iq & 524287) | 2146959360
- break a
- }
- Jq = 0
- Iq = 2146435072
- if ((((Uq | 0) == 1140785151) & (Tq >>> 0 > 4294967295)) | (Uq >>> 0 > 1140785151)) {
- break a
- }
- Iq = 0
- Tq = Uq >>> 16
- if (Tq >>> 0 < 15249) {
- break a
- }
- Iq = (Hq & 65535) | 65536
- ck(Sq, a, Cq, Gq, Iq, (15361 - Tq) | 0)
- bk((Sq + 16) | 0, a, Cq, Gq, Iq, (Tq + -15233) | 0)
- Gq = o[(Sq + 4) >> 2]
- a = o[(Sq + 8) >> 2]
- Iq = (o[(Sq + 12) >> 2] << 4) | (a >>> 28)
- Jq = (a << 4) | (Gq >>> 28)
- a = Gq & 268435455
- Gq = a
- Cq = o[Sq >> 2] | (((o[(Sq + 16) >> 2] | o[(Sq + 24) >> 2]) != 0) | ((o[(Sq + 20) >> 2] | o[(Sq + 28) >> 2]) != 0))
- if ((((a | 0) == 134217728) & (Cq >>> 0 >= 1)) | (a >>> 0 > 134217728)) {
- a = (Jq + 1) | 0
- if (a >>> 0 < 1) {
- Iq = (Iq + 1) | 0
- }
- Jq = a
- break a
- }
- if (Cq | (Gq ^ 134217728)) {
- break a
- }
- a = (Jq + (Jq & 1)) | 0
- if (a >>> 0 < Jq >>> 0) {
- Iq = (Iq + 1) | 0
- }
- Jq = a
- }
- R = (Sq + 32) | 0
- f(0, Jq | 0)
- f(1, (Hq & -2147483648) | Iq)
- return +g()
- }
- function ek(a) {
- var Cq = 0,
- Gq = 0,
- Hq = 0,
- Xq = 0,
- Yq = 0,
- Zq = 0,
- _q = 0,
- $q = 0
- Xq = (R - 16) | 0
- R = Xq
- o[(Xq + 12) >> 2] = a
- a: {
- if (a >>> 0 <= 211) {
- a = o[fk(11616, 11808, (Xq + 12) | 0) >> 2]
- break a
- }
- Yq = ((a >>> 0) / 210) | 0
- Hq = u(Yq, 210)
- o[(Xq + 8) >> 2] = a - Hq
- Zq = (fk(11808, 12e3, (Xq + 8) | 0) - 11808) >> 2
- b: {
- while (1) {
- a = (o[((Zq << 2) + 11808) >> 2] + Hq) | 0
- Hq = 5
- c: {
- d: {
- e: {
- while (1) {
- if ((Hq | 0) == 47) {
- break e
- }
- Cq = o[((Hq << 2) + 11616) >> 2]
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- _q = Gq >>> 0 < Cq >>> 0
- $q = _q ? a : $q
- Hq = (Hq + 1) | 0
- Cq = _q ? 1 : (u(Cq, Gq) | 0) == (a | 0) ? 7 : 0
- if (!Cq) {
- continue
- }
- break
- }
- Hq = (Cq + -4) | 0
- if (Hq >>> 0 > 3) {
- break b
- }
- switch ((Hq - 1) | 0) {
- case 0:
- case 1:
- break b
- case 2:
- break d
- default:
- break e
- }
- }
- Hq = 211
- while (1) {
- Cq = ((a >>> 0) / (Hq >>> 0)) | 0
- if (Cq >>> 0 < Hq >>> 0) {
- break c
- }
- if ((u(Cq, Hq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 10) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 12) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 16) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 18) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 22) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 28) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 30) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 36) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 40) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 42) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 46) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 52) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 58) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 60) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 66) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 70) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 72) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 78) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 82) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 88) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 96) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 100) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 102) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 106) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 108) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 112) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 120) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 126) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 130) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 136) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 138) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 142) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 148) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 150) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 156) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 162) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 166) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 168) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 172) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 178) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 180) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 186) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 190) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 192) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 196) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 198) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- if ((u(Cq, Gq) | 0) == (a | 0)) {
- break d
- }
- Cq = (Hq + 208) | 0
- Gq = ((a >>> 0) / (Cq >>> 0)) | 0
- if (Gq >>> 0 < Cq >>> 0) {
- break c
- }
- Hq = (Hq + 210) | 0
- if ((u(Cq, Gq) | 0) != (a | 0)) {
- continue
- }
- break
- }
- }
- Hq = (Zq + 1) | 0
- a = (Hq | 0) == 48
- Zq = a ? 0 : Hq
- Yq = (a + Yq) | 0
- Hq = u(Yq, 210)
- continue
- }
- break
- }
- o[(Xq + 12) >> 2] = a
- break a
- }
- o[(Xq + 12) >> 2] = a
- a = $q
- }
- R = (Xq + 16) | 0
- return a
- }
- function fk(a, ar, br) {
- return gk(a, ar, br)
- }
- function gk(a, ar, br) {
- var cr = 0
- cr = (R - 16) | 0
- R = cr
- a = hk(a, ar, br)
- R = (cr + 16) | 0
- return a
- }
- function hk(a, ar, br) {
- var dr = 0,
- er = 0,
- fr = 0,
- gr = 0
- dr = (R - 16) | 0
- R = dr
- ar = (ar - a) >> 2
- while (1) {
- if (ar) {
- o[(dr + 12) >> 2] = a
- er = (dr + 12) | 0
- fr = er
- gr = o[er >> 2]
- er = ar >>> 1
- o[fr >> 2] = gr + (er << 2)
- if (ik(o[(dr + 12) >> 2], br)) {
- a = (o[(dr + 12) >> 2] + 4) | 0
- o[(dr + 12) >> 2] = a
- ar = ((er ^ -1) + ar) | 0
- } else {
- ar = er
- }
- continue
- }
- break
- }
- R = (dr + 16) | 0
- return a
- }
- function ik(a, ar) {
- return r[a >> 2] < r[ar >> 2]
- }
- function jk(a, ar, br) {
- if (br) {
- wl(a, ar, br)
- }
- }
- function kk(a, ar) {
- return lk(a, ar)
- }
- function lk(a, ar) {
- var br = 0,
- hr = 0
- br = (R - 16) | 0
- R = br
- hr = ik(a, ar)
- R = (br + 16) | 0
- return hr ? ar : a
- }
- function mk(a) {
- o[a >> 2] = 0
- o[(a + 4) >> 2] = 0
- o[(a + 8) >> 2] = 0
- }
- function nk(a, ar) {
- var ir = 0,
- jr = 0
- ir = p[a | 0]
- jr = p[ar | 0]
- a: {
- if (!ir | ((ir | 0) != (jr | 0))) {
- break a
- }
- while (1) {
- jr = p[(ar + 1) | 0]
- ir = p[(a + 1) | 0]
- if (!ir) {
- break a
- }
- ar = (ar + 1) | 0
- a = (a + 1) | 0
- if ((ir | 0) == (jr | 0)) {
- continue
- }
- break
- }
- }
- return (ir - jr) | 0
- }
- function ok() {
- var a = 0,
- ar = 0,
- kr = 0
- a = (R - 16) | 0
- R = a
- a: {
- if (K((a + 12) | 0, (a + 8) | 0)) {
- break a
- }
- ar = tl(((o[(a + 12) >> 2] << 2) + 4) | 0)
- o[3286] = ar
- if (!ar) {
- break a
- }
- b: {
- ar = tl(o[(a + 8) >> 2])
- if (ar) {
- kr = o[3286]
- if (kr) {
- break b
- }
- }
- o[3286] = 0
- break a
- }
- o[((o[(a + 12) >> 2] << 2) + kr) >> 2] = 0
- if (!L(o[3286], ar | 0)) {
- break a
- }
- o[3286] = 0
- }
- R = (a + 16) | 0
- }
- function pk(lr, mr, nr) {
- var or = 0,
- pr = 0
- or = (R - 160) | 0
- R = or
- wl((or + 8) | 0, 12e3, 144)
- a: {
- b: {
- if ((mr + -1) >>> 0 >= 2147483647) {
- if (mr) {
- break b
- }
- mr = 1
- lr = (or + 159) | 0
- }
- o[(or + 52) >> 2] = lr
- o[(or + 28) >> 2] = lr
- pr = (-2 - lr) | 0
- mr = mr >>> 0 > pr >>> 0 ? pr : mr
- o[(or + 56) >> 2] = mr
- lr = (lr + mr) | 0
- o[(or + 36) >> 2] = lr
- o[(or + 24) >> 2] = lr
- lr = Oj((or + 8) | 0, 12225, nr)
- if (!mr) {
- break a
- }
- mr = o[(or + 28) >> 2]
- m[(mr - ((mr | 0) == o[(or + 24) >> 2])) | 0] = 0
- break a
- }
- o[3269] = 61
- lr = -1
- }
- R = (or + 160) | 0
- return lr
- }
- function qk(lr, mr, nr) {
- lr = lr | 0
- mr = mr | 0
- nr = nr | 0
- var qr = 0,
- rr = 0
- rr = o[(lr + 20) >> 2]
- qr = (o[(lr + 16) >> 2] - rr) | 0
- qr = qr >>> 0 > nr >>> 0 ? nr : qr
- wl(rr, mr, qr)
- o[(lr + 20) >> 2] = qr + o[(lr + 20) >> 2]
- return nr | 0
- }
- function rk(lr, mr, nr) {
- var sr = 0
- sr = (R - 16) | 0
- R = sr
- o[(sr + 12) >> 2] = nr
- lr = pk(lr, mr, nr)
- R = (sr + 16) | 0
- return lr
- }
- function sk(lr) {
- if (wk(lr)) {
- return o[(lr + 4) >> 2]
- }
- return p[(lr + 11) | 0]
- }
- function tk(lr) {
- if (wk(lr)) {
- lr = (xk(lr) + -1) | 0
- } else {
- lr = 10
- }
- return lr
- }
- function uk(lr, mr) {
- Rk(lr, mr)
- }
- function vk(lr) {
- var mr = 0
- mr = lr
- lr = 0
- while (1) {
- if ((lr | 0) != 3) {
- o[((lr << 2) + mr) >> 2] = 0
- lr = (lr + 1) | 0
- continue
- }
- break
- }
- }
- function wk(lr) {
- return m[(lr + 11) | 0] < 0
- }
- function xk(lr) {
- return o[(lr + 8) >> 2] & 2147483647
- }
- function yk(lr) {
- if (wk(lr)) {
- return o[lr >> 2]
- }
- return lr
- }
- function zk(lr, nr) {
- m[lr | 0] = p[nr | 0]
- }
- function Ak(lr, nr) {
- o[(lr + 4) >> 2] = nr
- }
- function Bk(lr, nr) {
- m[(lr + 11) | 0] = nr
- }
- function Ck(lr) {
- var nr = 0
- if (lr >>> 0 >= 11) {
- nr = (lr + 16) & -16
- lr = (nr + -1) | 0
- lr = (lr | 0) == 11 ? nr : lr
- } else {
- lr = 10
- }
- return lr
- }
- function Dk(lr) {
- if (4294967295 < lr >>> 0) {
- _a(12144)
- D()
- }
- return Hk(lr)
- }
- function Ek(lr, tr) {
- o[lr >> 2] = tr
- }
- function Fk(lr, tr) {
- o[(lr + 8) >> 2] = tr | -2147483648
- }
- function Gk(lr, tr) {
- if (wk(lr)) {
- Ak(lr, tr)
- return
- }
- Bk(lr, tr)
- }
- function Hk(lr) {
- var tr = 0,
- ur = 0
- lr = lr ? lr : 1
- while (1) {
- a: {
- tr = tl(lr)
- if (tr) {
- break a
- }
- ur = o[3287]
- if (!ur) {
- break a
- }
- l[ur]()
- continue
- }
- break
- }
- return tr
- }
- function Ik(lr, vr) {
- var wr = 0,
- xr = 0,
- yr = 0,
- zr = 0
- wr = _j(vr)
- xr = Hk((wr + 13) | 0)
- o[(xr + 8) >> 2] = 0
- o[(xr + 4) >> 2] = wr
- o[xr >> 2] = wr
- ;(yr = lr), (zr = wl((xr + 12) | 0, vr, (wr + 1) | 0)), (o[yr >> 2] = zr)
- }
- function Jk(lr) {
- var vr = 0,
- Ar = 0,
- Br = 0
- vr = (R - 16) | 0
- R = vr
- m[(vr + 15) | 0] = 10
- Ar = o[(lr + 16) >> 2]
- a: {
- if (!Ar) {
- if (Dj(lr)) {
- break a
- }
- Ar = o[(lr + 16) >> 2]
- }
- Br = o[(lr + 20) >> 2]
- if (!((m[(lr + 75) | 0] == 10) | (Br >>> 0 >= Ar >>> 0))) {
- o[(lr + 20) >> 2] = Br + 1
- m[Br | 0] = 10
- break a
- }
- if ((l[o[(lr + 36) >> 2]](lr, (vr + 15) | 0, 1) | 0) != 1) {
- break a
- }
- }
- R = (vr + 16) | 0
- }
- function Kk() {
- _a(12212)
- D()
- }
- function Lk() {
- M()
- D()
- }
- function Mk(lr, Cr) {
- var Dr = 0,
- Er = 0,
- Fr = 0
- Er = (R - 16) | 0
- R = Er
- mk(lr)
- Dr = lr
- a: {
- if (!wk(Cr)) {
- o[(Dr + 8) >> 2] = o[(Cr + 8) >> 2]
- Fr = o[(Cr + 4) >> 2]
- o[Dr >> 2] = o[Cr >> 2]
- o[(Dr + 4) >> 2] = Fr
- break a
- }
- Nk(lr, o[Cr >> 2], o[(Cr + 4) >> 2])
- }
- R = (Er + 16) | 0
- return lr
- }
- function Nk(lr, Cr, Gr) {
- var Hr = 0,
- Ir = 0,
- Jr = 0
- Hr = (R - 16) | 0
- R = Hr
- if (4294967279 >= Gr >>> 0) {
- a: {
- if (Gr >>> 0 <= 10) {
- Bk(lr, Gr)
- Ir = lr
- break a
- }
- Jr = (Ck(Gr) + 1) | 0
- Ir = Dk(Jr)
- Ek(lr, Ir)
- Fk(lr, Jr)
- Ak(lr, Gr)
- }
- jk(Ir, Cr, Gr)
- m[(Hr + 15) | 0] = 0
- zk((Gr + Ir) | 0, (Hr + 15) | 0)
- R = (Hr + 16) | 0
- return
- }
- Kk()
- D()
- }
- function Ok(lr, Cr) {
- if ((lr | 0) != (Cr | 0)) {
- Pk(lr, yk(Cr), sk(Cr))
- }
- }
- function Pk(lr, Cr, Gr) {
- var Kr = 0,
- Lr = 0,
- Mr = 0,
- Nr = 0
- Lr = (R - 16) | 0
- R = Lr
- Kr = tk(lr)
- a: {
- if (Kr >>> 0 >= Gr >>> 0) {
- Mr = yk(lr)
- Nr = Mr
- Kr = Gr
- if (Gr) {
- yl(Nr, Cr, Kr)
- }
- m[(Lr + 15) | 0] = 0
- zk((Gr + Mr) | 0, (Lr + 15) | 0)
- Gk(lr, Gr)
- break a
- }
- Mr = lr
- lr = sk(lr)
- Qk(Mr, Kr, (Gr - Kr) | 0, lr, lr, Gr, Cr)
- }
- R = (Lr + 16) | 0
- }
- function Qk(lr, Cr, Gr, Or, Pr, Qr, Rr) {
- var Sr = 0,
- Tr = 0,
- Ur = 0
- Sr = (R - 16) | 0
- R = Sr
- if (((Cr ^ -1) + -17) >>> 0 >= Gr >>> 0) {
- Tr = yk(lr)
- a: {
- if (2147483623 > Cr >>> 0) {
- o[(Sr + 8) >> 2] = Cr << 1
- o[(Sr + 12) >> 2] = Cr + Gr
- Gr = Ck(o[kk((Sr + 12) | 0, (Sr + 8) | 0) >> 2])
- break a
- }
- Gr = -18
- }
- Ur = (Gr + 1) | 0
- Gr = Dk(Ur)
- if (Qr) {
- jk(Gr, Rr, Qr)
- }
- Or = (Or - Pr) | 0
- Rr = Or
- if (Or) {
- jk((Gr + Qr) | 0, (Pr + Tr) | 0, Rr)
- }
- if ((Cr | 0) != 10) {
- ul(Tr)
- }
- Ek(lr, Gr)
- Fk(lr, Ur)
- Cr = lr
- lr = (Or + Qr) | 0
- Ak(Cr, lr)
- m[(Sr + 7) | 0] = 0
- zk((lr + Gr) | 0, (Sr + 7) | 0)
- R = (Sr + 16) | 0
- return
- }
- Kk()
- D()
- }
- function Rk(lr, Cr) {
- var Gr = 0
- Gr = sk(lr)
- if (Gr >>> 0 < Cr >>> 0) {
- Sk(lr, (Cr - Gr) | 0)
- return
- }
- Tk(lr, Cr)
- }
- function Sk(lr, Cr) {
- var Or = 0,
- Pr = 0,
- Qr = 0,
- Rr = 0
- Qr = (R - 16) | 0
- R = Qr
- if (Cr) {
- Pr = tk(lr)
- Or = sk(lr)
- Rr = (Or + Cr) | 0
- if ((Pr - Or) >>> 0 < Cr >>> 0) {
- Uk(lr, Pr, (Rr - Pr) | 0, Or, Or)
- }
- Pr = Or
- Or = yk(lr)
- Pr = (Pr + Or) | 0
- if (Cr) {
- xl(Pr, 0, Cr)
- }
- Gk(lr, Rr)
- m[(Qr + 15) | 0] = 0
- zk((Or + Rr) | 0, (Qr + 15) | 0)
- }
- R = (Qr + 16) | 0
- }
- function Tk(lr, Cr) {
- var Vr = 0,
- Wr = 0
- Vr = (R - 16) | 0
- R = Vr
- a: {
- if (wk(lr)) {
- Wr = o[lr >> 2]
- m[(Vr + 15) | 0] = 0
- zk((Cr + Wr) | 0, (Vr + 15) | 0)
- Ak(lr, Cr)
- break a
- }
- m[(Vr + 14) | 0] = 0
- zk((lr + Cr) | 0, (Vr + 14) | 0)
- Bk(lr, Cr)
- }
- R = (Vr + 16) | 0
- }
- function Uk(lr, Cr, Xr, Yr, Zr) {
- var _r = 0,
- $r = 0,
- as = 0
- _r = (R - 16) | 0
- R = _r
- if ((-17 - Cr) >>> 0 >= Xr >>> 0) {
- $r = yk(lr)
- a: {
- if (2147483623 > Cr >>> 0) {
- o[(_r + 8) >> 2] = Cr << 1
- o[(_r + 12) >> 2] = Cr + Xr
- Xr = Ck(o[kk((_r + 12) | 0, (_r + 8) | 0) >> 2])
- break a
- }
- Xr = -18
- }
- as = (Xr + 1) | 0
- Xr = Dk(as)
- if (Zr) {
- jk(Xr, $r, Zr)
- }
- Yr = (Yr - Zr) | 0
- if (Yr) {
- jk((Xr + Zr) | 0, (Zr + $r) | 0, Yr)
- }
- if ((Cr | 0) != 10) {
- ul($r)
- }
- Ek(lr, Xr)
- Fk(lr, as)
- R = (_r + 16) | 0
- return
- }
- Kk()
- D()
- }
- function Vk(lr) {
- if (sk(lr) >>> 0 <= 0) {
- Lk()
- D()
- }
- return yk(lr)
- }
- function Wk(lr) {
- var Cr = 0,
- Xr = 0
- Cr = (R - 16) | 0
- R = Cr
- mk(Cr)
- vk(Cr)
- uk(Cr, tk(Cr))
- Xk(lr, Cr)
- lr = Cr
- if (wk(Cr)) {
- Xr = o[lr >> 2]
- xk(lr)
- ul(Xr)
- }
- R = (Cr + 16) | 0
- }
- function Xk(lr, Yr) {
- var Zr = 0,
- bs = 0,
- cs = 0,
- ds = 0
- cs = (R - 16) | 0
- R = cs
- Zr = sk(Yr)
- while (1) {
- a: {
- bs = yk(Yr)
- o[cs >> 2] = 1
- ds = Yr
- bs = rk(bs, (Zr + 1) | 0, cs)
- b: {
- if ((bs | 0) >= 0) {
- if (bs >>> 0 <= Zr >>> 0) {
- break a
- }
- Zr = bs
- break b
- }
- Zr = (Zr << 1) | 1
- }
- uk(ds, Zr)
- continue
- }
- break
- }
- uk(Yr, bs)
- Zr = o[(Yr + 4) >> 2]
- o[lr >> 2] = o[Yr >> 2]
- o[(lr + 4) >> 2] = Zr
- o[(lr + 8) >> 2] = o[(Yr + 8) >> 2]
- vk(Yr)
- R = (cs + 16) | 0
- }
- function Yk() {
- _a(12228)
- D()
- }
- function Zk() {
- Lk()
- D()
- }
- function _k(lr) {
- var Yr = 0
- if (o[(lr + 76) >> 2] < 0) {
- a: {
- if (m[(lr + 75) | 0] == 10) {
- break a
- }
- Yr = o[(lr + 20) >> 2]
- if (Yr >>> 0 >= r[(lr + 16) >> 2]) {
- break a
- }
- o[(lr + 20) >> 2] = Yr + 1
- m[Yr | 0] = 10
- return
- }
- Jk(lr)
- return
- }
- b: {
- c: {
- if (m[(lr + 75) | 0] == 10) {
- break c
- }
- Yr = o[(lr + 20) >> 2]
- if (Yr >>> 0 >= r[(lr + 16) >> 2]) {
- break c
- }
- o[(lr + 20) >> 2] = Yr + 1
- m[Yr | 0] = 10
- break b
- }
- Jk(lr)
- }
- }
- function $k() {
- var lr = 0
- lr = (R - 16) | 0
- R = lr
- o[(lr + 12) >> 2] = 0
- lr = o[2902]
- Oj(lr, 12235, 0)
- _k(lr)
- M()
- D()
- }
- function al() {
- $k()
- D()
- }
- function bl(es) {
- es = es | 0
- return 12265
- }
- function cl(es) {
- es = es | 0
- o[es >> 2] = 12332
- dl((es + 4) | 0)
- return es | 0
- }
- function dl(es) {
- var fs = 0,
- gs = 0
- fs = (o[es >> 2] + -12) | 0
- gs = (fs + 8) | 0
- es = (o[gs >> 2] + -1) | 0
- o[gs >> 2] = es
- a: {
- if ((es | 0) > -1) {
- break a
- }
- ul(fs)
- }
- }
- function el(es) {
- es = es | 0
- ul(cl(es))
- }
- function fl(es) {
- es = es | 0
- return o[(es + 4) >> 2]
- }
- function gl(es) {
- es = es | 0
- cl(es)
- ul(es)
- }
- function hl(es, hs, is) {
- if (!is) {
- return (es | 0) == (hs | 0)
- }
- return !nk(o[(es + 4) >> 2], o[(hs + 4) >> 2])
- }
- function il(es, hs, is) {
- es = es | 0
- hs = hs | 0
- is = is | 0
- var js = 0,
- ks = 0
- js = (R + -64) | 0
- R = js
- ks = 1
- a: {
- if (hl(es, hs, 0)) {
- break a
- }
- ks = 0
- if (!hs) {
- break a
- }
- hs = jl(hs)
- ks = 0
- if (!hs) {
- break a
- }
- o[(js + 20) >> 2] = -1
- o[(js + 16) >> 2] = es
- o[(js + 12) >> 2] = 0
- o[(js + 8) >> 2] = hs
- xl((js + 24) | 0, 0, 39)
- o[(js + 56) >> 2] = 1
- l[o[(o[hs >> 2] + 28) >> 2]](hs, (js + 8) | 0, o[is >> 2], 1)
- ks = 0
- if (o[(js + 32) >> 2] != 1) {
- break a
- }
- o[is >> 2] = o[(js + 24) >> 2]
- ks = 1
- }
- R = (js - -64) | 0
- return ks | 0
- }
- function jl(es) {
- var hs = 0,
- is = 0,
- ls = 0,
- ms = 0
- hs = (R + -64) | 0
- R = hs
- is = o[es >> 2]
- ms = o[(is + -8) >> 2]
- is = o[(is + -4) >> 2]
- o[(hs + 20) >> 2] = 0
- o[(hs + 16) >> 2] = 12484
- o[(hs + 12) >> 2] = es
- o[(hs + 8) >> 2] = 12532
- xl((hs + 24) | 0, 0, 39)
- es = (es + ms) | 0
- a: {
- if (hl(is, 12532, 0)) {
- o[(hs + 56) >> 2] = 1
- l[o[(o[is >> 2] + 20) >> 2]](is, (hs + 8) | 0, es, es, 1, 0)
- ls = o[(hs + 32) >> 2] == 1 ? es : 0
- break a
- }
- l[o[(o[is >> 2] + 24) >> 2]](is, (hs + 8) | 0, es, 1, 0)
- es = o[(hs + 44) >> 2]
- if (es >>> 0 > 1) {
- break a
- }
- if (es - 1) {
- ls = o[(hs + 48) >> 2] == 1 ? (o[(hs + 36) >> 2] == 1 ? (o[(hs + 40) >> 2] == 1 ? o[(hs + 28) >> 2] : 0) : 0) : 0
- break a
- }
- if (o[(hs + 32) >> 2] != 1) {
- if (o[(hs + 48) >> 2] | (o[(hs + 36) >> 2] != 1) | (o[(hs + 40) >> 2] != 1)) {
- break a
- }
- }
- ls = o[(hs + 24) >> 2]
- }
- R = (hs - -64) | 0
- return ls
- }
- function kl(es, ns, os) {
- var ps = 0
- ps = o[(es + 16) >> 2]
- if (!ps) {
- o[(es + 36) >> 2] = 1
- o[(es + 24) >> 2] = os
- o[(es + 16) >> 2] = ns
- return
- }
- a: {
- if ((ns | 0) == (ps | 0)) {
- if (o[(es + 24) >> 2] != 2) {
- break a
- }
- o[(es + 24) >> 2] = os
- return
- }
- m[(es + 54) | 0] = 1
- o[(es + 24) >> 2] = 2
- o[(es + 36) >> 2] = o[(es + 36) >> 2] + 1
- }
- }
- function ll(es, ns, os, qs) {
- es = es | 0
- ns = ns | 0
- os = os | 0
- qs = qs | 0
- if (hl(es, o[(ns + 8) >> 2], 0)) {
- kl(ns, os, qs)
- }
- }
- function ml(es, ns, os, qs) {
- es = es | 0
