/** * @license * Copyright 2010-2022 Three.js Authors * SPDX-License-Identifier: MIT */ const REVISION = '141' const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 } const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 } const CullFaceNone = 0 const CullFaceBack = 1 const CullFaceFront = 2 const CullFaceFrontBack = 3 const BasicShadowMap = 0 const PCFShadowMap = 1 const PCFSoftShadowMap = 2 const VSMShadowMap = 3 const FrontSide = 0 const BackSide = 1 const DoubleSide = 2 const FlatShading = 1 const SmoothShading = 2 const NoBlending = 0 const NormalBlending = 1 const AdditiveBlending = 2 const SubtractiveBlending = 3 const MultiplyBlending = 4 const CustomBlending = 5 const AddEquation = 100 const SubtractEquation = 101 const ReverseSubtractEquation = 102 const MinEquation = 103 const MaxEquation = 104 const ZeroFactor = 200 const OneFactor = 201 const SrcColorFactor = 202 const OneMinusSrcColorFactor = 203 const SrcAlphaFactor = 204 const OneMinusSrcAlphaFactor = 205 const DstAlphaFactor = 206 const OneMinusDstAlphaFactor = 207 const DstColorFactor = 208 const OneMinusDstColorFactor = 209 const SrcAlphaSaturateFactor = 210 const NeverDepth = 0 const AlwaysDepth = 1 const LessDepth = 2 const LessEqualDepth = 3 const EqualDepth = 4 const GreaterEqualDepth = 5 const GreaterDepth = 6 const NotEqualDepth = 7 const MultiplyOperation = 0 const MixOperation = 1 const AddOperation = 2 const NoToneMapping = 0 const LinearToneMapping = 1 const ReinhardToneMapping = 2 const CineonToneMapping = 3 const ACESFilmicToneMapping = 4 const CustomToneMapping = 5 const UVMapping = 300 const CubeReflectionMapping = 301 const CubeRefractionMapping = 302 const EquirectangularReflectionMapping = 303 const EquirectangularRefractionMapping = 304 const CubeUVReflectionMapping = 306 const RepeatWrapping = 1000 const ClampToEdgeWrapping = 1001 const MirroredRepeatWrapping = 1002 const NearestFilter = 1003 const NearestMipmapNearestFilter = 1004 const NearestMipMapNearestFilter = 1004 const NearestMipmapLinearFilter = 1005 const NearestMipMapLinearFilter = 1005 const LinearFilter = 1006 const LinearMipmapNearestFilter = 1007 const LinearMipMapNearestFilter = 1007 const LinearMipmapLinearFilter = 1008 const LinearMipMapLinearFilter = 1008 const UnsignedByteType = 1009 const ByteType = 1010 const ShortType = 1011 const UnsignedShortType = 1012 const IntType = 1013 const UnsignedIntType = 1014 const FloatType = 1015 const HalfFloatType = 1016 const UnsignedShort4444Type = 1017 const UnsignedShort5551Type = 1018 const UnsignedInt248Type = 1020 const AlphaFormat = 1021 const RGBFormat = 1022 const RGBAFormat = 1023 const LuminanceFormat = 1024 const LuminanceAlphaFormat = 1025 const DepthFormat = 1026 const DepthStencilFormat = 1027 const RedFormat = 1028 const RedIntegerFormat = 1029 const RGFormat = 1030 const RGIntegerFormat = 1031 const RGBAIntegerFormat = 1033 const RGB_S3TC_DXT1_Format = 33776 const RGBA_S3TC_DXT1_Format = 33777 const RGBA_S3TC_DXT3_Format = 33778 const RGBA_S3TC_DXT5_Format = 33779 const RGB_PVRTC_4BPPV1_Format = 35840 const RGB_PVRTC_2BPPV1_Format = 35841 const RGBA_PVRTC_4BPPV1_Format = 35842 const RGBA_PVRTC_2BPPV1_Format = 35843 const RGB_ETC1_Format = 36196 const RGB_ETC2_Format = 37492 const RGBA_ETC2_EAC_Format = 37496 const RGBA_ASTC_4x4_Format = 37808 const RGBA_ASTC_5x4_Format = 37809 const RGBA_ASTC_5x5_Format = 37810 const RGBA_ASTC_6x5_Format = 37811 const RGBA_ASTC_6x6_Format = 37812 const RGBA_ASTC_8x5_Format = 37813 const RGBA_ASTC_8x6_Format = 37814 const RGBA_ASTC_8x8_Format = 37815 const RGBA_ASTC_10x5_Format = 37816 const RGBA_ASTC_10x6_Format = 37817 const RGBA_ASTC_10x8_Format = 37818 const RGBA_ASTC_10x10_Format = 37819 const RGBA_ASTC_12x10_Format = 37820 const RGBA_ASTC_12x12_Format = 37821 const RGBA_BPTC_Format = 36492 const LoopOnce = 2200 const LoopRepeat = 2201 const LoopPingPong = 2202 const InterpolateDiscrete = 2300 const InterpolateLinear = 2301 const InterpolateSmooth = 2302 const ZeroCurvatureEnding = 2400 const ZeroSlopeEnding = 2401 const WrapAroundEnding = 2402 const NormalAnimationBlendMode = 2500 const AdditiveAnimationBlendMode = 2501 const TrianglesDrawMode = 0 const TriangleStripDrawMode = 1 const TriangleFanDrawMode = 2 const LinearEncoding = 3000 const sRGBEncoding = 3001 const BasicDepthPacking = 3200 const RGBADepthPacking = 3201 const TangentSpaceNormalMap = 0 const ObjectSpaceNormalMap = 1 // Color space string identifiers, matching CSS Color Module Level 4 and WebGPU names where available. const NoColorSpace = '' const SRGBColorSpace = 'srgb' const LinearSRGBColorSpace = 'srgb-linear' const ZeroStencilOp = 0 const KeepStencilOp = 7680 const ReplaceStencilOp = 7681 const IncrementStencilOp = 7682 const DecrementStencilOp = 7683 const IncrementWrapStencilOp = 34055 const DecrementWrapStencilOp = 34056 const InvertStencilOp = 5386 const NeverStencilFunc = 512 const LessStencilFunc = 513 const EqualStencilFunc = 514 const LessEqualStencilFunc = 515 const GreaterStencilFunc = 516 const NotEqualStencilFunc = 517 const GreaterEqualStencilFunc = 518 const AlwaysStencilFunc = 519 const StaticDrawUsage = 35044 const DynamicDrawUsage = 35048 const StreamDrawUsage = 35040 const StaticReadUsage = 35045 const DynamicReadUsage = 35049 const StreamReadUsage = 35041 const StaticCopyUsage = 35046 const DynamicCopyUsage = 35050 const StreamCopyUsage = 35042 const GLSL1 = '100' const GLSL3 = '300 es' const _SRGBAFormat = 1035 // fallback for WebGL 1 /** * https://github.com/mrdoob/eventdispatcher.js/ */ class EventDispatcher { addEventListener(type, listener) { if (this._listeners === undefined) this._listeners = {} const listeners = this._listeners if (listeners[type] === undefined) { listeners[type] = [] } if (listeners[type].indexOf(listener) === -1) { listeners[type].push(listener) } } hasEventListener(type, listener) { if (this._listeners === undefined) return false const listeners = this._listeners return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1 } removeEventListener(type, listener) { if (this._listeners === undefined) return const listeners = this._listeners const listenerArray = listeners[type] if (listenerArray !== undefined) { const index = listenerArray.indexOf(listener) if (index !== -1) { listenerArray.splice(index, 1) } } } dispatchEvent(event) { if (this._listeners === undefined) return const listeners = this._listeners const listenerArray = listeners[event.type] if (listenerArray !== undefined) { event.target = this // Make a copy, in case listeners are removed while iterating. const array = listenerArray.slice(0) for (let i = 0, l = array.length; i < l; i++) { array[i].call(this, event) } event.target = null } } } const _lut = [] for (let i = 0; i < 256; i++) { _lut[i] = (i < 16 ? '0' : '') + i.toString(16) } let _seed = 1234567 const DEG2RAD = Math.PI / 180 const RAD2DEG = 180 / Math.PI // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 function generateUUID() { const d0 = (Math.random() * 0xffffffff) | 0 const d1 = (Math.random() * 0xffffffff) | 0 const d2 = (Math.random() * 0xffffffff) | 0 const d3 = (Math.random() * 0xffffffff) | 0 const uuid = _lut[d0 & 0xff] + _lut[(d0 >> 8) & 0xff] + _lut[(d0 >> 16) & 0xff] + _lut[(d0 >> 24) & 0xff] + '-' + _lut[d1 & 0xff] + _lut[(d1 >> 8) & 0xff] + '-' + _lut[((d1 >> 16) & 0x0f) | 0x40] + _lut[(d1 >> 24) & 0xff] + '-' + _lut[(d2 & 0x3f) | 0x80] + _lut[(d2 >> 8) & 0xff] + '-' + _lut[(d2 >> 16) & 0xff] + _lut[(d2 >> 24) & 0xff] + _lut[d3 & 0xff] + _lut[(d3 >> 8) & 0xff] + _lut[(d3 >> 16) & 0xff] + _lut[(d3 >> 24) & 0xff] // .toLowerCase() here flattens concatenated strings to save heap memory space. return uuid.toLowerCase() } function clamp(value, min, max) { return Math.max(min, Math.min(max, value)) } // compute euclidean modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation function euclideanModulo(n, m) { return ((n % m) + m) % m } // Linear mapping from range to range function mapLinear(x, a1, a2, b1, b2) { return b1 + ((x - a1) * (b2 - b1)) / (a2 - a1) } // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ function inverseLerp(x, y, value) { if (x !== y) { return (value - x) / (y - x) } else { return 0 } } // https://en.wikipedia.org/wiki/Linear_interpolation function lerp(x, y, t) { return (1 - t) * x + t * y } // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/ function damp(x, y, lambda, dt) { return lerp(x, y, 1 - Math.exp(-lambda * dt)) } // https://www.desmos.com/calculator/vcsjnyz7x4 function pingpong(x, length = 1) { return length - Math.abs(euclideanModulo(x, length * 2) - length) } // http://en.wikipedia.org/wiki/Smoothstep function smoothstep(x, min, max) { if (x <= min) return 0 if (x >= max) return 1 x = (x - min) / (max - min) return x * x * (3 - 2 * x) } function smootherstep(x, min, max) { if (x <= min) return 0 if (x >= max) return 1 x = (x - min) / (max - min) return x * x * x * (x * (x * 6 - 15) + 10) } // Random integer from interval function randInt(low, high) { return low + Math.floor(Math.random() * (high - low + 1)) } // Random float from interval function randFloat(low, high) { return low + Math.random() * (high - low) } // Random float from <-range/2, range/2> interval function randFloatSpread(range) { return range * (0.5 - Math.random()) } // Deterministic pseudo-random float in the interval [ 0, 1 ] function seededRandom(s) { if (s !== undefined) _seed = s // Mulberry32 generator let t = (_seed += 0x6d2b79f5) t = Math.imul(t ^ (t >>> 15), t | 1) t ^= t + Math.imul(t ^ (t >>> 7), t | 61) return ((t ^ (t >>> 14)) >>> 0) / 4294967296 } function degToRad(degrees) { return degrees * DEG2RAD } function radToDeg(radians) { return radians * RAD2DEG } function isPowerOfTwo(value) { return (value & (value - 1)) === 0 && value !== 0 } function ceilPowerOfTwo(value) { return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2)) } function floorPowerOfTwo(value) { return Math.pow(2, Math.floor(Math.log(value) / Math.LN2)) } function setQuaternionFromProperEuler(q, a, b, c, order) { // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles // rotations are applied to the axes in the order specified by 'order' // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c' // angles are in radians const cos = Math.cos const sin = Math.sin const c2 = cos(b / 2) const s2 = sin(b / 2) const c13 = cos((a + c) / 2) const s13 = sin((a + c) / 2) const c1_3 = cos((a - c) / 2) const s1_3 = sin((a - c) / 2) const c3_1 = cos((c - a) / 2) const s3_1 = sin((c - a) / 2) switch (order) { case 'XYX': q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13) break case 'YZY': q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13) break case 'ZXZ': q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13) break case 'XZX': q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13) break case 'YXY': q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13) break case 'ZYZ': q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13) break default: console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order) } } function denormalize$1(value, array) { switch (array.constructor) { case Float32Array: return value case Uint16Array: return value / 65535.0 case Uint8Array: return value / 255.0 case Int16Array: return Math.max(value / 32767.0, -1.0) case Int8Array: return Math.max(value / 127.0, -1.0) default: throw new Error('Invalid component type.') } } function normalize(value, array) { switch (array.constructor) { case Float32Array: return value case Uint16Array: return Math.round(value * 65535.0) case Uint8Array: return Math.round(value * 255.0) case Int16Array: return Math.round(value * 32767.0) case Int8Array: return Math.round(value * 127.0) default: throw new Error('Invalid component type.') } } var MathUtils = /*#__PURE__*/ Object.freeze({ __proto__: null, DEG2RAD: DEG2RAD, RAD2DEG: RAD2DEG, generateUUID: generateUUID, clamp: clamp, euclideanModulo: euclideanModulo, mapLinear: mapLinear, inverseLerp: inverseLerp, lerp: lerp, damp: damp, pingpong: pingpong, smoothstep: smoothstep, smootherstep: smootherstep, randInt: randInt, randFloat: randFloat, randFloatSpread: randFloatSpread, seededRandom: seededRandom, degToRad: degToRad, radToDeg: radToDeg, isPowerOfTwo: isPowerOfTwo, ceilPowerOfTwo: ceilPowerOfTwo, floorPowerOfTwo: floorPowerOfTwo, setQuaternionFromProperEuler: setQuaternionFromProperEuler, normalize: normalize, denormalize: denormalize$1 }) class Vector2 { constructor(x = 0, y = 0) { this.isVector2 = true this.x = x this.y = y } get width() { return this.x } set width(value) { this.x = value } get height() { return this.y } set height(value) { this.y = value } set(x, y) { this.x = x this.y = y return this } setScalar(scalar) { this.x = scalar this.y = scalar return this } setX(x) { this.x = x return this } setY(y) { this.y = y return this } setComponent(index, value) { switch (index) { case 0: this.x = value break case 1: this.y = value break default: throw new Error('index is out of range: ' + index) } return this } getComponent(index) { switch (index) { case 0: return this.x case 1: return this.y default: throw new Error('index is out of range: ' + index) } } clone() { return new this.constructor(this.x, this.y) } copy(v) { this.x = v.x this.y = v.y return this } add(v, w) { if (w !== undefined) { console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.') return this.addVectors(v, w) } this.x += v.x this.y += v.y return this } addScalar(s) { this.x += s this.y += s return this } addVectors(a, b) { this.x = a.x + b.x this.y = a.y + b.y return this } addScaledVector(v, s) { this.x += v.x * s this.y += v.y * s return this } sub(v, w) { if (w !== undefined) { console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.') return this.subVectors(v, w) } this.x -= v.x this.y -= v.y return this } subScalar(s) { this.x -= s this.y -= s return this } subVectors(a, b) { this.x = a.x - b.x this.y = a.y - b.y return this } multiply(v) { this.x *= v.x this.y *= v.y return this } multiplyScalar(scalar) { this.x *= scalar this.y *= scalar return this } divide(v) { this.x /= v.x this.y /= v.y return this } divideScalar(scalar) { return this.multiplyScalar(1 / scalar) } applyMatrix3(m) { const x = this.x, y = this.y const e = m.elements this.x = e[0] * x + e[3] * y + e[6] this.y = e[1] * x + e[4] * y + e[7] return this } min(v) { this.x = Math.min(this.x, v.x) this.y = Math.min(this.y, v.y) return this } max(v) { this.x = Math.max(this.x, v.x) this.y = Math.max(this.y, v.y) return this } clamp(min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)) this.y = Math.max(min.y, Math.min(max.y, this.y)) return this } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)) this.y = Math.max(minVal, Math.min(maxVal, this.y)) return this } clampLength(min, max) { const length = this.length() return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))) } floor() { this.x = Math.floor(this.x) this.y = Math.floor(this.y) return this } ceil() { this.x = Math.ceil(this.x) this.y = Math.ceil(this.y) return this } round() { this.x = Math.round(this.x) this.y = Math.round(this.y) return this } roundToZero() { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x) this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y) return this } negate() { this.x = -this.x this.y = -this.y return this } dot(v) { return this.x * v.x + this.y * v.y } cross(v) { return this.x * v.y - this.y * v.x } lengthSq() { return this.x * this.x + this.y * this.y } length() { return Math.sqrt(this.x * this.x + this.y * this.y) } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y) } normalize() { return this.divideScalar(this.length() || 1) } angle() { // computes the angle in radians with respect to the positive x-axis const angle = Math.atan2(-this.y, -this.x) + Math.PI return angle } distanceTo(v) { return Math.sqrt(this.distanceToSquared(v)) } distanceToSquared(v) { const dx = this.x - v.x, dy = this.y - v.y return dx * dx + dy * dy } manhattanDistanceTo(v) { return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) } setLength(length) { return this.normalize().multiplyScalar(length) } lerp(v, alpha) { this.x += (v.x - this.x) * alpha this.y += (v.y - this.y) * alpha return this } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha this.y = v1.y + (v2.y - v1.y) * alpha return this } equals(v) { return v.x === this.x && v.y === this.y } fromArray(array, offset = 0) { this.x = array[offset] this.y = array[offset + 1] return this } toArray(array = [], offset = 0) { array[offset] = this.x array[offset + 1] = this.y return array } fromBufferAttribute(attribute, index, offset) { if (offset !