- ns = ns | 0
- os = os | 0
- qs = qs | 0
- if (hl(es, o[(ns + 8) >> 2], 0)) {
- kl(ns, os, qs)
- return
- }
- es = o[(es + 8) >> 2]
- l[o[(o[es >> 2] + 28) >> 2]](es, ns, os, qs)
- }
- function nl(es, ns, os, qs) {
- m[(es + 53) | 0] = 1
- a: {
- if (o[(es + 4) >> 2] != (os | 0)) {
- break a
- }
- m[(es + 52) | 0] = 1
- os = o[(es + 16) >> 2]
- if (!os) {
- o[(es + 36) >> 2] = 1
- o[(es + 24) >> 2] = qs
- o[(es + 16) >> 2] = ns
- if (((qs | 0) != 1) | (o[(es + 48) >> 2] != 1)) {
- break a
- }
- m[(es + 54) | 0] = 1
- return
- }
- if ((ns | 0) == (os | 0)) {
- os = o[(es + 24) >> 2]
- if ((os | 0) == 2) {
- o[(es + 24) >> 2] = qs
- os = qs
- }
- if ((o[(es + 48) >> 2] != 1) | ((os | 0) != 1)) {
- break a
- }
- m[(es + 54) | 0] = 1
- return
- }
- m[(es + 54) | 0] = 1
- o[(es + 36) >> 2] = o[(es + 36) >> 2] + 1
- }
- }
- function ol(es, ns, os) {
- if (!((o[(es + 28) >> 2] == 1) | (o[(es + 4) >> 2] != (ns | 0)))) {
- o[(es + 28) >> 2] = os
- }
- }
- function pl(es, ns, os, qs, rs) {
- es = es | 0
- ns = ns | 0
- os = os | 0
- qs = qs | 0
- rs = rs | 0
- if (hl(es, o[(ns + 8) >> 2], rs)) {
- ol(ns, os, qs)
- return
- }
- a: {
- if (hl(es, o[ns >> 2], rs)) {
- if (!(o[(ns + 20) >> 2] != (os | 0) ? o[(ns + 16) >> 2] != (os | 0) : 0)) {
- if ((qs | 0) != 1) {
- break a
- }
- o[(ns + 32) >> 2] = 1
- return
- }
- o[(ns + 32) >> 2] = qs
- b: {
- if (o[(ns + 44) >> 2] == 4) {
- break b
- }
- n[(ns + 52) >> 1] = 0
- es = o[(es + 8) >> 2]
- l[o[(o[es >> 2] + 20) >> 2]](es, ns, os, os, 1, rs)
- if (p[(ns + 53) | 0]) {
- o[(ns + 44) >> 2] = 3
- if (!p[(ns + 52) | 0]) {
- break b
- }
- break a
- }
- o[(ns + 44) >> 2] = 4
- }
- o[(ns + 20) >> 2] = os
- o[(ns + 40) >> 2] = o[(ns + 40) >> 2] + 1
- if ((o[(ns + 36) >> 2] != 1) | (o[(ns + 24) >> 2] != 2)) {
- break a
- }
- m[(ns + 54) | 0] = 1
- return
- }
- es = o[(es + 8) >> 2]
- l[o[(o[es >> 2] + 24) >> 2]](es, ns, os, qs, rs)
- }
- }
- function ql(es, ns, os, qs, rs) {
- es = es | 0
- ns = ns | 0
- os = os | 0
- qs = qs | 0
- rs = rs | 0
- if (hl(es, o[(ns + 8) >> 2], rs)) {
- ol(ns, os, qs)
- return
- }
- a: {
- if (!hl(es, o[ns >> 2], rs)) {
- break a
- }
- if (!(o[(ns + 20) >> 2] != (os | 0) ? o[(ns + 16) >> 2] != (os | 0) : 0)) {
- if ((qs | 0) != 1) {
- break a
- }
- o[(ns + 32) >> 2] = 1
- return
- }
- o[(ns + 20) >> 2] = os
- o[(ns + 32) >> 2] = qs
- o[(ns + 40) >> 2] = o[(ns + 40) >> 2] + 1
- if (!((o[(ns + 36) >> 2] != 1) | (o[(ns + 24) >> 2] != 2))) {
- m[(ns + 54) | 0] = 1
- }
- o[(ns + 44) >> 2] = 4
- }
- }
- function rl(es, ns, os, qs, rs, ss) {
- es = es | 0
- ns = ns | 0
- os = os | 0
- qs = qs | 0
- rs = rs | 0
- ss = ss | 0
- if (hl(es, o[(ns + 8) >> 2], ss)) {
- nl(ns, os, qs, rs)
- return
- }
- es = o[(es + 8) >> 2]
- l[o[(o[es >> 2] + 20) >> 2]](es, ns, os, qs, rs, ss)
- }
- function sl(es, ns, os, qs, rs, ss) {
- es = es | 0
- ns = ns | 0
- os = os | 0
- qs = qs | 0
- rs = rs | 0
- ss = ss | 0
- if (hl(es, o[(ns + 8) >> 2], ss)) {
- nl(ns, os, qs, rs)
- }
- }
- function tl(a) {
- a = a | 0
- var b = 0,
- c = 0,
- d = 0,
- e = 0,
- f = 0,
- g = 0,
- h = 0,
- i = 0,
- j = 0,
- k = 0,
- l = 0,
- m = 0,
- n = 0
- l = (R - 16) | 0
- R = l
- a: {
- b: {
- c: {
- d: {
- e: {
- f: {
- g: {
- h: {
- i: {
- j: {
- k: {
- if (a >>> 0 <= 244) {
- f = o[3288]
- h = a >>> 0 < 11 ? 16 : (a + 11) & -8
- b = h >>> 3
- a = f >>> b
- if (a & 3) {
- d = (b + ((a ^ -1) & 1)) | 0
- b = d << 3
- e = o[(b + 13200) >> 2]
- a = (e + 8) | 0
- c = o[(e + 8) >> 2]
- b = (b + 13192) | 0
- l: {
- if ((c | 0) == (b | 0)) {
- ;(m = 13152), (n = Zl(d) & f), (o[m >> 2] = n)
- break l
- }
- o[(c + 12) >> 2] = b
- o[(b + 8) >> 2] = c
- }
- b = d << 3
- o[(e + 4) >> 2] = b | 3
- b = (b + e) | 0
- o[(b + 4) >> 2] = o[(b + 4) >> 2] | 1
- break a
- }
- k = o[3290]
- if (h >>> 0 <= k >>> 0) {
- break k
- }
- if (a) {
- c = a << b
- a = 2 << b
- a = c & ((0 - a) | a)
- b = (((0 - a) & a) + -1) | 0
- a = (b >>> 12) & 16
- c = a
- b = b >>> a
- a = (b >>> 5) & 8
- c = c | a
- b = b >>> a
- a = (b >>> 2) & 4
- c = c | a
- b = b >>> a
- a = (b >>> 1) & 2
- c = c | a
- b = b >>> a
- a = (b >>> 1) & 1
- c = ((c | a) + (b >>> a)) | 0
- a = c << 3
- g = o[(a + 13200) >> 2]
- b = o[(g + 8) >> 2]
- a = (a + 13192) | 0
- m: {
- if ((b | 0) == (a | 0)) {
- f = Zl(c) & f
- o[3288] = f
- break m
- }
- o[(b + 12) >> 2] = a
- o[(a + 8) >> 2] = b
- }
- a = (g + 8) | 0
- o[(g + 4) >> 2] = h | 3
- d = (g + h) | 0
- b = c << 3
- e = (b - h) | 0
- o[(d + 4) >> 2] = e | 1
- o[(b + g) >> 2] = e
- if (k) {
- b = k >>> 3
- c = ((b << 3) + 13192) | 0
- h = o[3293]
- b = 1 << b
- n: {
- if (!(b & f)) {
- o[3288] = b | f
- b = c
- break n
- }
- b = o[(c + 8) >> 2]
- }
- o[(c + 8) >> 2] = h
- o[(b + 12) >> 2] = h
- o[(h + 12) >> 2] = c
- o[(h + 8) >> 2] = b
- }
- o[3293] = d
- o[3290] = e
- break a
- }
- i = o[3289]
- if (!i) {
- break k
- }
- b = ((i & (0 - i)) + -1) | 0
- a = (b >>> 12) & 16
- c = a
- b = b >>> a
- a = (b >>> 5) & 8
- c = c | a
- b = b >>> a
- a = (b >>> 2) & 4
- c = c | a
- b = b >>> a
- a = (b >>> 1) & 2
- c = c | a
- b = b >>> a
- a = (b >>> 1) & 1
- b = o[((((c | a) + (b >>> a)) << 2) + 13456) >> 2]
- d = ((o[(b + 4) >> 2] & -8) - h) | 0
- c = b
- while (1) {
- o: {
- a = o[(c + 16) >> 2]
- if (!a) {
- a = o[(c + 20) >> 2]
- if (!a) {
- break o
- }
- }
- c = ((o[(a + 4) >> 2] & -8) - h) | 0
- e = c >>> 0 < d >>> 0
- d = e ? c : d
- b = e ? a : b
- c = a
- continue
- }
- break
- }
- j = o[(b + 24) >> 2]
- e = o[(b + 12) >> 2]
- if ((e | 0) != (b | 0)) {
- a = o[(b + 8) >> 2]
- o[(a + 12) >> 2] = e
- o[(e + 8) >> 2] = a
- break b
- }
- c = (b + 20) | 0
- a = o[c >> 2]
- if (!a) {
- a = o[(b + 16) >> 2]
- if (!a) {
- break j
- }
- c = (b + 16) | 0
- }
- while (1) {
- g = c
- e = a
- c = (a + 20) | 0
- a = o[c >> 2]
- if (a) {
- continue
- }
- c = (e + 16) | 0
- a = o[(e + 16) >> 2]
- if (a) {
- continue
- }
- break
- }
- o[g >> 2] = 0
- break b
- }
- h = -1
- if (a >>> 0 > 4294967231) {
- break k
- }
- a = (a + 11) | 0
- h = a & -8
- i = o[3289]
- if (!i) {
- break k
- }
- a = a >>> 8
- g = 0
- p: {
- if (!a) {
- break p
- }
- g = 31
- if (h >>> 0 > 16777215) {
- break p
- }
- b = ((a + 1048320) >>> 16) & 8
- a = a << b
- d = ((a + 520192) >>> 16) & 4
- a = a << d
- c = ((a + 245760) >>> 16) & 2
- a = (((a << c) >>> 15) - (c | (b | d))) | 0
- g = (((a << 1) | ((h >>> (a + 21)) & 1)) + 28) | 0
- }
- c = (0 - h) | 0
- d = o[((g << 2) + 13456) >> 2]
- q: {
- r: {
- s: {
- if (!d) {
- a = 0
- break s
- }
- b = h << ((g | 0) == 31 ? 0 : (25 - (g >>> 1)) | 0)
- a = 0
- while (1) {
- t: {
- f = ((o[(d + 4) >> 2] & -8) - h) | 0
- if (f >>> 0 >= c >>> 0) {
- break t
- }
- e = d
- c = f
- if (c) {
- break t
- }
- c = 0
- a = d
- break r
- }
- f = o[(d + 20) >> 2]
- d = o[(((((b >>> 29) & 4) + d) | 0) + 16) >> 2]
- a = f ? ((f | 0) == (d | 0) ? a : f) : a
- b = b << ((d | 0) != 0)
- if (d) {
- continue
- }
- break
- }
- }
- if (!(a | e)) {
- a = 2 << g
- a = ((0 - a) | a) & i
- if (!a) {
- break k
- }
- b = ((a & (0 - a)) + -1) | 0
- a = (b >>> 12) & 16
- d = a
- b = b >>> a
- a = (b >>> 5) & 8
- d = d | a
- b = b >>> a
- a = (b >>> 2) & 4
- d = d | a
- b = b >>> a
- a = (b >>> 1) & 2
- d = d | a
- b = b >>> a
- a = (b >>> 1) & 1
- a = o[((((d | a) + (b >>> a)) << 2) + 13456) >> 2]
- }
- if (!a) {
- break q
- }
- }
- while (1) {
- b = ((o[(a + 4) >> 2] & -8) - h) | 0
- d = b >>> 0 < c >>> 0
- c = d ? b : c
- e = d ? a : e
- b = o[(a + 16) >> 2]
- if (b) {
- a = b
- } else {
- a = o[(a + 20) >> 2]
- }
- if (a) {
- continue
- }
- break
- }
- }
- if (!e | (c >>> 0 >= (o[3290] - h) >>> 0)) {
- break k
- }
- g = o[(e + 24) >> 2]
- b = o[(e + 12) >> 2]
- if ((e | 0) != (b | 0)) {
- a = o[(e + 8) >> 2]
- o[(a + 12) >> 2] = b
- o[(b + 8) >> 2] = a
- break c
- }
- d = (e + 20) | 0
- a = o[d >> 2]
- if (!a) {
- a = o[(e + 16) >> 2]
- if (!a) {
- break i
- }
- d = (e + 16) | 0
- }
- while (1) {
- f = d
- b = a
- d = (a + 20) | 0
- a = o[d >> 2]
- if (a) {
- continue
- }
- d = (b + 16) | 0
- a = o[(b + 16) >> 2]
- if (a) {
- continue
- }
- break
- }
- o[f >> 2] = 0
- break c
- }
- c = o[3290]
- if (c >>> 0 >= h >>> 0) {
- d = o[3293]
- b = (c - h) | 0
- u: {
- if (b >>> 0 >= 16) {
- o[3290] = b
- a = (d + h) | 0
- o[3293] = a
- o[(a + 4) >> 2] = b | 1
- o[(c + d) >> 2] = b
- o[(d + 4) >> 2] = h | 3
- break u
- }
- o[3293] = 0
- o[3290] = 0
- o[(d + 4) >> 2] = c | 3
- a = (c + d) | 0
- o[(a + 4) >> 2] = o[(a + 4) >> 2] | 1
- }
- a = (d + 8) | 0
- break a
- }
- j = o[3291]
- if (j >>> 0 > h >>> 0) {
- b = (j - h) | 0
- o[3291] = b
- c = o[3294]
- a = (c + h) | 0
- o[3294] = a
- o[(a + 4) >> 2] = b | 1
- o[(c + 4) >> 2] = h | 3
- a = (c + 8) | 0
- break a
- }
- a = 0
- i = (h + 47) | 0
- b = i
- if (o[3406]) {
- c = o[3408]
- } else {
- o[3409] = -1
- o[3410] = -1
- o[3407] = 4096
- o[3408] = 4096
- o[3406] = ((l + 12) & -16) ^ 1431655768
- o[3411] = 0
- o[3399] = 0
- c = 4096
- }
- g = (b + c) | 0
- f = (0 - c) | 0
- c = g & f
- if (c >>> 0 <= h >>> 0) {
- break a
- }
- e = o[3398]
- if (e) {
- d = o[3396]
- b = (d + c) | 0
- if ((b >>> 0 <= d >>> 0) | (b >>> 0 > e >>> 0)) {
- break a
- }
- }
- if (p[13596] & 4) {
- break f
- }
- v: {
- w: {
- d = o[3294]
- if (d) {
- a = 13600
- while (1) {
- b = o[a >> 2]
- if ((b + o[(a + 4) >> 2]) >>> 0 > d >>> 0 ? b >>> 0 <= d >>> 0 : 0) {
- break w
- }
- a = o[(a + 8) >> 2]
- if (a) {
- continue
- }
- break
- }
- }
- b = vl(0)
- if ((b | 0) == -1) {
- break g
- }
- f = c
- d = o[3407]
- a = (d + -1) | 0
- if (a & b) {
- f = (((c - b) | 0) + ((a + b) & (0 - d))) | 0
- }
- if ((f >>> 0 <= h >>> 0) | (f >>> 0 > 2147483646)) {
- break g
- }
- e = o[3398]
- if (e) {
- d = o[3396]
- a = (d + f) | 0
- if ((a >>> 0 <= d >>> 0) | (a >>> 0 > e >>> 0)) {
- break g
- }
- }
- a = vl(f)
- if ((b | 0) != (a | 0)) {
- break v
- }
- break e
- }
- f = f & (g - j)
- if (f >>> 0 > 2147483646) {
- break g
- }
- b = vl(f)
- if ((b | 0) == ((o[a >> 2] + o[(a + 4) >> 2]) | 0)) {
- break h
- }
- a = b
- }
- b = a
- if (!(((h + 48) >>> 0 <= f >>> 0) | (f >>> 0 > 2147483646) | ((a | 0) == -1))) {
- a = o[3408]
- a = (a + ((i - f) | 0)) & (0 - a)
- if (a >>> 0 > 2147483646) {
- break e
- }
- if ((vl(a) | 0) != -1) {
- f = (a + f) | 0
- break e
- }
- vl((0 - f) | 0)
- break g
- }
- if ((b | 0) != -1) {
- break e
- }
- break g
- }
- e = 0
- break b
- }
- b = 0
- break c
- }
- if ((b | 0) != -1) {
- break e
- }
- }
- o[3399] = o[3399] | 4
- }
- if (c >>> 0 > 2147483646) {
- break d
- }
- b = vl(c)
- a = vl(0)
- if ((b >>> 0 >= a >>> 0) | ((b | 0) == -1) | ((a | 0) == -1)) {
- break d
- }
- f = (a - b) | 0
- if (f >>> 0 <= (h + 40) >>> 0) {
- break d
- }
- }
- a = (o[3396] + f) | 0
- o[3396] = a
- if (a >>> 0 > r[3397]) {
- o[3397] = a
- }
- x: {
- y: {
- z: {
- d = o[3294]
- if (d) {
- a = 13600
- while (1) {
- e = o[a >> 2]
- c = o[(a + 4) >> 2]
- if (((e + c) | 0) == (b | 0)) {
- break z
- }
- a = o[(a + 8) >> 2]
- if (a) {
- continue
- }
- break
- }
- break y
- }
- a = o[3292]
- if (!(b >>> 0 >= a >>> 0 ? a : 0)) {
- o[3292] = b
- }
- a = 0
- o[3401] = f
- o[3400] = b
- o[3296] = -1
- o[3297] = o[3406]
- o[3403] = 0
- while (1) {
- d = a << 3
- c = (d + 13192) | 0
- o[(d + 13200) >> 2] = c
- o[(d + 13204) >> 2] = c
- a = (a + 1) | 0
- if ((a | 0) != 32) {
- continue
- }
- break
- }
- d = (f + -40) | 0
- a = (b + 8) & 7 ? (-8 - b) & 7 : 0
- c = (d - a) | 0
- o[3291] = c
- a = (a + b) | 0
- o[3294] = a
- o[(a + 4) >> 2] = c | 1
- o[(((b + d) | 0) + 4) >> 2] = 40
- o[3295] = o[3410]
- break x
- }
- if ((p[(a + 12) | 0] & 8) | (b >>> 0 <= d >>> 0) | (e >>> 0 > d >>> 0)) {
- break y
- }
- o[(a + 4) >> 2] = c + f
- a = (d + 8) & 7 ? (-8 - d) & 7 : 0
- c = (a + d) | 0
- o[3294] = c
- b = (o[3291] + f) | 0
- a = (b - a) | 0
- o[3291] = a
- o[(c + 4) >> 2] = a | 1
- o[(((b + d) | 0) + 4) >> 2] = 40
- o[3295] = o[3410]
- break x
- }
- e = o[3292]
- if (b >>> 0 < e >>> 0) {
- o[3292] = b
- e = 0
- }
- c = (b + f) | 0
- a = 13600
- A: {
- B: {
- C: {
- D: {
- E: {
- F: {
- while (1) {
- if ((c | 0) != o[a >> 2]) {
- a = o[(a + 8) >> 2]
- if (a) {
- continue
- }
- break F
- }
- break
- }
- if (!(p[(a + 12) | 0] & 8)) {
- break E
- }
- }
- a = 13600
- while (1) {
- c = o[a >> 2]
- if (c >>> 0 <= d >>> 0) {
- g = (c + o[(a + 4) >> 2]) | 0
- if (g >>> 0 > d >>> 0) {
- break D
- }
- }
- a = o[(a + 8) >> 2]
- continue
- }
- }
- o[a >> 2] = b
- o[(a + 4) >> 2] = o[(a + 4) >> 2] + f
- j = (((b + 8) & 7 ? (-8 - b) & 7 : 0) + b) | 0
- o[(j + 4) >> 2] = h | 3
- b = (c + ((c + 8) & 7 ? (-8 - c) & 7 : 0)) | 0
- a = (((b - j) | 0) - h) | 0
- g = (h + j) | 0
- if ((b | 0) == (d | 0)) {
- o[3294] = g
- a = (o[3291] + a) | 0
- o[3291] = a
- o[(g + 4) >> 2] = a | 1
- break B
- }
- if (o[3293] == (b | 0)) {
- o[3293] = g
- a = (o[3290] + a) | 0
- o[3290] = a
- o[(g + 4) >> 2] = a | 1
- o[(a + g) >> 2] = a
- break B
- }
- c = o[(b + 4) >> 2]
- if ((c & 3) == 1) {
- i = c & -8
- G: {
- if (c >>> 0 <= 255) {
- e = o[(b + 8) >> 2]
- c = c >>> 3
- d = o[(b + 12) >> 2]
- if ((d | 0) == (e | 0)) {
- ;(m = 13152), (n = o[3288] & Zl(c)), (o[m >> 2] = n)
- break G
- }
- o[(e + 12) >> 2] = d
- o[(d + 8) >> 2] = e
- break G
- }
- k = o[(b + 24) >> 2]
- f = o[(b + 12) >> 2]
- H: {
- if ((f | 0) != (b | 0)) {
- c = o[(b + 8) >> 2]
- o[(c + 12) >> 2] = f
- o[(f + 8) >> 2] = c
- break H
- }
- I: {
- d = (b + 20) | 0
- h = o[d >> 2]
- if (h) {
- break I
- }
- d = (b + 16) | 0
- h = o[d >> 2]
- if (h) {
- break I
- }
- f = 0
- break H
- }
- while (1) {
- c = d
- f = h
- d = (f + 20) | 0
- h = o[d >> 2]
- if (h) {
- continue
- }
- d = (f + 16) | 0
- h = o[(f + 16) >> 2]
- if (h) {
- continue
- }
- break
- }
- o[c >> 2] = 0
- }
- if (!k) {
- break G
- }
- d = o[(b + 28) >> 2]
- c = ((d << 2) + 13456) | 0
- J: {
- if (o[c >> 2] == (b | 0)) {
- o[c >> 2] = f
- if (f) {
- break J
- }
- ;(m = 13156), (n = o[3289] & Zl(d)), (o[m >> 2] = n)
- break G
- }
- o[(k + (o[(k + 16) >> 2] == (b | 0) ? 16 : 20)) >> 2] = f
- if (!f) {
- break G
- }
- }
- o[(f + 24) >> 2] = k
- c = o[(b + 16) >> 2]
- if (c) {
- o[(f + 16) >> 2] = c
- o[(c + 24) >> 2] = f
- }
- c = o[(b + 20) >> 2]
- if (!c) {
- break G
- }
- o[(f + 20) >> 2] = c
- o[(c + 24) >> 2] = f
- }
- b = (b + i) | 0
- a = (a + i) | 0
- }
- o[(b + 4) >> 2] = o[(b + 4) >> 2] & -2
- o[(g + 4) >> 2] = a | 1
- o[(a + g) >> 2] = a
- if (a >>> 0 <= 255) {
- a = a >>> 3
- b = ((a << 3) + 13192) | 0
- c = o[3288]
- a = 1 << a
- K: {
- if (!(c & a)) {
- o[3288] = a | c
- a = b
- break K
- }
- a = o[(b + 8) >> 2]
- }
- o[(b + 8) >> 2] = g
- o[(a + 12) >> 2] = g
- o[(g + 12) >> 2] = b
- o[(g + 8) >> 2] = a
- break B
- }
- b = g
- d = a >>> 8
- c = 0
- L: {
- if (!d) {
- break L
- }
- c = 31
- if (a >>> 0 > 16777215) {
- break L
- }
- c = d
- d = ((d + 1048320) >>> 16) & 8
- c = c << d
- f = ((c + 520192) >>> 16) & 4
- c = c << f
- e = ((c + 245760) >>> 16) & 2
- c = (((c << e) >>> 15) - (e | (d | f))) | 0
- c = (((c << 1) | ((a >>> (c + 21)) & 1)) + 28) | 0
- }
- o[(b + 28) >> 2] = c
- o[(g + 16) >> 2] = 0
- o[(g + 20) >> 2] = 0
- e = ((c << 2) + 13456) | 0
- d = o[3289]
- b = 1 << c
- M: {
- if (!(d & b)) {
- o[3289] = b | d
- o[e >> 2] = g
- o[(g + 24) >> 2] = e
- break M
- }
- d = a << ((c | 0) == 31 ? 0 : (25 - (c >>> 1)) | 0)
- b = o[e >> 2]
- while (1) {
- c = b
- if ((o[(b + 4) >> 2] & -8) == (a | 0)) {
- break C
- }
- b = d >>> 29
- d = d << 1
- e = (((c + (b & 4)) | 0) + 16) | 0
- b = o[e >> 2]
- if (b) {
- continue
- }
- break
- }
- o[e >> 2] = g
- o[(g + 24) >> 2] = c
- }
- o[(g + 12) >> 2] = g
- o[(g + 8) >> 2] = g
- break B
- }
- e = (f + -40) | 0
- a = (b + 8) & 7 ? (-8 - b) & 7 : 0
- c = (e - a) | 0
- o[3291] = c
- a = (a + b) | 0
- o[3294] = a
- o[(a + 4) >> 2] = c | 1
- o[(((b + e) | 0) + 4) >> 2] = 40
- o[3295] = o[3410]
- a = (((g + ((g + -39) & 7 ? (39 - g) & 7 : 0)) | 0) + -47) | 0
- c = a >>> 0 < (d + 16) >>> 0 ? d : a
- o[(c + 4) >> 2] = 27
- a = o[3403]
- o[(c + 16) >> 2] = o[3402]
- o[(c + 20) >> 2] = a
- a = o[3401]
- o[(c + 8) >> 2] = o[3400]
- o[(c + 12) >> 2] = a
- o[3402] = c + 8
- o[3401] = f
- o[3400] = b
- o[3403] = 0
- a = (c + 24) | 0
- while (1) {
- o[(a + 4) >> 2] = 7
- b = (a + 8) | 0
- a = (a + 4) | 0
- if (b >>> 0 < g >>> 0) {
- continue
- }
- break
- }
- if ((c | 0) == (d | 0)) {
- break x
- }
- o[(c + 4) >> 2] = o[(c + 4) >> 2] & -2
- g = (c - d) | 0
- o[(d + 4) >> 2] = g | 1
- o[c >> 2] = g
- if (g >>> 0 <= 255) {
- a = g >>> 3
- b = ((a << 3) + 13192) | 0
- c = o[3288]
- a = 1 << a
- N: {
- if (!(c & a)) {
- o[3288] = a | c
- a = b
- break N
- }
- a = o[(b + 8) >> 2]
- }
- o[(b + 8) >> 2] = d
- o[(a + 12) >> 2] = d
- o[(d + 12) >> 2] = b
- o[(d + 8) >> 2] = a
- break x
- }
- o[(d + 16) >> 2] = 0
- o[(d + 20) >> 2] = 0
- a = d
- c = g >>> 8
- b = 0
- O: {
- if (!c) {
- break O
- }
- b = 31
- if (g >>> 0 > 16777215) {
- break O
- }
- b = c
- c = ((c + 1048320) >>> 16) & 8
- b = b << c
- f = ((b + 520192) >>> 16) & 4
- b = b << f
- e = ((b + 245760) >>> 16) & 2
- b = (((b << e) >>> 15) - (e | (c | f))) | 0
- b = (((b << 1) | ((g >>> (b + 21)) & 1)) + 28) | 0
- }
- o[(a + 28) >> 2] = b
- e = ((b << 2) + 13456) | 0
- c = o[3289]
- a = 1 << b
- P: {
- if (!(c & a)) {
- o[3289] = a | c
- o[e >> 2] = d
- o[(d + 24) >> 2] = e
- break P
- }
- a = g << ((b | 0) == 31 ? 0 : (25 - (b >>> 1)) | 0)
- b = o[e >> 2]
- while (1) {
- c = b
- if ((g | 0) == (o[(b + 4) >> 2] & -8)) {
- break A
- }
- b = a >>> 29
- a = a << 1
- e = (((c + (b & 4)) | 0) + 16) | 0
- b = o[e >> 2]
- if (b) {
- continue
- }
- break
- }
- o[e >> 2] = d
- o[(d + 24) >> 2] = c
- }
- o[(d + 12) >> 2] = d
- o[(d + 8) >> 2] = d
- break x
- }
- a = o[(c + 8) >> 2]
- o[(a + 12) >> 2] = g
- o[(c + 8) >> 2] = g
- o[(g + 24) >> 2] = 0
- o[(g + 12) >> 2] = c
- o[(g + 8) >> 2] = a
- }
- a = (j + 8) | 0
- break a
- }
- a = o[(c + 8) >> 2]
- o[(a + 12) >> 2] = d
- o[(c + 8) >> 2] = d
- o[(d + 24) >> 2] = 0
- o[(d + 12) >> 2] = c
- o[(d + 8) >> 2] = a
- }
- a = o[3291]
- if (a >>> 0 <= h >>> 0) {
- break d
- }
- b = (a - h) | 0
- o[3291] = b
- c = o[3294]
- a = (c + h) | 0
- o[3294] = a
- o[(a + 4) >> 2] = b | 1
- o[(c + 4) >> 2] = h | 3
- a = (c + 8) | 0
- break a
- }
- o[3269] = 48
- a = 0
- break a
- }
- Q: {
- if (!g) {
- break Q
- }
- d = o[(e + 28) >> 2]
- a = ((d << 2) + 13456) | 0
- R: {
- if (o[a >> 2] == (e | 0)) {
- o[a >> 2] = b
- if (b) {
- break R
- }
- i = Zl(d) & i
- o[3289] = i
- break Q
- }
- o[(g + (o[(g + 16) >> 2] == (e | 0) ? 16 : 20)) >> 2] = b
- if (!b) {
- break Q
- }
- }
- o[(b + 24) >> 2] = g
- a = o[(e + 16) >> 2]
- if (a) {
- o[(b + 16) >> 2] = a
- o[(a + 24) >> 2] = b
- }
- a = o[(e + 20) >> 2]
- if (!a) {
- break Q
- }
- o[(b + 20) >> 2] = a
- o[(a + 24) >> 2] = b
- }
- S: {
- if (c >>> 0 <= 15) {
- a = (c + h) | 0
- o[(e + 4) >> 2] = a | 3
- a = (a + e) | 0
- o[(a + 4) >> 2] = o[(a + 4) >> 2] | 1
- break S
- }
- o[(e + 4) >> 2] = h | 3
- d = (e + h) | 0
- o[(d + 4) >> 2] = c | 1
- o[(c + d) >> 2] = c
- if (c >>> 0 <= 255) {
- a = c >>> 3
- b = ((a << 3) + 13192) | 0
- c = o[3288]
- a = 1 << a
- T: {
- if (!(c & a)) {
- o[3288] = a | c
- a = b
- break T
- }
- a = o[(b + 8) >> 2]
- }
- o[(b + 8) >> 2] = d
- o[(a + 12) >> 2] = d
- o[(d + 12) >> 2] = b
- o[(d + 8) >> 2] = a
- break S
- }
- a = d
- f = c >>> 8
- b = 0
- U: {
- if (!f) {
- break U
- }
- b = 31
- if (c >>> 0 > 16777215) {
- break U
- }
- b = f
- f = ((f + 1048320) >>> 16) & 8
- b = b << f
- g = ((b + 520192) >>> 16) & 4
- b = b << g
- h = ((b + 245760) >>> 16) & 2
- b = (((b << h) >>> 15) - (h | (f | g))) | 0
- b = (((b << 1) | ((c >>> (b + 21)) & 1)) + 28) | 0
- }
- o[(a + 28) >> 2] = b
- o[(d + 16) >> 2] = 0
- o[(d + 20) >> 2] = 0
- f = ((b << 2) + 13456) | 0
- V: {
- a = 1 << b
- W: {
- if (!(a & i)) {
- o[3289] = a | i
- o[f >> 2] = d
- o[(d + 24) >> 2] = f
- break W
- }
- a = c << ((b | 0) == 31 ? 0 : (25 - (b >>> 1)) | 0)
- h = o[f >> 2]
- while (1) {
- b = h
- if ((o[(b + 4) >> 2] & -8) == (c | 0)) {
- break V
- }
- f = a >>> 29
- a = a << 1
- f = (((b + (f & 4)) | 0) + 16) | 0
- h = o[f >> 2]
- if (h) {
- continue
- }
- break
- }
- o[f >> 2] = d
- o[(d + 24) >> 2] = b
- }
- o[(d + 12) >> 2] = d
- o[(d + 8) >> 2] = d
- break S
- }
- a = o[(b + 8) >> 2]
- o[(a + 12) >> 2] = d
- o[(b + 8) >> 2] = d
- o[(d + 24) >> 2] = 0
- o[(d + 12) >> 2] = b
- o[(d + 8) >> 2] = a
- }
- a = (e + 8) | 0
- break a
- }
- X: {
- if (!j) {
- break X
- }
- c = o[(b + 28) >> 2]
- a = ((c << 2) + 13456) | 0
- Y: {
- if (o[a >> 2] == (b | 0)) {
- o[a >> 2] = e
- if (e) {
- break Y
- }
- ;(m = 13156), (n = Zl(c) & i), (o[m >> 2] = n)
- break X
- }
- o[((o[(j + 16) >> 2] == (b | 0) ? 16 : 20) + j) >> 2] = e
- if (!e) {
- break X
- }
- }
- o[(e + 24) >> 2] = j
- a = o[(b + 16) >> 2]
- if (a) {
- o[(e + 16) >> 2] = a
- o[(a + 24) >> 2] = e
- }
- a = o[(b + 20) >> 2]
- if (!a) {
- break X
- }
- o[(e + 20) >> 2] = a
- o[(a + 24) >> 2] = e
- }
- Z: {
- if (d >>> 0 <= 15) {
- a = (d + h) | 0
- o[(b + 4) >> 2] = a | 3
- a = (a + b) | 0
- o[(a + 4) >> 2] = o[(a + 4) >> 2] | 1
- break Z
- }
- o[(b + 4) >> 2] = h | 3
- e = (b + h) | 0
- o[(e + 4) >> 2] = d | 1
- o[(d + e) >> 2] = d
- if (k) {
- a = k >>> 3
- c = ((a << 3) + 13192) | 0
- h = o[3293]
- a = 1 << a
- _: {
- if (!(a & f)) {
- o[3288] = a | f
- a = c
- break _
- }
- a = o[(c + 8) >> 2]
- }
- o[(c + 8) >> 2] = h
- o[(a + 12) >> 2] = h
- o[(h + 12) >> 2] = c
- o[(h + 8) >> 2] = a
- }
- o[3293] = e
- o[3290] = d
- }
- a = (b + 8) | 0
- }
- R = (l + 16) | 0
- return a | 0
- }
- function ul(a) {
- a = a | 0
- var p = 0,
- q = 0,
- s = 0,
- t = 0,
- u = 0,
- v = 0,
- w = 0,
- x = 0,
- y = 0
- a: {
- if (!a) {
- break a
- }
- s = (a + -8) | 0
- q = o[(a + -4) >> 2]
- a = q & -8
- u = (s + a) | 0
- b: {
- if (q & 1) {
- break b
- }
- if (!(q & 3)) {
- break a
- }
- q = o[s >> 2]
- s = (s - q) | 0
- if (s >>> 0 < r[3292]) {
- break a
- }
- a = (a + q) | 0
- if (o[3293] != (s | 0)) {
- if (q >>> 0 <= 255) {
- t = o[(s + 8) >> 2]
- q = q >>> 3
- p = o[(s + 12) >> 2]
- if ((p | 0) == (t | 0)) {
- ;(x = 13152), (y = o[3288] & Zl(q)), (o[x >> 2] = y)
- break b
- }
- o[(t + 12) >> 2] = p
- o[(p + 8) >> 2] = t
- break b
- }
- w = o[(s + 24) >> 2]
- q = o[(s + 12) >> 2]
- c: {
- if ((q | 0) != (s | 0)) {
- p = o[(s + 8) >> 2]
- o[(p + 12) >> 2] = q
- o[(q + 8) >> 2] = p
- break c
- }
- d: {
- t = (s + 20) | 0
- p = o[t >> 2]
- if (p) {
- break d
- }
- t = (s + 16) | 0
- p = o[t >> 2]
- if (p) {
- break d
- }
- q = 0
- break c
- }
- while (1) {
- v = t
- q = p
- t = (q + 20) | 0
- p = o[t >> 2]
- if (p) {
- continue
- }
- t = (q + 16) | 0
- p = o[(q + 16) >> 2]
- if (p) {
- continue
- }
- break
- }
- o[v >> 2] = 0
- }
- if (!w) {
- break b
- }
- t = o[(s + 28) >> 2]
- p = ((t << 2) + 13456) | 0
- e: {
- if (o[p >> 2] == (s | 0)) {
- o[p >> 2] = q
- if (q) {
- break e
- }
- ;(x = 13156), (y = o[3289] & Zl(t)), (o[x >> 2] = y)
- break b
- }
- o[(w + (o[(w + 16) >> 2] == (s | 0) ? 16 : 20)) >> 2] = q
- if (!q) {
- break b
- }
- }
- o[(q + 24) >> 2] = w
- p = o[(s + 16) >> 2]
- if (p) {
- o[(q + 16) >> 2] = p
- o[(p + 24) >> 2] = q
- }
- p = o[(s + 20) >> 2]
- if (!p) {
- break b
- }
- o[(q + 20) >> 2] = p
- o[(p + 24) >> 2] = q
- break b
- }
- q = o[(u + 4) >> 2]
- if ((q & 3) != 3) {
- break b
- }
- o[3290] = a
- o[(u + 4) >> 2] = q & -2
- o[(s + 4) >> 2] = a | 1
- o[(a + s) >> 2] = a
- return
- }
- if (u >>> 0 <= s >>> 0) {
- break a
- }
- q = o[(u + 4) >> 2]
- if (!(q & 1)) {
- break a
- }
- f: {
- if (!(q & 2)) {
- if ((u | 0) == o[3294]) {
- o[3294] = s
- a = (o[3291] + a) | 0
- o[3291] = a
- o[(s + 4) >> 2] = a | 1
- if (o[3293] != (s | 0)) {
- break a
- }
- o[3290] = 0
- o[3293] = 0
- return
- }
- if ((u | 0) == o[3293]) {
- o[3293] = s
- a = (o[3290] + a) | 0
- o[3290] = a
- o[(s + 4) >> 2] = a | 1
- o[(a + s) >> 2] = a
- return
- }
- a = ((q & -8) + a) | 0
- g: {
- if (q >>> 0 <= 255) {
- p = o[(u + 8) >> 2]
- q = q >>> 3
- t = o[(u + 12) >> 2]
- if ((p | 0) == (t | 0)) {
- ;(x = 13152), (y = o[3288] & Zl(q)), (o[x >> 2] = y)
- break g
- }
- o[(p + 12) >> 2] = t
- o[(t + 8) >> 2] = p
- break g
- }
- w = o[(u + 24) >> 2]
- q = o[(u + 12) >> 2]
- h: {
- if ((u | 0) != (q | 0)) {
- p = o[(u + 8) >> 2]
- o[(p + 12) >> 2] = q
- o[(q + 8) >> 2] = p
- break h
- }
- i: {
- t = (u + 20) | 0
- p = o[t >> 2]
- if (p) {
- break i
- }
- t = (u + 16) | 0
- p = o[t >> 2]
- if (p) {
- break i
- }
- q = 0
- break h
- }
- while (1) {
- v = t
- q = p
- t = (q + 20) | 0
- p = o[t >> 2]
- if (p) {
- continue
- }
- t = (q + 16) | 0
- p = o[(q + 16) >> 2]
- if (p) {
- continue
- }
- break
- }
- o[v >> 2] = 0
- }
- if (!w) {
- break g
- }
- t = o[(u + 28) >> 2]
- p = ((t << 2) + 13456) | 0
- j: {
- if ((u | 0) == o[p >> 2]) {
- o[p >> 2] = q
- if (q) {
- break j
- }
- ;(x = 13156), (y = o[3289] & Zl(t)), (o[x >> 2] = y)
- break g
- }
- o[(w + ((u | 0) == o[(w + 16) >> 2] ? 16 : 20)) >> 2] = q
- if (!q) {
- break g
- }
- }
- o[(q + 24) >> 2] = w
- p = o[(u + 16) >> 2]
- if (p) {
- o[(q + 16) >> 2] = p
- o[(p + 24) >> 2] = q
- }
- p = o[(u + 20) >> 2]
- if (!p) {
- break g
- }
- o[(q + 20) >> 2] = p
- o[(p + 24) >> 2] = q
- }
- o[(s + 4) >> 2] = a | 1
- o[(a + s) >> 2] = a
- if (o[3293] != (s | 0)) {
- break f
- }
- o[3290] = a
- return
- }
- o[(u + 4) >> 2] = q & -2
- o[(s + 4) >> 2] = a | 1
- o[(a + s) >> 2] = a
- }
- if (a >>> 0 <= 255) {
- a = a >>> 3
- q = ((a << 3) + 13192) | 0
- p = o[3288]
- a = 1 << a
- k: {
- if (!(p & a)) {
- o[3288] = a | p
- a = q
- break k
- }
- a = o[(q + 8) >> 2]
- }
- o[(q + 8) >> 2] = s
- o[(a + 12) >> 2] = s
- o[(s + 12) >> 2] = q
- o[(s + 8) >> 2] = a
- return
- }
- o[(s + 16) >> 2] = 0
- o[(s + 20) >> 2] = 0
- q = s
- t = a >>> 8
- p = 0
- l: {
- if (!t) {
- break l
- }
- p = 31
- if (a >>> 0 > 16777215) {
- break l
- }
- p = t
- t = ((t + 1048320) >>> 16) & 8
- p = p << t
- w = ((p + 520192) >>> 16) & 4
- p = p << w
- v = ((p + 245760) >>> 16) & 2
- p = (((p << v) >>> 15) - (v | (t | w))) | 0
- p = (((p << 1) | ((a >>> (p + 21)) & 1)) + 28) | 0
- }
- o[(q + 28) >> 2] = p
- v = ((p << 2) + 13456) | 0
- t = o[3289]
- q = 1 << p
- m: {
- if (!(t & q)) {
- o[3289] = q | t
- o[v >> 2] = s
- o[(s + 12) >> 2] = s
- o[(s + 24) >> 2] = v
- o[(s + 8) >> 2] = s
- break m
- }
- t = a << ((p | 0) == 31 ? 0 : (25 - (p >>> 1)) | 0)
- q = o[v >> 2]
- n: {
- while (1) {
- p = q
- if ((o[(q + 4) >> 2] & -8) == (a | 0)) {
- break n
- }
- q = t >>> 29
- t = t << 1
- v = (((p + (q & 4)) | 0) + 16) | 0
- q = o[v >> 2]
- if (q) {
- continue
- }
- break
- }
- o[v >> 2] = s
- o[(s + 12) >> 2] = s
- o[(s + 24) >> 2] = p
- o[(s + 8) >> 2] = s
- break m
- }
- a = o[(p + 8) >> 2]
- o[(a + 12) >> 2] = s
- o[(p + 8) >> 2] = s
- o[(s + 24) >> 2] = 0
- o[(s + 12) >> 2] = p
- o[(s + 8) >> 2] = a
- }
- a = (o[3296] + -1) | 0
- o[3296] = a
- if (a) {
- break a
- }
- s = 13608
- while (1) {
- a = o[s >> 2]
- s = (a + 8) | 0
- if (a) {
- continue
- }
- break
- }
- o[3296] = -1
- }
- }
- function vl(a) {
- var r = 0
- r = o[3416]
- a = (r + a) | 0
- if ((a | 0) <= -1) {
- o[3269] = 48
- return -1
- }
- a: {
- if (a >>> 0 <= (U() << 16) >>> 0) {
- break a
- }
- if (N(a | 0)) {
- break a
- }
- o[3269] = 48
- return -1
- }
- o[3416] = a
- return r
- }
- function wl(a, z, A) {
- var B = 0,
- C = 0,
- D = 0
- if (A >>> 0 >= 8192) {
- O(a | 0, z | 0, A | 0) | 0
- return a
- }
- C = (a + A) | 0
- a: {
- if (!((a ^ z) & 3)) {
- b: {
- if ((A | 0) < 1) {
- A = a
- break b
- }
- if (!(a & 3)) {
- A = a
- break b
- }
- A = a
- while (1) {
- m[A | 0] = p[z | 0]
- z = (z + 1) | 0
- A = (A + 1) | 0
- if (A >>> 0 >= C >>> 0) {
- break b
- }
- if (A & 3) {
- continue
- }
- break
- }
- }
- B = C & -4
- c: {
- if (B >>> 0 < 64) {
- break c
- }
- D = (B + -64) | 0
- if (A >>> 0 > D >>> 0) {
- break c
- }
- while (1) {
- o[A >> 2] = o[z >> 2]
- o[(A + 4) >> 2] = o[(z + 4) >> 2]
- o[(A + 8) >> 2] = o[(z + 8) >> 2]
- o[(A + 12) >> 2] = o[(z + 12) >> 2]
- o[(A + 16) >> 2] = o[(z + 16) >> 2]
- o[(A + 20) >> 2] = o[(z + 20) >> 2]
- o[(A + 24) >> 2] = o[(z + 24) >> 2]
- o[(A + 28) >> 2] = o[(z + 28) >> 2]
- o[(A + 32) >> 2] = o[(z + 32) >> 2]
- o[(A + 36) >> 2] = o[(z + 36) >> 2]
- o[(A + 40) >> 2] = o[(z + 40) >> 2]
- o[(A + 44) >> 2] = o[(z + 44) >> 2]
- o[(A + 48) >> 2] = o[(z + 48) >> 2]
- o[(A + 52) >> 2] = o[(z + 52) >> 2]
- o[(A + 56) >> 2] = o[(z + 56) >> 2]
- o[(A + 60) >> 2] = o[(z + 60) >> 2]
- z = (z - -64) | 0
- A = (A - -64) | 0
- if (A >>> 0 <= D >>> 0) {
- continue
- }
- break
- }
- }
- if (A >>> 0 >= B >>> 0) {
- break a
- }
- while (1) {
- o[A >> 2] = o[z >> 2]
- z = (z + 4) | 0
- A = (A + 4) | 0
- if (A >>> 0 < B >>> 0) {
- continue
- }
- break
- }
- break a
- }
- if (C >>> 0 < 4) {
- A = a
- break a
- }
- B = (C + -4) | 0
- if (B >>> 0 < a >>> 0) {
- A = a
- break a
- }
- A = a
- while (1) {
- m[A | 0] = p[z | 0]
- m[(A + 1) | 0] = p[(z + 1) | 0]
- m[(A + 2) | 0] = p[(z + 2) | 0]
- m[(A + 3) | 0] = p[(z + 3) | 0]
- z = (z + 4) | 0
- A = (A + 4) | 0
- if (A >>> 0 <= B >>> 0) {
- continue
- }
- break
- }
- }
- if (A >>> 0 < C >>> 0) {
- while (1) {
- m[A | 0] = p[z | 0]
- z = (z + 1) | 0
- A = (A + 1) | 0
- if ((C | 0) != (A | 0)) {
- continue
- }
- break
- }
- }
- return a
- }
- function xl(a, z, A) {
- var E = 0,
- F = 0,
- G = 0,
- H = 0
- a: {
- if (!A) {
- break a
- }
- E = (a + A) | 0
- m[(E + -1) | 0] = z
- m[a | 0] = z
- if (A >>> 0 < 3) {
- break a
- }
- m[(E + -2) | 0] = z
- m[(a + 1) | 0] = z
- m[(E + -3) | 0] = z
- m[(a + 2) | 0] = z
- if (A >>> 0 < 7) {
- break a
- }
- m[(E + -4) | 0] = z
- m[(a + 3) | 0] = z
- if (A >>> 0 < 9) {
- break a
- }
- E = (0 - a) & 3
- F = (E + a) | 0
- z = u(z & 255, 16843009)
- o[F >> 2] = z
- A = (A - E) & -4
- E = (A + F) | 0
- o[(E + -4) >> 2] = z
- if (A >>> 0 < 9) {
- break a
- }
- o[(F + 8) >> 2] = z
- o[(F + 4) >> 2] = z
- o[(E + -8) >> 2] = z
- o[(E + -12) >> 2] = z
- if (A >>> 0 < 25) {
- break a
- }
- o[(F + 24) >> 2] = z
- o[(F + 20) >> 2] = z
- o[(F + 16) >> 2] = z
- o[(F + 12) >> 2] = z
- o[(E + -16) >> 2] = z
- o[(E + -20) >> 2] = z
- o[(E + -24) >> 2] = z
- o[(E + -28) >> 2] = z
- H = (F & 4) | 24
- A = (A - H) | 0
- if (A >>> 0 < 32) {
- break a
- }
- E = z
- G = z
- z = (F + H) | 0
- while (1) {
- o[(z + 24) >> 2] = G
- o[(z + 28) >> 2] = E
- o[(z + 16) >> 2] = G
- o[(z + 20) >> 2] = E
- o[(z + 8) >> 2] = G
- o[(z + 12) >> 2] = E
- o[z >> 2] = G
- o[(z + 4) >> 2] = E
- z = (z + 32) | 0
- A = (A + -32) | 0
- if (A >>> 0 > 31) {
- continue
- }
- break
- }
- }
- return a
- }
- function yl(a, z, A) {
- var I = 0,
- J = 0
- a: {
- if ((a | 0) == (z | 0)) {
- break a
- }
- b: {
- if ((z + A) >>> 0 > a >>> 0) {
- J = (a + A) | 0
- if (J >>> 0 > z >>> 0) {
- break b
- }
- }
- return wl(a, z, A)
- }
- I = (a ^ z) & 3
- c: {
- d: {
- if (a >>> 0 < z >>> 0) {
- if (I) {
- I = a
- break c
- }
- if (!(a & 3)) {
- I = a
- break d
- }
- I = a
- while (1) {
- if (!A) {
- break a
- }
- m[I | 0] = p[z | 0]
- z = (z + 1) | 0
- A = (A + -1) | 0
- I = (I + 1) | 0
- if (I & 3) {
- continue
- }
- break
- }
- break d
- }
- e: {
- if (I) {
- break e
- }
- if (J & 3) {
- while (1) {
- if (!A) {
- break a
- }
- A = (A + -1) | 0
- I = (A + a) | 0
- m[I | 0] = p[(z + A) | 0]
- if (I & 3) {
- continue
- }
- break
- }
- }
- if (A >>> 0 <= 3) {
- break e
- }
- while (1) {
- A = (A + -4) | 0
- o[(A + a) >> 2] = o[(z + A) >> 2]
- if (A >>> 0 > 3) {
- continue
- }
- break
- }
- }
- if (!A) {
- break a
- }
- while (1) {
- A = (A + -1) | 0
- m[(A + a) | 0] = p[(z + A) | 0]
- if (A) {
- continue
- }
- break
- }
- break a
- }
- if (A >>> 0 <= 3) {
- break c
- }
- J = A
- while (1) {
- o[I >> 2] = o[z >> 2]
- z = (z + 4) | 0
- I = (I + 4) | 0
- J = (J + -4) | 0
- if (J >>> 0 > 3) {
- continue
- }
- break
- }
- A = A & 3
- }
- if (!A) {
- break a
- }
- while (1) {
- m[I | 0] = p[z | 0]
- I = (I + 1) | 0
- z = (z + 1) | 0
- A = (A + -1) | 0
- if (A) {
- continue
- }
- break
- }
- }
- return a
- }
- function zl(a, z) {
- a = a | 0
- z = z | 0
- if (!o[3412]) {
- o[3413] = z
- o[3412] = a
- }
- }
- function Al() {
- return R | 0
- }
- function Bl(a) {
- a = a | 0
- a = (R - a) & -16
- R = a
- return a | 0
- }
- function Cl(a) {
- a = a | 0
- R = a
- }
- function Dl(a) {
- a = a | 0
- return V(a | 0) | 0
- }
- function El(a, o) {
- a = a | 0
- o = o | 0
- return l[a](o) | 0
- }
- function Fl(a, o) {
- a = a | 0
- o = o | 0
- l[a](o)
- }
- function Gl(a, o, z) {
- a = a | 0
- o = o | 0
- z = z | 0
- return l[a](o, z) | 0
- }
- function Hl(a, o, z) {
- a = a | 0
- o = o | 0
- z = z | 0
- l[a](o, z)
- }
- function Il(a, o, z, A) {
- a = a | 0
- o = o | 0
- z = z | 0
- A = A | 0
- return l[a](o, z, A) | 0
- }
- function Jl(a) {
- a = a | 0
- l[a]()
- }
- function Kl(a, o, z, A) {
- a = a | 0
- o = o | 0
- z = z | 0
- A = A | 0
- l[a](o, z, A)
- }
- function Ll(a, o, z, A, K) {
- a = a | 0
- o = o | 0
- z = z | 0
- A = A | 0
- K = K | 0
- l[a](o, z, A, K)
- }
- function Ml(a, o, z, A, K, L, M) {
- a = a | 0
- o = o | 0
- z = z | 0
- A = A | 0
- K = K | 0
- L = L | 0
- M = M | 0
- return l[a](o, z, A, K, L, M) | 0
- }
- function Nl(a, o, z, A, K, L, M) {
- a = a | 0
- o = o | 0
- z = +z
- A = A | 0
- K = K | 0
- L = L | 0
- M = M | 0
- return l[a](o, z, A, K, L, M) | 0
- }
- function Ol(a, o, z, A, K, L, M) {
- a = a | 0
- o = o | 0
- z = z | 0
- A = A | 0
- K = K | 0
- L = L | 0
- M = M | 0
- l[a](o, z, A, K, L, M)
- }
- function Pl(a, o, z, A, K, L) {
- a = a | 0
- o = o | 0
- z = z | 0
- A = A | 0
- K = K | 0
- L = L | 0
- l[a](o, z, A, K, L)
- }
- function Ql(a, o, z, A, K) {
- a = a | 0
- o = o | 0
- z = z | 0
- A = A | 0
- K = K | 0
- a = l[a](o, z, A, K) | 0
- P(T | 0)
- return a | 0
- }
- function Rl(a, o) {
- i(a | 0, o | 0)
- }
- function Sl(a, o, z, A) {
- var K = 0,
- L = 0,
- M = 0,
- N = 0,
- O = 0,
- P = 0
- K = z >>> 16
- L = a >>> 16
- P = u(K, L)
- M = z & 65535
- N = a & 65535
- O = u(M, N)
- L = ((O >>> 16) + u(L, M)) | 0
- K = ((L & 65535) + u(K, N)) | 0
- a = (((((((u(o, z) + P) | 0) + u(a, A)) | 0) + (L >>> 16)) | 0) + (K >>> 16)) | 0
- o = (O & 65535) | (K << 16)
- T = a
- return o
- }
- function Tl(a, o, z, A) {
- var Q = 0,
- R = 0,
- S = 0,
- U = 0
- Q = o
- R = Q >> 31
- Q = Q >> 31
- a = a ^ Q
- S = (a - Q) | 0
- U = ((o ^ R) - (((a >>> 0 < Q >>> 0) + R) | 0)) | 0
- Q = A
- R = Q >> 31
- Q = Q >> 31
- a = z ^ Q
- Q = Xl(S, U, (a - Q) | 0, ((A ^ R) - (((a >>> 0 < Q >>> 0) + R) | 0)) | 0)
- o = o ^ A
- z = o >> 31
- a = o >> 31
- o = Q ^ a
- A = (o - a) | 0
- T = ((z ^ T) - (((o >>> 0 < a >>> 0) + z) | 0)) | 0
- return A
- }
- function Ul(a, o, z, A) {
- var V = 0,
- W = 0,
- X = 0,
- Y = 0,
- Z = 0,
- _ = 0,
- $ = 0,
- aa = 0,
- ba = 0,
- ca = 0,
- da = 0
- a: {
- b: {
- c: {
- d: {
- e: {
- f: {
- g: {
- h: {
- i: {
- j: {
- X = o
- if (X) {
- V = z
- if (!V) {
- break j
- }
- W = A
- if (!W) {
- break i
- }
- W = (x(W) - x(X)) | 0
- if (W >>> 0 <= 31) {
- break h
- }
- break b
- }
- if ((((A | 0) == 1) & (z >>> 0 >= 0)) | (A >>> 0 > 1)) {
- break b
- }
- o = ((a >>> 0) / (z >>> 0)) | 0
- Rl((a - u(o, z)) | 0, 0)
- T = 0
- return o
- }
- V = A
- if (!a) {
- break g
- }
- if (!V) {
- break f
- }
- W = (V + -1) | 0
- if (W & V) {
- break f
- }
- Rl(a, W & X)
- a = X >>> (_l(V) & 31)
- T = 0
- return a
- }
- W = (V + -1) | 0
- if (!(W & V)) {
- break e
- }
- _ = (((x(V) + 33) | 0) - x(X)) | 0
- Y = (0 - _) | 0
- break c
- }
- _ = (W + 1) | 0
- Y = (63 - W) | 0
- break c
- }
- a = ((X >>> 0) / (V >>> 0)) | 0
- Rl(0, (X - u(a, V)) | 0)
- T = 0
- return a
- }
- W = (x(V) - x(X)) | 0
- if (W >>> 0 < 31) {
- break d
- }
- break b
- }
- Rl(a & W, 0)
- if ((V | 0) == 1) {
- break a
- }
- z = a
- a = _l(V)
- A = a & 31
- if (32 <= (a & 63) >>> 0) {
- W = 0
- a = o >>> A
- } else {
- W = o >>> A
- a = ((((1 << A) - 1) & o) << (32 - A)) | (z >>> A)
- }
- T = W
- return a
- }
- _ = (W + 1) | 0
- Y = (63 - W) | 0
- }
- V = o
- X = a
- W = _ & 63
- Z = W & 31
- if (32 <= (W & 63) >>> 0) {
- W = 0
- aa = V >>> Z
- } else {
- W = V >>> Z
- aa = ((((1 << Z) - 1) & V) << (32 - Z)) | (X >>> Z)
- }
- a = Y & 63
- Y = a & 31
- if (32 <= (a & 63) >>> 0) {
- V = X << Y
- a = 0
- } else {
- V = (((1 << Y) - 1) & (X >>> (32 - Y))) | (o << Y)
- a = X << Y
- }
- o = V
- if (_) {
- X = (A + -1) | 0
- V = (z + -1) | 0
- if (V >>> 0 < 4294967295) {
- X = (X + 1) | 0
- }
- Y = V
- while (1) {
- V = aa
- W = (W << 1) | (V >>> 31)
- V = V << 1
- $ = W
- W = (o >>> 31) | V
- ba = $
- V = $
- $ = W
- Z = (X - (((Y >>> 0 < W >>> 0) + V) | 0)) | 0
- V = Z >> 31
- Z = Z >> 31
- W = z & Z
- aa = ($ - W) | 0
- W = (ba - (((A & V) + ($ >>> 0 < W >>> 0)) | 0)) | 0
- V = (o << 1) | (a >>> 31)