== undefined) { console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().') } this.x = attribute.getX(index) this.y = attribute.getY(index) return this } rotateAround(center, angle) { const c = Math.cos(angle), s = Math.sin(angle) const x = this.x - center.x const y = this.y - center.y this.x = x * c - y * s + center.x this.y = x * s + y * c + center.y return this } random() { this.x = Math.random() this.y = Math.random() return this } *[Symbol.iterator]() { yield this.x yield this.y } } class Matrix3 { constructor() { this.isMatrix3 = true this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1] if (arguments.length > 0) { console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.') } } set(n11, n12, n13, n21, n22, n23, n31, n32, n33) { const te = this.elements te[0] = n11 te[1] = n21 te[2] = n31 te[3] = n12 te[4] = n22 te[5] = n32 te[6] = n13 te[7] = n23 te[8] = n33 return this } identity() { this.set(1, 0, 0, 0, 1, 0, 0, 0, 1) return this } copy(m) { const te = this.elements const me = m.elements te[0] = me[0] te[1] = me[1] te[2] = me[2] te[3] = me[3] te[4] = me[4] te[5] = me[5] te[6] = me[6] te[7] = me[7] te[8] = me[8] return this } extractBasis(xAxis, yAxis, zAxis) { xAxis.setFromMatrix3Column(this, 0) yAxis.setFromMatrix3Column(this, 1) zAxis.setFromMatrix3Column(this, 2) return this } setFromMatrix4(m) { const me = m.elements this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]) return this } multiply(m) { return this.multiplyMatrices(this, m) } premultiply(m) { return this.multiplyMatrices(m, this) } multiplyMatrices(a, b) { const ae = a.elements const be = b.elements const te = this.elements const a11 = ae[0], a12 = ae[3], a13 = ae[6] const a21 = ae[1], a22 = ae[4], a23 = ae[7] const a31 = ae[2], a32 = ae[5], a33 = ae[8] const b11 = be[0], b12 = be[3], b13 = be[6] const b21 = be[1], b22 = be[4], b23 = be[7] const b31 = be[2], b32 = be[5], b33 = be[8] te[0] = a11 * b11 + a12 * b21 + a13 * b31 te[3] = a11 * b12 + a12 * b22 + a13 * b32 te[6] = a11 * b13 + a12 * b23 + a13 * b33 te[1] = a21 * b11 + a22 * b21 + a23 * b31 te[4] = a21 * b12 + a22 * b22 + a23 * b32 te[7] = a21 * b13 + a22 * b23 + a23 * b33 te[2] = a31 * b11 + a32 * b21 + a33 * b31 te[5] = a31 * b12 + a32 * b22 + a33 * b32 te[8] = a31 * b13 + a32 * b23 + a33 * b33 return this } multiplyScalar(s) { const te = this.elements te[0] *= s te[3] *= s te[6] *= s te[1] *= s te[4] *= s te[7] *= s te[2] *= s te[5] *= s te[8] *= s return this } determinant() { const te = this.elements const a = te[0], b = te[1], c = te[2], d = te[3], e = te[4], f = te[5], g = te[6], h = te[7], i = te[8] return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g } invert() { const te = this.elements, n11 = te[0], n21 = te[1], n31 = te[2], n12 = te[3], n22 = te[4], n32 = te[5], n13 = te[6], n23 = te[7], n33 = te[8], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13 if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0) const detInv = 1 / det te[0] = t11 * detInv te[1] = (n31 * n23 - n33 * n21) * detInv te[2] = (n32 * n21 - n31 * n22) * detInv te[3] = t12 * detInv te[4] = (n33 * n11 - n31 * n13) * detInv te[5] = (n31 * n12 - n32 * n11) * detInv te[6] = t13 * detInv te[7] = (n21 * n13 - n23 * n11) * detInv te[8] = (n22 * n11 - n21 * n12) * detInv return this } transpose() { let tmp const m = this.elements tmp = m[1] m[1] = m[3] m[3] = tmp tmp = m[2] m[2] = m[6] m[6] = tmp tmp = m[5] m[5] = m[7] m[7] = tmp return this } getNormalMatrix(matrix4) { return this.setFromMatrix4(matrix4) .invert() .transpose() } transposeIntoArray(r) { const m = this.elements r[0] = m[0] r[1] = m[3] r[2] = m[6] r[3] = m[1] r[4] = m[4] r[5] = m[7] r[6] = m[2] r[7] = m[5] r[8] = m[8] return this } setUvTransform(tx, ty, sx, sy, rotation, cx, cy) { const c = Math.cos(rotation) const s = Math.sin(rotation) this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1) return this } scale(sx, sy) { const te = this.elements te[0] *= sx te[3] *= sx te[6] *= sx te[1] *= sy te[4] *= sy te[7] *= sy return this } rotate(theta) { const c = Math.cos(theta) const s = Math.sin(theta) const te = this.elements const a11 = te[0], a12 = te[3], a13 = te[6] const a21 = te[1], a22 = te[4], a23 = te[7] te[0] = c * a11 + s * a21 te[3] = c * a12 + s * a22 te[6] = c * a13 + s * a23 te[1] = -s * a11 + c * a21 te[4] = -s * a12 + c * a22 te[7] = -s * a13 + c * a23 return this } translate(tx, ty) { const te = this.elements te[0] += tx * te[2] te[3] += tx * te[5] te[6] += tx * te[8] te[1] += ty * te[2] te[4] += ty * te[5] te[7] += ty * te[8] return this } equals(matrix) { const te = this.elements const me = matrix.elements for (let i = 0; i < 9; i++) { if (te[i] !== me[i]) return false } return true } fromArray(array, offset = 0) { for (let i = 0; i < 9; i++) { this.elements[i] = array[i + offset] } return this } toArray(array = [], offset = 0) { const te = this.elements array[offset] = te[0] array[offset + 1] = te[1] array[offset + 2] = te[2] array[offset + 3] = te[3] array[offset + 4] = te[4] array[offset + 5] = te[5] array[offset + 6] = te[6] array[offset + 7] = te[7] array[offset + 8] = te[8] return array } clone() { return new this.constructor().fromArray(this.elements) } } function arrayNeedsUint32(array) { // assumes larger values usually on last for (let i = array.length - 1; i >= 0; --i) { if (array[i] > 65535) return true } return false } const TYPED_ARRAYS = { Int8Array: Int8Array, Uint8Array: Uint8Array, Uint8ClampedArray: Uint8ClampedArray, Int16Array: Int16Array, Uint16Array: Uint16Array, Int32Array: Int32Array, Uint32Array: Uint32Array, Float32Array: Float32Array, Float64Array: Float64Array } function getTypedArray(type, buffer) { return new TYPED_ARRAYS[type](buffer) } function createElementNS(name) { return document.createElementNS('http://www.w3.org/1999/xhtml', name) } function SRGBToLinear(c) { return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4) } function LinearToSRGB(c) { return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055 } // JavaScript RGB-to-RGB transforms, defined as // FN[InputColorSpace][OutputColorSpace] callback functions. const FN = { [SRGBColorSpace]: { [LinearSRGBColorSpace]: SRGBToLinear }, [LinearSRGBColorSpace]: { [SRGBColorSpace]: LinearToSRGB } } const ColorManagement = { legacyMode: true, get workingColorSpace() { return LinearSRGBColorSpace }, set workingColorSpace(colorSpace) { console.warn('THREE.ColorManagement: .workingColorSpace is readonly.') }, convert: function(color, sourceColorSpace, targetColorSpace) { if (this.legacyMode || sourceColorSpace === targetColorSpace || !sourceColorSpace || !targetColorSpace) { return color } if (FN[sourceColorSpace] && FN[sourceColorSpace][targetColorSpace] !== undefined) { const fn = FN[sourceColorSpace][targetColorSpace] color.r = fn(color.r) color.g = fn(color.g) color.b = fn(color.b) return color } throw new Error('Unsupported color space conversion.') }, fromWorkingColorSpace: function(color, targetColorSpace) { return this.convert(color, this.workingColorSpace, targetColorSpace) }, toWorkingColorSpace: function(color, sourceColorSpace) { return this.convert(color, sourceColorSpace, this.workingColorSpace) } } const _colorKeywords = { aliceblue: 0xf0f8ff, antiquewhite: 0xfaebd7, aqua: 0x00ffff, aquamarine: 0x7fffd4, azure: 0xf0ffff, beige: 0xf5f5dc, bisque: 0xffe4c4, black: 0x000000, blanchedalmond: 0xffebcd, blue: 0x0000ff, blueviolet: 0x8a2be2, brown: 0xa52a2a, burlywood: 0xdeb887, cadetblue: 0x5f9ea0, chartreuse: 0x7fff00, chocolate: 0xd2691e, coral: 0xff7f50, cornflowerblue: 0x6495ed, cornsilk: 0xfff8dc, crimson: 0xdc143c, cyan: 0x00ffff, darkblue: 0x00008b, darkcyan: 0x008b8b, darkgoldenrod: 0xb8860b, darkgray: 0xa9a9a9, darkgreen: 0x006400, darkgrey: 0xa9a9a9, darkkhaki: 0xbdb76b, darkmagenta: 0x8b008b, darkolivegreen: 0x556b2f, darkorange: 0xff8c00, darkorchid: 0x9932cc, darkred: 0x8b0000, darksalmon: 0xe9967a, darkseagreen: 0x8fbc8f, darkslateblue: 0x483d8b, darkslategray: 0x2f4f4f, darkslategrey: 0x2f4f4f, darkturquoise: 0x00ced1, darkviolet: 0x9400d3, deeppink: 0xff1493, deepskyblue: 0x00bfff, dimgray: 0x696969, dimgrey: 0x696969, dodgerblue: 0x1e90ff, firebrick: 0xb22222, floralwhite: 0xfffaf0, forestgreen: 0x228b22, fuchsia: 0xff00ff, gainsboro: 0xdcdcdc, ghostwhite: 0xf8f8ff, gold: 0xffd700, goldenrod: 0xdaa520, gray: 0x808080, green: 0x008000, greenyellow: 0xadff2f, grey: 0x808080, honeydew: 0xf0fff0, hotpink: 0xff69b4, indianred: 0xcd5c5c, indigo: 0x4b0082, ivory: 0xfffff0, khaki: 0xf0e68c, lavender: 0xe6e6fa, lavenderblush: 0xfff0f5, lawngreen: 0x7cfc00, lemonchiffon: 0xfffacd, lightblue: 0xadd8e6, lightcoral: 0xf08080, lightcyan: 0xe0ffff, lightgoldenrodyellow: 0xfafad2, lightgray: 0xd3d3d3, lightgreen: 0x90ee90, lightgrey: 0xd3d3d3, lightpink: 0xffb6c1, lightsalmon: 0xffa07a, lightseagreen: 0x20b2aa, lightskyblue: 0x87cefa, lightslategray: 0x778899, lightslategrey: 0x778899, lightsteelblue: 0xb0c4de, lightyellow: 0xffffe0, lime: 0x00ff00, limegreen: 0x32cd32, linen: 0xfaf0e6, magenta: 0xff00ff, maroon: 0x800000, mediumaquamarine: 0x66cdaa, mediumblue: 0x0000cd, mediumorchid: 0xba55d3, mediumpurple: 0x9370db, mediumseagreen: 0x3cb371, mediumslateblue: 0x7b68ee, mediumspringgreen: 0x00fa9a, mediumturquoise: 0x48d1cc, mediumvioletred: 0xc71585, midnightblue: 0x191970, mintcream: 0xf5fffa, mistyrose: 0xffe4e1, moccasin: 0xffe4b5, navajowhite: 0xffdead, navy: 0x000080, oldlace: 0xfdf5e6, olive: 0x808000, olivedrab: 0x6b8e23, orange: 0xffa500, orangered: 0xff4500, orchid: 0xda70d6, palegoldenrod: 0xeee8aa, palegreen: 0x98fb98, paleturquoise: 0xafeeee, palevioletred: 0xdb7093, papayawhip: 0xffefd5, peachpuff: 0xffdab9, peru: 0xcd853f, pink: 0xffc0cb, plum: 0xdda0dd, powderblue: 0xb0e0e6, purple: 0x800080, rebeccapurple: 0x663399, red: 0xff0000, rosybrown: 0xbc8f8f, royalblue: 0x4169e1, saddlebrown: 0x8b4513, salmon: 0xfa8072, sandybrown: 0xf4a460, seagreen: 0x2e8b57, seashell: 0xfff5ee, sienna: 0xa0522d, silver: 0xc0c0c0, skyblue: 0x87ceeb, slateblue: 0x6a5acd, slategray: 0x708090, slategrey: 0x708090, snow: 0xfffafa, springgreen: 0x00ff7f, steelblue: 0x4682b4, tan: 0xd2b48c, teal: 0x008080, thistle: 0xd8bfd8, tomato: 0xff6347, turquoise: 0x40e0d0, violet: 0xee82ee, wheat: 0xf5deb3, white: 0xffffff, whitesmoke: 0xf5f5f5, yellow: 0xffff00, yellowgreen: 0x9acd32 } const _rgb = { r: 0, g: 0, b: 0 } const _hslA = { h: 0, s: 0, l: 0 } const _hslB = { h: 0, s: 0, l: 0 } function hue2rgb(p, q, t) { if (t < 0) t += 1 if (t > 1) t -= 1 if (t < 1 / 6) return p + (q - p) * 6 * t if (t < 1 / 2) return q if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t) return p } function toComponents(source, target) { target.r = source.r target.g = source.g target.b = source.b return target } class Color { constructor(r, g, b) { this.isColor = true this.r = 1 this.g = 1 this.b = 1 if (g === undefined && b === undefined) { // r is THREE.Color, hex or string return this.set(r) } return this.setRGB(r, g, b) } set(value) { if (value && value.isColor) { this.copy(value) } else if (typeof value === 'number') { this.setHex(value) } else if (typeof value === 'string') { this.setStyle(value) } return this } setScalar(scalar) { this.r = scalar this.g = scalar this.b = scalar return this } setHex(hex, colorSpace = SRGBColorSpace) { hex = Math.floor(hex) this.r = ((hex >> 16) & 255) / 255 this.g = ((hex >> 8) & 255) / 255 this.b = (hex & 255) / 255 ColorManagement.toWorkingColorSpace(this, colorSpace) return this } setRGB(r, g, b, colorSpace = LinearSRGBColorSpace) { this.r = r this.g = g this.b = b ColorManagement.toWorkingColorSpace(this, colorSpace) return this } setHSL(h, s, l, colorSpace = LinearSRGBColorSpace) { // h,s,l ranges are in 0.0 - 1.0 h = euclideanModulo(h, 1) s = clamp(s, 0, 1) l = clamp(l, 0, 1) if (s === 0) { this.r = this.g = this.b = l } else { const p = l <= 0.5 ? l * (1 + s) : l + s - l * s const q = 2 * l - p this.r = hue2rgb(q, p, h + 1 / 3) this.g = hue2rgb(q, p, h) this.b = hue2rgb(q, p, h - 1 / 3) } ColorManagement.toWorkingColorSpace(this, colorSpace) return this } setStyle(style, colorSpace = SRGBColorSpace) { function handleAlpha(string) { if (string === undefined) return if (parseFloat(string) < 1) { console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.') } } let m if ((m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style))) { // rgb / hsl let color const name = m[1] const components = m[2] switch (name) { case 'rgb': case 'rgba': if ((color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components))) { // rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min(255, parseInt(color[1], 10)) / 255 this.g = Math.min(255, parseInt(color[2], 10)) / 255 this.b = Math.min(255, parseInt(color[3], 10)) / 255 ColorManagement.toWorkingColorSpace(this, colorSpace) handleAlpha(color[4]) return this } if ((color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components))) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min(100, parseInt(color[1], 10)) / 100 this.g = Math.min(100, parseInt(color[2], 10)) / 100 this.b = Math.min(100, parseInt(color[3], 10)) / 100 ColorManagement.toWorkingColorSpace(this, colorSpace) handleAlpha(color[4]) return this } break case 'hsl': case 'hsla': if ((color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components))) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) const h = parseFloat(color[1]) / 360 const s = parseInt(color[2], 10) / 100 const l = parseInt(color[3], 10) / 100 handleAlpha(color[4]) return this.setHSL(h, s, l, colorSpace) } break } } else if ((m = /^\#([A-Fa-f\d]+)$/.exec(style))) { // hex color const hex = m[1] const size = hex.length if (size === 3) { // #ff0 this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255 this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255 this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255 ColorManagement.toWorkingColorSpace(this, colorSpace) return this } else if (size === 6) { // #ff0000 this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255 this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255 this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255 ColorManagement.toWorkingColorSpace(this, colorSpace) return this } } if (style && style.length > 0) { return this.setColorName(style, colorSpace) } return this } setColorName(style, colorSpace = SRGBColorSpace) { // color keywords const hex = _colorKeywords[style.toLowerCase()] if (hex !== undefined) { // red this.setHex(hex, colorSpace) } else { // unknown color console.warn('THREE.Color: Unknown color ' + style) } return this } clone() { return new this.constructor(this.r, this.g, this.b) } copy(color) { this.r = color.r this.g = color.g this.b = color.b return this } copySRGBToLinear(color) { this.r = SRGBToLinear(color.r) this.g = SRGBToLinear(color.g) this.b = SRGBToLinear(color.b) return this } copyLinearToSRGB(color) { this.r = LinearToSRGB(color.r) this.g = LinearToSRGB(color.g) this.b = LinearToSRGB(color.b) return this } convertSRGBToLinear() { this.copySRGBToLinear(this) return this } convertLinearToSRGB() { this.copyLinearToSRGB(this) return this } getHex(colorSpace = SRGBColorSpace) { ColorManagement.fromWorkingColorSpace(toComponents(this, _rgb), colorSpace) return (clamp(_rgb.r * 255, 0, 255) << 16) ^ (clamp(_rgb.g * 255, 0, 255) << 8) ^ (clamp(_rgb.b * 255, 0, 255) << 0) } getHexString(colorSpace = SRGBColorSpace) { return ('000000' + this.getHex(colorSpace).toString(16)).slice(-6) } getHSL(target, colorSpace = LinearSRGBColorSpace) { // h,s,l ranges are in 0.0 - 1.0 ColorManagement.fromWorkingColorSpace(toComponents(this, _rgb), colorSpace) const r = _rgb.r, g = _rgb.g, b = _rgb.b const max = Math.max(r, g, b) const min = Math.min(r, g, b) let hue, saturation const lightness = (min + max) / 2.0 if (min === max) { hue = 0 saturation = 0 } else { const delta = max - min saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min) switch (max) { case r: hue = (g - b) / delta + (g < b ? 6 : 0) break case g: hue = (b - r) / delta + 2 break case b: hue = (r - g) / delta + 4 break } hue /= 6 } target.h = hue target.s = saturation target.l = lightness return target } getRGB(target, colorSpace = LinearSRGBColorSpace) { ColorManagement.fromWorkingColorSpace(toComponents(this, _rgb), colorSpace) target.r = _rgb.r target.g = _rgb.g target.b = _rgb.b return target } getStyle(colorSpace = SRGBColorSpace) { ColorManagement.fromWorkingColorSpace(toComponents(this, _rgb), colorSpace) if (colorSpace !== SRGBColorSpace) { // Requires CSS Color Module Level 4 (https://www.w3.org/TR/css-color-4/). return `color(${colorSpace} ${_rgb.r} ${_rgb.g} ${_rgb.b})` } return `rgb(${(_rgb.r * 255) | 0},${(_rgb.g * 255) | 0},${(_rgb.b * 255) | 0})` } offsetHSL(h, s, l) { this.getHSL(_hslA) _hslA.h += h _hslA.s += s _hslA.l += l this.setHSL(_hslA.h, _hslA.s, _hslA.l) return this } add(color) { this.r += color.r this.g += color.g this.b += color.b return this } addColors(color1, color2) { this.r = color1.r + color2.r this.g = color1.g + color2.g this.b = color1.b + color2.b return this } addScalar(s) { this.r += s this.g += s this.b += s return this } sub(color) { this.r = Math.max(0, this.r - color.r) this.g = Math.max(0, this.g - color.g) this.b = Math.max(0, this.b - color.b) return this } multiply(color) { this.r *= color.r this.g *= color.g this.b *= color.b return this } multiplyScalar(s) { this.r *= s this.g *= s this.b *= s return this } lerp(color, alpha) { this.r += (color.r - this.r) * alpha this.g += (color.g - this.g) * alpha this.b += (color.b - this.b) * alpha return this } lerpColors(color1, color2, alpha) { this.r = color1.r + (color2.r - color1.r) * alpha this.g = color1.g + (color2.g - color1.g) * alpha this.b = color1.b + (color2.b - color1.b) * alpha return this } lerpHSL(color, alpha) { this.getHSL(_hslA) color.getHSL(_hslB) const h = lerp(_hslA.h, _hslB.h, alpha) const s = lerp(_hslA.s, _hslB.s, alpha) const l = lerp(_hslA.l, _hslB.l, alpha) this.setHSL(h, s, l) return this } equals(c) { return c.r === this.r && c.g === this.g && c.b === this.b } fromArray(array, offset = 0) { this.r = array[offset] this.g = array[offset + 1] this.b = array[offset + 2] return this } toArray(array = [], offset = 0) { array[offset] = this.r array[offset + 1] = this.g array[offset + 2] = this.b return array } fromBufferAttribute(attribute, index) { this.r = attribute.getX(index) this.g = attribute.getY(index) this.b = attribute.getZ(index) if (attribute.normalized === true) { // assuming Uint8Array this.r /= 255 this.g /= 255 this.b /= 255 } return this } toJSON() { return this.getHex() } *[Symbol.iterator]() { yield this.r yield this.g yield this.b } } Color.NAMES = _colorKeywords let _canvas class ImageUtils { static getDataURL(image) { if (/^data:/i.test(image.src)) { return image.src } if (typeof HTMLCanvasElement == 'undefined') { return image.src } let canvas if (image instanceof HTMLCanvasElement) { canvas = image } else { if (_canvas === undefined) _canvas = createElementNS('canvas') _canvas.width = image.width _canvas.height = image.height const context = _canvas.getContext('2d') if (image instanceof ImageData) { context.putImageData(image, 0, 0) } else { context.drawImage(image, 0, 0, image.width, image.height) } canvas = _canvas } if (canvas.width > 2048 || canvas.height > 2048) { console.warn('THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image) return canvas.toDataURL('image/jpeg', 0.6) } else { return canvas.toDataURL('image/png') } } static sRGBToLinear(image) { if ( (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement) || (typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement) || (typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) ) { const canvas = createElementNS('canvas') canvas.width = image.width canvas.height = image.height const context = canvas.getContext('2d') context.drawImage(image, 0, 0, image.width, image.height) const imageData = context.getImageData(0, 0, image.width, image.height) const data = imageData.data for (let i = 0; i < data.length; i++) { data[i] = SRGBToLinear(data[i] / 255) * 255 } context.putImageData(imageData, 0, 0) return canvas } else if (image.data) { const data = image.data.slice(0) for (let i = 0; i < data.length; i++) { if (data instanceof Uint8Array || data instanceof Uint8ClampedArray) { data[i] = Math.floor(SRGBToLinear(data[i] / 255) * 255) } else { // assuming float data[i] = SRGBToLinear(data[i]) } } return { data: data, width: image.width, height: image.height } } else { console.warn('THREE.ImageUtils.sRGBToLinear(): Unsupported image type. No color space conversion applied.') return image } } } class Source { constructor(data = null) { this.isSource = true this.uuid = generateUUID() this.data = data this.version = 0 } set needsUpdate(value) { if (value === true) this.version++ } toJSON(meta) { const isRootObject = meta === undefined || typeof meta === 'string' if (!isRootObject && meta.images[this.uuid] !