- a = ca | (a << 1)
- o = V | da
- V = 0
- ba = V
- $ = Z & 1
- ca = $
- _ = (_ + -1) | 0
- if (_) {
- continue
- }
- break
- }
- }
- Rl(aa, W)
- V = (o << 1) | (a >>> 31)
- a = $ | (a << 1)
- T = V | ba
- return a
- }
- Rl(a, o)
- a = 0
- o = 0
- }
- T = o
- return a
- }
- function Vl(a, o, z, A) {
- a = Sl(a, o, z, A)
- return a
- }
- function Wl(a, o, z, A) {
- a = Tl(a, o, z, A)
- return a
- }
- function Xl(a, o, z, A) {
- a = Ul(a, o, z, A)
- return a
- }
- function Yl(a) {
- var o = 0,
- z = 0
- while (1) {
- z = o
- if (a) {
- a = (a - 1) & a
- o = (o + 1) | 0
- continue
- }
- break
- }
- return z
- }
- function Zl(a) {
- var A = 0
- A = a & 31
- a = (0 - a) & 31
- return (((-1 >>> A) & -2) << A) | (((-1 << a) & -2) >>> a)
- }
- function _l(a) {
- if (a) {
- return (31 - x((a + -1) ^ a)) | 0
- }
- return 32
- }
- // EMSCRIPTEN_END_FUNCS
- l[1] = cl
- l[2] = $c
- l[3] = ad
- l[4] = bd
- l[5] = Zc
- l[6] = _c
- l[7] = gd
- l[8] = hd
- l[9] = id
- l[10] = cd
- l[11] = dd
- l[12] = zd
- l[13] = Ad
- l[14] = vd
- l[15] = wd
- l[16] = Bd
- l[17] = Cd
- l[18] = Dd
- l[19] = zb
- l[20] = Ed
- l[21] = al
- l[22] = Fd
- l[23] = id
- l[24] = Od
- l[25] = Pd
- l[26] = Hd
- l[27] = Id
- l[28] = Jd
- l[29] = Kd
- l[30] = Fd
- l[31] = Md
- l[32] = Nd
- l[33] = Yd
- l[34] = Zd
- l[35] = Rd
- l[36] = Td
- l[37] = _d
- l[38] = Ud
- l[39] = Vd
- l[40] = Wd
- l[41] = Xd
- l[42] = ie
- l[43] = je
- l[44] = ae
- l[45] = be
- l[46] = ce
- l[47] = fe
- l[48] = de
- l[49] = ke
- l[50] = he
- l[51] = qe
- l[52] = re
- l[53] = id
- l[54] = vb
- l[55] = se
- l[56] = te
- l[57] = ue
- l[58] = Ed
- l[59] = te
- l[60] = id
- l[61] = ve
- l[62] = we
- l[63] = Ad
- l[64] = Ad
- l[65] = xe
- l[66] = ye
- l[67] = ze
- l[68] = se
- l[69] = Ae
- l[70] = De
- l[71] = Ee
- l[72] = Fe
- l[73] = Ge
- l[74] = He
- l[75] = id
- l[76] = Ed
- l[77] = Ie
- l[78] = Je
- l[79] = Ke
- l[80] = Ne
- l[81] = Oe
- l[82] = Pe
- l[83] = Qe
- l[84] = id
- l[85] = Ed
- l[86] = Re
- l[87] = Se
- l[88] = Te
- l[89] = $c
- l[90] = ad
- l[91] = Ve
- l[92] = zb
- l[93] = Ue
- l[94] = re
- l[95] = id
- l[96] = se
- l[97] = Ye
- l[98] = Ad
- l[99] = Ze
- l[100] = _e
- l[101] = ze
- l[102] = se
- l[103] = Ae
- l[104] = $e
- l[105] = af
- l[106] = bf
- l[107] = Ge
- l[108] = He
- l[109] = id
- l[110] = Ed
- l[111] = Ie
- l[112] = Je
- l[113] = cf
- l[114] = ef
- l[115] = ff
- l[116] = Pe
- l[117] = Qe
- l[118] = id
- l[119] = Ed
- l[120] = Re
- l[121] = Se
- l[122] = gf
- l[123] = $c
- l[124] = ad
- l[125] = Ve
- l[126] = zb
- l[127] = hf
- l[128] = re
- l[129] = te
- l[130] = id
- l[131] = kf
- l[132] = je
- l[133] = lf
- l[134] = nf
- l[135] = mf
- l[136] = qf
- l[137] = bd
- l[138] = of
- l[139] = sf
- l[140] = tf
- l[141] = Pe
- l[142] = vb
- l[143] = uf
- l[144] = id
- l[145] = Ed
- l[146] = vf
- l[147] = id
- l[148] = wf
- l[149] = xf
- l[150] = yf
- l[151] = $c
- l[152] = ad
- l[153] = Ve
- l[154] = zb
- l[155] = Ue
- l[156] = Bf
- l[157] = Cf
- l[158] = Pe
- l[159] = uf
- l[160] = id
- l[161] = Ed
- l[162] = vf
- l[163] = xf
- l[164] = Df
- l[165] = $c
- l[166] = ad
- l[167] = Ve
- l[168] = zb
- l[169] = hf
- l[170] = $c
- l[171] = ad
- l[172] = te
- l[173] = id
- l[174] = te
- l[175] = ue
- l[176] = Ed
- l[177] = Af
- l[178] = Ef
- l[179] = Kf
- l[180] = Lf
- l[181] = Ff
- l[182] = Gf
- l[183] = mf
- l[184] = Hf
- l[185] = If
- l[186] = Jf
- l[187] = wg
- l[188] = Ad
- l[189] = id
- l[190] = id
- l[191] = vg
- l[192] = gi
- l[193] = hi
- l[194] = id
- l[195] = te
- l[196] = Ed
- l[197] = Ed
- l[198] = Bg
- l[199] = Cg
- l[200] = yg
- l[201] = xg
- l[202] = Ag
- l[203] = Dg
- l[204] = Eg
- l[205] = Fg
- l[206] = zg
- l[207] = lh
- l[208] = mh
- l[209] = Ig
- l[210] = Jg
- l[211] = Kg
- l[212] = Lg
- l[213] = Sg
- l[214] = id
- l[215] = vb
- l[216] = eh
- l[217] = nh
- l[218] = ph
- l[219] = Ig
- l[220] = Jg
- l[221] = Kg
- l[222] = Lg
- l[223] = gh
- l[224] = id
- l[225] = vb
- l[226] = eh
- l[227] = Rg
- l[228] = qh
- l[229] = Qg
- l[230] = rh
- l[231] = sh
- l[232] = wh
- l[233] = xh
- l[234] = yh
- l[235] = zh
- l[236] = vh
- l[237] = Bh
- l[238] = th
- l[239] = Ch
- l[240] = Dh
- l[241] = Fh
- l[242] = Gh
- l[243] = Hh
- l[244] = Ih
- l[245] = Eh
- l[246] = Kh
- l[247] = Lh
- l[248] = Mh
- l[249] = Nh
- l[250] = Oh
- l[251] = Zh
- l[252] = Yh
- l[253] = Uh
- l[254] = $c
- l[255] = ad
- l[256] = _h
- l[257] = $h
- l[258] = Ad
- l[259] = te
- l[260] = id
- l[261] = Ni
- l[262] = Oi
- l[263] = Pi
- l[264] = Ri
- l[265] = Mi
- l[266] = Bj
- l[267] = wj
- l[268] = zj
- l[269] = Pj
- l[270] = Qj
- l[271] = Tj
- l[272] = Rj
- l[273] = Sj
- l[274] = qk
- l[275] = $c
- l[276] = ad
- l[277] = bl
- l[278] = el
- l[279] = fl
- l[280] = gl
- l[281] = $c
- l[282] = ad
- l[283] = Cj
- l[284] = Cj
- l[285] = il
- l[286] = sl
- l[287] = ql
- l[288] = ll
- l[289] = ad
- l[290] = rl
- l[291] = pl
- l[292] = ml
- function U() {
- return (buffer.byteLength / 65536) | 0
- }
- function V(pagesToAdd) {
- pagesToAdd = pagesToAdd | 0
- var W = U() | 0
- var X = (W + pagesToAdd) | 0
- if (W < X && X < 65536) {
- var Y = new ArrayBuffer(u(X, 65536))
- var Z = new global.Int8Array(Y)
- Z.set(m)
- m = Z
- m = new global.Int8Array(Y)
- n = new global.Int16Array(Y)
- o = new global.Int32Array(Y)
- p = new global.Uint8Array(Y)
- q = new global.Uint16Array(Y)
- r = new global.Uint32Array(Y)
- s = new global.Float32Array(Y)
- t = new global.Float64Array(Y)
- buffer = Y
- k.buffer = Y
- }
- return W
- }
- return {
- __wasm_call_ctors: ca,
- emscripten_bind_Status_code_0: db,
- emscripten_bind_Status_ok_0: eb,
- emscripten_bind_Status_error_msg_0: fb,
- emscripten_bind_Status___destroy___0: gb,
- emscripten_bind_DracoUInt16Array_DracoUInt16Array_0: hb,
- emscripten_bind_DracoUInt16Array_GetValue_1: ib,
- emscripten_bind_DracoUInt16Array_size_0: jb,
- emscripten_bind_DracoUInt16Array___destroy___0: kb,
- emscripten_bind_PointCloud_PointCloud_0: lb,
- emscripten_bind_PointCloud_num_attributes_0: mb,
- emscripten_bind_PointCloud_num_points_0: nb,
- emscripten_bind_PointCloud___destroy___0: ob,
- emscripten_bind_DracoUInt8Array_DracoUInt8Array_0: hb,
- emscripten_bind_DracoUInt8Array_GetValue_1: pb,
- emscripten_bind_DracoUInt8Array_size_0: qb,
- emscripten_bind_DracoUInt8Array___destroy___0: kb,
- emscripten_bind_DracoUInt32Array_DracoUInt32Array_0: hb,
- emscripten_bind_DracoUInt32Array_GetValue_1: rb,
- emscripten_bind_DracoUInt32Array_size_0: sb,
- emscripten_bind_DracoUInt32Array___destroy___0: kb,
- emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0: tb,
- emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1: ub,
- emscripten_bind_AttributeOctahedronTransform_quantization_bits_0: vb,
- emscripten_bind_AttributeOctahedronTransform___destroy___0: ob,
- emscripten_bind_PointAttribute_PointAttribute_0: wb,
- emscripten_bind_PointAttribute_size_0: nb,
- emscripten_bind_PointAttribute_GetAttributeTransformData_0: xb,
- emscripten_bind_PointAttribute_attribute_type_0: yb,
- emscripten_bind_PointAttribute_data_type_0: zb,
- emscripten_bind_PointAttribute_num_components_0: Ab,
- emscripten_bind_PointAttribute_normalized_0: Bb,
- emscripten_bind_PointAttribute_byte_stride_0: Cb,
- emscripten_bind_PointAttribute_byte_offset_0: Db,
- emscripten_bind_PointAttribute_unique_id_0: Eb,
- emscripten_bind_PointAttribute___destroy___0: Fb,
- emscripten_bind_AttributeTransformData_AttributeTransformData_0: Gb,
- emscripten_bind_AttributeTransformData_transform_type_0: db,
- emscripten_bind_AttributeTransformData___destroy___0: Hb,
- emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0: Ib,
- emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1: ub,
- emscripten_bind_AttributeQuantizationTransform_quantization_bits_0: vb,
- emscripten_bind_AttributeQuantizationTransform_min_value_1: Jb,
- emscripten_bind_AttributeQuantizationTransform_range_0: Kb,
- emscripten_bind_AttributeQuantizationTransform___destroy___0: ob,
- emscripten_bind_DracoInt8Array_DracoInt8Array_0: hb,
- emscripten_bind_DracoInt8Array_GetValue_1: Lb,
- emscripten_bind_DracoInt8Array_size_0: qb,
- emscripten_bind_DracoInt8Array___destroy___0: kb,
- emscripten_bind_MetadataQuerier_MetadataQuerier_0: Mb,
- emscripten_bind_MetadataQuerier_HasEntry_2: Nb,
- emscripten_bind_MetadataQuerier_GetIntEntry_2: Ob,
- emscripten_bind_MetadataQuerier_GetIntEntryArray_3: Pb,
- emscripten_bind_MetadataQuerier_GetDoubleEntry_2: Qb,
- emscripten_bind_MetadataQuerier_GetStringEntry_2: Rb,
- emscripten_bind_MetadataQuerier_NumEntries_1: Sb,
- emscripten_bind_MetadataQuerier_GetEntryName_2: Tb,
- emscripten_bind_MetadataQuerier___destroy___0: Ub,
- emscripten_bind_DracoInt16Array_DracoInt16Array_0: hb,
- emscripten_bind_DracoInt16Array_GetValue_1: Vb,
- emscripten_bind_DracoInt16Array_size_0: jb,
- emscripten_bind_DracoInt16Array___destroy___0: kb,
- emscripten_bind_DracoFloat32Array_DracoFloat32Array_0: hb,
- emscripten_bind_DracoFloat32Array_GetValue_1: Wb,
- emscripten_bind_DracoFloat32Array_size_0: sb,
- emscripten_bind_DracoFloat32Array___destroy___0: kb,
- emscripten_bind_GeometryAttribute_GeometryAttribute_0: Xb,
- emscripten_bind_GeometryAttribute___destroy___0: Yb,
- emscripten_bind_DecoderBuffer_DecoderBuffer_0: Zb,
- emscripten_bind_DecoderBuffer_Init_2: _b,
- emscripten_bind_DecoderBuffer___destroy___0: Yb,
- emscripten_bind_Decoder_Decoder_0: $b,
- emscripten_bind_Decoder_GetEncodedGeometryType_1: ac,
- emscripten_bind_Decoder_DecodeBufferToPointCloud_2: bc,
- emscripten_bind_Decoder_DecodeBufferToMesh_2: cc,
- emscripten_bind_Decoder_GetAttributeId_2: dc,
- emscripten_bind_Decoder_GetAttributeIdByName_2: ec,
- emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3: fc,
- emscripten_bind_Decoder_GetAttribute_2: gc,
- emscripten_bind_Decoder_GetAttributeByUniqueId_2: hc,
- emscripten_bind_Decoder_GetMetadata_1: ic,
- emscripten_bind_Decoder_GetAttributeMetadata_2: jc,
- emscripten_bind_Decoder_GetFaceFromMesh_3: kc,
- emscripten_bind_Decoder_GetTriangleStripsFromMesh_2: lc,
- emscripten_bind_Decoder_GetTrianglesUInt16Array_3: mc,
- emscripten_bind_Decoder_GetTrianglesUInt32Array_3: nc,
- emscripten_bind_Decoder_GetAttributeFloat_3: oc,
- emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3: pc,
- emscripten_bind_Decoder_GetAttributeIntForAllPoints_3: qc,
- emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3: rc,
- emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3: sc,
- emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3: tc,
- emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3: uc,
- emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3: qc,
- emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3: vc,
- emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5: wc,
- emscripten_bind_Decoder_SkipAttributeTransform_1: xc,
- emscripten_bind_Decoder___destroy___0: yc,
- emscripten_bind_Mesh_Mesh_0: Bc,
- emscripten_bind_Mesh_num_faces_0: Cc,
- emscripten_bind_Mesh_num_attributes_0: mb,
- emscripten_bind_Mesh_num_points_0: nb,
- emscripten_bind_Mesh___destroy___0: ob,
- emscripten_bind_VoidPtr___destroy___0: Yb,
- emscripten_bind_DracoInt32Array_DracoInt32Array_0: hb,
- emscripten_bind_DracoInt32Array_GetValue_1: rb,
- emscripten_bind_DracoInt32Array_size_0: sb,
- emscripten_bind_DracoInt32Array___destroy___0: kb,
- emscripten_bind_Metadata_Metadata_0: Dc,
- emscripten_bind_Metadata___destroy___0: Ec,
- emscripten_enum_draco_StatusCode_OK: Hc,
- emscripten_enum_draco_StatusCode_DRACO_ERROR: Ic,
- emscripten_enum_draco_StatusCode_IO_ERROR: Jc,
- emscripten_enum_draco_StatusCode_INVALID_PARAMETER: Kc,
- emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION: Lc,
- emscripten_enum_draco_StatusCode_UNKNOWN_VERSION: Mc,
- emscripten_enum_draco_DataType_DT_INVALID: Hc,
- emscripten_enum_draco_DataType_DT_INT8: Nc,
- emscripten_enum_draco_DataType_DT_UINT8: Oc,
- emscripten_enum_draco_DataType_DT_INT16: Pc,
- emscripten_enum_draco_DataType_DT_UINT16: Qc,
- emscripten_enum_draco_DataType_DT_INT32: Rc,
- emscripten_enum_draco_DataType_DT_UINT32: Sc,
- emscripten_enum_draco_DataType_DT_INT64: Tc,
- emscripten_enum_draco_DataType_DT_UINT64: Uc,
- emscripten_enum_draco_DataType_DT_FLOAT32: Vc,
- emscripten_enum_draco_DataType_DT_FLOAT64: Wc,
- emscripten_enum_draco_DataType_DT_BOOL: Xc,
- emscripten_enum_draco_DataType_DT_TYPES_COUNT: Yc,
- emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE: Ic,
- emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD: Hc,
- emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH: Nc,
- emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM: Ic,
- emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM: Hc,
- emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM: Nc,
- emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM: Oc,
- emscripten_enum_draco_GeometryAttribute_Type_INVALID: Ic,
- emscripten_enum_draco_GeometryAttribute_Type_POSITION: Hc,
- emscripten_enum_draco_GeometryAttribute_Type_NORMAL: Nc,
- emscripten_enum_draco_GeometryAttribute_Type_COLOR: Oc,
- emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD: Pc,
- emscripten_enum_draco_GeometryAttribute_Type_GENERIC: Qc,
- setThrew: zl,
- _ZSt18uncaught_exceptionv: Hc,
- free: ul,
- malloc: tl,
- stackSave: Al,
- stackAlloc: Bl,
- stackRestore: Cl,
- __growWasmMemory: Dl,
- dynCall_ii: El,
- dynCall_vi: Fl,
- dynCall_iii: Gl,
- dynCall_vii: Hl,
- dynCall_iiii: Il,
- dynCall_v: Jl,
- dynCall_viii: Kl,
- dynCall_viiii: Ll,
- dynCall_iiiiiii: Ml,
- dynCall_iidiiii: Nl,
- dynCall_jiji: Ql,
- dynCall_viiiiii: Ol,
- dynCall_viiiii: Pl
- }
- }
- var _ = (function(mem) {
- var $ = new Uint8Array(mem)
- return function(offset, s) {
- var aa, ba
- if (typeof Buffer === 'undefined') {
- aa = atob(s)
- for (ba = 0; ba < aa.length; ba++) $[offset + ba] = aa.charCodeAt(ba)
- } else {
- aa = Buffer.from(s, 'base64')
- for (ba = 0; ba < aa.length; ba++) $[offset + ba] = aa[ba]
- }
- }
- })(wasmMemory.buffer)
- _(
- 1027,
- 'wAAAAMAAAADAAAAAwGFsbG9jYXRvcjxUPjo6YWxsb2NhdGUoc2l6ZV90IG4pICduJyBleGNlZWRzIG1heGltdW0gc3VwcG9ydGVkIHNpemUAAAAAALwEAAACAAAAAwAAAAQAAAAFAAAABgAAAE41ZHJhY28yOEF0dHJpYnV0ZU9jdGFoZWRyb25UcmFuc2Zvcm1FAE41ZHJhY28xOEF0dHJpYnV0ZVRyYW5zZm9ybUUACDEAAJcEAAAwMQAAcAQAALQEAAAAAAAAEAUAAAcAAAAIAAAACQAAAAoAAAALAAAATjVkcmFjbzMwQXR0cmlidXRlUXVhbnRpemF0aW9uVHJhbnNmb3JtRQAAAAAwMQAA5AQAALQEAABhbGxvY2F0b3I8VD46OmFsbG9jYXRlKHNpemVfdCBuKSAnbicgZXhjZWVkcyBtYXhpbXVtIHN1cHBvcnRlZCBzaXplAAAAAADkBQAADAAAAA0AAAAOAAAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAATjVkcmFjbzE3QXR0cmlidXRlc0RlY29kZXJFAE41ZHJhY28yNkF0dHJpYnV0ZXNEZWNvZGVySW50ZXJmYWNlRQAAAAAIMQAAtAUAADAxAACYBQAA3AUAAGFsbG9jYXRvcjxUPjo6YWxsb2NhdGUoc2l6ZV90IG4pICduJyBleGNlZWRzIG1heGltdW0gc3VwcG9ydGVkIHNpemUAAAAAAIgGAAAYAAAAGQAAABoAAAAbAAAAHAAAAB0AAAAeAAAAHwAAACAAAABONWRyYWNvMjZTZXF1ZW50aWFsQXR0cmlidXRlRGVjb2RlckUAAAAACDEAAGAGAAD/////AAAAABwHAAAhAAAAIgAAAA4AAAAjAAAAJAAAABEAAAASAAAAEwAAACUAAAAmAAAAJwAAACgAAAApAAAAc2tpcF9hdHRyaWJ1dGVfdHJhbnNmb3JtAE41ZHJhY28zN1NlcXVlbnRpYWxBdHRyaWJ1dGVEZWNvZGVyc0NvbnRyb2xsZXJFAAAAADAxAADpBgAA5AUAAGFsbG9jYXRvcjxUPjo6YWxsb2NhdGUoc2l6ZV90IG4pICduJyBleGNlZWRzIG1heGltdW0gc3VwcG9ydGVkIHNpemUAAAAAANQHAAAqAAAAKwAAACwAAAAbAAAAHAAAAB0AAAAtAAAAHwAAAC4AAAAvAAAAMAAAADEAAAAyAAAATjVkcmFjbzMzU2VxdWVudGlhbEludGVnZXJBdHRyaWJ1dGVEZWNvZGVyRQAwMQAAqAcAAIgGAAAAAAAAYAoAADMAAAA0AAAANQAAADYAAAA3AAAAOAAAADkAAAA6AAAAOwAAADwAAAA9AAAAPgAAAE41ZHJhY280ME1lc2hQcmVkaWN0aW9uU2NoZW1lUGFyYWxsZWxvZ3JhbURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjNQcmVkaWN0aW9uU2NoZW1lRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVFRQBONWRyYWNvMzdQcmVkaWN0aW9uU2NoZW1lVHlwZWREZWNvZGVySW50ZXJmYWNlSWlpRUUATjVkcmFjbzMyUHJlZGljdGlvblNjaGVtZURlY29kZXJJbnRlcmZhY2VFAE41ZHJhY28yNVByZWRpY3Rpb25TY2hlbWVJbnRlcmZhY2VFAAgxAAAECgAAMDEAANkJAAAoCgAAMDEAAKUJAAAwCgAAMDEAAFEJAAA8CgAAMDEAALsIAABICgAAMDEAABgIAABUCgAAAAAAAFQKAAAzAAAAPwAAABUAAAA2AAAAFQAAADgAAAA5AAAAOgAAADsAAAA8AAAAPQAAABUAAAAAAAAASAoAADMAAABAAAAAFQAAADYAAAAVAAAAOAAAADkAAAA6AAAAOwAAADwAAAA9AAAAFQAAAAAAAADICwAAQQAAAEIAAABDAAAANgAAAEQAAAA4AAAAOQAAADoAAAA7AAAAPAAAAEUAAABGAAAATjVkcmFjbzU2TWVzaFByZWRpY3Rpb25TY2hlbWVDb25zdHJhaW5lZE11bHRpUGFyYWxsZWxvZ3JhbURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQAAMDEAABQLAABUCgAAAAAAALQMAABHAAAASAAAAEkAAAA2AAAASgAAAEsAAABMAAAATQAAADsAAAA8AAAATgAAAE8AAABONWRyYWNvNDRNZXNoUHJlZGljdGlvblNjaGVtZVRleENvb3Jkc1BvcnRhYmxlRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAAAwMQAADAwAAFQKAAAAAAAAoA0AAFAAAABRAAAAUgAAADYAAABTAAAAVAAAAFUAAABWAAAAOwAAADwAAABXAAAAWAAAAE41ZHJhY280Mk1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAAAAADAxAAD4DAAAVAoAAAAAAAAoDwAAWQAAAFoAAABbAAAAXAAAAF0AAABONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckJhc2VJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQAAAAgxAABzDgAAMDEAAMgNAAAgDwAAAAAAAJgQAAAzAAAAXgAAAF8AAAA2AAAAYAAAADgAAAA5AAAAOgAAADsAAAA8AAAAPQAAAGEAAABONWRyYWNvNDBNZXNoUHJlZGljdGlvblNjaGVtZVBhcmFsbGVsb2dyYW1EZWNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAAAwMQAAAhAAAEgKAAAwMQAAbA8AAIwQAAAAAAAAjBAAADMAAABiAAAAFQAAADYAAAAVAAAAOAAAADkAAAA6AAAAOwAAADwAAAA9AAAAFQAAAAAAAAC8EQAAYwAAAGQAAABlAAAANgAAAGYAAAA4AAAAOQAAADoAAAA7AAAAPAAAAGcAAABoAAAATjVkcmFjbzU2TWVzaFByZWRpY3Rpb25TY2hlbWVDb25zdHJhaW5lZE11bHRpUGFyYWxsZWxvZ3JhbURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAAAAMDEAABQRAACMEAAAAAAAAJwSAABpAAAAagAAAGsAAAA2AAAAbAAAAG0AAABuAAAAbwAAADsAAAA8AAAAcAAAAHEAAABONWRyYWNvNDRNZXNoUHJlZGljdGlvblNjaGVtZVRleENvb3Jkc1BvcnRhYmxlRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUAAAAwMQAAABIAAIwQAAAAAAAAeBMAAHIAAABzAAAAdAAAADYAAAB1AAAAdgAAAHcAAAB4AAAAOwAAADwAAAB5AAAAegAAAE41ZHJhY280Mk1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUAMDEAAOASAACMEAAAAAAAAOQUAAB7AAAAfAAAAH0AAAB+AAAAfwAAAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQXJlYUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JCYXNlSWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQAIMQAAPhQAADAxAACgEwAA3BQAAAAAAACEFQAAMwAAAIAAAACBAAAANgAAAIIAAAA4AAAAOQAAADoAAAA7AAAAPAAAAD0AAACDAAAATjVkcmFjbzI4UHJlZGljdGlvblNjaGVtZURlbHRhRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVFRQAAAAAwMQAAKBUAAEgKAAAAAAAA+BUAACoAAACEAAAAhQAAABsAAAAcAAAAhgAAAC0AAAAfAAAALgAAAIcAAACIAAAAiQAAAIoAAABONWRyYWNvMzJTZXF1ZW50aWFsTm9ybWFsQXR0cmlidXRlRGVjb2RlckUAADAxAADMFQAA1AcAAAAAAAAsGAAAiwAAAIwAAACNAAAAjgAAAI8AAACQAAAAkQAAAJIAAACTAAAAlAAAAJUAAACWAAAATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxEZWNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZERlY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzI3TWVzaFByZWRpY3Rpb25TY2hlbWVEZWNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZERlY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzIzUHJlZGljdGlvblNjaGVtZURlY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRGVjb2RpbmdUcmFuc2Zvcm1JaUVFRUUAADAxAACnFwAAPAoAADAxAAD5FgAAFBgAADAxAAA8FgAAIBgAAAAAAADkGQAAlwAAAJgAAACZAAAAmgAAAJsAAABONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRGVjb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckJhc2VJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRGVjb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQAAAAgxAAAXGQAAMDEAAFQYAADcGQAAAAAAAIgbAACcAAAAnQAAAJ4AAACOAAAAnwAAAKAAAAChAAAAogAAAJMAAACUAAAAowAAAKQAAABONWRyYWNvNDJNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbERlY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRGVjb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28yN01lc2hQcmVkaWN0aW9uU2NoZW1lRGVjb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWREZWNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUAAAAAMDEAANgaAAAUGAAAMDEAACgaAAB8GwAAAAAAACQdAAClAAAApgAAAKcAAACoAAAAqQAAAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQXJlYUlpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWREZWNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JCYXNlSWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZERlY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQAIMQAAZhwAADAxAACwGwAAHB0AAAAAAADcHQAAqgAAAKsAAACsAAAAjgAAAK0AAACuAAAArwAAALAAAACTAAAAlAAAALEAAACyAAAATjVkcmFjbzI4UHJlZGljdGlvblNjaGVtZURlbHRhRGVjb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWREZWNvZGluZ1RyYW5zZm9ybUlpRUVFRQAAAAAwMQAAaB0AABQYAAAAAAAAYB4AALMAAAC0AAAAtQAAABsAAAAcAAAAtgAAAC0AAAAfAAAALgAAALcAAAAwAAAAMQAAALgAAAC5AAAAugAAAE41ZHJhY28zOFNlcXVlbnRpYWxRdWFudGl6YXRpb25BdHRyaWJ1dGVEZWNvZGVyRQAAAAAwMQAALB4AANQHAABVbnN1cHBvcnRlZCBlbmNvZGluZyBtZXRob2QuAFVuc3VwcG9ydGVkIGdlb21ldHJ5IHR5cGUuAElucHV0IGlzIG5vdCBhIG1lc2guAHNraXBfYXR0cmlidXRlX3RyYW5zZm9ybQBhbGxvY2F0b3I8VD46OmFsbG9jYXRlKHNpemVfdCBuKSAnbicgZXhjZWVkcyBtYXhpbXVtIHN1cHBvcnRlZCBzaXplAAAAAAAAAGwfAAC7AAAAvAAAAL0AAAC+AAAAFQAAAL8AAADAAAAAwQAAAMIAAADDAAAAxAAAAMUAAAAVAAAATjVkcmFjbzExTWVzaERlY29kZXJFAAAAMDEAAFQfAACkKAAAAAAAANgfAADGAAAAxwAAAL0AAADIAAAAyQAAAL8AAADAAAAAwQAAAMoAAADLAAAAzAAAAM0AAADOAAAATjVkcmFjbzIyTWVzaEVkZ2VicmVha2VyRGVjb2RlckUAAAAAMDEAALQfAABsHwAAAAAAAMwgAADPAAAA0AAAANEAAADSAAAA0wAAANQAAADVAAAA1gAAANcAAADYAAAA/////wAAAAAsIQAA2QAAANoAAADbAAAA3AAAAN0AAADeAAAA3wAAAOAAAADhAAAA4gAAAE41ZHJhY28yNk1lc2hFZGdlYnJlYWtlckRlY29kZXJJbXBsSU5TXzMxTWVzaEVkZ2VicmVha2VyVHJhdmVyc2FsRGVjb2RlckVFRQBONWRyYWNvMzVNZXNoRWRnZWJyZWFrZXJEZWNvZGVySW1wbEludGVyZmFjZUUAAAAIMQAAlCAAADAxAABIIAAAxCAAAE41ZHJhY28yNk1lc2hFZGdlYnJlYWtlckRlY29kZXJJbXBsSU5TXzM4TWVzaEVkZ2VicmVha2VyVHJhdmVyc2FsVmFsZW5jZURlY29kZXJFRUUAADAxAADYIAAAxCAAAAAAAAAoIgAA4wAAAOQAAADlAAAATjVkcmFjbzE5RGVwdGhGaXJzdFRyYXZlcnNlcklOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVOU18zNk1lc2hBdHRyaWJ1dGVJbmRpY2VzRW5jb2RpbmdPYnNlcnZlcklTMV9FRUVFAE41ZHJhY28xM1RyYXZlcnNlckJhc2VJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQAIMQAAuSEAADAxAABMIQAAICIAAAAAAAAgIgAA5gAAAOcAAADlAAAAYWxsb2NhdG9yPFQ+OjphbGxvY2F0ZShzaXplX3QgbikgJ24nIGV4Y2VlZHMgbWF4aW11bSBzdXBwb3J0ZWQgc2l6ZQ=='
- )
- _(
- 8852,
- 'AQAAAAMAAAAFAAAABwAAAAAAAABoIwAA6AAAAOkAAADqAAAA6wAAAE41ZHJhY28yMk1lc2hUcmF2ZXJzYWxTZXF1ZW5jZXJJTlNfMjhNYXhQcmVkaWN0aW9uRGVncmVlVHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzJfRUVFRUVFAE41ZHJhY28xNVBvaW50c1NlcXVlbmNlckUAAAAACDEAAEMjAAAwMQAAvCIAAGAjAAD/////AAAAAFgkAADsAAAA7QAAAO4AAABONWRyYWNvMjhNYXhQcmVkaWN0aW9uRGVncmVlVHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQBONWRyYWNvMTNUcmF2ZXJzZXJCYXNlSU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQAACDEAAPUjAAAwMQAAjCMAAFAkAAAAAAAAUCQAAO8AAADwAAAA7gAAAAAAAAAQJQAA8QAAAPIAAADzAAAA9AAAAE41ZHJhY28yMk1lc2hUcmF2ZXJzYWxTZXF1ZW5jZXJJTlNfMTlEZXB0aEZpcnN0VHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzJfRUVFRUVFAAAAMDEAAJAkAABgIwAAAAAAAJAlAAD1AAAA9gAAAO4AAABONWRyYWNvMTlEZXB0aEZpcnN0VHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQAwMQAAMCUAAFAkAAAAAAAAQCYAAPcAAAD4AAAA+QAAAPoAAABONWRyYWNvMjJNZXNoVHJhdmVyc2FsU2VxdWVuY2VySU5TXzE5RGVwdGhGaXJzdFRyYXZlcnNlcklOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVOU18zNk1lc2hBdHRyaWJ1dGVJbmRpY2VzRW5jb2RpbmdPYnNlcnZlcklTMl9FRUVFRUUAADAxAAC0JQAAYCM='
- )
- _(
- 9812,
- 'rCYAALsAAAD7AAAAvQAAAL4AAAD8AAAAvwAAAMAAAADBAAAAwgAAAMMAAADEAAAAxQAAAP0AAABONWRyYWNvMjFNZXNoU2VxdWVudGlhbERlY29kZXJFADAxAACMJgAAbB8AAGFsbG9jYXRvcjxUPjo6YWxsb2NhdGUoc2l6ZV90IG4pICduJyBleGNlZWRzIG1heGltdW0gc3VwcG9ydGVkIHNpemUAAAAAADAnAAD+AAAA/wAAAAABAAABAQAATjVkcmFjbzE1TGluZWFyU2VxdWVuY2VyRQAAADAxAAAUJwAAYCMAAAAAAACkKAAAuwAAAAIBAAADAQAAvgAAABUAAAAEAQAAwAAAAMEAAADC'
- )
- _(
- 10096,
- 'RmFpbGVkIHRvIHBhcnNlIERyYWNvIGhlYWRlci4ARFJBQ08ATm90IGEgRHJhY28gZmlsZS4ARmFpbGVkIHRvIGRlY29kZSBtZXRhZGF0YS4AVXNpbmcgaW5jb21wYXRpYmxlIGRlY29kZXIgZm9yIHRoZSBpbnB1dCBnZW9tZXRyeS4AVW5rbm93biBtYWpvciB2ZXJzaW9uLgBVbmtub3duIG1pbm9yIHZlcnNpb24uAEZhaWxlZCB0byBpbml0aWFsaXplIHRoZSBkZWNvZGVyLgBGYWlsZWQgdG8gZGVjb2RlIGdlb21ldHJ5IGRhdGEuAEZhaWxlZCB0byBkZWNvZGUgcG9pbnQgYXR0cmlidXRlcy4ATjVkcmFjbzE3UG9pbnRDbG91ZERlY29kZXJFAAAIMQAAhygAAAEAAAABAAAAAgAAAAIAAAAEAAAABAAAAAgAAAAIAAAABAAAAAgAAAABAAAAAAAAAP//////////YWxsb2NhdG9yPFQ+OjphbGxvY2F0ZShzaXplX3QgbikgJ24nIGV4Y2VlZHMgbWF4aW11bSBzdXBwb3J0ZWQgc2l6ZQAAAAAAUCkAAAUBAAAGAQAABwEAAAgBAABONWRyYWNvNE1lc2hFAAAAMDEAAEApAADoKgAAYWxsb2NhdG9yPFQ+OjphbGxvY2F0ZShzaXplX3QgbikgJ24nIGV4Y2VlZHMgbWF4aW11bSBzdXBwb3J0ZWQgc2l6ZQBhbGxvY2F0b3I8VD46OmFsbG9jYXRlKHNpemVfdCBuKSAnbicgZXhjZWVkcyBtYXhpbXVtIHN1cHBvcnRlZCBzaXplAP////9hbGxvY2F0b3I8VD46OmFsbG9jYXRlKHNpemVfdCBuKSAnbicgZXhjZWVkcyBtYXhpbXVtIHN1cHBvcnRlZCBzaXplAGFsbG9jYXRvcjxUPjo6YWxsb2NhdGUoc2l6ZV90IG4pICduJyBleGNlZWRzIG1heGltdW0gc3VwcG9ydGVkIHNpemUAYWxsb2NhdG9yPFQ+OjphbGxvY2F0ZShzaXplX3QgbikgJ24nIGV4Y2VlZHMgbWF4aW11bSBzdXBwb3J0ZWQgc2l6ZQ=='
- )
- _(
- 10940,
- '6CoAAAkBAAAKAQAACwEAAAwBAABONWRyYWNvMTBQb2ludENsb3VkRQAAAAAIMQAA0CoAAGFsbG9jYXRvcjxUPjo6YWxsb2NhdGUoc2l6ZV90IG4pICduJyBleGNlZWRzIG1heGltdW0gc3VwcG9ydGVkIHNpemUALSsgICAwWDB4AChudWxsKQ=='
- )
- _(11088, 'EQAKABEREQAAAAAFAAAAAAAACQAAAAAL')
- _(11120, 'EQAPChEREQMKBwABEwkLCwAACQYLAAALAAYRAAAAERER')
- _(11169, 'Cw==')
- _(11178, 'EQAKChEREQAKAAACAAkLAAAACQALAAAL')
- _(11227, 'DA==')
- _(11239, 'DAAAAAAMAAAAAAkMAAAAAAAMAAAM')
- _(11285, 'Dg==')
- _(11297, 'DQAAAAQNAAAAAAkOAAAAAAAOAAAO')
- _(11343, 'EA==')
- _(11355, 'DwAAAAAPAAAAAAkQAAAAAAAQAAAQAAASAAAAEhIS')
- _(11410, 'EgAAABISEgAAAAAAAAk=')
- _(11459, 'Cw==')
- _(11471, 'CgAAAAAKAAAAAAkLAAAAAAALAAAL')
- _(11517, 'DA==')
- _(11529, 'DAAAAAAMAAAAAAkMAAAAAAAMAAAMAAAwMTIzNDU2Nzg5QUJDREVGLTBYKzBYIDBYLTB4KzB4IDB4AGluZgBJTkYAbmFuAE5BTgAuAAAAAIgx')
- _(
- 11620,
- 'AgAAAAMAAAAFAAAABwAAAAsAAAANAAAAEQAAABMAAAAXAAAAHQAAAB8AAAAlAAAAKQAAACsAAAAvAAAANQAAADsAAAA9AAAAQwAAAEcAAABJAAAATwAAAFMAAABZAAAAYQAAAGUAAABnAAAAawAAAG0AAABxAAAAfwAAAIMAAACJAAAAiwAAAJUAAACXAAAAnQAAAKMAAACnAAAArQAAALMAAAC1AAAAvwAAAMEAAADFAAAAxwAAANMAAAABAAAACwAAAA0AAAARAAAAEwAAABcAAAAdAAAAHwAAACUAAAApAAAAKwAAAC8AAAA1AAAAOwAAAD0AAABDAAAARwAAAEkAAABPAAAAUwAAAFkAAABhAAAAZQAAAGcAAABrAAAAbQAAAHEAAAB5AAAAfwAAAIMAAACJAAAAiwAAAI8AAACVAAAAlwAAAJ0AAACjAAAApwAAAKkAAACtAAAAswAAALUAAAC7AAAAvwAAAMEAAADFAAAAxwAAANE='
- )
- _(12036, 'EgE=')
- _(12075, '//////8=')
- _(
- 12144,
- 'YWxsb2NhdG9yPFQ+OjphbGxvY2F0ZShzaXplX3QgbikgJ24nIGV4Y2VlZHMgbWF4aW11bSBzdXBwb3J0ZWQgc2l6ZQBiYXNpY19zdHJpbmcAJWQAdmVjdG9yAFB1cmUgdmlydHVhbCBmdW5jdGlvbiBjYWxsZWQhAHN0ZDo6ZXhjZXB0aW9uAAAAAAAcMAAAEwEAABQBAAAVAQAAU3Q5ZXhjZXB0aW9uAAAAAAgxAAAMMAAAAAAAAEgwAAABAAAAFgEAABcBAABTdDExbG9naWNfZXJyb3IAMDEAADgwAAAcMAAAAAAAAHwwAAABAAAAGAEAABcBAABTdDEybGVuZ3RoX2Vycm9yAAAAADAxAABoMAAASDAAAFN0OXR5cGVfaW5mbwAAAAAIMQAAiDAAAE4xMF9fY3h4YWJpdjExNl9fc2hpbV90eXBlX2luZm9FAAAAADAxAACgMAAAmDAAAE4xMF9fY3h4YWJpdjExN19fY2xhc3NfdHlwZV9pbmZvRQAAADAxAADQMAAAxDAAAAAAAAD0MAAAGQEAABoBAAAbAQAAHAEAAB0BAAAeAQAAHwEAACABAAAAAAAAeDEAABkBAAAhAQAAGwEAABwBAAAdAQAAIgEAACMBAAAkAQAATjEwX19jeHhhYml2MTIwX19zaV9jbGFzc190eXBlX2luZm9FAAAAADAxAABQMQAA9DA='
- )
- _(12680, 'BQ==')
- _(12692, 'DwE=')
- _(12716, 'EAEAABEBAAAUMw==')
- _(12740, 'Ag==')
- _(12755, '//////8=')
- _(13012, 'QDM=')
- return j(
- {
- Int8Array: Int8Array,
- Int16Array: Int16Array,
- Int32Array: Int32Array,
- Uint8Array: Uint8Array,
- Uint16Array: Uint16Array,
- Uint32Array: Uint32Array,
- Float32Array: Float32Array,
- Float64Array: Float64Array,
- NaN: NaN,
- Infinity: Infinity,
- Math: Math
- },
- asmLibraryArg,
- wasmMemory.buffer
- )
- })(
- // EMSCRIPTEN_END_ASM
- asmLibraryArg,
- wasmMemory,
- wasmTable
- )
- return { exports: exports }
- },
- instantiate: function(binary, info) {
- return {
- then: function(ok, err) {
- ok({ instance: new WebAssembly.Instance(new WebAssembly.Module(binary, info)) })
- }
- }
- },
- RuntimeError: Error
- }
- wasmBinary = []
- if (typeof WebAssembly !== 'object') {
- err('no native wasm support detected')
- }
- function setValue(ptr, value, type, noSafe) {
- type = type || 'i8'
- if (type.charAt(type.length - 1) === '*') type = 'i32'
- switch (type) {
- case 'i1':
- HEAP8[ptr >> 0] = value
- break
- case 'i8':
- HEAP8[ptr >> 0] = value
- break
- case 'i16':
- HEAP16[ptr >> 1] = value
- break
- case 'i32':
- HEAP32[ptr >> 2] = value
- break
- case 'i64':
- ;(tempI64 = [
- value >>> 0,
- ((tempDouble = value),
- +Math_abs(tempDouble) >= 1
- ? tempDouble > 0
- ? (Math_min(+Math_floor(tempDouble / 4294967296), 4294967295) | 0) >>> 0
- : ~~+Math_ceil((tempDouble - +(~~tempDouble >>> 0)) / 4294967296) >>> 0
- : 0)
- ]),
- (HEAP32[ptr >> 2] = tempI64[0]),
- (HEAP32[(ptr + 4) >> 2] = tempI64[1])
- break
- case 'float':
- HEAPF32[ptr >> 2] = value
- break
- case 'double':
- HEAPF64[ptr >> 3] = value
- break
- default:
- abort('invalid type for setValue: ' + type)
- }
- }
- var wasmMemory
- var wasmTable = new WebAssembly.Table({ initial: 293, maximum: 293 + 0, element: 'anyfunc' })
- var ABORT = false
- var EXITSTATUS = 0
- function assert(condition, text) {
- if (!condition) {
- abort('Assertion failed: ' + text)
- }
- }
- function getCFunc(ident) {
- var func = Module['_' + ident]
- assert(func, 'Cannot call unknown function ' + ident + ', make sure it is exported')
- return func
- }
- function ccall(ident, returnType, argTypes, args, opts) {
- var toC = {
- string: function(str) {
- var ret = 0
- if (str !== null && str !== undefined && str !== 0) {
- var len = (str.length << 2) + 1
- ret = stackAlloc(len)
- stringToUTF8(str, ret, len)
- }
- return ret
- },
- array: function(arr) {
- var ret = stackAlloc(arr.length)
- writeArrayToMemory(arr, ret)
- return ret
- }
- }
- function convertReturnValue(ret) {
- if (returnType === 'string') return UTF8ToString(ret)
- if (returnType === 'boolean') return Boolean(ret)
- return ret
- }
- var func = getCFunc(ident)
- var cArgs = []
- var stack = 0
- if (args) {
- for (var i = 0; i < args.length; i++) {
- var converter = toC[argTypes[i]]
- if (converter) {
- if (stack === 0) stack = stackSave()
- cArgs[i] = converter(args[i])
- } else {
- cArgs[i] = args[i]
- }
- }
- }
- var ret = func.apply(null, cArgs)
- ret = convertReturnValue(ret)
- if (stack !== 0) stackRestore(stack)
- return ret
- }
- var ALLOC_NONE = 3
- var UTF8Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf8') : undefined
- function UTF8ArrayToString(u8Array, idx, maxBytesToRead) {
- var endIdx = idx + maxBytesToRead
- var endPtr = idx
- while (u8Array[endPtr] && !(endPtr >= endIdx)) ++endPtr
- if (endPtr - idx > 16 && u8Array.subarray && UTF8Decoder) {
- return UTF8Decoder.decode(u8Array.subarray(idx, endPtr))
- } else {
- var str = ''
- while (idx < endPtr) {
- var u0 = u8Array[idx++]
- if (!(u0 & 128)) {
- str += String.fromCharCode(u0)
- continue
- }
- var u1 = u8Array[idx++] & 63
- if ((u0 & 224) == 192) {
- str += String.fromCharCode(((u0 & 31) << 6) | u1)
- continue
- }
- var u2 = u8Array[idx++] & 63
- if ((u0 & 240) == 224) {
- u0 = ((u0 & 15) << 12) | (u1 << 6) | u2
- } else {
- u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | (u8Array[idx++] & 63)
- }
- if (u0 < 65536) {
- str += String.fromCharCode(u0)
- } else {
- var ch = u0 - 65536
- str += String.fromCharCode(55296 | (ch >> 10), 56320 | (ch & 1023))
- }
- }
- }
- return str
- }
- function UTF8ToString(ptr, maxBytesToRead) {
- return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : ''
- }
- function stringToUTF8Array(str, outU8Array, outIdx, maxBytesToWrite) {
- if (!(maxBytesToWrite > 0)) return 0
- var startIdx = outIdx
- var endIdx = outIdx + maxBytesToWrite - 1
- for (var i = 0; i < str.length; ++i) {
- var u = str.charCodeAt(i)
- if (u >= 55296 && u <= 57343) {
- var u1 = str.charCodeAt(++i)
- u = (65536 + ((u & 1023) << 10)) | (u1 & 1023)
- }
- if (u <= 127) {
- if (outIdx >= endIdx) break
- outU8Array[outIdx++] = u
- } else if (u <= 2047) {
- if (outIdx + 1 >= endIdx) break
- outU8Array[outIdx++] = 192 | (u >> 6)
- outU8Array[outIdx++] = 128 | (u & 63)
- } else if (u <= 65535) {
- if (outIdx + 2 >= endIdx) break
- outU8Array[outIdx++] = 224 | (u >> 12)
- outU8Array[outIdx++] = 128 | ((u >> 6) & 63)
- outU8Array[outIdx++] = 128 | (u & 63)
- } else {
- if (outIdx + 3 >= endIdx) break
- outU8Array[outIdx++] = 240 | (u >> 18)
- outU8Array[outIdx++] = 128 | ((u >> 12) & 63)
- outU8Array[outIdx++] = 128 | ((u >> 6) & 63)
- outU8Array[outIdx++] = 128 | (u & 63)
- }
- }
- outU8Array[outIdx] = 0
- return outIdx - startIdx
- }
- function stringToUTF8(str, outPtr, maxBytesToWrite) {
- return stringToUTF8Array(str, HEAPU8, outPtr, maxBytesToWrite)
- }
- function lengthBytesUTF8(str) {
- var len = 0
- for (var i = 0; i < str.length; ++i) {
- var u = str.charCodeAt(i)
- if (u >= 55296 && u <= 57343) u = (65536 + ((u & 1023) << 10)) | (str.charCodeAt(++i) & 1023)
- if (u <= 127) ++len
- else if (u <= 2047) len += 2
- else if (u <= 65535) len += 3
- else len += 4
- }
- return len
- }
- var UTF16Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-16le') : undefined
- function writeArrayToMemory(array, buffer) {
- HEAP8.set(array, buffer)
- }
- function writeAsciiToMemory(str, buffer, dontAddNull) {
- for (var i = 0; i < str.length; ++i) {
- HEAP8[buffer++ >> 0] = str.charCodeAt(i)
- }
- if (!dontAddNull) HEAP8[buffer >> 0] = 0
- }
- var WASM_PAGE_SIZE = 65536
- function alignUp(x, multiple) {
- if (x % multiple > 0) {
- x += multiple - (x % multiple)
- }
- return x
- }
- var buffer, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64
- function updateGlobalBufferAndViews(buf) {
- buffer = buf
- Module['HEAP8'] = HEAP8 = new Int8Array(buf)
- Module['HEAP16'] = HEAP16 = new Int16Array(buf)
- Module['HEAP32'] = HEAP32 = new Int32Array(buf)
- Module['HEAPU8'] = HEAPU8 = new Uint8Array(buf)
- Module['HEAPU16'] = HEAPU16 = new Uint16Array(buf)
- Module['HEAPU32'] = HEAPU32 = new Uint32Array(buf)
- Module['HEAPF32'] = HEAPF32 = new Float32Array(buf)
- Module['HEAPF64'] = HEAPF64 = new Float64Array(buf)
- }
- var STACK_BASE = 5256704,
- DYNAMIC_BASE = 5256704,
- DYNAMICTOP_PTR = 13664
- var INITIAL_TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216
- if (Module['wasmMemory']) {
- wasmMemory = Module['wasmMemory']
- } else {
- wasmMemory = new WebAssembly.Memory({ initial: INITIAL_TOTAL_MEMORY / WASM_PAGE_SIZE })
- }
- if (wasmMemory) {
- buffer = wasmMemory.buffer
- }
- INITIAL_TOTAL_MEMORY = buffer.byteLength
- updateGlobalBufferAndViews(buffer)
- HEAP32[DYNAMICTOP_PTR >> 2] = DYNAMIC_BASE
- function callRuntimeCallbacks(callbacks) {
- while (callbacks.length > 0) {
- var callback = callbacks.shift()
- if (typeof callback == 'function') {
- callback()
- continue
- }
- var func = callback.func
- if (typeof func === 'number') {
- if (callback.arg === undefined) {
- Module['dynCall_v'](func)
- } else {
- Module['dynCall_vi'](func, callback.arg)
- }
- } else {
- func(callback.arg === undefined ? null : callback.arg)
- }
- }
- }
- var __ATPRERUN__ = []
- var __ATINIT__ = []
- var __ATMAIN__ = []
- var __ATPOSTRUN__ = []
- var runtimeInitialized = false
- var runtimeExited = false
- function preRun() {
- if (Module['preRun']) {
- if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']]
- while (Module['preRun'].length) {
- addOnPreRun(Module['preRun'].shift())
- }
- }
- callRuntimeCallbacks(__ATPRERUN__)
- }
- function initRuntime() {
- runtimeInitialized = true
- callRuntimeCallbacks(__ATINIT__)
- }
- function preMain() {
- callRuntimeCallbacks(__ATMAIN__)
- }
- function exitRuntime() {
- runtimeExited = true
- }
- function postRun() {
- if (Module['postRun']) {
- if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']]
- while (Module['postRun'].length) {
- addOnPostRun(Module['postRun'].shift())
- }
- }
- callRuntimeCallbacks(__ATPOSTRUN__)
- }
- function addOnPreRun(cb) {
- __ATPRERUN__.unshift(cb)
- }
- function addOnPreMain(cb) {
- __ATMAIN__.unshift(cb)
- }
- function addOnPostRun(cb) {
- __ATPOSTRUN__.unshift(cb)
- }
- var Math_abs = Math.abs
- var Math_ceil = Math.ceil
- var Math_floor = Math.floor
- var Math_min = Math.min
- var runDependencies = 0
- var runDependencyWatcher = null
- var dependenciesFulfilled = null
- function addRunDependency(id) {
- runDependencies++
- if (Module['monitorRunDependencies']) {
- Module['monitorRunDependencies'](runDependencies)
- }
- }
- function removeRunDependency(id) {
- runDependencies--
- if (Module['monitorRunDependencies']) {
- Module['monitorRunDependencies'](runDependencies)
- }
- if (runDependencies == 0) {
- if (runDependencyWatcher !== null) {
- clearInterval(runDependencyWatcher)
- runDependencyWatcher = null
- }
- if (dependenciesFulfilled) {
- var callback = dependenciesFulfilled
- dependenciesFulfilled = null
- callback()
- }
- }
- }
- Module['preloadedImages'] = {}
- Module['preloadedAudios'] = {}
- function abort(what) {
- if (Module['onAbort']) {
- Module['onAbort'](what)
- }
- what += ''
- out(what)
- err(what)
- ABORT = true
- EXITSTATUS = 1
- what = 'abort(' + what + '). Build with -s ASSERTIONS=1 for more info.'