== undefined) { return meta.images[this.uuid] } const output = { uuid: this.uuid, url: '' } const data = this.data if (data !== null) { let url if (Array.isArray(data)) { // cube texture url = [] for (let i = 0, l = data.length; i < l; i++) { if (data[i].isDataTexture) { url.push(serializeImage(data[i].image)) } else { url.push(serializeImage(data[i])) } } } else { // texture url = serializeImage(data) } output.url = url } if (!isRootObject) { meta.images[this.uuid] = output } return output } } function serializeImage(image) { if ( (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement) || (typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement) || (typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) ) { // default images return ImageUtils.getDataURL(image) } else { if (image.data) { // images of DataTexture return { data: Array.prototype.slice.call(image.data), width: image.width, height: image.height, type: image.data.constructor.name } } else { console.warn('THREE.Texture: Unable to serialize Texture.') return {} } } } let textureId = 0 class Texture extends EventDispatcher { constructor( image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding ) { super() this.isTexture = true Object.defineProperty(this, 'id', { value: textureId++ }) this.uuid = generateUUID() this.name = '' this.source = new Source(image) this.mipmaps = [] this.mapping = mapping this.wrapS = wrapS this.wrapT = wrapT this.magFilter = magFilter this.minFilter = minFilter this.anisotropy = anisotropy this.format = format this.internalFormat = null this.type = type this.offset = new Vector2(0, 0) this.repeat = new Vector2(1, 1) this.center = new Vector2(0, 0) this.rotation = 0 this.matrixAutoUpdate = true this.matrix = new Matrix3() this.generateMipmaps = true this.premultiplyAlpha = false this.flipY = true this.unpackAlignment = 4 // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. // // Also changing the encoding after already used by a Material will not automatically make the Material // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. this.encoding = encoding this.userData = {} this.version = 0 this.onUpdate = null this.isRenderTargetTexture = false // indicates whether a texture belongs to a render target or not this.needsPMREMUpdate = false // indicates whether this texture should be processed by PMREMGenerator or not (only relevant for render target textures) } get image() { return this.source.data } set image(value) { this.source.data = value } updateMatrix() { this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y) } clone() { return new this.constructor().copy(this) } copy(source) { this.name = source.name this.source = source.source this.mipmaps = source.mipmaps.slice(0) this.mapping = source.mapping this.wrapS = source.wrapS this.wrapT = source.wrapT this.magFilter = source.magFilter this.minFilter = source.minFilter this.anisotropy = source.anisotropy this.format = source.format this.internalFormat = source.internalFormat this.type = source.type this.offset.copy(source.offset) this.repeat.copy(source.repeat) this.center.copy(source.center) this.rotation = source.rotation this.matrixAutoUpdate = source.matrixAutoUpdate this.matrix.copy(source.matrix) this.generateMipmaps = source.generateMipmaps this.premultiplyAlpha = source.premultiplyAlpha this.flipY = source.flipY this.unpackAlignment = source.unpackAlignment this.encoding = source.encoding this.userData = JSON.parse(JSON.stringify(source.userData)) this.needsUpdate = true return this } toJSON(meta) { const isRootObject = meta === undefined || typeof meta === 'string' if (!isRootObject && meta.textures[this.uuid] !== undefined) { return meta.textures[this.uuid] } const output = { metadata: { version: 4.5, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, image: this.source.toJSON(meta).uuid, mapping: this.mapping, repeat: [this.repeat.x, this.repeat.y], offset: [this.offset.x, this.offset.y], center: [this.center.x, this.center.y], rotation: this.rotation, wrap: [this.wrapS, this.wrapT], format: this.format, type: this.type, encoding: this.encoding, minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY, premultiplyAlpha: this.premultiplyAlpha, unpackAlignment: this.unpackAlignment } if (JSON.stringify(this.userData) !== '{}') output.userData = this.userData if (!isRootObject) { meta.textures[this.uuid] = output } return output } dispose() { this.dispatchEvent({ type: 'dispose' }) } transformUv(uv) { if (this.mapping !== UVMapping) return uv uv.applyMatrix3(this.matrix) if (uv.x < 0 || uv.x > 1) { switch (this.wrapS) { case RepeatWrapping: uv.x = uv.x - Math.floor(uv.x) break case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1 break case MirroredRepeatWrapping: if (Math.abs(Math.floor(uv.x) % 2) === 1) { uv.x = Math.ceil(uv.x) - uv.x } else { uv.x = uv.x - Math.floor(uv.x) } break } } if (uv.y < 0 || uv.y > 1) { switch (this.wrapT) { case RepeatWrapping: uv.y = uv.y - Math.floor(uv.y) break case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1 break case MirroredRepeatWrapping: if (Math.abs(Math.floor(uv.y) % 2) === 1) { uv.y = Math.ceil(uv.y) - uv.y } else { uv.y = uv.y - Math.floor(uv.y) } break } } if (this.flipY) { uv.y = 1 - uv.y } return uv } set needsUpdate(value) { if (value === true) { this.version++ this.source.needsUpdate = true } } } Texture.DEFAULT_IMAGE = null Texture.DEFAULT_MAPPING = UVMapping class Vector4 { constructor(x = 0, y = 0, z = 0, w = 1) { this.isVector4 = true this.x = x this.y = y this.z = z this.w = w } get width() { return this.z } set width(value) { this.z = value } get height() { return this.w } set height(value) { this.w = value } set(x, y, z, w) { this.x = x this.y = y this.z = z this.w = w return this } setScalar(scalar) { this.x = scalar this.y = scalar this.z = scalar this.w = scalar return this } setX(x) { this.x = x return this } setY(y) { this.y = y return this } setZ(z) { this.z = z return this } setW(w) { this.w = w return this } setComponent(index, value) { switch (index) { case 0: this.x = value break case 1: this.y = value break case 2: this.z = value break case 3: this.w = value break default: throw new Error('index is out of range: ' + index) } return this } getComponent(index) { switch (index) { case 0: return this.x case 1: return this.y case 2: return this.z case 3: return this.w default: throw new Error('index is out of range: ' + index) } } clone() { return new this.constructor(this.x, this.y, this.z, this.w) } copy(v) { this.x = v.x this.y = v.y this.z = v.z this.w = v.w !== undefined ? v.w : 1 return this } add(v, w) { if (w !== undefined) { console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.') return this.addVectors(v, w) } this.x += v.x this.y += v.y this.z += v.z this.w += v.w return this } addScalar(s) { this.x += s this.y += s this.z += s this.w += s return this } addVectors(a, b) { this.x = a.x + b.x this.y = a.y + b.y this.z = a.z + b.z this.w = a.w + b.w return this } addScaledVector(v, s) { this.x += v.x * s this.y += v.y * s this.z += v.z * s this.w += v.w * s return this } sub(v, w) { if (w !== undefined) { console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.') return this.subVectors(v, w) } this.x -= v.x this.y -= v.y this.z -= v.z this.w -= v.w return this } subScalar(s) { this.x -= s this.y -= s this.z -= s this.w -= s return this } subVectors(a, b) { this.x = a.x - b.x this.y = a.y - b.y this.z = a.z - b.z this.w = a.w - b.w return this } multiply(v) { this.x *= v.x this.y *= v.y this.z *= v.z this.w *= v.w return this } multiplyScalar(scalar) { this.x *= scalar this.y *= scalar this.z *= scalar this.w *= scalar return this } applyMatrix4(m) { const x = this.x, y = this.y, z = this.z, w = this.w const e = m.elements this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w return this } divideScalar(scalar) { return this.multiplyScalar(1 / scalar) } setAxisAngleFromQuaternion(q) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos(q.w) const s = Math.sqrt(1 - q.w * q.w) if (s < 0.0001) { this.x = 1 this.y = 0 this.z = 0 } else { this.x = q.x / s this.y = q.y / s this.z = q.z / s } return this } setAxisAngleFromRotationMatrix(m) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) let angle, x, y, z // variables for result const epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10] if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) { // this singularity is identity matrix so angle = 0 this.set(1, 0, 0, 0) return this // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI const xx = (m11 + 1) / 2 const yy = (m22 + 1) / 2 const zz = (m33 + 1) / 2 const xy = (m12 + m21) / 4 const xz = (m13 + m31) / 4 const yz = (m23 + m32) / 4 if (xx > yy && xx > zz) { // m11 is the largest diagonal term if (xx < epsilon) { x = 0 y = 0.707106781 z = 0.707106781 } else { x = Math.sqrt(xx) y = xy / x z = xz / x } } else if (yy > zz) { // m22 is the largest diagonal term if (yy < epsilon) { x = 0.707106781 y = 0 z = 0.707106781 } else { y = Math.sqrt(yy) x = xy / y z = yz / y } } else { // m33 is the largest diagonal term so base result on this if (zz < epsilon) { x = 0.707106781 y = 0.707106781 z = 0 } else { z = Math.sqrt(zz) x = xz / z y = yz / z } } this.set(x, y, z, angle) return this // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)) // used to normalize if (Math.abs(s) < 0.001) s = 1 // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = (m32 - m23) / s this.y = (m13 - m31) / s this.z = (m21 - m12) / s this.w = Math.acos((m11 + m22 + m33 - 1) / 2) return this } min(v) { this.x = Math.min(this.x, v.x) this.y = Math.min(this.y, v.y) this.z = Math.min(this.z, v.z) this.w = Math.min(this.w, v.w) return this } max(v) { this.x = Math.max(this.x, v.x) this.y = Math.max(this.y, v.y) this.z = Math.max(this.z, v.z) this.w = Math.max(this.w, v.w) return this } clamp(min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)) this.y = Math.max(min.y, Math.min(max.y, this.y)) this.z = Math.max(min.z, Math.min(max.z, this.z)) this.w = Math.max(min.w, Math.min(max.w, this.w)) return this } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)) this.y = Math.max(minVal, Math.min(maxVal, this.y)) this.z = Math.max(minVal, Math.min(maxVal, this.z)) this.w = Math.max(minVal, Math.min(maxVal, this.w)) return this } clampLength(min, max) { const length = this.length() return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))) } floor() { this.x = Math.floor(this.x) this.y = Math.floor(this.y) this.z = Math.floor(this.z) this.w = Math.floor(this.w) return this } ceil() { this.x = Math.ceil(this.x) this.y = Math.ceil(this.y) this.z = Math.ceil(this.z) this.w = Math.ceil(this.w) return this } round() { this.x = Math.round(this.x) this.y = Math.round(this.y) this.z = Math.round(this.z) this.w = Math.round(this.w) return this } roundToZero() { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x) this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y) this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z) this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w) return this } negate() { this.x = -this.x this.y = -this.y this.z = -this.z this.w = -this.w return this } dot(v) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w } lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w } length() { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w) } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w) } normalize() { return this.divideScalar(this.length() || 1) } setLength(length) { return this.normalize().multiplyScalar(length) } lerp(v, alpha) { this.x += (v.x - this.x) * alpha this.y += (v.y - this.y) * alpha this.z += (v.z - this.z) * alpha this.w += (v.w - this.w) * alpha return this } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha this.y = v1.y + (v2.y - v1.y) * alpha this.z = v1.z + (v2.z - v1.z) * alpha this.w = v1.w + (v2.w - v1.w) * alpha return this } equals(v) { return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w } fromArray(array, offset = 0) { this.x = array[offset] this.y = array[offset + 1] this.z = array[offset + 2] this.w = array[offset + 3] return this } toArray(array = [], offset = 0) { array[offset] = this.x array[offset + 1] = this.y array[offset + 2] = this.z array[offset + 3] = this.w return array } fromBufferAttribute(attribute, index, offset) { if (offset !== undefined) { console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().') } this.x = attribute.getX(index) this.y = attribute.getY(index) this.z = attribute.getZ(index) this.w = attribute.getW(index) return this } random() { this.x = Math.random() this.y = Math.random() this.z = Math.random() this.w = Math.random() return this } *[Symbol.iterator]() { yield this.x yield this.y yield this.z yield this.w } } /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ class WebGLRenderTarget extends EventDispatcher { constructor(width, height, options = {}) { super() this.isWebGLRenderTarget = true this.width = width this.height = height this.depth = 1 this.scissor = new Vector4(0, 0, width, height) this.scissorTest = false this.viewport = new Vector4(0, 0, width, height) const image = { width: width, height: height, depth: 1 } this.texture = new Texture(image, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding) this.texture.isRenderTargetTexture = true this.texture.flipY = false this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null this.samples = options.samples !== undefined ? options.samples : 0 } setSize(width, height, depth = 1) { if (this.width !== width || this.height !== height || this.depth !== depth) { this.width = width this.height = height this.depth = depth this.texture.image.width = width this.texture.image.height = height this.texture.image.depth = depth this.dispose() } this.viewport.set(0, 0, width, height) this.scissor.set(0, 0, width, height) } clone() { return new this.constructor().copy(this) } copy(source) { this.width = source.width this.height = source.height this.depth = source.depth this.viewport.copy(source.viewport) this.texture = source.texture.clone() this.texture.isRenderTargetTexture = true // ensure image object is not shared, see #20328 const image = Object.assign({}, source.texture.image) this.texture.source = new Source(image) this.depthBuffer = source.depthBuffer this.stencilBuffer = source.stencilBuffer if (source.depthTexture !== null) this.depthTexture = source.depthTexture.clone() this.samples = source.samples return this } dispose() { this.dispatchEvent({ type: 'dispose' }) } } class DataArrayTexture extends Texture { constructor(data = null, width = 1, height = 1, depth = 1) { super(null) this.isDataArrayTexture = true this.image = { data, width, height, depth } this.magFilter = NearestFilter this.minFilter = NearestFilter this.wrapR = ClampToEdgeWrapping this.generateMipmaps = false this.flipY = false this.unpackAlignment = 1 } } class WebGLArrayRenderTarget extends WebGLRenderTarget { constructor(width, height, depth) { super(width, height) this.isWebGLArrayRenderTarget = true this.depth = depth this.texture = new DataArrayTexture(null, width, height, depth) this.texture.isRenderTargetTexture = true } } class Data3DTexture extends Texture { constructor(data = null, width = 1, height = 1, depth = 1) { // We're going to add .setXXX() methods for setting properties later. // Users can still set in DataTexture3D directly. // // const texture = new THREE.DataTexture3D( data, width, height, depth ); // texture.anisotropy = 16; // // See #14839 super(null) this.isData3DTexture = true this.image = { data, width, height, depth } this.magFilter = NearestFilter this.minFilter = NearestFilter this.wrapR = ClampToEdgeWrapping this.generateMipmaps = false this.flipY = false this.unpackAlignment = 1 } } class WebGL3DRenderTarget extends WebGLRenderTarget { constructor(width, height, depth) { super(width, height) this.isWebGL3DRenderTarget = true this.depth = depth this.texture = new Data3DTexture(null, width, height, depth) this.texture.isRenderTargetTexture = true } } class WebGLMultipleRenderTargets extends WebGLRenderTarget { constructor(width, height, count, options = {}) { super(width, height, options) this.isWebGLMultipleRenderTargets = true const texture = this.texture this.texture = [] for (let i = 0; i < count; i++) { this.texture[i] = texture.clone() this.texture[i].isRenderTargetTexture = true } } setSize(width, height, depth = 1) { if (this.width !== width || this.height !== height || this.depth !== depth) { this.width = width this.height = height this.depth = depth for (let i = 0, il = this.texture.length; i < il; i++) { this.texture[i].image.width = width this.texture[i].image.height = height this.texture[i].image.depth = depth } this.dispose() } this.viewport.set(0, 0, width, height) this.scissor.set(0, 0, width, height) return this } copy(source) { this.dispose() this.width = source.width this.height = source.height this.depth = source.depth this.viewport.set(0, 0, this.width, this.height) this.scissor.set(0, 0, this.width, this.height) this.depthBuffer = source.depthBuffer this.stencilBuffer = source.stencilBuffer if (source.depthTexture !== null) this.depthTexture = source.depthTexture.clone() this.texture.length = 0 for (let i = 0, il = source.texture.length; i < il; i++) { this.texture[i] = source.texture[i].clone() this.texture[i].isRenderTargetTexture = true } return this } } class Quaternion { constructor(x = 0, y = 0, z = 0, w = 1) { this.isQuaternion = true this._x = x this._y = y this._z = z this._w = w } static slerp(qa, qb, qm, t) { console.warn('THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.') return qm.slerpQuaternions(qa, qb, t) } static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) { // fuzz-free, array-based Quaternion SLERP operation let x0 = src0[srcOffset0 + 0], y0 = src0[srcOffset0 + 1], z0 = src0[srcOffset0 + 2], w0 = src0[srcOffset0 + 3] const x1 = src1[srcOffset1 + 0], y1 = src1[srcOffset1 + 1], z1 = src1[srcOffset1 + 2], w1 = src1[srcOffset1 + 3] if (t === 0) { dst[dstOffset + 0] = x0 dst[dstOffset + 1] = y0 dst[dstOffset + 2] = z0 dst[dstOffset + 3] = w0 return } if (t === 1) { dst[dstOffset + 0] = x1 dst[dstOffset + 1] = y1 dst[dstOffset + 2] = z1 dst[dstOffset + 3] = w1 return } if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) { let s = 1 - t const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = cos >= 0 ? 