- throw new WebAssembly.RuntimeError(what)
- }
- var dataURIPrefix = 'data:application/octet-stream;base64,'
- function isDataURI(filename) {
- return String.prototype.startsWith ? filename.startsWith(dataURIPrefix) : filename.indexOf(dataURIPrefix) === 0
- }
- var wasmBinaryFile = 'draco_decoder.wasm'
- if (!isDataURI(wasmBinaryFile)) {
- wasmBinaryFile = locateFile(wasmBinaryFile)
- }
- function getBinary() {
- try {
- if (wasmBinary) {
- return new Uint8Array(wasmBinary)
- }
- var binary = tryParseAsDataURI(wasmBinaryFile)
- if (binary) {
- return binary
- }
- if (readBinary) {
- return readBinary(wasmBinaryFile)
- } else {
- throw 'both async and sync fetching of the wasm failed'
- }
- } catch (err) {
- abort(err)
- }
- }
- function getBinaryPromise() {
- if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) && typeof fetch === 'function') {
- return fetch(wasmBinaryFile, { credentials: 'same-origin' })
- .then(function(response) {
- if (!response['ok']) {
- throw "failed to load wasm binary file at '" + wasmBinaryFile + "'"
- }
- return response['arrayBuffer']()
- })
- .catch(function() {
- return getBinary()
- })
- }
- return new Promise(function(resolve, reject) {
- resolve(getBinary())
- })
- }
- function createWasm() {
- var info = { env: asmLibraryArg, wasi_unstable: asmLibraryArg }
- function receiveInstance(instance, module) {
- var exports = instance.exports
- Module['asm'] = exports
- removeRunDependency('wasm-instantiate')
- }
- addRunDependency('wasm-instantiate')
- function receiveInstantiatedSource(output) {
- receiveInstance(output['instance'])
- }
- function instantiateArrayBuffer(receiver) {
- return getBinaryPromise()
- .then(function(binary) {
- return WebAssembly.instantiate(binary, info)
- })
- .then(receiver, function(reason) {
- err('failed to asynchronously prepare wasm: ' + reason)
- abort(reason)
- })
- }
- function instantiateAsync() {
- if (!wasmBinary && typeof WebAssembly.instantiateStreaming === 'function' && !isDataURI(wasmBinaryFile) && typeof fetch === 'function') {
- fetch(wasmBinaryFile, { credentials: 'same-origin' }).then(function(response) {
- var result = WebAssembly.instantiateStreaming(response, info)
- return result.then(receiveInstantiatedSource, function(reason) {
- err('wasm streaming compile failed: ' + reason)
- err('falling back to ArrayBuffer instantiation')
- instantiateArrayBuffer(receiveInstantiatedSource)
- })
- })
- } else {
- return instantiateArrayBuffer(receiveInstantiatedSource)
- }
- }
- if (Module['instantiateWasm']) {
- try {
- var exports = Module['instantiateWasm'](info, receiveInstance)
- return exports
- } catch (e) {
- err('Module.instantiateWasm callback failed with error: ' + e)
- return false
- }
- }
- instantiateAsync()
- return {}
- }
- var tempDouble
- var tempI64
- __ATINIT__.push({
- func: function() {
- ___wasm_call_ctors()
- }
- })
- function demangle(func) {
- return func
- }
- function demangleAll(text) {
- var regex = /\b_Z[\w\d_]+/g
- return text.replace(regex, function(x) {
- var y = demangle(x)
- return x === y ? x : y + ' [' + x + ']'
- })
- }
- function jsStackTrace() {
- var err = new Error()
- if (!err.stack) {
- try {
- throw new Error(0)
- } catch (e) {
- err = e
- }
- if (!err.stack) {
- return '(no stack trace available)'
- }
- }
- return err.stack.toString()
- }
- function ___cxa_allocate_exception(size) {
- return _malloc(size)
- }
- var ___exception_infos = {}
- var ___exception_last = 0
- function ___cxa_throw(ptr, type, destructor) {
- ___exception_infos[ptr] = { ptr: ptr, adjusted: [ptr], type: type, destructor: destructor, refcount: 0, caught: false, rethrown: false }
- ___exception_last = ptr
- if (!('uncaught_exception' in __ZSt18uncaught_exceptionv)) {
- __ZSt18uncaught_exceptionv.uncaught_exceptions = 1
- } else {
- __ZSt18uncaught_exceptionv.uncaught_exceptions++
- }
- throw ptr
- }
- function _abort() {
- abort()
- }
- function _emscripten_get_heap_size() {
- return HEAP8.length
- }
- function _emscripten_get_sbrk_ptr() {
- return 13664
- }
- function _emscripten_memcpy_big(dest, src, num) {
- HEAPU8.set(HEAPU8.subarray(src, src + num), dest)
- }
- function emscripten_realloc_buffer(size) {
- try {
- wasmMemory.grow((size - buffer.byteLength + 65535) >> 16)
- updateGlobalBufferAndViews(wasmMemory.buffer)
- return 1
- } catch (e) {}
- }
- function _emscripten_resize_heap(requestedSize) {
- var oldSize = _emscripten_get_heap_size()
- var PAGE_MULTIPLE = 65536
- var LIMIT = 2147483648 - PAGE_MULTIPLE
- if (requestedSize > LIMIT) {
- return false
- }
- var MIN_TOTAL_MEMORY = 16777216
- var newSize = Math.max(oldSize, MIN_TOTAL_MEMORY)
- while (newSize < requestedSize) {
- if (newSize <= 536870912) {
- newSize = alignUp(2 * newSize, PAGE_MULTIPLE)
- } else {
- newSize = Math.min(alignUp((3 * newSize + 2147483648) / 4, PAGE_MULTIPLE), LIMIT)
- }
- }
- var replacement = emscripten_realloc_buffer(newSize)
- if (!replacement) {
- return false
- }
- return true
- }
- var ENV = {}
- function _emscripten_get_environ() {
- if (!_emscripten_get_environ.strings) {
- var env = {
- USER: 'web_user',
- LOGNAME: 'web_user',
- PATH: '/',
- PWD: '/',
- HOME: '/home/web_user',
- LANG: ((typeof navigator === 'object' && navigator.languages && navigator.languages[0]) || 'C').replace('-', '_') + '.UTF-8',
- _: thisProgram
- }
- for (var x in ENV) {
- env[x] = ENV[x]
- }
- var strings = []
- for (var x in env) {
- strings.push(x + '=' + env[x])
- }
- _emscripten_get_environ.strings = strings
- }
- return _emscripten_get_environ.strings
- }
- function _environ_get(__environ, environ_buf) {
- var strings = _emscripten_get_environ()
- var bufSize = 0
- strings.forEach(function(string, i) {
- var ptr = environ_buf + bufSize
- HEAP32[(__environ + i * 4) >> 2] = ptr
- writeAsciiToMemory(string, ptr)
- bufSize += string.length + 1
- })
- return 0
- }
- function _environ_sizes_get(penviron_count, penviron_buf_size) {
- var strings = _emscripten_get_environ()
- HEAP32[penviron_count >> 2] = strings.length
- var bufSize = 0
- strings.forEach(function(string) {
- bufSize += string.length + 1
- })
- HEAP32[penviron_buf_size >> 2] = bufSize
- return 0
- }
- var PATH = {
- splitPath: function(filename) {
- var splitPathRe = /^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/
- return splitPathRe.exec(filename).slice(1)
- },
- normalizeArray: function(parts, allowAboveRoot) {
- var up = 0
- for (var i = parts.length - 1; i >= 0; i--) {
- var last = parts[i]
- if (last === '.') {
- parts.splice(i, 1)
- } else if (last === '..') {
- parts.splice(i, 1)
- up++
- } else if (up) {
- parts.splice(i, 1)
- up--
- }
- }
- if (allowAboveRoot) {
- for (; up; up--) {
- parts.unshift('..')
- }
- }
- return parts
- },
- normalize: function(path) {
- var isAbsolute = path.charAt(0) === '/',
- trailingSlash = path.substr(-1) === '/'
- path = PATH.normalizeArray(
- path.split('/').filter(function(p) {
- return !!p
- }),
- !isAbsolute
- ).join('/')
- if (!path && !isAbsolute) {
- path = '.'
- }
- if (path && trailingSlash) {
- path += '/'
- }
- return (isAbsolute ? '/' : '') + path
- },
- dirname: function(path) {
- var result = PATH.splitPath(path),
- root = result[0],
- dir = result[1]
- if (!root && !dir) {
- return '.'
- }
- if (dir) {
- dir = dir.substr(0, dir.length - 1)
- }
- return root + dir
- },
- basename: function(path) {
- if (path === '/') return '/'
- var lastSlash = path.lastIndexOf('/')
- if (lastSlash === -1) return path
- return path.substr(lastSlash + 1)
- },
- extname: function(path) {
- return PATH.splitPath(path)[3]
- },
- join: function() {
- var paths = Array.prototype.slice.call(arguments, 0)
- return PATH.normalize(paths.join('/'))
- },
- join2: function(l, r) {
- return PATH.normalize(l + '/' + r)
- }
- }
- var SYSCALLS = {
- buffers: [null, [], []],
- printChar: function(stream, curr) {
- var buffer = SYSCALLS.buffers[stream]
- if (curr === 0 || curr === 10) {
- ;(stream === 1 ? out : err)(UTF8ArrayToString(buffer, 0))
- buffer.length = 0
- } else {
- buffer.push(curr)
- }
- },
- varargs: 0,
- get: function(varargs) {
- SYSCALLS.varargs += 4
- var ret = HEAP32[(SYSCALLS.varargs - 4) >> 2]
- return ret
- },
- getStr: function() {
- var ret = UTF8ToString(SYSCALLS.get())
- return ret
- },
- get64: function() {
- var low = SYSCALLS.get(),
- high = SYSCALLS.get()
- return low
- },
- getZero: function() {
- SYSCALLS.get()
- }
- }
- function _fd_close(fd) {
- try {
- return 0
- } catch (e) {
- if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e)
- return e.errno
- }
- }
- function _fd_seek(fd, offset_low, offset_high, whence, newOffset) {
- try {
- return 0
- } catch (e) {
- if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e)
- return e.errno
- }
- }
- function _fd_write(fd, iov, iovcnt, pnum) {
- try {
- var num = 0
- for (var i = 0; i < iovcnt; i++) {
- var ptr = HEAP32[(iov + i * 8) >> 2]
- var len = HEAP32[(iov + (i * 8 + 4)) >> 2]
- for (var j = 0; j < len; j++) {
- SYSCALLS.printChar(fd, HEAPU8[ptr + j])
- }
- num += len
- }
- HEAP32[pnum >> 2] = num
- return 0
- } catch (e) {
- if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e)
- return e.errno
- }
- }
- var ASSERTIONS = false
- function intArrayFromString(stringy, dontAddNull, length) {
- var len = length > 0 ? length : lengthBytesUTF8(stringy) + 1
- var u8array = new Array(len)
- var numBytesWritten = stringToUTF8Array(stringy, u8array, 0, u8array.length)
- if (dontAddNull) u8array.length = numBytesWritten
- return u8array
- }
- function intArrayToString(array) {
- var ret = []
- for (var i = 0; i < array.length; i++) {
- var chr = array[i]
- if (chr > 255) {
- if (ASSERTIONS) {
- assert(false, 'Character code ' + chr + ' (' + String.fromCharCode(chr) + ') at offset ' + i + ' not in 0x00-0xFF.')
- }
- chr &= 255
- }
- ret.push(String.fromCharCode(chr))
- }
- return ret.join('')
- }
- var decodeBase64 =
- typeof atob === 'function'
- ? atob
- : function(input) {
- var keyStr = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
- var output = ''
- var chr1, chr2, chr3
- var enc1, enc2, enc3, enc4
- var i = 0
- input = input.replace(/[^A-Za-z0-9\+\/\=]/g, '')
- do {
- enc1 = keyStr.indexOf(input.charAt(i++))
- enc2 = keyStr.indexOf(input.charAt(i++))
- enc3 = keyStr.indexOf(input.charAt(i++))
- enc4 = keyStr.indexOf(input.charAt(i++))
- chr1 = (enc1 << 2) | (enc2 >> 4)
- chr2 = ((enc2 & 15) << 4) | (enc3 >> 2)
- chr3 = ((enc3 & 3) << 6) | enc4
- output = output + String.fromCharCode(chr1)
- if (enc3 !== 64) {
- output = output + String.fromCharCode(chr2)
- }
- if (enc4 !== 64) {
- output = output + String.fromCharCode(chr3)
- }
- } while (i < input.length)
- return output
- }
- function intArrayFromBase64(s) {
- if (typeof ENVIRONMENT_IS_NODE === 'boolean' && ENVIRONMENT_IS_NODE) {
- var buf
- try {
- buf = Buffer.from(s, 'base64')
- } catch (_) {
- buf = new Buffer(s, 'base64')
- }
- return new Uint8Array(buf.buffer, buf.byteOffset, buf.byteLength)
- }
- try {
- var decoded = decodeBase64(s)
- var bytes = new Uint8Array(decoded.length)
- for (var i = 0; i < decoded.length; ++i) {
- bytes[i] = decoded.charCodeAt(i)
- }
- return bytes
- } catch (_) {
- throw new Error('Converting base64 string to bytes failed.')
- }
- }
- function tryParseAsDataURI(filename) {
- if (!isDataURI(filename)) {
- return
- }
- return intArrayFromBase64(filename.slice(dataURIPrefix.length))
- }
- var asmLibraryArg = {
- __cxa_allocate_exception: ___cxa_allocate_exception,
- __cxa_throw: ___cxa_throw,
- abort: _abort,
- emscripten_get_sbrk_ptr: _emscripten_get_sbrk_ptr,
- emscripten_memcpy_big: _emscripten_memcpy_big,
- emscripten_resize_heap: _emscripten_resize_heap,
- environ_get: _environ_get,
- environ_sizes_get: _environ_sizes_get,
- fd_close: _fd_close,
- fd_seek: _fd_seek,
- fd_write: _fd_write,
- getTempRet0: getTempRet0,
- memory: wasmMemory,
- setTempRet0: setTempRet0,
- table: wasmTable
- }
- var asm = createWasm()
- Module['asm'] = asm
- var ___wasm_call_ctors = (Module['___wasm_call_ctors'] = function() {
- return Module['asm']['__wasm_call_ctors'].apply(null, arguments)
- })
- var _emscripten_bind_Status_code_0 = (Module['_emscripten_bind_Status_code_0'] = function() {
- return Module['asm']['emscripten_bind_Status_code_0'].apply(null, arguments)
- })
- var _emscripten_bind_Status_ok_0 = (Module['_emscripten_bind_Status_ok_0'] = function() {
- return Module['asm']['emscripten_bind_Status_ok_0'].apply(null, arguments)
- })
- var _emscripten_bind_Status_error_msg_0 = (Module['_emscripten_bind_Status_error_msg_0'] = function() {
- return Module['asm']['emscripten_bind_Status_error_msg_0'].apply(null, arguments)
- })
- var _emscripten_bind_Status___destroy___0 = (Module['_emscripten_bind_Status___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_Status___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt16Array_DracoUInt16Array_0 = (Module['_emscripten_bind_DracoUInt16Array_DracoUInt16Array_0'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt16Array_DracoUInt16Array_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt16Array_GetValue_1 = (Module['_emscripten_bind_DracoUInt16Array_GetValue_1'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt16Array_GetValue_1'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt16Array_size_0 = (Module['_emscripten_bind_DracoUInt16Array_size_0'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt16Array_size_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt16Array___destroy___0 = (Module['_emscripten_bind_DracoUInt16Array___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt16Array___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_PointCloud_PointCloud_0 = (Module['_emscripten_bind_PointCloud_PointCloud_0'] = function() {
- return Module['asm']['emscripten_bind_PointCloud_PointCloud_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointCloud_num_attributes_0 = (Module['_emscripten_bind_PointCloud_num_attributes_0'] = function() {
- return Module['asm']['emscripten_bind_PointCloud_num_attributes_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointCloud_num_points_0 = (Module['_emscripten_bind_PointCloud_num_points_0'] = function() {
- return Module['asm']['emscripten_bind_PointCloud_num_points_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointCloud___destroy___0 = (Module['_emscripten_bind_PointCloud___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_PointCloud___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt8Array_DracoUInt8Array_0 = (Module['_emscripten_bind_DracoUInt8Array_DracoUInt8Array_0'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt8Array_DracoUInt8Array_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt8Array_GetValue_1 = (Module['_emscripten_bind_DracoUInt8Array_GetValue_1'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt8Array_GetValue_1'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt8Array_size_0 = (Module['_emscripten_bind_DracoUInt8Array_size_0'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt8Array_size_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt8Array___destroy___0 = (Module['_emscripten_bind_DracoUInt8Array___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt8Array___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt32Array_DracoUInt32Array_0 = (Module['_emscripten_bind_DracoUInt32Array_DracoUInt32Array_0'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt32Array_DracoUInt32Array_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt32Array_GetValue_1 = (Module['_emscripten_bind_DracoUInt32Array_GetValue_1'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt32Array_GetValue_1'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt32Array_size_0 = (Module['_emscripten_bind_DracoUInt32Array_size_0'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt32Array_size_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoUInt32Array___destroy___0 = (Module['_emscripten_bind_DracoUInt32Array___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_DracoUInt32Array___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0 = (Module['_emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0'] = function() {
- return Module['asm']['emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1 = (Module['_emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1'] = function() {
- return Module['asm']['emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeOctahedronTransform_quantization_bits_0 = (Module['_emscripten_bind_AttributeOctahedronTransform_quantization_bits_0'] = function() {
- return Module['asm']['emscripten_bind_AttributeOctahedronTransform_quantization_bits_0'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeOctahedronTransform___destroy___0 = (Module['_emscripten_bind_AttributeOctahedronTransform___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_AttributeOctahedronTransform___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_PointAttribute_PointAttribute_0 = (Module['_emscripten_bind_PointAttribute_PointAttribute_0'] = function() {
- return Module['asm']['emscripten_bind_PointAttribute_PointAttribute_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointAttribute_size_0 = (Module['_emscripten_bind_PointAttribute_size_0'] = function() {
- return Module['asm']['emscripten_bind_PointAttribute_size_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointAttribute_GetAttributeTransformData_0 = (Module['_emscripten_bind_PointAttribute_GetAttributeTransformData_0'] = function() {
- return Module['asm']['emscripten_bind_PointAttribute_GetAttributeTransformData_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointAttribute_attribute_type_0 = (Module['_emscripten_bind_PointAttribute_attribute_type_0'] = function() {
- return Module['asm']['emscripten_bind_PointAttribute_attribute_type_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointAttribute_data_type_0 = (Module['_emscripten_bind_PointAttribute_data_type_0'] = function() {
- return Module['asm']['emscripten_bind_PointAttribute_data_type_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointAttribute_num_components_0 = (Module['_emscripten_bind_PointAttribute_num_components_0'] = function() {
- return Module['asm']['emscripten_bind_PointAttribute_num_components_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointAttribute_normalized_0 = (Module['_emscripten_bind_PointAttribute_normalized_0'] = function() {
- return Module['asm']['emscripten_bind_PointAttribute_normalized_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointAttribute_byte_stride_0 = (Module['_emscripten_bind_PointAttribute_byte_stride_0'] = function() {
- return Module['asm']['emscripten_bind_PointAttribute_byte_stride_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointAttribute_byte_offset_0 = (Module['_emscripten_bind_PointAttribute_byte_offset_0'] = function() {
- return Module['asm']['emscripten_bind_PointAttribute_byte_offset_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointAttribute_unique_id_0 = (Module['_emscripten_bind_PointAttribute_unique_id_0'] = function() {
- return Module['asm']['emscripten_bind_PointAttribute_unique_id_0'].apply(null, arguments)
- })
- var _emscripten_bind_PointAttribute___destroy___0 = (Module['_emscripten_bind_PointAttribute___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_PointAttribute___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeTransformData_AttributeTransformData_0 = (Module['_emscripten_bind_AttributeTransformData_AttributeTransformData_0'] = function() {
- return Module['asm']['emscripten_bind_AttributeTransformData_AttributeTransformData_0'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeTransformData_transform_type_0 = (Module['_emscripten_bind_AttributeTransformData_transform_type_0'] = function() {
- return Module['asm']['emscripten_bind_AttributeTransformData_transform_type_0'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeTransformData___destroy___0 = (Module['_emscripten_bind_AttributeTransformData___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_AttributeTransformData___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0 = (Module[
- '_emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0'
- ] = function() {
- return Module['asm']['emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1 = (Module['_emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1'] = function() {
- return Module['asm']['emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeQuantizationTransform_quantization_bits_0 = (Module['_emscripten_bind_AttributeQuantizationTransform_quantization_bits_0'] = function() {
- return Module['asm']['emscripten_bind_AttributeQuantizationTransform_quantization_bits_0'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeQuantizationTransform_min_value_1 = (Module['_emscripten_bind_AttributeQuantizationTransform_min_value_1'] = function() {
- return Module['asm']['emscripten_bind_AttributeQuantizationTransform_min_value_1'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeQuantizationTransform_range_0 = (Module['_emscripten_bind_AttributeQuantizationTransform_range_0'] = function() {
- return Module['asm']['emscripten_bind_AttributeQuantizationTransform_range_0'].apply(null, arguments)
- })
- var _emscripten_bind_AttributeQuantizationTransform___destroy___0 = (Module['_emscripten_bind_AttributeQuantizationTransform___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_AttributeQuantizationTransform___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt8Array_DracoInt8Array_0 = (Module['_emscripten_bind_DracoInt8Array_DracoInt8Array_0'] = function() {
- return Module['asm']['emscripten_bind_DracoInt8Array_DracoInt8Array_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt8Array_GetValue_1 = (Module['_emscripten_bind_DracoInt8Array_GetValue_1'] = function() {
- return Module['asm']['emscripten_bind_DracoInt8Array_GetValue_1'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt8Array_size_0 = (Module['_emscripten_bind_DracoInt8Array_size_0'] = function() {
- return Module['asm']['emscripten_bind_DracoInt8Array_size_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt8Array___destroy___0 = (Module['_emscripten_bind_DracoInt8Array___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_DracoInt8Array___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_MetadataQuerier_MetadataQuerier_0 = (Module['_emscripten_bind_MetadataQuerier_MetadataQuerier_0'] = function() {
- return Module['asm']['emscripten_bind_MetadataQuerier_MetadataQuerier_0'].apply(null, arguments)
- })
- var _emscripten_bind_MetadataQuerier_HasEntry_2 = (Module['_emscripten_bind_MetadataQuerier_HasEntry_2'] = function() {
- return Module['asm']['emscripten_bind_MetadataQuerier_HasEntry_2'].apply(null, arguments)
- })
- var _emscripten_bind_MetadataQuerier_GetIntEntry_2 = (Module['_emscripten_bind_MetadataQuerier_GetIntEntry_2'] = function() {
- return Module['asm']['emscripten_bind_MetadataQuerier_GetIntEntry_2'].apply(null, arguments)
- })
- var _emscripten_bind_MetadataQuerier_GetIntEntryArray_3 = (Module['_emscripten_bind_MetadataQuerier_GetIntEntryArray_3'] = function() {
- return Module['asm']['emscripten_bind_MetadataQuerier_GetIntEntryArray_3'].apply(null, arguments)
- })
- var _emscripten_bind_MetadataQuerier_GetDoubleEntry_2 = (Module['_emscripten_bind_MetadataQuerier_GetDoubleEntry_2'] = function() {
- return Module['asm']['emscripten_bind_MetadataQuerier_GetDoubleEntry_2'].apply(null, arguments)
- })
- var _emscripten_bind_MetadataQuerier_GetStringEntry_2 = (Module['_emscripten_bind_MetadataQuerier_GetStringEntry_2'] = function() {
- return Module['asm']['emscripten_bind_MetadataQuerier_GetStringEntry_2'].apply(null, arguments)
- })
- var _emscripten_bind_MetadataQuerier_NumEntries_1 = (Module['_emscripten_bind_MetadataQuerier_NumEntries_1'] = function() {
- return Module['asm']['emscripten_bind_MetadataQuerier_NumEntries_1'].apply(null, arguments)
- })
- var _emscripten_bind_MetadataQuerier_GetEntryName_2 = (Module['_emscripten_bind_MetadataQuerier_GetEntryName_2'] = function() {
- return Module['asm']['emscripten_bind_MetadataQuerier_GetEntryName_2'].apply(null, arguments)
- })
- var _emscripten_bind_MetadataQuerier___destroy___0 = (Module['_emscripten_bind_MetadataQuerier___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_MetadataQuerier___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt16Array_DracoInt16Array_0 = (Module['_emscripten_bind_DracoInt16Array_DracoInt16Array_0'] = function() {
- return Module['asm']['emscripten_bind_DracoInt16Array_DracoInt16Array_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt16Array_GetValue_1 = (Module['_emscripten_bind_DracoInt16Array_GetValue_1'] = function() {
- return Module['asm']['emscripten_bind_DracoInt16Array_GetValue_1'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt16Array_size_0 = (Module['_emscripten_bind_DracoInt16Array_size_0'] = function() {
- return Module['asm']['emscripten_bind_DracoInt16Array_size_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt16Array___destroy___0 = (Module['_emscripten_bind_DracoInt16Array___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_DracoInt16Array___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoFloat32Array_DracoFloat32Array_0 = (Module['_emscripten_bind_DracoFloat32Array_DracoFloat32Array_0'] = function() {
- return Module['asm']['emscripten_bind_DracoFloat32Array_DracoFloat32Array_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoFloat32Array_GetValue_1 = (Module['_emscripten_bind_DracoFloat32Array_GetValue_1'] = function() {
- return Module['asm']['emscripten_bind_DracoFloat32Array_GetValue_1'].apply(null, arguments)
- })
- var _emscripten_bind_DracoFloat32Array_size_0 = (Module['_emscripten_bind_DracoFloat32Array_size_0'] = function() {
- return Module['asm']['emscripten_bind_DracoFloat32Array_size_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoFloat32Array___destroy___0 = (Module['_emscripten_bind_DracoFloat32Array___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_DracoFloat32Array___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_GeometryAttribute_GeometryAttribute_0 = (Module['_emscripten_bind_GeometryAttribute_GeometryAttribute_0'] = function() {
- return Module['asm']['emscripten_bind_GeometryAttribute_GeometryAttribute_0'].apply(null, arguments)
- })
- var _emscripten_bind_GeometryAttribute___destroy___0 = (Module['_emscripten_bind_GeometryAttribute___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_GeometryAttribute___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_DecoderBuffer_DecoderBuffer_0 = (Module['_emscripten_bind_DecoderBuffer_DecoderBuffer_0'] = function() {
- return Module['asm']['emscripten_bind_DecoderBuffer_DecoderBuffer_0'].apply(null, arguments)
- })
- var _emscripten_bind_DecoderBuffer_Init_2 = (Module['_emscripten_bind_DecoderBuffer_Init_2'] = function() {
- return Module['asm']['emscripten_bind_DecoderBuffer_Init_2'].apply(null, arguments)
- })
- var _emscripten_bind_DecoderBuffer___destroy___0 = (Module['_emscripten_bind_DecoderBuffer___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_DecoderBuffer___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_Decoder_0 = (Module['_emscripten_bind_Decoder_Decoder_0'] = function() {
- return Module['asm']['emscripten_bind_Decoder_Decoder_0'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetEncodedGeometryType_1 = (Module['_emscripten_bind_Decoder_GetEncodedGeometryType_1'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetEncodedGeometryType_1'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_DecodeBufferToPointCloud_2 = (Module['_emscripten_bind_Decoder_DecodeBufferToPointCloud_2'] = function() {
- return Module['asm']['emscripten_bind_Decoder_DecodeBufferToPointCloud_2'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_DecodeBufferToMesh_2 = (Module['_emscripten_bind_Decoder_DecodeBufferToMesh_2'] = function() {
- return Module['asm']['emscripten_bind_Decoder_DecodeBufferToMesh_2'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeId_2 = (Module['_emscripten_bind_Decoder_GetAttributeId_2'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeId_2'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeIdByName_2 = (Module['_emscripten_bind_Decoder_GetAttributeIdByName_2'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeIdByName_2'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3 = (Module['_emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttribute_2 = (Module['_emscripten_bind_Decoder_GetAttribute_2'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttribute_2'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeByUniqueId_2 = (Module['_emscripten_bind_Decoder_GetAttributeByUniqueId_2'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeByUniqueId_2'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetMetadata_1 = (Module['_emscripten_bind_Decoder_GetMetadata_1'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetMetadata_1'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeMetadata_2 = (Module['_emscripten_bind_Decoder_GetAttributeMetadata_2'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeMetadata_2'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetFaceFromMesh_3 = (Module['_emscripten_bind_Decoder_GetFaceFromMesh_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetFaceFromMesh_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetTriangleStripsFromMesh_2 = (Module['_emscripten_bind_Decoder_GetTriangleStripsFromMesh_2'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetTriangleStripsFromMesh_2'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetTrianglesUInt16Array_3 = (Module['_emscripten_bind_Decoder_GetTrianglesUInt16Array_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetTrianglesUInt16Array_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetTrianglesUInt32Array_3 = (Module['_emscripten_bind_Decoder_GetTrianglesUInt32Array_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetTrianglesUInt32Array_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeFloat_3 = (Module['_emscripten_bind_Decoder_GetAttributeFloat_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeFloat_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3 = (Module['_emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeIntForAllPoints_3 = (Module['_emscripten_bind_Decoder_GetAttributeIntForAllPoints_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeIntForAllPoints_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3 = (Module['_emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3 = (Module['_emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3 = (Module['_emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3 = (Module['_emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3 = (Module['_emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3 = (Module['_emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5 = (Module['_emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5'] = function() {
- return Module['asm']['emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder_SkipAttributeTransform_1 = (Module['_emscripten_bind_Decoder_SkipAttributeTransform_1'] = function() {
- return Module['asm']['emscripten_bind_Decoder_SkipAttributeTransform_1'].apply(null, arguments)
- })
- var _emscripten_bind_Decoder___destroy___0 = (Module['_emscripten_bind_Decoder___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_Decoder___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_Mesh_Mesh_0 = (Module['_emscripten_bind_Mesh_Mesh_0'] = function() {
- return Module['asm']['emscripten_bind_Mesh_Mesh_0'].apply(null, arguments)
- })
- var _emscripten_bind_Mesh_num_faces_0 = (Module['_emscripten_bind_Mesh_num_faces_0'] = function() {
- return Module['asm']['emscripten_bind_Mesh_num_faces_0'].apply(null, arguments)
- })
- var _emscripten_bind_Mesh_num_attributes_0 = (Module['_emscripten_bind_Mesh_num_attributes_0'] = function() {
- return Module['asm']['emscripten_bind_Mesh_num_attributes_0'].apply(null, arguments)
- })
- var _emscripten_bind_Mesh_num_points_0 = (Module['_emscripten_bind_Mesh_num_points_0'] = function() {
- return Module['asm']['emscripten_bind_Mesh_num_points_0'].apply(null, arguments)
- })
- var _emscripten_bind_Mesh___destroy___0 = (Module['_emscripten_bind_Mesh___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_Mesh___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_VoidPtr___destroy___0 = (Module['_emscripten_bind_VoidPtr___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_VoidPtr___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt32Array_DracoInt32Array_0 = (Module['_emscripten_bind_DracoInt32Array_DracoInt32Array_0'] = function() {
- return Module['asm']['emscripten_bind_DracoInt32Array_DracoInt32Array_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt32Array_GetValue_1 = (Module['_emscripten_bind_DracoInt32Array_GetValue_1'] = function() {
- return Module['asm']['emscripten_bind_DracoInt32Array_GetValue_1'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt32Array_size_0 = (Module['_emscripten_bind_DracoInt32Array_size_0'] = function() {
- return Module['asm']['emscripten_bind_DracoInt32Array_size_0'].apply(null, arguments)
- })
- var _emscripten_bind_DracoInt32Array___destroy___0 = (Module['_emscripten_bind_DracoInt32Array___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_DracoInt32Array___destroy___0'].apply(null, arguments)
- })
- var _emscripten_bind_Metadata_Metadata_0 = (Module['_emscripten_bind_Metadata_Metadata_0'] = function() {
- return Module['asm']['emscripten_bind_Metadata_Metadata_0'].apply(null, arguments)
- })
- var _emscripten_bind_Metadata___destroy___0 = (Module['_emscripten_bind_Metadata___destroy___0'] = function() {
- return Module['asm']['emscripten_bind_Metadata___destroy___0'].apply(null, arguments)
- })
- var _emscripten_enum_draco_StatusCode_OK = (Module['_emscripten_enum_draco_StatusCode_OK'] = function() {
- return Module['asm']['emscripten_enum_draco_StatusCode_OK'].apply(null, arguments)
- })
- var _emscripten_enum_draco_StatusCode_DRACO_ERROR = (Module['_emscripten_enum_draco_StatusCode_DRACO_ERROR'] = function() {
- return Module['asm']['emscripten_enum_draco_StatusCode_DRACO_ERROR'].apply(null, arguments)
- })
- var _emscripten_enum_draco_StatusCode_IO_ERROR = (Module['_emscripten_enum_draco_StatusCode_IO_ERROR'] = function() {
- return Module['asm']['emscripten_enum_draco_StatusCode_IO_ERROR'].apply(null, arguments)
- })
- var _emscripten_enum_draco_StatusCode_INVALID_PARAMETER = (Module['_emscripten_enum_draco_StatusCode_INVALID_PARAMETER'] = function() {
- return Module['asm']['emscripten_enum_draco_StatusCode_INVALID_PARAMETER'].apply(null, arguments)
- })
- var _emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION = (Module['_emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION'] = function() {
- return Module['asm']['emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION'].apply(null, arguments)
- })
- var _emscripten_enum_draco_StatusCode_UNKNOWN_VERSION = (Module['_emscripten_enum_draco_StatusCode_UNKNOWN_VERSION'] = function() {
- return Module['asm']['emscripten_enum_draco_StatusCode_UNKNOWN_VERSION'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_INVALID = (Module['_emscripten_enum_draco_DataType_DT_INVALID'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_INVALID'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_INT8 = (Module['_emscripten_enum_draco_DataType_DT_INT8'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_INT8'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_UINT8 = (Module['_emscripten_enum_draco_DataType_DT_UINT8'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_UINT8'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_INT16 = (Module['_emscripten_enum_draco_DataType_DT_INT16'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_INT16'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_UINT16 = (Module['_emscripten_enum_draco_DataType_DT_UINT16'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_UINT16'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_INT32 = (Module['_emscripten_enum_draco_DataType_DT_INT32'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_INT32'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_UINT32 = (Module['_emscripten_enum_draco_DataType_DT_UINT32'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_UINT32'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_INT64 = (Module['_emscripten_enum_draco_DataType_DT_INT64'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_INT64'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_UINT64 = (Module['_emscripten_enum_draco_DataType_DT_UINT64'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_UINT64'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_FLOAT32 = (Module['_emscripten_enum_draco_DataType_DT_FLOAT32'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_FLOAT32'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_FLOAT64 = (Module['_emscripten_enum_draco_DataType_DT_FLOAT64'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_FLOAT64'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_BOOL = (Module['_emscripten_enum_draco_DataType_DT_BOOL'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_BOOL'].apply(null, arguments)
- })
- var _emscripten_enum_draco_DataType_DT_TYPES_COUNT = (Module['_emscripten_enum_draco_DataType_DT_TYPES_COUNT'] = function() {
- return Module['asm']['emscripten_enum_draco_DataType_DT_TYPES_COUNT'].apply(null, arguments)
- })
- var _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE = (Module['_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE'] = function() {
- return Module['asm']['emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE'].apply(null, arguments)
- })
- var _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD = (Module['_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD'] = function() {
- return Module['asm']['emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD'].apply(null, arguments)
- })
- var _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH = (Module['_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH'] = function() {
- return Module['asm']['emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH'].apply(null, arguments)
- })
- var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM = (Module['_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM'] = function() {
- return Module['asm']['emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM'].apply(null, arguments)
- })
- var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM = (Module['_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM'] = function() {
- return Module['asm']['emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM'].apply(null, arguments)
- })
- var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM = (Module['_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM'] = function() {
- return Module['asm']['emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM'].apply(null, arguments)
- })
- var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM = (Module['_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM'] = function() {
- return Module['asm']['emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM'].apply(null, arguments)
- })
- var _emscripten_enum_draco_GeometryAttribute_Type_INVALID = (Module['_emscripten_enum_draco_GeometryAttribute_Type_INVALID'] = function() {
- return Module['asm']['emscripten_enum_draco_GeometryAttribute_Type_INVALID'].apply(null, arguments)
- })
- var _emscripten_enum_draco_GeometryAttribute_Type_POSITION = (Module['_emscripten_enum_draco_GeometryAttribute_Type_POSITION'] = function() {
- return Module['asm']['emscripten_enum_draco_GeometryAttribute_Type_POSITION'].apply(null, arguments)
- })
- var _emscripten_enum_draco_GeometryAttribute_Type_NORMAL = (Module['_emscripten_enum_draco_GeometryAttribute_Type_NORMAL'] = function() {
- return Module['asm']['emscripten_enum_draco_GeometryAttribute_Type_NORMAL'].apply(null, arguments)
- })
- var _emscripten_enum_draco_GeometryAttribute_Type_COLOR = (Module['_emscripten_enum_draco_GeometryAttribute_Type_COLOR'] = function() {
- return Module['asm']['emscripten_enum_draco_GeometryAttribute_Type_COLOR'].apply(null, arguments)
- })
- var _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD = (Module['_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD'] = function() {
- return Module['asm']['emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD'].apply(null, arguments)
- })
- var _emscripten_enum_draco_GeometryAttribute_Type_GENERIC = (Module['_emscripten_enum_draco_GeometryAttribute_Type_GENERIC'] = function() {
- return Module['asm']['emscripten_enum_draco_GeometryAttribute_Type_GENERIC'].apply(null, arguments)
- })
- var _setThrew = (Module['_setThrew'] = function() {
- return Module['asm']['setThrew'].apply(null, arguments)
- })
- var __ZSt18uncaught_exceptionv = (Module['__ZSt18uncaught_exceptionv'] = function() {
- return Module['asm']['_ZSt18uncaught_exceptionv'].apply(null, arguments)
- })
- var _free = (Module['_free'] = function() {
- return Module['asm']['free'].apply(null, arguments)
- })
- var _malloc = (Module['_malloc'] = function() {
- return Module['asm']['malloc'].apply(null, arguments)
- })
- var stackSave = (Module['stackSave'] = function() {
- return Module['asm']['stackSave'].apply(null, arguments)
- })
- var stackAlloc = (Module['stackAlloc'] = function() {
- return Module['asm']['stackAlloc'].apply(null, arguments)
- })
- var stackRestore = (Module['stackRestore'] = function() {
- return Module['asm']['stackRestore'].apply(null, arguments)
- })
- var __growWasmMemory = (Module['__growWasmMemory'] = function() {
- return Module['asm']['__growWasmMemory'].apply(null, arguments)
- })
- var dynCall_ii = (Module['dynCall_ii'] = function() {
- return Module['asm']['dynCall_ii'].apply(null, arguments)
- })
- var dynCall_vi = (Module['dynCall_vi'] = function() {
- return Module['asm']['dynCall_vi'].apply(null, arguments)
- })
- var dynCall_iii = (Module['dynCall_iii'] = function() {
- return Module['asm']['dynCall_iii'].apply(null, arguments)
- })
- var dynCall_vii = (Module['dynCall_vii'] = function() {
- return Module['asm']['dynCall_vii'].apply(null, arguments)
- })
- var dynCall_iiii = (Module['dynCall_iiii'] = function() {
- return Module['asm']['dynCall_iiii'].apply(null, arguments)
- })
- var dynCall_v = (Module['dynCall_v'] = function() {
- return Module['asm']['dynCall_v'].apply(null, arguments)
- })
- var dynCall_viii = (Module['dynCall_viii'] = function() {
- return Module['asm']['dynCall_viii'].apply(null, arguments)
- })
- var dynCall_viiii = (Module['dynCall_viiii'] = function() {
- return Module['asm']['dynCall_viiii'].apply(null, arguments)
- })
- var dynCall_iiiiiii = (Module['dynCall_iiiiiii'] = function() {
- return Module['asm']['dynCall_iiiiiii'].apply(null, arguments)
- })
- var dynCall_iidiiii = (Module['dynCall_iidiiii'] = function() {
- return Module['asm']['dynCall_iidiiii'].apply(null, arguments)
- })
- var dynCall_jiji = (Module['dynCall_jiji'] = function() {
- return Module['asm']['dynCall_jiji'].apply(null, arguments)
- })
- var dynCall_viiiiii = (Module['dynCall_viiiiii'] = function() {
- return Module['asm']['dynCall_viiiiii'].apply(null, arguments)
- })
- var dynCall_viiiii = (Module['dynCall_viiiii'] = function() {
- return Module['asm']['dynCall_viiiii'].apply(null, arguments)
- })
- Module['asm'] = asm
- var calledRun
- Module['then'] = function(func) {
- if (calledRun) {
- func(Module)
- } else {
- var old = Module['onRuntimeInitialized']
- Module['onRuntimeInitialized'] = function() {
- if (old) old()
- func(Module)
- }
- }
- return Module
- }
- function ExitStatus(status) {
- this.name = 'ExitStatus'
- this.message = 'Program terminated with exit(' + status + ')'
- this.status = status
- }
- dependenciesFulfilled = function runCaller() {
- if (!calledRun) run()
- if (!calledRun) dependenciesFulfilled = runCaller
- }
- function run(args) {
- args = args || arguments_
- if (runDependencies > 0) {
- return
- }
- preRun()
- if (runDependencies > 0) return
- function doRun() {
- if (calledRun) return
- calledRun = true
- if (ABORT) return
- initRuntime()
- preMain()
- if (Module['onRuntimeInitialized']) Module['onRuntimeInitialized']()
- postRun()
- }
- if (Module['setStatus']) {
- Module['setStatus']('Running...')
- setTimeout(function() {
- setTimeout(function() {
- Module['setStatus']('')
- }, 1)
- doRun()
- }, 1)
- } else {
- doRun()
- }
- }
- Module['run'] = run
- if (Module['preInit']) {
- if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']]
- while (Module['preInit'].length > 0) {
- Module['preInit'].pop()()
- }
- }
- noExitRuntime = true
- run()
- function WrapperObject() {}
- WrapperObject.prototype = Object.create(WrapperObject.prototype)
- WrapperObject.prototype.constructor = WrapperObject
- WrapperObject.prototype.__class__ = WrapperObject
- WrapperObject.__cache__ = {}
- Module['WrapperObject'] = WrapperObject
- function getCache(__class__) {
- return (__class__ || WrapperObject).__cache__
- }
- Module['getCache'] = getCache
- function wrapPointer(ptr, __class__) {
- var cache = getCache(__class__)
- var ret = cache[ptr]
- if (ret) return ret
- ret = Object.create((__class__ || WrapperObject).prototype)
- ret.ptr = ptr
- return (cache[ptr] = ret)
- }
- Module['wrapPointer'] = wrapPointer
- function castObject(obj, __class__) {
- return wrapPointer(obj.ptr, __class__)
- }
- Module['castObject'] = castObject
- Module['NULL'] = wrapPointer(0)
- function destroy(obj) {
- if (!obj['__destroy__']) throw 'Error: Cannot destroy object. (Did you create it yourself?)'
- obj['__destroy__']()
- delete getCache(obj.__class__)[obj.ptr]
- }
- Module['destroy'] = destroy
- function compare(obj1, obj2) {
- return obj1.ptr === obj2.ptr
- }
- Module['compare'] = compare
- function getPointer(obj) {
- return obj.ptr
- }
- Module['getPointer'] = getPointer
- function getClass(obj) {
- return obj.__class__
- }
- Module['getClass'] = getClass
- var ensureCache = {
- buffer: 0,
- size: 0,
- pos: 0,
- temps: [],
- needed: 0,
- prepare: function() {
- if (ensureCache.needed) {
- for (var i = 0; i < ensureCache.temps.length; i++) {
- Module['_free'](ensureCache.temps[i])
- }
- ensureCache.temps.length = 0
- Module['_free'](ensureCache.buffer)
- ensureCache.buffer = 0
- ensureCache.size += ensureCache.needed
- ensureCache.needed = 0
- }
- if (!ensureCache.buffer) {
- ensureCache.size += 128
- ensureCache.buffer = Module['_malloc'](ensureCache.size)
- assert(ensureCache.buffer)
- }
- ensureCache.pos = 0
- },
- alloc: function(array, view) {
- assert(ensureCache.buffer)
- var bytes = view.BYTES_PER_ELEMENT
- var len = array.length * bytes
- len = (len + 7) & -8
- var ret
- if (ensureCache.pos + len >= ensureCache.size) {
- assert(len > 0)
- ensureCache.needed += len
- ret = Module['_malloc'](len)
- ensureCache.temps.push(ret)
- } else {
- ret = ensureCache.buffer + ensureCache.pos
- ensureCache.pos += len
- }
- return ret
- },
- copy: function(array, view, offset) {
- var offsetShifted = offset
- var bytes = view.BYTES_PER_ELEMENT
- switch (bytes) {
- case 2:
- offsetShifted >>= 1
- break
- case 4:
- offsetShifted >>= 2
- break
- case 8:
- offsetShifted >>= 3
- break
- }
- for (var i = 0; i < array.length; i++) {
- view[offsetShifted + i] = array[i]
- }
- }
- }
- function ensureString(value) {
- if (typeof value === 'string') {
- var intArray = intArrayFromString(value)
- var offset = ensureCache.alloc(intArray, HEAP8)
- ensureCache.copy(intArray, HEAP8, offset)
- return offset
- }
- return value
- }
- function ensureInt8(value) {
- if (typeof value === 'object') {
- var offset = ensureCache.alloc(value, HEAP8)
- ensureCache.copy(value, HEAP8, offset)
- return offset
- }
- return value
- }
- function Status() {
- throw 'cannot construct a Status, no constructor in IDL'
- }
- Status.prototype = Object.create(WrapperObject.prototype)
- Status.prototype.constructor = Status
- Status.prototype.__class__ = Status
- Status.__cache__ = {}
- Module['Status'] = Status
- Status.prototype['code'] = Status.prototype.code = function() {
- var self = this.ptr
- return _emscripten_bind_Status_code_0(self)
- }
- Status.prototype['ok'] = Status.prototype.ok = function() {
- var self = this.ptr
- return !!_emscripten_bind_Status_ok_0(self)
- }
- Status.prototype['error_msg'] = Status.prototype.error_msg = function() {
- var self = this.ptr
- return UTF8ToString(_emscripten_bind_Status_error_msg_0(self))
- }
- Status.prototype['__destroy__'] = Status.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_Status___destroy___0(self)
- }
- function DracoUInt16Array() {
- this.ptr = _emscripten_bind_DracoUInt16Array_DracoUInt16Array_0()
- getCache(DracoUInt16Array)[this.ptr] = this
- }
- DracoUInt16Array.prototype = Object.create(WrapperObject.prototype)
- DracoUInt16Array.prototype.constructor = DracoUInt16Array
- DracoUInt16Array.prototype.__class__ = DracoUInt16Array
- DracoUInt16Array.__cache__ = {}
- Module['DracoUInt16Array'] = DracoUInt16Array
- DracoUInt16Array.prototype['GetValue'] = DracoUInt16Array.prototype.GetValue = function(index) {
- var self = this.ptr
- if (index && typeof index === 'object') index = index.ptr
- return _emscripten_bind_DracoUInt16Array_GetValue_1(self, index)
- }
- DracoUInt16Array.prototype['size'] = DracoUInt16Array.prototype.size = function() {
- var self = this.ptr
- return _emscripten_bind_DracoUInt16Array_size_0(self)
- }
- DracoUInt16Array.prototype['__destroy__'] = DracoUInt16Array.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_DracoUInt16Array___destroy___0(self)
- }
- function PointCloud() {
- this.ptr = _emscripten_bind_PointCloud_PointCloud_0()
- getCache(PointCloud)[this.ptr] = this
- }
- PointCloud.prototype = Object.create(WrapperObject.prototype)
- PointCloud.prototype.constructor = PointCloud
- PointCloud.prototype.__class__ = PointCloud
- PointCloud.__cache__ = {}
- Module['PointCloud'] = PointCloud
- PointCloud.prototype['num_attributes'] = PointCloud.prototype.num_attributes = function() {
- var self = this.ptr
- return _emscripten_bind_PointCloud_num_attributes_0(self)
- }
- PointCloud.prototype['num_points'] = PointCloud.prototype.num_points = function() {
- var self = this.ptr
- return _emscripten_bind_PointCloud_num_points_0(self)
- }
- PointCloud.prototype['__destroy__'] = PointCloud.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_PointCloud___destroy___0(self)
- }
- function DracoUInt8Array() {
- this.ptr = _emscripten_bind_DracoUInt8Array_DracoUInt8Array_0()
- getCache(DracoUInt8Array)[this.ptr] = this
- }
- DracoUInt8Array.prototype = Object.create(WrapperObject.prototype)
- DracoUInt8Array.prototype.constructor = DracoUInt8Array
- DracoUInt8Array.prototype.__class__ = DracoUInt8Array
- DracoUInt8Array.__cache__ = {}
- Module['DracoUInt8Array'] = DracoUInt8Array
- DracoUInt8Array.prototype['GetValue'] = DracoUInt8Array.prototype.GetValue = function(index) {
- var self = this.ptr
- if (index && typeof index === 'object') index = index.ptr
- return _emscripten_bind_DracoUInt8Array_GetValue_1(self, index)
- }
- DracoUInt8Array.prototype['size'] = DracoUInt8Array.prototype.size = function() {
- var self = this.ptr
- return _emscripten_bind_DracoUInt8Array_size_0(self)
- }
- DracoUInt8Array.prototype['__destroy__'] = DracoUInt8Array.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_DracoUInt8Array___destroy___0(self)
- }
- function DracoUInt32Array() {
- this.ptr = _emscripten_bind_DracoUInt32Array_DracoUInt32Array_0()
- getCache(DracoUInt32Array)[this.ptr] = this
- }
- DracoUInt32Array.prototype = Object.create(WrapperObject.prototype)
- DracoUInt32Array.prototype.constructor = DracoUInt32Array
- DracoUInt32Array.prototype.__class__ = DracoUInt32Array
- DracoUInt32Array.__cache__ = {}
- Module['DracoUInt32Array'] = DracoUInt32Array
- DracoUInt32Array.prototype['GetValue'] = DracoUInt32Array.prototype.GetValue = function(index) {
- var self = this.ptr
- if (index && typeof index === 'object') index = index.ptr
- return _emscripten_bind_DracoUInt32Array_GetValue_1(self, index)
- }
- DracoUInt32Array.prototype['size'] = DracoUInt32Array.prototype.size = function() {
- var self = this.ptr
- return _emscripten_bind_DracoUInt32Array_size_0(self)
- }
- DracoUInt32Array.prototype['__destroy__'] = DracoUInt32Array.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_DracoUInt32Array___destroy___0(self)
- }
- function AttributeOctahedronTransform() {
- this.ptr = _emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0()
- getCache(AttributeOctahedronTransform)[this.ptr] = this
- }
- AttributeOctahedronTransform.prototype = Object.create(WrapperObject.prototype)
- AttributeOctahedronTransform.prototype.constructor = AttributeOctahedronTransform
- AttributeOctahedronTransform.prototype.__class__ = AttributeOctahedronTransform
- AttributeOctahedronTransform.__cache__ = {}
- Module['AttributeOctahedronTransform'] = AttributeOctahedronTransform
- AttributeOctahedronTransform.prototype['InitFromAttribute'] = AttributeOctahedronTransform.prototype.InitFromAttribute = function(att) {
- var self = this.ptr
- if (att && typeof att === 'object') att = att.ptr
- return !!_emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1(self, att)
- }
- AttributeOctahedronTransform.prototype['quantization_bits'] = AttributeOctahedronTransform.prototype.quantization_bits = function() {
- var self = this.ptr
- return _emscripten_bind_AttributeOctahedronTransform_quantization_bits_0(self)
- }
- AttributeOctahedronTransform.prototype['__destroy__'] = AttributeOctahedronTransform.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_AttributeOctahedronTransform___destroy___0(self)
- }
- function PointAttribute() {
- this.ptr = _emscripten_bind_PointAttribute_PointAttribute_0()
- getCache(PointAttribute)[this.ptr] = this
- }
- PointAttribute.prototype = Object.create(WrapperObject.prototype)
- PointAttribute.prototype.constructor = PointAttribute
- PointAttribute.prototype.__class__ = PointAttribute
- PointAttribute.__cache__ = {}
- Module['PointAttribute'] = PointAttribute
- PointAttribute.prototype['size'] = PointAttribute.prototype.size = function() {
- var self = this.ptr
- return _emscripten_bind_PointAttribute_size_0(self)
- }
- PointAttribute.prototype['GetAttributeTransformData'] = PointAttribute.prototype.GetAttributeTransformData = function() {