1 : -1, sqrSin = 1 - cos * cos // Skip the Slerp for tiny steps to avoid numeric problems: if (sqrSin > Number.EPSILON) { const sin = Math.sqrt(sqrSin), len = Math.atan2(sin, cos * dir) s = Math.sin(s * len) / sin t = Math.sin(t * len) / sin } const tDir = t * dir x0 = x0 * s + x1 * tDir y0 = y0 * s + y1 * tDir z0 = z0 * s + z1 * tDir w0 = w0 * s + w1 * tDir // Normalize in case we just did a lerp: if (s === 1 - t) { const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0) x0 *= f y0 *= f z0 *= f w0 *= f } } dst[dstOffset] = x0 dst[dstOffset + 1] = y0 dst[dstOffset + 2] = z0 dst[dstOffset + 3] = w0 } static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) { const x0 = src0[srcOffset0] const y0 = src0[srcOffset0 + 1] const z0 = src0[srcOffset0 + 2] const w0 = src0[srcOffset0 + 3] const x1 = src1[srcOffset1] const y1 = src1[srcOffset1 + 1] const z1 = src1[srcOffset1 + 2] const w1 = src1[srcOffset1 + 3] dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1 dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1 dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1 dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1 return dst } get x() { return this._x } set x(value) { this._x = value this._onChangeCallback() } get y() { return this._y } set y(value) { this._y = value this._onChangeCallback() } get z() { return this._z } set z(value) { this._z = value this._onChangeCallback() } get w() { return this._w } set w(value) { this._w = value this._onChangeCallback() } set(x, y, z, w) { this._x = x this._y = y this._z = z this._w = w this._onChangeCallback() return this } clone() { return new this.constructor(this._x, this._y, this._z, this._w) } copy(quaternion) { this._x = quaternion.x this._y = quaternion.y this._z = quaternion.z this._w = quaternion.w this._onChangeCallback() return this } setFromEuler(euler, update) { if (!(euler && euler.isEuler)) { throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.') } const x = euler._x, y = euler._y, z = euler._z, order = euler._order // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m const cos = Math.cos const sin = Math.sin const c1 = cos(x / 2) const c2 = cos(y / 2) const c3 = cos(z / 2) const s1 = sin(x / 2) const s2 = sin(y / 2) const s3 = sin(z / 2) switch (order) { case 'XYZ': this._x = s1 * c2 * c3 + c1 * s2 * s3 this._y = c1 * s2 * c3 - s1 * c2 * s3 this._z = c1 * c2 * s3 + s1 * s2 * c3 this._w = c1 * c2 * c3 - s1 * s2 * s3 break case 'YXZ': this._x = s1 * c2 * c3 + c1 * s2 * s3 this._y = c1 * s2 * c3 - s1 * c2 * s3 this._z = c1 * c2 * s3 - s1 * s2 * c3 this._w = c1 * c2 * c3 + s1 * s2 * s3 break case 'ZXY': this._x = s1 * c2 * c3 - c1 * s2 * s3 this._y = c1 * s2 * c3 + s1 * c2 * s3 this._z = c1 * c2 * s3 + s1 * s2 * c3 this._w = c1 * c2 * c3 - s1 * s2 * s3 break case 'ZYX': this._x = s1 * c2 * c3 - c1 * s2 * s3 this._y = c1 * s2 * c3 + s1 * c2 * s3 this._z = c1 * c2 * s3 - s1 * s2 * c3 this._w = c1 * c2 * c3 + s1 * s2 * s3 break case 'YZX': this._x = s1 * c2 * c3 + c1 * s2 * s3 this._y = c1 * s2 * c3 + s1 * c2 * s3 this._z = c1 * c2 * s3 - s1 * s2 * c3 this._w = c1 * c2 * c3 - s1 * s2 * s3 break case 'XZY': this._x = s1 * c2 * c3 - c1 * s2 * s3 this._y = c1 * s2 * c3 - s1 * c2 * s3 this._z = c1 * c2 * s3 + s1 * s2 * c3 this._w = c1 * c2 * c3 + s1 * s2 * s3 break default: console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order) } if (update !== false) this._onChangeCallback() return this } setFromAxisAngle(axis, angle) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized const halfAngle = angle / 2, s = Math.sin(halfAngle) this._x = axis.x * s this._y = axis.y * s this._z = axis.z * s this._w = Math.cos(halfAngle) this._onChangeCallback() return this } setFromRotationMatrix(m) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10], trace = m11 + m22 + m33 if (trace > 0) { const s = 0.5 / Math.sqrt(trace + 1.0) this._w = 0.25 / s this._x = (m32 - m23) * s this._y = (m13 - m31) * s this._z = (m21 - m12) * s } else if (m11 > m22 && m11 > m33) { const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33) this._w = (m32 - m23) / s this._x = 0.25 * s this._y = (m12 + m21) / s this._z = (m13 + m31) / s } else if (m22 > m33) { const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33) this._w = (m13 - m31) / s this._x = (m12 + m21) / s this._y = 0.25 * s this._z = (m23 + m32) / s } else { const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22) this._w = (m21 - m12) / s this._x = (m13 + m31) / s this._y = (m23 + m32) / s this._z = 0.25 * s } this._onChangeCallback() return this } setFromUnitVectors(vFrom, vTo) { // assumes direction vectors vFrom and vTo are normalized let r = vFrom.dot(vTo) + 1 if (r < Number.EPSILON) { // vFrom and vTo point in opposite directions r = 0 if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) { this._x = -vFrom.y this._y = vFrom.x this._z = 0 this._w = r } else { this._x = 0 this._y = -vFrom.z this._z = vFrom.y this._w = r } } else { // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 this._x = vFrom.y * vTo.z - vFrom.z * vTo.y this._y = vFrom.z * vTo.x - vFrom.x * vTo.z this._z = vFrom.x * vTo.y - vFrom.y * vTo.x this._w = r } return this.normalize() } angleTo(q) { return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1))) } rotateTowards(q, step) { const angle = this.angleTo(q) if (angle === 0) return this const t = Math.min(1, step / angle) this.slerp(q, t) return this } identity() { return this.set(0, 0, 0, 1) } invert() { // quaternion is assumed to have unit length return this.conjugate() } conjugate() { this._x *= -1 this._y *= -1 this._z *= -1 this._onChangeCallback() return this } dot(v) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w } lengthSq() { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w } length() { return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w) } normalize() { let l = this.length() if (l === 0) { this._x = 0 this._y = 0 this._z = 0 this._w = 1 } else { l = 1 / l this._x = this._x * l this._y = this._y * l this._z = this._z * l this._w = this._w * l } this._onChangeCallback() return this } multiply(q, p) { if (p !== undefined) { console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.') return this.multiplyQuaternions(q, p) } return this.multiplyQuaternions(this, q) } premultiply(q) { return this.multiplyQuaternions(q, this) } multiplyQuaternions(a, b) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz this._onChangeCallback() return this } slerp(qb, t) { if (t === 0) return this if (t === 1) return this.copy(qb) const x = this._x, y = this._y, z = this._z, w = this._w // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z if (cosHalfTheta < 0) { this._w = -qb._w this._x = -qb._x this._y = -qb._y this._z = -qb._z cosHalfTheta = -cosHalfTheta } else { this.copy(qb) } if (cosHalfTheta >= 1.0) { this._w = w this._x = x this._y = y this._z = z return this } const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta if (sqrSinHalfTheta <= Number.EPSILON) { const s = 1 - t this._w = s * w + t * this._w this._x = s * x + t * this._x this._y = s * y + t * this._y this._z = s * z + t * this._z this.normalize() this._onChangeCallback() return this } const sinHalfTheta = Math.sqrt(sqrSinHalfTheta) const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta) const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta, ratioB = Math.sin(t * halfTheta) / sinHalfTheta this._w = w * ratioA + this._w * ratioB this._x = x * ratioA + this._x * ratioB this._y = y * ratioA + this._y * ratioB this._z = z * ratioA + this._z * ratioB this._onChangeCallback() return this } slerpQuaternions(qa, qb, t) { return this.copy(qa).slerp(qb, t) } random() { // Derived from http://planning.cs.uiuc.edu/node198.html // Note, this source uses w, x, y, z ordering, // so we swap the order below. const u1 = Math.random() const sqrt1u1 = Math.sqrt(1 - u1) const sqrtu1 = Math.sqrt(u1) const u2 = 2 * Math.PI * Math.random() const u3 = 2 * Math.PI * Math.random() return this.set(sqrt1u1 * Math.cos(u2), sqrtu1 * Math.sin(u3), sqrtu1 * Math.cos(u3), sqrt1u1 * Math.sin(u2)) } equals(quaternion) { return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w } fromArray(array, offset = 0) { this._x = array[offset] this._y = array[offset + 1] this._z = array[offset + 2] this._w = array[offset + 3] this._onChangeCallback() return this } toArray(array = [], offset = 0) { array[offset] = this._x array[offset + 1] = this._y array[offset + 2] = this._z array[offset + 3] = this._w return array } fromBufferAttribute(attribute, index) { this._x = attribute.getX(index) this._y = attribute.getY(index) this._z = attribute.getZ(index) this._w = attribute.getW(index) return this } _onChange(callback) { this._onChangeCallback = callback return this } _onChangeCallback() {} *[Symbol.iterator]() { yield this._x yield this._y yield this._z yield this._w } } class Vector3 { constructor(x = 0, y = 0, z = 0) { this.isVector3 = true this.x = x this.y = y this.z = z } set(x, y, z) { if (z === undefined) z = this.z // sprite.scale.set(x,y) this.x = x this.y = y this.z = z return this } setScalar(scalar) { this.x = scalar this.y = scalar this.z = scalar return this } setX(x) { this.x = x return this } setY(y) { this.y = y return this } setZ(z) { this.z = z return this } setComponent(index, value) { switch (index) { case 0: this.x = value break case 1: this.y = value break case 2: this.z = value break default: throw new Error('index is out of range: ' + index) } return this } getComponent(index) { switch (index) { case 0: return this.x case 1: return this.y case 2: return this.z default: throw new Error('index is out of range: ' + index) } } clone() { return new this.constructor(this.x, this.y, this.z) } copy(v) { this.x = v.x this.y = v.y this.z = v.z return this } add(v, w) { if (w !== undefined) { console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.') return this.addVectors(v, w) } this.x += v.x this.y += v.y this.z += v.z return this } addScalar(s) { this.x += s this.y += s this.z += s return this } addVectors(a, b) { this.x = a.x + b.x this.y = a.y + b.y this.z = a.z + b.z return this } addScaledVector(v, s) { this.x += v.x * s this.y += v.y * s this.z += v.z * s return this } sub(v, w) { if (w !== undefined) { console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.') return this.subVectors(v, w) } this.x -= v.x this.y -= v.y this.z -= v.z return this } subScalar(s) { this.x -= s this.y -= s this.z -= s return this } subVectors(a, b) { this.x = a.x - b.x this.y = a.y - b.y this.z = a.z - b.z return this } multiply(v, w) { if (w !== undefined) { console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.') return this.multiplyVectors(v, w) } this.x *= v.x this.y *= v.y this.z *= v.z return this } multiplyScalar(scalar) { this.x *= scalar this.y *= scalar this.z *= scalar return this } multiplyVectors(a, b) { this.x = a.x * b.x this.y = a.y * b.y this.z = a.z * b.z return this } applyEuler(euler) { if (!(euler && euler.isEuler)) { console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.') } return this.applyQuaternion(_quaternion$4.setFromEuler(euler)) } applyAxisAngle(axis, angle) { return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle)) } applyMatrix3(m) { const x = this.x, y = this.y, z = this.z const e = m.elements this.x = e[0] * x + e[3] * y + e[6] * z this.y = e[1] * x + e[4] * y + e[7] * z this.z = e[2] * x + e[5] * y + e[8] * z return this } applyNormalMatrix(m) { return this.applyMatrix3(m).normalize() } applyMatrix4(m) { const x = this.x, y = this.y, z = this.z const e = m.elements const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]) this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w return this } applyQuaternion(q) { const x = this.x, y = this.y, z = this.z const qx = q.x, qy = q.y, qz = q.z, qw = q.w // calculate quat * vector const ix = qw * x + qy * z - qz * y const iy = qw * y + qz * x - qx * z const iz = qw * z + qx * y - qy * x const iw = -qx * x - qy * y - qz * z // calculate result * inverse quat this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx return this } project(camera) { return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix) } unproject(camera) { return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld) } transformDirection(m) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction const x = this.x, y = this.y, z = this.z const e = m.elements this.x = e[0] * x + e[4] * y + e[8] * z this.y = e[1] * x + e[5] * y + e[9] * z this.z = e[2] * x + e[6] * y + e[10] * z return this.normalize() } divide(v) { this.x /= v.x this.y /= v.y this.z /= v.z return this } divideScalar(scalar) { return this.multiplyScalar(1 / scalar) } min(v) { this.x = Math.min(this.x, v.x) this.y = Math.min(this.y, v.y) this.z = Math.min(this.z, v.z) return this } max(v) { this.x = Math.max(this.x, v.x) this.y = Math.max(this.y, v.y) this.z = Math.max(this.z, v.z) return this } clamp(min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)) this.y = Math.max(min.y, Math.min(max.y, this.y)) this.z = Math.max(min.z, Math.min(max.z, this.z)) return this } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)) this.y = Math.max(minVal, Math.min(maxVal, this.y)) this.z = Math.max(minVal, Math.min(maxVal, this.z)) return this } clampLength(min, max) { const length = this.length() return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))) } floor() { this.x = Math.floor(this.x) this.y = Math.floor(this.y) this.z = Math.floor(this.z) return this } ceil() { this.x = Math.ceil(this.x) this.y = Math.ceil(this.y) this.z = Math.ceil(this.z) return this } round() { this.x = Math.round(this.x) this.y = Math.round(this.y) this.z = Math.round(this.z) return this } roundToZero() { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x) this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y) this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z) return this } negate() { this.x = -this.x this.y = -this.y this.z = -this.z return this } dot(v) { return this.x * v.x + this.y * v.y + this.z * v.z } // TODO lengthSquared? lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z } length() { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z) } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) } normalize() { return this.divideScalar(this.length() || 1) } setLength(length) { return this.normalize().multiplyScalar(length) } lerp(v, alpha) { this.x += (v.x - this.x) * alpha this.y += (v.y - this.y) * alpha this.z += (v.z - this.z) * alpha return this } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha this.y = v1.y + (v2.y - v1.y) * alpha this.z = v1.z + (v2.z - v1.z) * alpha return this } cross(v, w) { if (w !== undefined) { console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.') return this.crossVectors(v, w) } return this.crossVectors(this, v) } crossVectors(a, b) { const ax = a.x, ay = a.y, az = a.z const bx = b.x, by = b.y, bz = b.z this.x = ay * bz - az * by this.y = az * bx - ax * bz this.z = ax * by - ay * bx return this } projectOnVector(v) { const denominator = v.lengthSq() if (denominator === 0) return this.set(0, 0, 0) const scalar = v.dot(this) / denominator return this.copy(v).multiplyScalar(scalar) } projectOnPlane(planeNormal) { _vector$c.copy(this).projectOnVector(planeNormal) return this.sub(_vector$c) } reflect(normal) { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal))) } angleTo(v) { const denominator = Math.sqrt(this.lengthSq() * v.lengthSq()) if (denominator === 0) return Math.PI / 2 const theta = this.dot(v) / denominator // clamp, to handle numerical problems return Math.acos(clamp(theta, -1, 1)) } distanceTo(v) { return Math.sqrt(this.distanceToSquared(v)) } distanceToSquared(v) { const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z return dx * dx + dy * dy + dz * dz } manhattanDistanceTo(v) { return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z) } setFromSpherical(s) { return this.setFromSphericalCoords(s.radius, s.phi, s.theta) } setFromSphericalCoords(radius, phi, theta) { const sinPhiRadius = Math.sin(phi) * radius this.x = sinPhiRadius * Math.sin(theta) this.y = Math.cos(phi) * radius this.z = sinPhiRadius * Math.cos(theta) return this } setFromCylindrical(c) { return this.setFromCylindricalCoords(c.radius, c.theta, c.y) } setFromCylindricalCoords(radius, theta, y) { this.x = radius * Math.sin(theta) this.y = y this.z = radius * Math.cos(theta) return this } setFromMatrixPosition(m) { const e = m.elements this.x = e[12] this.y = e[13] this.z = e[14] return this } setFromMatrixScale(m) { const sx = this.setFromMatrixColumn(m, 0).length() const sy = this.setFromMatrixColumn(m, 1).length() const sz = this.setFromMatrixColumn(m, 2).length() this.x = sx this.y = sy this.z = sz return this } setFromMatrixColumn(m, index) { return this.fromArray(m.elements, index * 4) } setFromMatrix3Column(m, index) { return this.fromArray(m.elements, index * 3) } setFromEuler(e) { this.x = e._x this.y = e._y this.z = e._z return this } equals(v) { return v.x === this.x && v.y === this.y && v.z === this.z } fromArray(array, offset = 0) { this.x = array[offset] this.y = array[offset + 1] this.z = array[offset + 2] return this } toArray(array = [], offset = 0) { array[offset] = this.x array[offset + 1] = this.y array[offset + 2] = this.z return array } fromBufferAttribute(attribute, index, offset) { if (offset !