- var self = this.ptr
- return wrapPointer(_emscripten_bind_PointAttribute_GetAttributeTransformData_0(self), AttributeTransformData)
- }
- PointAttribute.prototype['attribute_type'] = PointAttribute.prototype.attribute_type = function() {
- var self = this.ptr
- return _emscripten_bind_PointAttribute_attribute_type_0(self)
- }
- PointAttribute.prototype['data_type'] = PointAttribute.prototype.data_type = function() {
- var self = this.ptr
- return _emscripten_bind_PointAttribute_data_type_0(self)
- }
- PointAttribute.prototype['num_components'] = PointAttribute.prototype.num_components = function() {
- var self = this.ptr
- return _emscripten_bind_PointAttribute_num_components_0(self)
- }
- PointAttribute.prototype['normalized'] = PointAttribute.prototype.normalized = function() {
- var self = this.ptr
- return !!_emscripten_bind_PointAttribute_normalized_0(self)
- }
- PointAttribute.prototype['byte_stride'] = PointAttribute.prototype.byte_stride = function() {
- var self = this.ptr
- return _emscripten_bind_PointAttribute_byte_stride_0(self)
- }
- PointAttribute.prototype['byte_offset'] = PointAttribute.prototype.byte_offset = function() {
- var self = this.ptr
- return _emscripten_bind_PointAttribute_byte_offset_0(self)
- }
- PointAttribute.prototype['unique_id'] = PointAttribute.prototype.unique_id = function() {
- var self = this.ptr
- return _emscripten_bind_PointAttribute_unique_id_0(self)
- }
- PointAttribute.prototype['__destroy__'] = PointAttribute.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_PointAttribute___destroy___0(self)
- }
- function AttributeTransformData() {
- this.ptr = _emscripten_bind_AttributeTransformData_AttributeTransformData_0()
- getCache(AttributeTransformData)[this.ptr] = this
- }
- AttributeTransformData.prototype = Object.create(WrapperObject.prototype)
- AttributeTransformData.prototype.constructor = AttributeTransformData
- AttributeTransformData.prototype.__class__ = AttributeTransformData
- AttributeTransformData.__cache__ = {}
- Module['AttributeTransformData'] = AttributeTransformData
- AttributeTransformData.prototype['transform_type'] = AttributeTransformData.prototype.transform_type = function() {
- var self = this.ptr
- return _emscripten_bind_AttributeTransformData_transform_type_0(self)
- }
- AttributeTransformData.prototype['__destroy__'] = AttributeTransformData.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_AttributeTransformData___destroy___0(self)
- }
- function AttributeQuantizationTransform() {
- this.ptr = _emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0()
- getCache(AttributeQuantizationTransform)[this.ptr] = this
- }
- AttributeQuantizationTransform.prototype = Object.create(WrapperObject.prototype)
- AttributeQuantizationTransform.prototype.constructor = AttributeQuantizationTransform
- AttributeQuantizationTransform.prototype.__class__ = AttributeQuantizationTransform
- AttributeQuantizationTransform.__cache__ = {}
- Module['AttributeQuantizationTransform'] = AttributeQuantizationTransform
- AttributeQuantizationTransform.prototype['InitFromAttribute'] = AttributeQuantizationTransform.prototype.InitFromAttribute = function(att) {
- var self = this.ptr
- if (att && typeof att === 'object') att = att.ptr
- return !!_emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1(self, att)
- }
- AttributeQuantizationTransform.prototype['quantization_bits'] = AttributeQuantizationTransform.prototype.quantization_bits = function() {
- var self = this.ptr
- return _emscripten_bind_AttributeQuantizationTransform_quantization_bits_0(self)
- }
- AttributeQuantizationTransform.prototype['min_value'] = AttributeQuantizationTransform.prototype.min_value = function(axis) {
- var self = this.ptr
- if (axis && typeof axis === 'object') axis = axis.ptr
- return _emscripten_bind_AttributeQuantizationTransform_min_value_1(self, axis)
- }
- AttributeQuantizationTransform.prototype['range'] = AttributeQuantizationTransform.prototype.range = function() {
- var self = this.ptr
- return _emscripten_bind_AttributeQuantizationTransform_range_0(self)
- }
- AttributeQuantizationTransform.prototype['__destroy__'] = AttributeQuantizationTransform.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_AttributeQuantizationTransform___destroy___0(self)
- }
- function DracoInt8Array() {
- this.ptr = _emscripten_bind_DracoInt8Array_DracoInt8Array_0()
- getCache(DracoInt8Array)[this.ptr] = this
- }
- DracoInt8Array.prototype = Object.create(WrapperObject.prototype)
- DracoInt8Array.prototype.constructor = DracoInt8Array
- DracoInt8Array.prototype.__class__ = DracoInt8Array
- DracoInt8Array.__cache__ = {}
- Module['DracoInt8Array'] = DracoInt8Array
- DracoInt8Array.prototype['GetValue'] = DracoInt8Array.prototype.GetValue = function(index) {
- var self = this.ptr
- if (index && typeof index === 'object') index = index.ptr
- return _emscripten_bind_DracoInt8Array_GetValue_1(self, index)
- }
- DracoInt8Array.prototype['size'] = DracoInt8Array.prototype.size = function() {
- var self = this.ptr
- return _emscripten_bind_DracoInt8Array_size_0(self)
- }
- DracoInt8Array.prototype['__destroy__'] = DracoInt8Array.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_DracoInt8Array___destroy___0(self)
- }
- function MetadataQuerier() {
- this.ptr = _emscripten_bind_MetadataQuerier_MetadataQuerier_0()
- getCache(MetadataQuerier)[this.ptr] = this
- }
- MetadataQuerier.prototype = Object.create(WrapperObject.prototype)
- MetadataQuerier.prototype.constructor = MetadataQuerier
- MetadataQuerier.prototype.__class__ = MetadataQuerier
- MetadataQuerier.__cache__ = {}
- Module['MetadataQuerier'] = MetadataQuerier
- MetadataQuerier.prototype['HasEntry'] = MetadataQuerier.prototype.HasEntry = function(metadata, entry_name) {
- var self = this.ptr
- ensureCache.prepare()
- if (metadata && typeof metadata === 'object') metadata = metadata.ptr
- if (entry_name && typeof entry_name === 'object') entry_name = entry_name.ptr
- else entry_name = ensureString(entry_name)
- return !!_emscripten_bind_MetadataQuerier_HasEntry_2(self, metadata, entry_name)
- }
- MetadataQuerier.prototype['GetIntEntry'] = MetadataQuerier.prototype.GetIntEntry = function(metadata, entry_name) {
- var self = this.ptr
- ensureCache.prepare()
- if (metadata && typeof metadata === 'object') metadata = metadata.ptr
- if (entry_name && typeof entry_name === 'object') entry_name = entry_name.ptr
- else entry_name = ensureString(entry_name)
- return _emscripten_bind_MetadataQuerier_GetIntEntry_2(self, metadata, entry_name)
- }
- MetadataQuerier.prototype['GetIntEntryArray'] = MetadataQuerier.prototype.GetIntEntryArray = function(metadata, entry_name, out_values) {
- var self = this.ptr
- ensureCache.prepare()
- if (metadata && typeof metadata === 'object') metadata = metadata.ptr
- if (entry_name && typeof entry_name === 'object') entry_name = entry_name.ptr
- else entry_name = ensureString(entry_name)
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- _emscripten_bind_MetadataQuerier_GetIntEntryArray_3(self, metadata, entry_name, out_values)
- }
- MetadataQuerier.prototype['GetDoubleEntry'] = MetadataQuerier.prototype.GetDoubleEntry = function(metadata, entry_name) {
- var self = this.ptr
- ensureCache.prepare()
- if (metadata && typeof metadata === 'object') metadata = metadata.ptr
- if (entry_name && typeof entry_name === 'object') entry_name = entry_name.ptr
- else entry_name = ensureString(entry_name)
- return _emscripten_bind_MetadataQuerier_GetDoubleEntry_2(self, metadata, entry_name)
- }
- MetadataQuerier.prototype['GetStringEntry'] = MetadataQuerier.prototype.GetStringEntry = function(metadata, entry_name) {
- var self = this.ptr
- ensureCache.prepare()
- if (metadata && typeof metadata === 'object') metadata = metadata.ptr
- if (entry_name && typeof entry_name === 'object') entry_name = entry_name.ptr
- else entry_name = ensureString(entry_name)
- return UTF8ToString(_emscripten_bind_MetadataQuerier_GetStringEntry_2(self, metadata, entry_name))
- }
- MetadataQuerier.prototype['NumEntries'] = MetadataQuerier.prototype.NumEntries = function(metadata) {
- var self = this.ptr
- if (metadata && typeof metadata === 'object') metadata = metadata.ptr
- return _emscripten_bind_MetadataQuerier_NumEntries_1(self, metadata)
- }
- MetadataQuerier.prototype['GetEntryName'] = MetadataQuerier.prototype.GetEntryName = function(metadata, entry_id) {
- var self = this.ptr
- if (metadata && typeof metadata === 'object') metadata = metadata.ptr
- if (entry_id && typeof entry_id === 'object') entry_id = entry_id.ptr
- return UTF8ToString(_emscripten_bind_MetadataQuerier_GetEntryName_2(self, metadata, entry_id))
- }
- MetadataQuerier.prototype['__destroy__'] = MetadataQuerier.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_MetadataQuerier___destroy___0(self)
- }
- function DracoInt16Array() {
- this.ptr = _emscripten_bind_DracoInt16Array_DracoInt16Array_0()
- getCache(DracoInt16Array)[this.ptr] = this
- }
- DracoInt16Array.prototype = Object.create(WrapperObject.prototype)
- DracoInt16Array.prototype.constructor = DracoInt16Array
- DracoInt16Array.prototype.__class__ = DracoInt16Array
- DracoInt16Array.__cache__ = {}
- Module['DracoInt16Array'] = DracoInt16Array
- DracoInt16Array.prototype['GetValue'] = DracoInt16Array.prototype.GetValue = function(index) {
- var self = this.ptr
- if (index && typeof index === 'object') index = index.ptr
- return _emscripten_bind_DracoInt16Array_GetValue_1(self, index)
- }
- DracoInt16Array.prototype['size'] = DracoInt16Array.prototype.size = function() {
- var self = this.ptr
- return _emscripten_bind_DracoInt16Array_size_0(self)
- }
- DracoInt16Array.prototype['__destroy__'] = DracoInt16Array.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_DracoInt16Array___destroy___0(self)
- }
- function DracoFloat32Array() {
- this.ptr = _emscripten_bind_DracoFloat32Array_DracoFloat32Array_0()
- getCache(DracoFloat32Array)[this.ptr] = this
- }
- DracoFloat32Array.prototype = Object.create(WrapperObject.prototype)
- DracoFloat32Array.prototype.constructor = DracoFloat32Array
- DracoFloat32Array.prototype.__class__ = DracoFloat32Array
- DracoFloat32Array.__cache__ = {}
- Module['DracoFloat32Array'] = DracoFloat32Array
- DracoFloat32Array.prototype['GetValue'] = DracoFloat32Array.prototype.GetValue = function(index) {
- var self = this.ptr
- if (index && typeof index === 'object') index = index.ptr
- return _emscripten_bind_DracoFloat32Array_GetValue_1(self, index)
- }
- DracoFloat32Array.prototype['size'] = DracoFloat32Array.prototype.size = function() {
- var self = this.ptr
- return _emscripten_bind_DracoFloat32Array_size_0(self)
- }
- DracoFloat32Array.prototype['__destroy__'] = DracoFloat32Array.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_DracoFloat32Array___destroy___0(self)
- }
- function GeometryAttribute() {
- this.ptr = _emscripten_bind_GeometryAttribute_GeometryAttribute_0()
- getCache(GeometryAttribute)[this.ptr] = this
- }
- GeometryAttribute.prototype = Object.create(WrapperObject.prototype)
- GeometryAttribute.prototype.constructor = GeometryAttribute
- GeometryAttribute.prototype.__class__ = GeometryAttribute
- GeometryAttribute.__cache__ = {}
- Module['GeometryAttribute'] = GeometryAttribute
- GeometryAttribute.prototype['__destroy__'] = GeometryAttribute.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_GeometryAttribute___destroy___0(self)
- }
- function DecoderBuffer() {
- this.ptr = _emscripten_bind_DecoderBuffer_DecoderBuffer_0()
- getCache(DecoderBuffer)[this.ptr] = this
- }
- DecoderBuffer.prototype = Object.create(WrapperObject.prototype)
- DecoderBuffer.prototype.constructor = DecoderBuffer
- DecoderBuffer.prototype.__class__ = DecoderBuffer
- DecoderBuffer.__cache__ = {}
- Module['DecoderBuffer'] = DecoderBuffer
- DecoderBuffer.prototype['Init'] = DecoderBuffer.prototype.Init = function(data, data_size) {
- var self = this.ptr
- ensureCache.prepare()
- if (typeof data == 'object') {
- data = ensureInt8(data)
- }
- if (data_size && typeof data_size === 'object') data_size = data_size.ptr
- _emscripten_bind_DecoderBuffer_Init_2(self, data, data_size)
- }
- DecoderBuffer.prototype['__destroy__'] = DecoderBuffer.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_DecoderBuffer___destroy___0(self)
- }
- function Decoder() {
- this.ptr = _emscripten_bind_Decoder_Decoder_0()
- getCache(Decoder)[this.ptr] = this
- }
- Decoder.prototype = Object.create(WrapperObject.prototype)
- Decoder.prototype.constructor = Decoder
- Decoder.prototype.__class__ = Decoder
- Decoder.__cache__ = {}
- Module['Decoder'] = Decoder
- Decoder.prototype['GetEncodedGeometryType'] = Decoder.prototype.GetEncodedGeometryType = function(in_buffer) {
- var self = this.ptr
- if (in_buffer && typeof in_buffer === 'object') in_buffer = in_buffer.ptr
- return _emscripten_bind_Decoder_GetEncodedGeometryType_1(self, in_buffer)
- }
- Decoder.prototype['DecodeBufferToPointCloud'] = Decoder.prototype.DecodeBufferToPointCloud = function(in_buffer, out_point_cloud) {
- var self = this.ptr
- if (in_buffer && typeof in_buffer === 'object') in_buffer = in_buffer.ptr
- if (out_point_cloud && typeof out_point_cloud === 'object') out_point_cloud = out_point_cloud.ptr
- return wrapPointer(_emscripten_bind_Decoder_DecodeBufferToPointCloud_2(self, in_buffer, out_point_cloud), Status)
- }
- Decoder.prototype['DecodeBufferToMesh'] = Decoder.prototype.DecodeBufferToMesh = function(in_buffer, out_mesh) {
- var self = this.ptr
- if (in_buffer && typeof in_buffer === 'object') in_buffer = in_buffer.ptr
- if (out_mesh && typeof out_mesh === 'object') out_mesh = out_mesh.ptr
- return wrapPointer(_emscripten_bind_Decoder_DecodeBufferToMesh_2(self, in_buffer, out_mesh), Status)
- }
- Decoder.prototype['GetAttributeId'] = Decoder.prototype.GetAttributeId = function(pc, type) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (type && typeof type === 'object') type = type.ptr
- return _emscripten_bind_Decoder_GetAttributeId_2(self, pc, type)
- }
- Decoder.prototype['GetAttributeIdByName'] = Decoder.prototype.GetAttributeIdByName = function(pc, name) {
- var self = this.ptr
- ensureCache.prepare()
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (name && typeof name === 'object') name = name.ptr
- else name = ensureString(name)
- return _emscripten_bind_Decoder_GetAttributeIdByName_2(self, pc, name)
- }
- Decoder.prototype['GetAttributeIdByMetadataEntry'] = Decoder.prototype.GetAttributeIdByMetadataEntry = function(pc, name, value) {
- var self = this.ptr
- ensureCache.prepare()
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (name && typeof name === 'object') name = name.ptr
- else name = ensureString(name)
- if (value && typeof value === 'object') value = value.ptr
- else value = ensureString(value)
- return _emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3(self, pc, name, value)
- }
- Decoder.prototype['GetAttribute'] = Decoder.prototype.GetAttribute = function(pc, att_id) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (att_id && typeof att_id === 'object') att_id = att_id.ptr
- return wrapPointer(_emscripten_bind_Decoder_GetAttribute_2(self, pc, att_id), PointAttribute)
- }
- Decoder.prototype['GetAttributeByUniqueId'] = Decoder.prototype.GetAttributeByUniqueId = function(pc, unique_id) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (unique_id && typeof unique_id === 'object') unique_id = unique_id.ptr
- return wrapPointer(_emscripten_bind_Decoder_GetAttributeByUniqueId_2(self, pc, unique_id), PointAttribute)
- }
- Decoder.prototype['GetMetadata'] = Decoder.prototype.GetMetadata = function(pc) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- return wrapPointer(_emscripten_bind_Decoder_GetMetadata_1(self, pc), Metadata)
- }
- Decoder.prototype['GetAttributeMetadata'] = Decoder.prototype.GetAttributeMetadata = function(pc, att_id) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (att_id && typeof att_id === 'object') att_id = att_id.ptr
- return wrapPointer(_emscripten_bind_Decoder_GetAttributeMetadata_2(self, pc, att_id), Metadata)
- }
- Decoder.prototype['GetFaceFromMesh'] = Decoder.prototype.GetFaceFromMesh = function(m, face_id, out_values) {
- var self = this.ptr
- if (m && typeof m === 'object') m = m.ptr
- if (face_id && typeof face_id === 'object') face_id = face_id.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetFaceFromMesh_3(self, m, face_id, out_values)
- }
- Decoder.prototype['GetTriangleStripsFromMesh'] = Decoder.prototype.GetTriangleStripsFromMesh = function(m, strip_values) {
- var self = this.ptr
- if (m && typeof m === 'object') m = m.ptr
- if (strip_values && typeof strip_values === 'object') strip_values = strip_values.ptr
- return _emscripten_bind_Decoder_GetTriangleStripsFromMesh_2(self, m, strip_values)
- }
- Decoder.prototype['GetTrianglesUInt16Array'] = Decoder.prototype.GetTrianglesUInt16Array = function(m, out_size, out_values) {
- var self = this.ptr
- if (m && typeof m === 'object') m = m.ptr
- if (out_size && typeof out_size === 'object') out_size = out_size.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetTrianglesUInt16Array_3(self, m, out_size, out_values)
- }
- Decoder.prototype['GetTrianglesUInt32Array'] = Decoder.prototype.GetTrianglesUInt32Array = function(m, out_size, out_values) {
- var self = this.ptr
- if (m && typeof m === 'object') m = m.ptr
- if (out_size && typeof out_size === 'object') out_size = out_size.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetTrianglesUInt32Array_3(self, m, out_size, out_values)
- }
- Decoder.prototype['GetAttributeFloat'] = Decoder.prototype.GetAttributeFloat = function(pa, att_index, out_values) {
- var self = this.ptr
- if (pa && typeof pa === 'object') pa = pa.ptr
- if (att_index && typeof att_index === 'object') att_index = att_index.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetAttributeFloat_3(self, pa, att_index, out_values)
- }
- Decoder.prototype['GetAttributeFloatForAllPoints'] = Decoder.prototype.GetAttributeFloatForAllPoints = function(pc, pa, out_values) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (pa && typeof pa === 'object') pa = pa.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3(self, pc, pa, out_values)
- }
- Decoder.prototype['GetAttributeIntForAllPoints'] = Decoder.prototype.GetAttributeIntForAllPoints = function(pc, pa, out_values) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (pa && typeof pa === 'object') pa = pa.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetAttributeIntForAllPoints_3(self, pc, pa, out_values)
- }
- Decoder.prototype['GetAttributeInt8ForAllPoints'] = Decoder.prototype.GetAttributeInt8ForAllPoints = function(pc, pa, out_values) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (pa && typeof pa === 'object') pa = pa.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3(self, pc, pa, out_values)
- }
- Decoder.prototype['GetAttributeUInt8ForAllPoints'] = Decoder.prototype.GetAttributeUInt8ForAllPoints = function(pc, pa, out_values) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (pa && typeof pa === 'object') pa = pa.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3(self, pc, pa, out_values)
- }
- Decoder.prototype['GetAttributeInt16ForAllPoints'] = Decoder.prototype.GetAttributeInt16ForAllPoints = function(pc, pa, out_values) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (pa && typeof pa === 'object') pa = pa.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3(self, pc, pa, out_values)
- }
- Decoder.prototype['GetAttributeUInt16ForAllPoints'] = Decoder.prototype.GetAttributeUInt16ForAllPoints = function(pc, pa, out_values) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (pa && typeof pa === 'object') pa = pa.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3(self, pc, pa, out_values)
- }
- Decoder.prototype['GetAttributeInt32ForAllPoints'] = Decoder.prototype.GetAttributeInt32ForAllPoints = function(pc, pa, out_values) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (pa && typeof pa === 'object') pa = pa.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3(self, pc, pa, out_values)
- }
- Decoder.prototype['GetAttributeUInt32ForAllPoints'] = Decoder.prototype.GetAttributeUInt32ForAllPoints = function(pc, pa, out_values) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (pa && typeof pa === 'object') pa = pa.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3(self, pc, pa, out_values)
- }
- Decoder.prototype['GetAttributeDataArrayForAllPoints'] = Decoder.prototype.GetAttributeDataArrayForAllPoints = function(pc, pa, data_type, out_size, out_values) {
- var self = this.ptr
- if (pc && typeof pc === 'object') pc = pc.ptr
- if (pa && typeof pa === 'object') pa = pa.ptr
- if (data_type && typeof data_type === 'object') data_type = data_type.ptr
- if (out_size && typeof out_size === 'object') out_size = out_size.ptr
- if (out_values && typeof out_values === 'object') out_values = out_values.ptr
- return !!_emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5(self, pc, pa, data_type, out_size, out_values)
- }
- Decoder.prototype['SkipAttributeTransform'] = Decoder.prototype.SkipAttributeTransform = function(att_type) {
- var self = this.ptr
- if (att_type && typeof att_type === 'object') att_type = att_type.ptr
- _emscripten_bind_Decoder_SkipAttributeTransform_1(self, att_type)
- }
- Decoder.prototype['__destroy__'] = Decoder.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_Decoder___destroy___0(self)
- }
- function Mesh() {
- this.ptr = _emscripten_bind_Mesh_Mesh_0()
- getCache(Mesh)[this.ptr] = this
- }
- Mesh.prototype = Object.create(WrapperObject.prototype)
- Mesh.prototype.constructor = Mesh
- Mesh.prototype.__class__ = Mesh
- Mesh.__cache__ = {}
- Module['Mesh'] = Mesh
- Mesh.prototype['num_faces'] = Mesh.prototype.num_faces = function() {
- var self = this.ptr
- return _emscripten_bind_Mesh_num_faces_0(self)
- }
- Mesh.prototype['num_attributes'] = Mesh.prototype.num_attributes = function() {
- var self = this.ptr
- return _emscripten_bind_Mesh_num_attributes_0(self)
- }
- Mesh.prototype['num_points'] = Mesh.prototype.num_points = function() {
- var self = this.ptr
- return _emscripten_bind_Mesh_num_points_0(self)
- }
- Mesh.prototype['__destroy__'] = Mesh.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_Mesh___destroy___0(self)
- }
- function VoidPtr() {
- throw 'cannot construct a VoidPtr, no constructor in IDL'
- }
- VoidPtr.prototype = Object.create(WrapperObject.prototype)
- VoidPtr.prototype.constructor = VoidPtr
- VoidPtr.prototype.__class__ = VoidPtr
- VoidPtr.__cache__ = {}
- Module['VoidPtr'] = VoidPtr
- VoidPtr.prototype['__destroy__'] = VoidPtr.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_VoidPtr___destroy___0(self)
- }
- function DracoInt32Array() {
- this.ptr = _emscripten_bind_DracoInt32Array_DracoInt32Array_0()
- getCache(DracoInt32Array)[this.ptr] = this
- }
- DracoInt32Array.prototype = Object.create(WrapperObject.prototype)
- DracoInt32Array.prototype.constructor = DracoInt32Array
- DracoInt32Array.prototype.__class__ = DracoInt32Array
- DracoInt32Array.__cache__ = {}
- Module['DracoInt32Array'] = DracoInt32Array
- DracoInt32Array.prototype['GetValue'] = DracoInt32Array.prototype.GetValue = function(index) {
- var self = this.ptr
- if (index && typeof index === 'object') index = index.ptr
- return _emscripten_bind_DracoInt32Array_GetValue_1(self, index)
- }
- DracoInt32Array.prototype['size'] = DracoInt32Array.prototype.size = function() {
- var self = this.ptr
- return _emscripten_bind_DracoInt32Array_size_0(self)
- }
- DracoInt32Array.prototype['__destroy__'] = DracoInt32Array.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_DracoInt32Array___destroy___0(self)
- }
- function Metadata() {
- this.ptr = _emscripten_bind_Metadata_Metadata_0()
- getCache(Metadata)[this.ptr] = this
- }
- Metadata.prototype = Object.create(WrapperObject.prototype)
- Metadata.prototype.constructor = Metadata
- Metadata.prototype.__class__ = Metadata
- Metadata.__cache__ = {}
- Module['Metadata'] = Metadata
- Metadata.prototype['__destroy__'] = Metadata.prototype.__destroy__ = function() {
- var self = this.ptr
- _emscripten_bind_Metadata___destroy___0(self)
- }
- ;(function() {
- function setupEnums() {
- Module['OK'] = _emscripten_enum_draco_StatusCode_OK()
- Module['DRACO_ERROR'] = _emscripten_enum_draco_StatusCode_DRACO_ERROR()
- Module['IO_ERROR'] = _emscripten_enum_draco_StatusCode_IO_ERROR()
- Module['INVALID_PARAMETER'] = _emscripten_enum_draco_StatusCode_INVALID_PARAMETER()
- Module['UNSUPPORTED_VERSION'] = _emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION()
- Module['UNKNOWN_VERSION'] = _emscripten_enum_draco_StatusCode_UNKNOWN_VERSION()
- Module['DT_INVALID'] = _emscripten_enum_draco_DataType_DT_INVALID()
- Module['DT_INT8'] = _emscripten_enum_draco_DataType_DT_INT8()
- Module['DT_UINT8'] = _emscripten_enum_draco_DataType_DT_UINT8()
- Module['DT_INT16'] = _emscripten_enum_draco_DataType_DT_INT16()
- Module['DT_UINT16'] = _emscripten_enum_draco_DataType_DT_UINT16()
- Module['DT_INT32'] = _emscripten_enum_draco_DataType_DT_INT32()
- Module['DT_UINT32'] = _emscripten_enum_draco_DataType_DT_UINT32()
- Module['DT_INT64'] = _emscripten_enum_draco_DataType_DT_INT64()
- Module['DT_UINT64'] = _emscripten_enum_draco_DataType_DT_UINT64()
- Module['DT_FLOAT32'] = _emscripten_enum_draco_DataType_DT_FLOAT32()
- Module['DT_FLOAT64'] = _emscripten_enum_draco_DataType_DT_FLOAT64()
- Module['DT_BOOL'] = _emscripten_enum_draco_DataType_DT_BOOL()
- Module['DT_TYPES_COUNT'] = _emscripten_enum_draco_DataType_DT_TYPES_COUNT()
- Module['INVALID_GEOMETRY_TYPE'] = _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE()
- Module['POINT_CLOUD'] = _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD()
- Module['TRIANGULAR_MESH'] = _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH()
- Module['ATTRIBUTE_INVALID_TRANSFORM'] = _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM()
- Module['ATTRIBUTE_NO_TRANSFORM'] = _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM()
- Module['ATTRIBUTE_QUANTIZATION_TRANSFORM'] = _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM()
- Module['ATTRIBUTE_OCTAHEDRON_TRANSFORM'] = _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM()
- Module['INVALID'] = _emscripten_enum_draco_GeometryAttribute_Type_INVALID()
- Module['POSITION'] = _emscripten_enum_draco_GeometryAttribute_Type_POSITION()
- Module['NORMAL'] = _emscripten_enum_draco_GeometryAttribute_Type_NORMAL()
- Module['COLOR'] = _emscripten_enum_draco_GeometryAttribute_Type_COLOR()
- Module['TEX_COORD'] = _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD()
- Module['GENERIC'] = _emscripten_enum_draco_GeometryAttribute_Type_GENERIC()
- }
- if (runtimeInitialized) setupEnums()
- else addOnPreMain(setupEnums)
- })()
- if (typeof Module['onModuleParsed'] === 'function') {
- Module['onModuleParsed']()
- }
- return DracoDecoderModule
- }
- })()
- if (typeof exports === 'object' && typeof module === 'object') module.exports = DracoDecoderModule
- else if (typeof define === 'function' && define['amd'])
- define([], function() {
- return DracoDecoderModule
- })
- else if (typeof exports === 'object') exports['DracoDecoderModule'] = DracoDecoderModule
|