== undefined) { console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().') } this.x = attribute.getX(index) this.y = attribute.getY(index) this.z = attribute.getZ(index) return this } random() { this.x = Math.random() this.y = Math.random() this.z = Math.random() return this } randomDirection() { // Derived from https://mathworld.wolfram.com/SpherePointPicking.html const u = (Math.random() - 0.5) * 2 const t = Math.random() * Math.PI * 2 const f = Math.sqrt(1 - u ** 2) this.x = f * Math.cos(t) this.y = f * Math.sin(t) this.z = u return this } *[Symbol.iterator]() { yield this.x yield this.y yield this.z } } const _vector$c = /*@__PURE__*/ new Vector3() const _quaternion$4 = /*@__PURE__*/ new Quaternion() class Box3 { constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) { this.isBox3 = true this.min = min this.max = max } set(min, max) { this.min.copy(min) this.max.copy(max) return this } setFromArray(array) { let minX = +Infinity let minY = +Infinity let minZ = +Infinity let maxX = -Infinity let maxY = -Infinity let maxZ = -Infinity for (let i = 0, l = array.length; i < l; i += 3) { const x = array[i] const y = array[i + 1] const z = array[i + 2] if (x < minX) minX = x if (y < minY) minY = y if (z < minZ) minZ = z if (x > maxX) maxX = x if (y > maxY) maxY = y if (z > maxZ) maxZ = z } this.min.set(minX, minY, minZ) this.max.set(maxX, maxY, maxZ) return this } setFromBufferAttribute(attribute) { let minX = +Infinity let minY = +Infinity let minZ = +Infinity let maxX = -Infinity let maxY = -Infinity let maxZ = -Infinity for (let i = 0, l = attribute.count; i < l; i++) { const x = attribute.getX(i) const y = attribute.getY(i) const z = attribute.getZ(i) if (x < minX) minX = x if (y < minY) minY = y if (z < minZ) minZ = z if (x > maxX) maxX = x if (y > maxY) maxY = y if (z > maxZ) maxZ = z } this.min.set(minX, minY, minZ) this.max.set(maxX, maxY, maxZ) return this } setFromPoints(points) { this.makeEmpty() for (let i = 0, il = points.length; i < il; i++) { this.expandByPoint(points[i]) } return this } setFromCenterAndSize(center, size) { const halfSize = _vector$b.copy(size).multiplyScalar(0.5) this.min.copy(center).sub(halfSize) this.max.copy(center).add(halfSize) return this } setFromObject(object, precise = false) { this.makeEmpty() return this.expandByObject(object, precise) } clone() { return new this.constructor().copy(this) } copy(box) { this.min.copy(box.min) this.max.copy(box.max) return this } makeEmpty() { this.min.x = this.min.y = this.min.z = +Infinity this.max.x = this.max.y = this.max.z = -Infinity return this } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z } getCenter(target) { return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5) } getSize(target) { return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min) } expandByPoint(point) { this.min.min(point) this.max.max(point) return this } expandByVector(vector) { this.min.sub(vector) this.max.add(vector) return this } expandByScalar(scalar) { this.min.addScalar(-scalar) this.max.addScalar(scalar) return this } expandByObject(object, precise = false) { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms object.updateWorldMatrix(false, false) const geometry = object.geometry if (geometry !== undefined) { if (precise && geometry.attributes != undefined && geometry.attributes.position !== undefined) { const position = geometry.attributes.position for (let i = 0, l = position.count; i < l; i++) { _vector$b.fromBufferAttribute(position, i).applyMatrix4(object.matrixWorld) this.expandByPoint(_vector$b) } } else { if (geometry.boundingBox === null) { geometry.computeBoundingBox() } _box$3.copy(geometry.boundingBox) _box$3.applyMatrix4(object.matrixWorld) this.union(_box$3) } } const children = object.children for (let i = 0, l = children.length; i < l; i++) { this.expandByObject(children[i], precise) } return this } containsPoint(point) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true } containsBox(box) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z } getParameter(point, target) { // This can potentially have a divide by zero if the box // has a size dimension of 0. return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z)) } intersectsBox(box) { // using 6 splitting planes to rule out intersections. return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true } intersectsSphere(sphere) { // Find the point on the AABB closest to the sphere center. this.clampPoint(sphere.center, _vector$b) // If that point is inside the sphere, the AABB and sphere intersect. return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius } intersectsPlane(plane) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. let min, max if (plane.normal.x > 0) { min = plane.normal.x * this.min.x max = plane.normal.x * this.max.x } else { min = plane.normal.x * this.max.x max = plane.normal.x * this.min.x } if (plane.normal.y > 0) { min += plane.normal.y * this.min.y max += plane.normal.y * this.max.y } else { min += plane.normal.y * this.max.y max += plane.normal.y * this.min.y } if (plane.normal.z > 0) { min += plane.normal.z * this.min.z max += plane.normal.z * this.max.z } else { min += plane.normal.z * this.max.z max += plane.normal.z * this.min.z } return min <= -plane.constant && max >= -plane.constant } intersectsTriangle(triangle) { if (this.isEmpty()) { return false } // compute box center and extents this.getCenter(_center) _extents.subVectors(this.max, _center) // translate triangle to aabb origin _v0$2.subVectors(triangle.a, _center) _v1$7.subVectors(triangle.b, _center) _v2$3.subVectors(triangle.c, _center) // compute edge vectors for triangle _f0.subVectors(_v1$7, _v0$2) _f1.subVectors(_v2$3, _v1$7) _f2.subVectors(_v0$2, _v2$3) // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0] if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) { return false } // test 3 face normals from the aabb axes = [1, 0, 0, 0, 1, 0, 0, 0, 1] if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) { return false } // finally testing the face normal of the triangle // use already existing triangle edge vectors here _triangleNormal.crossVectors(_f0, _f1) axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z] return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents) } clampPoint(point, target) { return target.copy(point).clamp(this.min, this.max) } distanceToPoint(point) { const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max) return clampedPoint.sub(point).length() } getBoundingSphere(target) { this.getCenter(target.center) target.radius = this.getSize(_vector$b).length() * 0.5 return target } intersect(box) { this.min.max(box.min) this.max.min(box.max) // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if (this.isEmpty()) this.makeEmpty() return this } union(box) { this.min.min(box.min) this.max.max(box.max) return this } applyMatrix4(matrix) { // transform of empty box is an empty box. if (this.isEmpty()) return this // NOTE: I am using a binary pattern to specify all 2^3 combinations below _points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix) // 000 _points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix) // 001 _points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix) // 010 _points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix) // 011 _points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix) // 100 _points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix) // 101 _points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix) // 110 _points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix) // 111 this.setFromPoints(_points) return this } translate(offset) { this.min.add(offset) this.max.add(offset) return this } equals(box) { return box.min.equals(this.min) && box.max.equals(this.max) } } const _points = [ /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3() ] const _vector$b = /*@__PURE__*/ new Vector3() const _box$3 = /*@__PURE__*/ new Box3() // triangle centered vertices const _v0$2 = /*@__PURE__*/ new Vector3() const _v1$7 = /*@__PURE__*/ new Vector3() const _v2$3 = /*@__PURE__*/ new Vector3() // triangle edge vectors const _f0 = /*@__PURE__*/ new Vector3() const _f1 = /*@__PURE__*/ new Vector3() const _f2 = /*@__PURE__*/ new Vector3() const _center = /*@__PURE__*/ new Vector3() const _extents = /*@__PURE__*/ new Vector3() const _triangleNormal = /*@__PURE__*/ new Vector3() const _testAxis = /*@__PURE__*/ new Vector3() function satForAxes(axes, v0, v1, v2, extents) { for (let i = 0, j = axes.length - 3; i <= j; i += 3) { _testAxis.fromArray(axes, i) // project the aabb onto the separating axis const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z) // project all 3 vertices of the triangle onto the separating axis const p0 = v0.dot(_testAxis) const p1 = v1.dot(_testAxis) const p2 = v2.dot(_testAxis) // actual test, basically see if either of the most extreme of the triangle points intersects r if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) { // points of the projected triangle are outside the projected half-length of the aabb // the axis is separating and we can exit return false } } return true } const _box$2 = /*@__PURE__*/ new Box3() const _v1$6 = /*@__PURE__*/ new Vector3() const _toFarthestPoint = /*@__PURE__*/ new Vector3() const _toPoint = /*@__PURE__*/ new Vector3() class Sphere { constructor(center = new Vector3(), radius = -1) { this.center = center this.radius = radius } set(center, radius) { this.center.copy(center) this.radius = radius return this } setFromPoints(points, optionalCenter) { const center = this.center if (optionalCenter !== undefined) { center.copy(optionalCenter) } else { _box$2.setFromPoints(points).getCenter(center) } let maxRadiusSq = 0 for (let i = 0, il = points.length; i < il; i++) { maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i])) } this.radius = Math.sqrt(maxRadiusSq) return this } copy(sphere) { this.center.copy(sphere.center) this.radius = sphere.radius return this } isEmpty() { return this.radius < 0 } makeEmpty() { this.center.set(0, 0, 0) this.radius = -1 return this } containsPoint(point) { return point.distanceToSquared(this.center) <= this.radius * this.radius } distanceToPoint(point) { return point.distanceTo(this.center) - this.radius } intersectsSphere(sphere) { const radiusSum = this.radius + sphere.radius return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum } intersectsBox(box) { return box.intersectsSphere(this) } intersectsPlane(plane) { return Math.abs(plane.distanceToPoint(this.center)) <= this.radius } clampPoint(point, target) { const deltaLengthSq = this.center.distanceToSquared(point) target.copy(point) if (deltaLengthSq > this.radius * this.radius) { target.sub(this.center).normalize() target.multiplyScalar(this.radius).add(this.center) } return target } getBoundingBox(target) { if (this.isEmpty()) { // Empty sphere produces empty bounding box target.makeEmpty() return target } target.set(this.center, this.center) target.expandByScalar(this.radius) return target } applyMatrix4(matrix) { this.center.applyMatrix4(matrix) this.radius = this.radius * matrix.getMaxScaleOnAxis() return this } translate(offset) { this.center.add(offset) return this } expandByPoint(point) { // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671 _toPoint.subVectors(point, this.center) const lengthSq = _toPoint.lengthSq() if (lengthSq > this.radius * this.radius) { const length = Math.sqrt(lengthSq) const missingRadiusHalf = (length - this.radius) * 0.5 // Nudge this sphere towards the target point. Add half the missing distance to radius, // and the other half to position. This gives a tighter enclosure, instead of if // the whole missing distance were just added to radius. this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length)) this.radius += missingRadiusHalf } return this } union(sphere) { // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769 // To enclose another sphere into this sphere, we only need to enclose two points: // 1) Enclose the farthest point on the other sphere into this sphere. // 2) Enclose the opposite point of the farthest point into this sphere. if (this.center.equals(sphere.center) === true) { _toFarthestPoint.set(0, 0, 1).multiplyScalar(sphere.radius) } else { _toFarthestPoint .subVectors(sphere.center, this.center) .normalize() .multiplyScalar(sphere.radius) } this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint)) this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint)) return this } equals(sphere) { return sphere.center.equals(this.center) && sphere.radius === this.radius } clone() { return new this.constructor().copy(this) } } const _vector$a = /*@__PURE__*/ new Vector3() const _segCenter = /*@__PURE__*/ new Vector3() const _segDir = /*@__PURE__*/ new Vector3() const _diff = /*@__PURE__*/ new Vector3() const _edge1 = /*@__PURE__*/ new Vector3() const _edge2 = /*@__PURE__*/ new Vector3() const _normal$1 = /*@__PURE__*/ new Vector3() class Ray { constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) { this.origin = origin this.direction = direction } set(origin, direction) { this.origin.copy(origin) this.direction.copy(direction) return this } copy(ray) { this.origin.copy(ray.origin) this.direction.copy(ray.direction) return this } at(t, target) { return target .copy(this.direction) .multiplyScalar(t) .add(this.origin) } lookAt(v) { this.direction .copy(v) .sub(this.origin) .normalize() return this } recast(t) { this.origin.copy(this.at(t, _vector$a)) return this } closestPointToPoint(point, target) { target.subVectors(point, this.origin) const directionDistance = target.dot(this.direction) if (directionDistance < 0) { return target.copy(this.origin) } return target .copy(this.direction) .multiplyScalar(directionDistance) .add(this.origin) } distanceToPoint(point) { return Math.sqrt(this.distanceSqToPoint(point)) } distanceSqToPoint(point) { const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction) // point behind the ray if (directionDistance < 0) { return this.origin.distanceToSquared(point) } _vector$a .copy(this.direction) .multiplyScalar(directionDistance) .add(this.origin) return _vector$a.distanceToSquared(point) } distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) { // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment _segCenter .copy(v0) .add(v1) .multiplyScalar(0.5) _segDir .copy(v1) .sub(v0) .normalize() _diff.copy(this.origin).sub(_segCenter) const segExtent = v0.distanceTo(v1) * 0.5 const a01 = -this.direction.dot(_segDir) const b0 = _diff.dot(this.direction) const b1 = -_diff.dot(_segDir) const c = _diff.lengthSq() const det = Math.abs(1 - a01 * a01) let s0, s1, sqrDist, extDet if (det > 0) { // The ray and segment are not parallel. s0 = a01 * b1 - b0 s1 = a01 * b0 - b1 extDet = segExtent * det if (s0 >= 0) { if (s1 >= -extDet) { if (s1 <= extDet) { // region 0 // Minimum at interior points of ray and segment. const invDet = 1 / det s0 *= invDet s1 *= invDet sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c } else { // region 1 s1 = segExtent s0 = Math.max(0, -(a01 * s1 + b0)) sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c } } else { // region 5 s1 = -segExtent s0 = Math.max(0, -(a01 * s1 + b0)) sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c } } else { if (s1 <= -extDet) { // region 4 s0 = Math.max(0, -(-a01 * segExtent + b0)) s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent) sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c } else if (s1 <= extDet) { // region 3 s0 = 0 s1 = Math.min(Math.max(-segExtent, -b1), segExtent) sqrDist = s1 * (s1 + 2 * b1) + c } else { // region 2 s0 = Math.max(0, -(a01 * segExtent + b0)) s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent) sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c } } } else { // Ray and segment are parallel. s1 = a01 > 0 ? -segExtent : segExtent s0 = Math.max(0, -(a01 * s1 + b0)) sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c } if (optionalPointOnRay) { optionalPointOnRay .copy(this.direction) .multiplyScalar(s0) .add(this.origin) } if (optionalPointOnSegment) { optionalPointOnSegment .copy(_segDir) .multiplyScalar(s1) .add(_segCenter) } return sqrDist } intersectSphere(sphere, target) { _vector$a.subVectors(sphere.center, this.origin) const tca = _vector$a.dot(this.direction) const d2 = _vector$a.dot(_vector$a) - tca * tca const radius2 = sphere.radius * sphere.radius if (d2 > radius2) return null const thc = Math.sqrt(radius2 - d2) // t0 = first intersect point - entrance on front of sphere const t0 = tca - thc // t1 = second intersect point - exit point on back of sphere const t1 = tca + thc // test to see if both t0 and t1 are behind the ray - if so, return null if (t0 < 0 && t1 < 0) return null // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if (t0 < 0) return this.at(t1, target) // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at(t0, target) } intersectsSphere(sphere) { return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius } distanceToPlane(plane) { const denominator = plane.normal.dot(this.direction) if (denominator === 0) { // line is coplanar, return origin if (plane.distanceToPoint(this.origin) === 0) { return 0 } // Null is preferable to undefined since undefined means.... it is undefined return null } const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator // Return if the ray never intersects the plane return t >= 0 ? t : null } intersectPlane(plane, target) { const t = this.distanceToPlane(plane) if (t === null) { return null } return this.at(t, target) } intersectsPlane(plane) { // check if the ray lies on the plane first const distToPoint = plane.distanceToPoint(this.origin) if (distToPoint === 0) { return true } const denominator = plane.normal.dot(this.direction) if (denominator * distToPoint < 0) { return true } // ray origin is behind the plane (and is pointing behind it) return false } intersectBox(box, target) { let tmin, tmax, tymin, tymax, tzmin, tzmax const invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z const origin = this.origin if (invdirx >= 0) { tmin = (box.min.x - origin.x) * invdirx tmax = (box.max.x - origin.x) * invdirx } else { tmin = (box.max.x - origin.x) * invdirx tmax = (box.min.x - origin.x) * invdirx } if (invdiry >= 0) { tymin = (box.min.y - origin.y) * invdiry tymax = (box.max.y - origin.y) * invdiry } else { tymin = (box.max.y - origin.y) * invdiry tymax = (box.min.y - origin.y) * invdiry } if (tmin > tymax || tymin > tmax) return null // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if (tymin > tmin || tmin !== tmin) tmin = tymin if (tymax < tmax || tmax !== tmax) tmax = tymax if (invdirz >= 0) { tzmin = (box.min.z - origin.z) * invdirz tzmax = (box.max.z - origin.z) * invdirz } else { tzmin = (box.max.z - origin.z) * invdirz tzmax = (box.min.z - origin.z) * invdirz } if (tmin > tzmax || tzmin > tmax) return null if (tzmin > tmin || tmin !== tmin) tmin = tzmin if (tzmax < tmax || tmax !== tmax) tmax = tzmax //return point closest to the ray (positive side) if (tmax < 0) return null return this.at(tmin >= 0 ? tmin : tmax, target) } intersectsBox(box) { return this.intersectBox(box, _vector$a) !== null } intersectTriangle(a, b, c, backfaceCulling, target) { // Compute the offset origin, edges, and normal. // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h _edge1.subVectors(b, a) _edge2.subVectors(c, a) _normal$1.crossVectors(_edge1, _edge2) // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) let DdN = this.direction.dot(_normal$1) let sign if (DdN > 0) { if (backfaceCulling) return null sign = 1 } else if (DdN < 0) { sign = -1 DdN = -DdN } else { return null } _diff.subVectors(this.origin, a) const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)) // b1 < 0, no intersection if (DdQxE2 < 0) { return null } const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)) // b2 < 0, no intersection if (DdE1xQ < 0) { return null } // b1+b2 > 1, no intersection if (DdQxE2 + DdE1xQ > DdN) { return null } // Line intersects triangle, check if ray does. const QdN = -sign * _diff.dot(_normal$1) // t < 0, no intersection if (QdN < 0) { return null } // Ray intersects triangle. return this.at(QdN / DdN, target) } applyMatrix4(matrix4) { this.origin.applyMatrix4(matrix4) this.direction.transformDirection(matrix4) return this } equals(ray) { return ray.origin.equals(this.origin) && ray.direction.equals(this.direction) } clone() { return new this.constructor().copy(this) } } class Matrix4 { constructor() { this.isMatrix4 = true this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] if (arguments.length > 0) { console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.') } } set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) { const te = this.elements te[0] = n11 te[4] = n12 te[8] = n13 te[12] = n14 te[1] = n21 te[5] = n22 te[9] = n23 te[13] = n24 te[2] = n31 te[6] = n32 te[10] = n33 te[14] = n34 te[3] = n41 te[7] = n42 te[11] = n43 te[15] = n44 return this } identity() { this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) return this } clone() { return new Matrix4().fromArray(this.elements) } copy(m) { const te = this.elements const me = m.elements te[0] = me[0] te[1] = me[1] te[2] = me[2] te[3] = me[3] te[4] = me[4] te[5] = me[5] te[6] = me[6] te[7] = me[7] te[8] = me[8] te[9] = me[9] te[10] = me[10] te[11] = me[11] te[12] = me[12] te[13] = me[13] te[14] = me[14] te[15] = me[15] return this } copyPosition(m) { const te = this.elements, me = m.elements te[12] = me[12] te[13] = me[13] te[14] = me[14] return this } setFromMatrix3(m) { const me = m.elements this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1) return this } extractBasis(xAxis, yAxis, zAxis) { xAxis.setFromMatrixColumn(this, 0) yAxis.setFromMatrixColumn(this, 1) zAxis.setFromMatrixColumn(this, 2) return this } makeBasis(xAxis, yAxis, zAxis) { this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1) return this } extractRotation(m) { // this method does not support reflection matrices const te = this.elements const me = m.elements const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length() const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length() const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length() te[0] = me[0] * scaleX te[1] = me[1] * scaleX te[2] = me[2] * scaleX te[3] = 0 te[4] = me[4] * scaleY te[5] = me[5] * scaleY te[6] = me[6] * scaleY te[7] = 0 te[8] = me[8] * scaleZ te[9] = me[9] * scaleZ te[10] = me[10] * scaleZ te[11] = 0 te[12] = 0 te[13] = 0 te[14] = 0 te[15] = 1 return this } makeRotationFromEuler(euler) { if (!(euler && euler.isEuler)) { console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.') } const te = this.elements const x = euler.x, y = euler.y, z = euler.z const a = Math.cos(x), b = Math.sin(x) const c = Math.cos(y), d = Math.sin(y) const e = Math.cos(z), f = Math.sin(z) if (euler.order === 'XYZ') { const ae = a * e, af = a * f, be = b * e, bf = b * f te[0] = c * e te[4] = -c * f te[8] = d te[1] = af + be * d te[5] = ae - bf * d te[9] = -b * c te[2] = bf - ae * d te[6] = be + af * d te[10] = a * c } else if (euler.order === 'YXZ') { const ce = c * e, cf = c * f, de = d * e, df = d * f te[0] = ce + df * b te[4] = de * b - cf te[8] = a * d te[1] = a * f te[5] = a * e te[9] = -b te[2] = cf * b - de te[6] = df + ce * b te[10] = a * c } else if (euler.order === 'ZXY') { const ce = c * e, cf = c * f, de = d * e, df = d * f te[0] = ce - df * b te[4] = -a * f te[8] = de + cf * b te[1] = cf + de * b te[5] = a * e te[9] = df - ce * b te[2] = -a * d te[6] = b te[10] = a * c } else if (euler.order === 'ZYX') { const ae = a * e, af = a * f, be = b * e, bf = b * f te[0] = c * e te[4] = be * d - af te[8] = ae * d + bf te[1] = c * f te[5] = bf * d + ae te[9] = af * d - be te[2] = -d te[6] = b * c te[10] = a * c } else if (euler.order === 'YZX') { const ac = a * c, ad = a * d, bc = b * c, bd = b * d te[0] = c * e te[4] = bd - ac * f te[8] = bc * f + ad te[1] = f te[5] = a * e te[9] = -b * e te[2] = -d * e te[6] = ad * f + bc te[10] = ac - bd * f } else if (euler.order === 'XZY') { const ac = a * c, ad = a * d, bc = b * c, bd = b * d te[0] = c * e te[4] = -f te[8] = d * e te[1] = ac * f + bd te[5] = a * e te[9] = ad * f - bc te[2] = bc * f - ad te[6] = b * e te[10] = bd * f + ac } // bottom row te[3] = 0 te[7] = 0 te[11] = 0 // last column te[12] = 0 te[13] = 0 te[14] = 0 te[15] = 1 return this } makeRotationFromQuaternion(q) { return this.compose(_zero, q, _one) } lookAt(eye, target, up) { const te = this.elements _z.subVectors(eye, target) if (_z.lengthSq() === 0) { // eye and target are in the same position _z.z = 1 } _z.normalize() _x.crossVectors(up, _z) if (_x.lengthSq() === 0) { // up and z are parallel if (Math.abs(up.z) === 1) { _z.x += 0.0001 } else { _z.z += 0.0001 } _z.normalize() _x.crossVectors(up, _z) } _x.normalize() _y.crossVectors(_z, _x) te[0] = _x.x te[4] = _y.x te[8] = _z.x te[1] = _x.y te[5] = _y.y te[9] = _z.y te[2] = _x.z te[6] = _y.z te[10] = _z.z return this } multiply(m, n) { if (n !== undefined) { console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.') return this.multiplyMatrices(m, n) } return this.multiplyMatrices(this, m) } premultiply(m) { return this.multiplyMatrices(m, this) } multiplyMatrices(a, b) { const ae = a.elements const be = b.elements const te = this.elements const a11 = ae[0], a12 = ae[4], a13 = ae[8], a14 = ae[12] const a21 = ae[1], a22 = ae[5], a23 = ae[9], a24 = ae[13] const a31 = ae[2], a32 = ae[6], a33 = ae[10], a34 = ae[14] const a41 = ae[3], a42 = ae[7], a43 = ae[11], a44 = ae[15] const b11 = be[0], b12 = be[4], b13 = be[8], b14 = be[12] const b21 = be[1], b22 = be[5], b23 = be[9], b24 = be[13] const b31 = be[2], b32 = be[6], b33 = be[10], b34 = be[14] const b41 = be[3], b42 = be[7], b43 = be[11], b44 = be[15] te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41 te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42 te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43 te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44 te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41 te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42 te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43 te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44 te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41 te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42 te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43 te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44 te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41 te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42 te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43 te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44 return this } multiplyScalar(s) { const te = this.elements te[0] *= s te[4] *= s te[8] *= s te[12] *= s te[1] *= s te[5] *= s te[9] *= s te[13] *= s te[2] *= s te[6] *= s te[10] *= s te[14] *= s te[3] *= s te[7] *= s te[11] *= s te[15] *= s return this } determinant() { const te = this.elements const n11 = te[0], n12 = te[4], n13 = te[8], n14 = te[12] const n21 = te[1], n22 = te[5], n23 = te[9], n24 = te[13] const n31 = te[2], n32 = te[6], n33 = te[10], n34 = te[14] const n41 = te[3], n42 = te[7], n43 = te[11], n44 = te[15] //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31) ) } transpose() { const te = this.elements let tmp tmp = te[1] te[1] = te[4] te[4] = tmp tmp = te[2] te[2] = te[8] te[8] = tmp tmp = te[6] te[6] = te[9] te[9] = tmp tmp = te[3] te[3] = te[12] te[12] = tmp tmp = te[7] te[7] = te[13] te[13] = tmp tmp = te[11] te[11] = te[14] te[14] = tmp return this } setPosition(x, y, z) { const te = this.elements if (x.isVector3) { te[12] = x.x te[13] = x.y te[14] = x.z } else { te[12] = x te[13] = y te[14] = z } return this } invert() { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm const te = this.elements, n11 = te[0], n21 = te[1], n31 = te[2], n41 = te[3], n12 = te[4], n22 = te[5], n32 = te[6], n42 = te[7], n13 = te[8], n23 = te[9], n33 = te[10], n43 = te[11], n14 = te[12], n24 = te[13], n34 = te[14], n44 = te[15], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14 if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) const detInv = 1 / det te[0] = t11 * detInv te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv te[4] = t12 * detInv te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv te[8] = t13 * detInv te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv te[12] = t14 * detInv te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv return this } scale(v) { const te = this.elements const x = v.x, y = v.y, z = v.z te[0] *= x te[4] *= y te[8] *= z te[1] *= x te[5] *= y te[9] *= z te[2] *= x te[6] *= y te[10] *= z te[3] *= x te[7] *= y te[11] *= z return this } getMaxScaleOnAxis() { const te = this.elements const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2] const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6] const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10] return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq)) } makeTranslation(x, y, z) { this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1) return this } makeRotationX(theta) { const c = Math.cos(theta), s = Math.sin(theta) this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1) return this } makeRotationY(theta) { const c = Math.cos(theta), s = Math.sin(theta) this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1) return this } makeRotationZ(theta) { const c = Math.cos(theta), s = Math.sin(theta) this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) return this } makeRotationAxis(axis, angle) { // Based on http://www.gamedev.net/reference/articles/article1199.asp const c = Math.cos(angle) const s = Math.sin(angle) const t = 1 - c const x = axis.x, y = axis.y, z = axis.z const tx = t * x, ty = t * y this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1) return this } makeScale(x, y, z) { this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1) return this } makeShear(xy, xz, yx, yz, zx, zy) { this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1) return this } compose(position, quaternion, scale) { const te = this.elements const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w const x2 = x + x, y2 = y + y, z2 = z + z const xx = x * x2, xy = x * y2, xz = x * z2 const yy = y * y2, yz = y * z2, zz = z * z2 const wx = w * x2, wy = w * y2, wz = w * z2 const sx = scale.x, sy = scale.y, sz = scale.z te[0] = (1 - (yy + zz)) * sx te[1] = (xy + wz) * sx te[2] = (xz - wy) * sx te[3] = 0 te[4] = (xy - wz) * sy te[5] = (1 - (xx + zz)) * sy te[6] = (yz + wx) * sy te[7] = 0 te[8] = (xz + wy) * sz te[9] = (yz - wx) * sz te[10] = (1 - (xx + yy)) * sz te[11] = 0 te[12] = position.x te[13] = position.y te[14] = position.z te[15] = 1 return this } decompose(position, quaternion, scale) { const te = this.elements let sx = _v1$5.set(te[0], te[1], te[2]).length() const sy = _v1$5.set(te[4], te[5], te[6]).length() const sz = _v1$5.set(te[8], te[9], te[10]).length() // if determine is negative, we need to invert one scale const det = this.determinant() if (det < 0) sx = -sx position.x = te[12] position.y = te[13] position.z = te[14] // scale the rotation part _m1$2.copy(this) const invSX = 1 / sx const invSY = 1 / sy const invSZ = 1 / sz _m1$2.elements[0] *= invSX _m1$2.elements[1] *= invSX _m1$2.elements[2] *= invSX _m1$2.elements[4] *= invSY _m1$2.elements[5] *= invSY _m1$2.elements[6] *= invSY _m1$2.elements[8] *= invSZ _m1$2.elements[9] *= invSZ _m1$2.elements[10] *= invSZ quaternion.setFromRotationMatrix(_m1$2) scale.x = sx scale.y = sy scale.z = sz return this } makePerspective(left, right, top, bottom, near, far) { if (far === undefined) { console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.') } const te = this.elements const x = (2 * near) / (right - left) const y = (2 * near) / (top - bottom) const a = (right + left) / (right - left) const b = (top + bottom) / (top - bottom) const c = -(far + near) / (far - near) const d = (-2 * far * near) / (far - near) te[0] = x te[4] = 0 te[8] = a te[12] = 0 te[1] = 0 te[5] = y te[9] = b te[13] = 0 te[2] = 0 te[6] = 0 te[10] = c te[14] = d te[3] = 0 te[7] = 0 te[11] = -1 te[15] = 0 return this } makeOrthographic(left, right, top, bottom, near, far) { const te = this.elements const w = 1.0 / (right - left) const h = 1.0 / (top - bottom) const p = 1.0 / (far - near) const x = (right + left) * w const y = (top + bottom) * h const z = (far + near) * p te[0] = 2 * w te[4] = 0 te[8] = 0 te[12] = -x te[1] = 0 te[5] = 2 * h te[9] = 0 te[13] = -y te[2] = 0 te[6] = 0 te[10] = -2 * p te[14] = -z te[3] = 0 te[7] = 0 te[11] = 0 te[15] = 1 return this } equals(matrix) { const te = this.elements const me = matrix.elements for (let i = 0; i < 16; i++) { if (te[i] !== me[i]) return false } return true } fromArray(array, offset = 0) { for (let i = 0; i < 16; i++) { this.elements[i] = array[i + offset] } return this } toArray(array = [], offset = 0) { const te = this.elements array[offset] = te[0] array[offset + 1] = te[1] array[offset + 2] = te[2] array[offset + 3] = te[3] array[offset + 4] = te[4] array[offset + 5] = te[5] array[offset + 6] = te[6] array[offset + 7] = te[7] array[offset + 8] = te[8] array[offset + 9] = te[9] array[offset + 10] = te[10] array[offset + 11] = te[11] array[offset + 12] = te[12] array[offset + 13] = te[13] array[offset + 14] = te[14] array[offset + 15] = te[15] return array } } const _v1$5 = /*@__PURE__*/ new Vector3() const _m1$2 = /*@__PURE__*/ new Matrix4() const _zero = /*@__PURE__*/ new Vector3(0, 0, 0) const _one = /*@__PURE__*/ new Vector3(1, 1, 1) const _x = /*@__PURE__*/ new Vector3() const _y = /*@__PURE__*/ new Vector3() const _z = /*@__PURE__*/ new Vector3() const _matrix$1 = /*@__PURE__*/ new Matrix4() const _quaternion$3 = /*@__PURE__*/ new Quaternion() class Euler { constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) { this.isEuler = true this._x = x this._y = y this._z = z this._order = order } get x() { return this._x } set x(value) { this._x = value this._onChangeCallback() } get y() { return this._y } set y(value) { this._y = value this._onChangeCallback() } get z() { return this._z } set z(value) { this._z = value this._onChangeCallback() } get order() { return this._order } set order(value) { this._order = value this._onChangeCallback() } set(x, y, z, order = this._order) { this._x = x this._y = y this._z = z this._order = order this._onChangeCallback() return this } clone() { return new this.constructor(this._x, this._y, this._z, this._order) } copy(euler) { this._x = euler._x this._y = euler._y this._z = euler._z this._order = euler._order this._onChangeCallback() return this } setFromRotationMatrix(m, order = this._order, update = true) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements const m11 = te[0], m12 = te[4], m13 = te[8] const m21 = te[1], m22 = te[5], m23 = te[9] const m31 = te[2], m32 = te[6], m33 = te[10] switch (order) { case 'XYZ': this._y = Math.asin(clamp(m13, -1, 1)) if (Math.abs(m13) < 0.9999999) { this._x = Math.atan2(-m23, m33) this._z = Math.atan2(-m12, m11) } else { this._x = Math.atan2(m32, m22) this._z = 0 } break case 'YXZ': this._x = Math.asin(-clamp(m23, -1, 1)) if (Math.abs(m23) < 0.9999999) { this._y = Math.atan2(m13, m33) this._z = Math.atan2(m21, m22) } else { this._y = Math.atan2(-m31, m11) this._z = 0 } break case 'ZXY': this._x = Math.asin(clamp(m32, -1, 1)) if (Math.abs(m32) < 0.9999999) { this._y = Math.atan2(-m31, m33) this._z = Math.atan2(-m12, m22) } else { this._y = 0 this._z = Math.atan2(m21, m11) } break case 'ZYX': this._y = Math.asin(-clamp(m31, -1, 1)) if (Math.abs(m31) < 0.9999999) { this._x = Math.atan2(m32, m33) this._z = Math.atan2(m21, m11) } else { this._x = 0 this._z = Math.atan2(-m12, m22) } break case 'YZX': this._z = Math.asin(clamp(m21, -1, 1)) if (Math.abs(m21) < 0.9999999) { this._x = Math.atan2(-m23, m22) this._y = Math.atan2(-m31, m11) } else { this._x = 0 this._y = Math.atan2(m13, m33) } break case 'XZY': this._z = Math.asin(-clamp(m12, -1, 1)) if (Math.abs(m12) < 0.9999999) { this._x = Math.atan2(m32, m22) this._y = Math.atan2(m13, m11) } else { this._x = Math.atan2(-m23, m33) this._y = 0 } break default: console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order) } this._order = order if (update === true) this._onChangeCallback() return this } setFromQuaternion(q, order, update) { _matrix$1.makeRotationFromQuaternion(q) return this.setFromRotationMatrix(_matrix$1, order, update) } setFromVector3(v, order = this._order) { return this.set(v.x, v.y, v.z, order) } reorder(newOrder) { // WARNING: this discards revolution information -bhouston _quaternion$3.setFromEuler(this) return this.setFromQuaternion(_quaternion$3, newOrder) } equals(euler) { return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order } fromArray(array) { this._x = array[0] this._y = array[1] this._z = array[2] if (array[3] !== undefined) this._order = array[3] this._onChangeCallback() return this } toArray(array = [], offset = 0) { array[offset] = this._x array[offset + 1] = this._y array[offset + 2] = this._z array[offset + 3] = this._order return array } _onChange(callback) { this._onChangeCallback = callback return this } _onChangeCallback() {} *[Symbol.iterator]() { yield this._x yield this._y yield this._z yield this._order } // @deprecated since r138, 02cf0df1cb4575d5842fef9c85bb5a89fe020d53 toVector3() { console.error('THREE.Euler: .toVector3() has been removed. Use Vector3.setFromEuler() instead') } } Euler.DefaultOrder = 'XYZ' Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX'] class Layers { constructor() { this.mask = 1 | 0 } set(channel) { this.mask = ((1 << channel) | 0) >>> 0 } enable(channel) { this.mask |= (1 << channel) | 0 } enableAll() { this.mask = 0xffffffff | 0 } toggle(channel) { this.mask ^= (1 << channel) | 0 } disable(channel) { this.mask &= ~((1 << channel) | 0) } disableAll() { this.mask = 0 } test(layers) { return (this.mask & layers.mask) !== 0 } isEnabled(channel) { return (this.mask & ((1 << channel) | 0)) !== 0 } } let _object3DId = 0 const _v1$4 = /*@__PURE__*/ new Vector3() const _q1 = /*@__PURE__*/ new Quaternion() const _m1$1 = /*@__PURE__*/ new Matrix4() const _target = /*@__PURE__*/ new Vector3() const _position$3 = /*@__PURE__*/ new Vector3() const _scale$2 = /*@__PURE__*/ new Vector3() const _quaternion$2 = /*@__PURE__*/ new Quaternion() const _xAxis = /*@__PURE__*/ new Vector3(1, 0, 0) const _yAxis = /*@__PURE__*/ new Vector3(0, 1, 0) const _zAxis = /*@__PURE__*/ new Vector3(0, 0, 1) const _addedEvent = { type: 'added' } const _removedEvent = { type: 'removed' } class Object3D extends EventDispatcher { constructor() { super() this.isObject3D = true Object.defineProperty(this, 'id', { value: _object3DId++ }) this.uuid = generateUUID() this.name = '' this.type = 'Object3D' this.parent = null this.children = [] this.up = Object3D.DefaultUp.clone() const position = new Vector3() const rotation = new Euler() const quaternion = new Quaternion() const scale = new Vector3(1, 1, 1) function onRotationChange() { quaternion.setFromEuler(rotation, false) } function onQuaternionChange() { rotation.setFromQuaternion(quaternion, undefined, false) } rotation._onChange(onRotationChange) quaternion._onChange(onQuaternionChange) Object.defineProperties(this, { position: { configurable: true, enumerable: true, value: position }, rotation: { configurable: true, enumerable: true, value: rotation }, quaternion: { configurable: true, enumerable: true, value: quaternion }, scale: { configurable: true, enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } }) this.matrix = new Matrix4() this.matrixWorld = new Matrix4() this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate this.matrixWorldNeedsUpdate = false this.layers = new Layers() this.visible = true this.castShadow = false this.receiveShadow = false this.frustumCulled = true this.renderOrder = 0 this.animations = [] this.userData = {} } onBeforeRender(/* renderer, scene, camera, geometry, material, group */) {} onAfterRender(/* renderer, scene, camera, geometry, material, group */) {} applyMatrix4(matrix) { if (this.matrixAutoUpdate) this.updateMatrix() this.matrix.premultiply(matrix) this.matrix.decompose(this.position, this.quaternion, this.scale) } applyQuaternion(q) { this.quaternion.premultiply(q) return this } setRotationFromAxisAngle(axis, angle) { // assumes axis is normalized this.quaternion.setFromAxisAngle(axis, angle) } setRotationFromEuler(euler) { this.quaternion.setFromEuler(euler, true) } setRotationFromMatrix(m) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix(m) } setRotationFromQuaternion(q) { // assumes q is normalized this.quaternion.copy(q) } rotateOnAxis(axis, angle) { // rotate object on axis in object space // axis is assumed to be normalized _q1.setFromAxisAngle(axis, angle) this.quaternion.multiply(_q1) return this } rotateOnWorldAxis(axis, angle) { // rotate object on axis in world space // axis is assumed to be normalized // method assumes no rotated parent _q1.setFromAxisAngle(axis, angle) this.quaternion.premultiply(_q1) return this } rotateX(angle) { return this.rotateOnAxis(_xAxis, angle) } rotateY(angle) { return this.rotateOnAxis(_yAxis, angle) } rotateZ(angle) { return this.rotateOnAxis(_zAxis, angle) } translateOnAxis(axis, distance) { // translate object by distance along axis in object space // axis is assumed to be normalized _v1$4.copy(axis).applyQuaternion(this.quaternion) this.position.add(_v1$4.multiplyScalar(distance)) return this } translateX(distance) { return this.translateOnAxis(_xAxis, distance) } translateY(distance) { return this.translateOnAxis(_yAxis, distance) } translateZ(distance) { return this.translateOnAxis(_zAxis, distance) } localToWorld(vector) { return vector.applyMatrix4(this.matrixWorld) } worldToLocal(vector) { return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert()) } lookAt(x, y, z) { // This method does not support objects having non-uniformly-scaled parent(s) if (x.isVector3) { _target.copy(x) } else { _target.set(x, y, z) } const parent = this.parent this.updateWorldMatrix(true, false) _position$3.setFromMatrixPosition(this.matrixWorld) if (this.isCamera || this.isLight) { _m1$1.lookAt(_position$3, _target, this.up) } else { _m1$1.lookAt(_target, _position$3, this.up) } this.quaternion.setFromRotationMatrix(_m1$1) if (parent) { _m1$1.extractRotation(parent.matrixWorld) _q1.setFromRotationMatrix(_m1$1) this.quaternion.premultiply(_q1.invert()) } } add(object) { if (arguments.length > 1) { for (let i = 0; i < arguments.length; i++) { this.add(arguments[i]) } return this } if (object === this) { console.error("THREE.Object3D.add: object can't be added as a child of itself.", object) return this } if (object && object.isObject3D) { if (object.parent !== null) { object.parent.remove(object) } object.parent = this this.children.push(object) object.dispatchEvent(_addedEvent) } else { console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object) } return this } remove(object) { if (arguments.length > 1) { for (let i = 0; i < arguments.length; i++) { this.remove(arguments[i]) } return this } const index = this.children.indexOf(object) if (index !== -1) { object.parent = null this.children.splice(index, 1) object.dispatchEvent(_removedEvent) } return this } removeFromParent() { const parent = this.parent if (parent !== null) { parent.remove(this) } return this } clear() { for (let i = 0; i < this.children.length; i++) { const object = this.children[i] object.parent = null object.dispatchEvent(_removedEvent) } this.children.length = 0 return this } attach(object) { // adds object as a child of this, while maintaining the object's world transform // Note: This method does not support scene graphs having non-uniformly-scaled nodes(s) this.updateWorldMatrix(true, false) _m1$1.copy(this.matrixWorld).invert() if (object.parent !== null) { object.parent.updateWorldMatrix(true, false) _m1$1.multiply(object.parent.matrixWorld) } object.applyMatrix4(_m1$1) this.add(object) object.updateWorldMatrix(false, true) return this } getObjectById(id) { return this.getObjectByProperty('id', id) } getObjectByName(name) { return this.getObjectByProperty('name', name) } getObjectByProperty(name, value) { if (this[name] === value) return this for (let i = 0, l = this.children.length; i < l; i++) { const child = this.children[i] const object = child.getObjectByProperty(name, value) if (object !== undefined) { return object } } return undefined } getWorldPosition(target) { this.updateWorldMatrix(true, false) return target.setFromMatrixPosition(this.matrixWorld) } getWorldQuaternion(target) { this.updateWorldMatrix(true, false) this.matrixWorld.decompose(_position$3, target, _scale$2) return target } getWorldScale(target) { this.updateWorldMatrix(true, false) this.matrixWorld.decompose(_position$3, _quaternion$2, target) return target } getWorldDirection(target) { this.updateWorldMatrix(true, false) const e = this.matrixWorld.elements return target.set(e[8], e[9], e[10]).normalize() } raycast(/* raycaster, intersects */) {} traverse(callback) { callback(this) const children = this.children for (let i = 0, l = children.length; i < l; i++) { children[i].traverse(callback) } } traverseVisible(callback) { if (this.visible === false) return callback(this) const children = this.children for (let i = 0, l = children.length; i < l; i++) { children[i].traverseVisible(callback) } } traverseAncestors(callback) { const parent = this.parent if (parent !== null) { callback(parent) parent.traverseAncestors(callback) } } updateMatrix() { this.matrix.compose(this.position, this.quaternion, this.scale) this.matrixWorldNeedsUpdate = true } updateMatrixWorld(force) { if (this.matrixAutoUpdate) this.updateMatrix() if (this.matrixWorldNeedsUpdate || force) { if (this.parent === null) { this.matrixWorld.copy(this.matrix) } else { this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix) } this.matrixWorldNeedsUpdate = false force = true } // update children const children = this.children for (let i = 0, l = children.length; i < l; i++) { children[i].updateMatrixWorld(force) } } updateWorldMatrix(updateParents, updateChildren) { const parent = this.parent if (updateParents === true && parent !== null) { parent.updateWorldMatrix(true, false) } if (this.matrixAutoUpdate) this.updateMatrix() if (this.parent === null) { this.matrixWorld.copy(this.matrix) } else { this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix) } // update children if (updateChildren === true) { const children = this.children for (let i = 0, l = children.length; i < l; i++) { children[i].updateWorldMatrix(false, true) } } } toJSON(meta) { // meta is a string when called from JSON.stringify const isRootObject = meta === undefined || typeof meta === 'string' const output = {} // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if (isRootObject) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {}, shapes: {}, skeletons: {}, animations: {}, nodes: {} } output.metadata = { version: 4.5, type: 'Object', generator: 'Object3D.toJSON' } } // standard Object3D serialization const object = {} object.uuid = this.uuid object.type = this.type if (this.name !== '') object.name = this.name if (this.castShadow === true) object.castShadow = true if (this.receiveShadow === true) object.receiveShadow = true if (this.visible === false) object.visible = false if (this.frustumCulled === false) object.frustumCulled = false if (this.renderOrder !== 0) object.renderOrder = this.renderOrder if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData object.layers = this.layers.mask object.matrix = this.matrix.toArray() if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false // object specific properties if (this.isInstancedMesh) { object.type = 'InstancedMesh' object.count = this.count object.instanceMatrix = this.instanceMatrix.toJSON() if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON() } // function serialize(library, element) { if (library[element.uuid] === undefined) { library[element.uuid] = element.toJSON(meta) } return element.uuid } if (this.isScene) { if (this.background) { if (this.background.isColor) { object.background = this.background.toJSON() } else if (this.background.isTexture) { object.background = this.background.toJSON(meta).uuid } } if (this.environment && this.environment.isTexture) { object.environment = this.environment.toJSON(meta).uuid } } else if (this.isMesh || this.isLine || this.isPoints) { object.geometry = serialize(meta.geometries, this.geometry) const parameters = this.geometry.parameters if (parameters !== undefined && parameters.shapes !== undefined) { const shapes = parameters.shapes if (Array.isArray(shapes)) { for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i] serialize(meta.shapes, shape) } } else { serialize(meta.shapes, shapes) } } } if (this.isSkinnedMesh) { object.bindMode = this.bindMode object.bindMatrix = this.bindMatrix.toArray() if (this.skeleton !== undefined) { serialize(meta.skeletons, this.skeleton) object.skeleton = this.skeleton.uuid } } if (this.material !== undefined) { if (Array.isArray(this.material)) { const uuids = [] for (let i = 0, l = this.material.length; i < l; i++) { uuids.push(serialize(meta.materials, this.material[i])) } object.material = uuids } else { object.material = serialize(meta.materials, this.material) } } // if (this.children.length > 0) { object.children = [] for (let i = 0; i < this.children.length; i++) { object.children.push(this.children[i].toJSON(meta).object) } } // if (this.animations.length > 0) { object.animations = [] for (let i = 0; i < this.animations.length; i++) { const animation = this.animations[i] object.animations.push(serialize(meta.animations, animation)) } } if (isRootObject) { const geometries = extractFromCache(meta.geometries) const materials = extractFromCache(meta.materials) const textures = extractFromCache(meta.textures) const images = extractFromCache(meta.images) const shapes = extractFromCache(meta.shapes) const skeletons = extractFromCache(meta.skeletons) const animations = extractFromCache(meta.animations) const nodes = extractFromCache(meta.nodes) if (geometries.length > 0) output.geometries = geometries if (materials.length > 0) output.materials = materials if (textures.length > 0) output.textures = textures if (images.length > 0) output.images = images if (shapes.length > 0) output.shapes = shapes if (skeletons.length > 0) output.skeletons = skeletons if (animations.length > 0) output.animations = animations if (nodes.length > 0) output.nodes = nodes } output.object = object return output // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache(cache) { const values = [] for (const key in cache) { const data = cache[key] delete data.metadata values.push(data) } return values } } clone(recursive) { return new this.constructor().copy(this, recursive) } copy(source, recursive = true) { this.name = source.name this.up.copy(source.up) this.position.copy(source.position) this.rotation.order = source.rotation.order this.quaternion.copy(source.quaternion) this.scale.copy(source.scale) this.matrix.copy(source.matrix) this.matrixWorld.copy(source.matrixWorld) this.matrixAutoUpdate = source.matrixAutoUpdate this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate this.layers.mask = source.layers.mask this.visible = source.visible this.castShadow = source.castShadow this.receiveShadow = source.receiveShadow this.frustumCulled = source.frustumCulled this.renderOrder = source.renderOrder this.userData = JSON.parse(JSON.stringify(source.userData)) if (recursive === true) { for (let i = 0; i < source.children.length; i++) { const child = source.children[i] this.add(child.clone()) } } return this } } Object3D.DefaultUp = new Vector3(0, 1, 0) Object3D.DefaultMatrixAutoUpdate = true const _v0$1 = /*@__PURE__*/ new Vector3() const _v1$3 = /*@__PURE__*/ new Vector3() const _v2$2 = /*@__PURE__*/ new Vector3() const _v3$1 = /*@__PURE__*/ new Vector3() const _vab = /*@__PURE__*/ new Vector3() const _vac = /*@__PURE__*/ new Vector3() const _vbc = /*@__PURE__*/ new Vector3() const _vap = /*@__PURE__*/ new Vector3() const _vbp = /*@__PURE__*/ new Vector3() const _vcp = /*@__PURE__*/ new Vector3() class Triangle { constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) { this.a = a this.b = b this.c = c } static getNormal(a, b, c, target) { target.subVectors(c, b) _v0$1.subVectors(a, b) target.cross(_v0$1) const targetLengthSq = target.lengthSq() if (targetLengthSq > 0) { return target.multiplyScalar(1 / Math.sqrt(targetLengthSq)) } return target.set(0, 0, 0) } // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html static getBarycoord(point, a, b, c, target) { _v0$1.subVectors(c, a) _v1$3.subVectors(b, a) _v2$2.subVectors(point, a) const dot00 = _v0$1.dot(_v0$1) const dot01 = _v0$1.dot(_v1$3) const dot02 = _v0$1.dot(_v2$2) const dot11 = _v1$3.dot(_v1$3) const dot12 = _v1$3.dot(_v2$2) const denom = dot00 * dot11 - dot01 * dot01 // collinear or singular triangle if (denom === 0) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return target.set(-2, -1, -1) } const invDenom = 1 / denom const u = (dot11 * dot02 - dot01 * dot12) * invDenom const v = (dot00 * dot12 - dot01 * dot02) * invDenom // barycentric coordinates must always sum to 1 return target.set(1 - u - v, v, u) } static containsPoint(point, a, b, c) { this.getBarycoord(point, a, b, c, _v3$1) return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1 } static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) { this.getBarycoord(point, p1, p2, p3, _v3$1) target.set(0, 0) target.addScaledVector(uv1, _v3$1.x) target.addScaledVector(uv2, _v3$1.y) target.addScaledVector(uv3, _v3$1.z) return target } static isFrontFacing(a, b, c, direction) { _v0$1.subVectors(c, b) _v1$3.subVectors(a, b) // strictly front facing return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false } set(a, b, c) { this.a.copy(a) this.b.copy(b) this.c.copy(c) return this } setFromPointsAndIndices(points, i0, i1, i2) { this.a.copy(points[i0]) this.b.copy(points[i1]) this.c.copy(points[i2]) return this } setFromAttributeAndIndices(attribute, i0, i1, i2) { this.a.fromBufferAttribute(attribute, i0) this.b.fromBufferAttribute(attribute, i1) this.c.fromBufferAttribute(attribute, i2) return this } clone() { return new this.constructor().copy(this) } copy(triangle) { this.a.copy(triangle.a) this.b.copy(triangle.b) this.c.copy(triangle.c) return this } getArea() { _v0$1.subVectors(this.c, this.b) _v1$3.subVectors(this.a, this.b) return _v0$1.cross(_v1$3).length() * 0.5 } getMidpoint(target) { return target .addVectors(this.a, this.b) .add(this.c) .multiplyScalar(1 / 3) } getNormal(target) { return Triangle.getNormal(this.a, this.b, this.c, target) } getPlane(target) { return target.setFromCoplanarPoints(this.a, this.b, this.c) } getBarycoord(point, target) { return Triangle.getBarycoord(point, this.a, this.b, this.c, target) } getUV(point, uv1, uv2, uv3, target) { return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target) } containsPoint(point) { return Triangle.containsPoint(point, this.a, this.b, this.c) } isFrontFacing(direction) { return Triangle.isFrontFacing(this.a, this.b, this.c, direction) } intersectsBox(box) { return box.intersectsTriangle(this) } closestPointToPoint(p, target) { const a = this.a, b = this.b, c = this.c let v, w // algorithm thanks to Real-Time Collision Detection by Christer Ericson, // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., // under the accompanying license; see chapter 5.1.5 for detailed explanation. // basically, we're distinguishing which of the voronoi regions of the triangle // the point lies in with the minimum amount of redundant computation. _vab.subVectors(b, a) _vac.subVectors(c, a) _vap.subVectors(p, a) const d1 = _vab.dot(_vap) const d2 = _vac.dot(_vap) if (d1 <= 0 && d2 <= 0) { // vertex region of A; barycentric coords (1, 0, 0) return target.copy(a) } _vbp.subVectors(p, b) const d3 = _vab.dot(_vbp) const d4 = _vac.dot(_vbp) if (d3 >= 0 && d4 <= d3) { // vertex region of B; barycentric coords (0, 1, 0) return target.copy(b) } const vc = d1 * d4 - d3 * d2 if (vc <= 0 && d1 >= 0 && d3 <= 0) { v = d1 / (d1 - d3) // edge region of AB; barycentric coords (1-v, v, 0) return target.copy(a).addScaledVector(_vab, v) } _vcp.subVectors(p, c) const d5 = _vab.dot(_vcp) const d6 = _vac.dot(_vcp) if (d6 >= 0 && d5 <= d6) { // vertex region of C; barycentric coords (0, 0, 1) return target.copy(c) } const vb = d5 * d2 - d1 * d6 if (vb <= 0 && d2 >= 0 && d6 <= 0) { w = d2 / (d2 - d6) // edge region of AC; barycentric coords (1-w, 0, w) return target.copy(a).addScaledVector(_vac, w) } const va = d3 * d6 - d5 * d4 if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) { _vbc.subVectors(c, b) w = (d4 - d3) / (d4 - d3 + (d5 - d6)) // edge region of BC; barycentric coords (0, 1-w, w) return target.copy(b).addScaledVector(_vbc, w) // edge region of BC } // face region const denom = 1 / (va + vb + vc) // u = va * denom v = vb * denom w = vc * denom return target .copy(a) .addScaledVector(_vab, v) .addScaledVector(_vac, w) } equals(triangle) { return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c) } } let materialId = 0 class Material extends EventDispatcher { constructor() { super() this.isMaterial = true Object.defineProperty(this, 'id', { value: materialId++ }) this.uuid = generateUUID() this.name = '' this.type = 'Material' this.blending = NormalBlending this.side = FrontSide this.vertexColors = false this.opacity = 1 this.transparent = false this.blendSrc = SrcAlphaFactor this.blendDst = OneMinusSrcAlphaFactor this.blendEquation = AddEquation this.blendSrcAlpha = null this.blendDstAlpha = null this.blendEquationAlpha = null this.depthFunc = LessEqualDepth this.depthTest = true this.depthWrite = true this.stencilWriteMask = 0xff this.stencilFunc = AlwaysStencilFunc this.stencilRef = 0 this.stencilFuncMask = 0xff this.stencilFail = KeepStencilOp this.stencilZFail = KeepStencilOp this.stencilZPass = KeepStencilOp this.stencilWrite = false this.clippingPlanes = null this.clipIntersection = false this.clipShadows = false this.shadowSide = null this.colorWrite = true this.precision = null // override the renderer's default precision for this material this.polygonOffset = false this.polygonOffsetFactor = 0 this.polygonOffsetUnits = 0 this.dithering = false this.alphaToCoverage = false this.premultipliedAlpha = false this.visible = true this.toneMapped = true this.userData = {} this.version = 0 this._alphaTest = 0 } get alphaTest() { return this._alphaTest } set alphaTest(value) { if (this._alphaTest > 0 !== value > 0) { this.version++ } this._alphaTest = value } onBuild(/* shaderobject, renderer */) {} onBeforeRender(/* renderer, scene, camera, geometry, object, group */) {} onBeforeCompile(/* shaderobject, renderer */) {} customProgramCacheKey() { return this.onBeforeCompile.toString() } setValues(values) { if (values === undefined) return for (const key in values) { const newValue = values[key] if (newValue === undefined) { console.warn("THREE.Material: '" + key + "' parameter is undefined.") continue } // for backward compatibility if shading is set in the constructor if (key === 'shading') { console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.') this.flatShading = newValue === FlatShading ? true : false continue } const currentValue = this[key] if (currentValue === undefined) { console.warn('THREE.' + this.type + ": '" + key + "' is not a property of this material.") continue } if (currentValue && currentValue.isColor) { currentValue.set(newValue) } else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) { currentValue.copy(newValue) } else { this[key] = newValue } } } toJSON(meta) { const isRootObject = meta === undefined || typeof meta === 'string' if (isRootObject) { meta = { textures: {}, images: {} } } const data = { metadata: { version: 4.5, type: 'Material', generator: 'Material.toJSON' } } // standard Material serialization data.uuid = this.uuid data.type = this.type if (this.name !== '') data.name = this.name if (this.color && this.color.isColor) data.color = this.color.getHex() if (this.roughness !== undefined) data.roughness = this.roughness if (this.metalness !== undefined) data.metalness = this.metalness if (this.sheen !== undefined) data.sheen = this.sheen if (this.sheenColor && this.sheenColor.isColor) data.sheenColor = this.sheenColor.getHex() if (this.sheenRoughness !== undefined) data.sheenRoughness = this.sheenRoughness if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex() if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity if (this.specular && this.specular.isColor) data.specular = this.specular.getHex() if (this.specularIntensity !== undefined) data.specularIntensity = this.specularIntensity if (this.specularColor && this.specularColor.isColor) data.specularColor = this.specularColor.getHex() if (this.shininess !== undefined) data.shininess = this.shininess if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness if (this.clearcoatMap && this.clearcoatMap.isTexture) { data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid } if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) { data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid } if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) { data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid data.clearcoatNormalScale = this.clearcoatNormalScale.toArray() } if (this.iridescence !== undefined) data.iridescence = this.iridescence if (this.iridescenceIOR !== undefined) data.iridescenceIOR = this.iridescenceIOR if (this.iridescenceThicknessRange !== undefined) data.iridescenceThicknessRange = this.iridescenceThicknessRange if (this.iridescenceMap && this.iridescenceMap.isTexture) { data.iridescenceMap = this.iridescenceMap.toJSON(meta).uuid } if (this.iridescenceThicknessMap && this.iridescenceThicknessMap.isTexture) { data.iridescenceThicknessMap = this.iridescenceThicknessMap.toJSON(meta).uuid } if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid if (this.lightMap && this.lightMap.isTexture) { data.lightMap = this.lightMap.toJSON(meta).uuid data.lightMapIntensity = this.lightMapIntensity } if (this.aoMap && this.aoMap.isTexture) { data.aoMap = this.aoMap.toJSON(meta).uuid data.aoMapIntensity = this.aoMapIntensity } if (this.bumpMap && this.bumpMap.isTexture) { data.bumpMap = this.bumpMap.toJSON(meta).uuid data.bumpScale = this.bumpScale } if (this.normalMap && this.normalMap.isTexture) { data.normalMap = this.normalMap.toJSON(meta).uuid data.normalMapType = this.normalMapType data.normalScale = this.normalScale.toArray() } if (this.displacementMap && this.displacementMap.isTexture) { data.displacementMap = this.displacementMap.toJSON(meta).uuid data.displacementScale = this.displacementScale data.displacementBias = this.displacementBias } if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid if (this.specularIntensityMap && this.specularIntensityMap.isTexture) data.specularIntensityMap = this.specularIntensityMap.toJSON(meta).uuid if (this.specularColorMap && this.specularColorMap.isTexture) data.specularColorMap = this.specularColorMap.toJSON(meta).uuid if (this.envMap && this.envMap.isTexture) { data.envMap = this.envMap.toJSON(meta).uuid if (this.combine !== undefined) data.combine = this.combine } if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio if (this.gradientMap && this.gradientMap.isTexture) { data.gradientMap = this.gradientMap.toJSON(meta).uuid } if (this.transmission !== undefined) data.transmission = this.transmission if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid if (this.thickness !== undefined) data.thickness = this.thickness if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance if (this.attenuationColor !== undefined) data.attenuationColor = this.attenuationColor.getHex() if (this.size !== undefined) data.size = this.size if (this.shadowSide !== null) data.shadowSide = this.shadowSide if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation if (this.blending !== NormalBlending) data.blending = this.blending if (this.side !== FrontSide) data.side = this.side if (this.vertexColors) data.vertexColors = true if (this.opacity < 1) data.opacity = this.opacity if (this.transparent === true) data.transparent = this.transparent data.depthFunc = this.depthFunc data.depthTest = this.depthTest data.depthWrite = this.depthWrite data.colorWrite = this.colorWrite data.stencilWrite = this.stencilWrite data.stencilWriteMask = this.stencilWriteMask data.stencilFunc = this.stencilFunc data.stencilRef = this.stencilRef data.stencilFuncMask = this.stencilFuncMask data.stencilFail = this.stencilFail data.stencilZFail = this.stencilZFail data.stencilZPass = this.stencilZPass // rotation (SpriteMaterial) if (this.rotation !== undefined && this.rotation !== 0) data.rotation = this.rotation if (this.polygonOffset === true) data.polygonOffset = true if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits if (this.linewidth !== undefined && this.linewidth !== 1) data.linewidth = this.linewidth if (this.dashSize !== undefined) data.dashSize = this.dashSize if (this.gapSize !== undefined) data.gapSize = this.gapSize if (this.scale !== undefined) data.scale = this.scale if (this.dithering === true) data.dithering = true if (this.alphaTest > 0) data.alphaTest = this.alphaTest if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha if (this.wireframe === true) data.wireframe = this.wireframe if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin if (this.flatShading === true) data.flatShading = this.flatShading if (this.visible === false) data.visible = false if (this.toneMapped === false) data.toneMapped = false if (this.fog === false) data.fog = false if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData // TODO: Copied from Object3D.toJSON function extractFromCache(cache) { const values = [] for (const key in cache) { const data = cache[key] delete data.metadata values.push(data) } return values } if (isRootObject) { const textures = extractFromCache(meta.textures) const images = extractFromCache(meta.images) if (textures.length > 0) data.textures = textures if (images.length > 0) data.images = images } return data } clone() { return new this.constructor().copy(this) } copy(source) { this.name = source.name this.blending = source.blending this.side = source.side this.vertexColors = source.vertexColors this.opacity = source.opacity this.transparent = source.transparent this.blendSrc = source.blendSrc this.blendDst = source.blendDst this.blendEquation = source.blendEquation this.blendSrcAlpha = source.blendSrcAlpha this.blendDstAlpha = source.blendDstAlpha this.blendEquationAlpha = source.blendEquationAlpha this.depthFunc = source.depthFunc this.depthTest = source.depthTest this.depthWrite = source.depthWrite this.stencilWriteMask = source.stencilWriteMask this.stencilFunc = source.stencilFunc this.stencilRef = source.stencilRef this.stencilFuncMask = source.stencilFuncMask this.stencilFail = source.stencilFail this.stencilZFail = source.stencilZFail this.stencilZPass = source.stencilZPass this.stencilWrite = source.stencilWrite const srcPlanes = source.clippingPlanes let dstPlanes = null if (srcPlanes !== null) { const n = srcPlanes.length dstPlanes = new Array(n) for (let i = 0; i !== n; ++i) { dstPlanes[i] = srcPlanes[i].clone() } } this.clippingPlanes = dstPlanes this.clipIntersection = source.clipIntersection this.clipShadows = source.clipShadows this.shadowSide = source.shadowSide this.colorWrite = source.colorWrite this.precision = source.precision this.polygonOffset = source.polygonOffset this.polygonOffsetFactor = source.polygonOffsetFactor this.polygonOffsetUnits = source.polygonOffsetUnits this.dithering = source.dithering this.alphaTest = source.alphaTest this.alphaToCoverage = source.alphaToCoverage this.premultipliedAlpha = source.premultipliedAlpha this.visible = source.visible this.toneMapped = source.toneMapped this.userData = JSON.parse(JSON.stringify(source.userData)) return this } dispose() { this.dispatchEvent({ type: 'dispose' }) } set needsUpdate(value) { if (value === true) this.version++ } // @deprecated since r131, f5803c62cc4a29d90744e9dc7811d086e354c1d8 get vertexTangents() { console.warn('THREE.' + this.type + ': .vertexTangents has been removed.') return false } set vertexTangents(value) { console.warn('THREE.' + this.type + ': .vertexTangents has been removed.') } } Material.fromType = function(/*type*/) { // TODO: Behavior added in Materials.js return null } class MeshBasicMaterial extends Material { constructor(parameters) { super() this.isMeshBasicMaterial = true this.type = 'MeshBasicMaterial' this.color = new Color(0xffffff) // emissive this.map = null this.lightMap = null this.lightMapIntensity = 1.0 this.aoMap = null this.aoMapIntensity = 1.0 this.specularMap = null this.alphaMap = null this.envMap = null this.combine = MultiplyOperation this.reflectivity = 1 this.refractionRatio = 0.98 this.wireframe = false this.wireframeLinewidth = 1 this.wireframeLinecap = 'round' this.wireframeLinejoin = 'round' this.fog = true this.setValues(parameters) } copy(source) { super.copy(source) this.color.copy(source.color) this.map = source.map this.lightMap = source.lightMap this.lightMapIntensity = source.lightMapIntensity this.aoMap = source.aoMap this.aoMapIntensity = source.aoMapIntensity this.specularMap = source.specularMap this.alphaMap = source.alphaMap this.envMap = source.envMap this.combine = source.combine this.reflectivity = source.reflectivity this.refractionRatio = source.refractionRatio this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.wireframeLinecap = source.wireframeLinecap this.wireframeLinejoin = source.wireframeLinejoin this.fog = source.fog return this } } const _vector$9 = /*@__PURE__*/ new Vector3() const _vector2$1 = /*@__PURE__*/ new Vector2() class BufferAttribute { constructor(array, itemSize, normalized) { if (Array.isArray(array)) { throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.') } this.isBufferAttribute = true this.name = '' this.array = array this.itemSize = itemSize this.count = array !== undefined ? array.length / itemSize : 0 this.normalized = normalized === true this.usage = StaticDrawUsage this.updateRange = { offset: 0, count: -1 } this.version = 0 } onUploadCallback() {} set needsUpdate(value) { if (value === true) this.version++ } setUsage(value) { this.usage = value return this } copy(source) { this.name = source.name this.array = new source.array.constructor(source.array) this.itemSize = source.itemSize this.count = source.count this.normalized = source.normalized this.usage = source.usage return this } copyAt(index1, attribute, index2) { index1 *= this.itemSize index2 *= attribute.itemSize for (let i = 0, l = this.itemSize; i < l; i++) { this.array[index1 + i] = attribute.array[index2 + i] } return this } copyArray(array) { this.array.set(array) return this } copyColorsArray(colors) { const array = this.array let offset = 0 for (let i = 0, l = colors.length; i < l; i++) { let color = colors[i] if (color === undefined) { console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i) color = new Color() } array[offset++] = color.r array[offset++] = color.g array[offset++] = color.b } return this } copyVector2sArray(vectors) { const array = this.array let offset = 0 for (let i = 0, l = vectors.length; i < l; i++) { let vector = vectors[i] if (vector === undefined) { console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i) vector = new Vector2() } array[offset++] = vector.x array[offset++] = vector.y } return this } copyVector3sArray(vectors) { const array = this.array let offset = 0 for (let i = 0, l = vectors.length; i < l; i++) { let vector = vectors[i] if (vector === undefined) { console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i) vector = new Vector3() } array[offset++] = vector.x array[offset++] = vector.y array[offset++] = vector.z } return this } copyVector4sArray(vectors) { const array = this.array let offset = 0 for (let i = 0, l = vectors.length; i < l; i++) { let vector = vectors[i] if (vector === undefined) { console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i) vector = new Vector4() } array[offset++] = vector.x array[offset++] = vector.y array[offset++] = vector.z array[offset++] = vector.w } return this } applyMatrix3(m) { if (this.itemSize === 2) { for (let i = 0, l = this.count; i < l; i++) { _vector2$1.fromBufferAttribute(this, i) _vector2$1.applyMatrix3(m) this.setXY(i, _vector2$1.x, _vector2$1.y) } } else if (this.itemSize === 3) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.fromBufferAttribute(this, i) _vector$9.applyMatrix3(m) this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z) } } return this } applyMatrix4(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.fromBufferAttribute(this, i) _vector$9.applyMatrix4(m) this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z) } return this } applyNormalMatrix(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.fromBufferAttribute(this, i) _vector$9.applyNormalMatrix(m) this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z) } return this } transformDirection(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.fromBufferAttribute(this, i) _vector$9.transformDirection(m) this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z) } return this } set(value, offset = 0) { this.array.set(value, offset) return this } getX(index) { return this.array[index * this.itemSize] } setX(index, x) { this.array[index * this.itemSize] = x return this } getY(index) { return this.array[index * this.itemSize + 1] } setY(index, y) { this.array[index * this.itemSize + 1] = y return this } getZ(index) { return this.array[index * this.itemSize + 2] } setZ(index, z) { this.array[index * this.itemSize + 2] = z return this } getW(index) { return this.array[index * this.itemSize + 3] } setW(index, w) { this.array[index * this.itemSize + 3] = w return this } setXY(index, x, y) { index *= this.itemSize this.array[index + 0] = x this.array[index + 1] = y return this } setXYZ(index, x, y, z) { index *= this.itemSize this.array[index + 0] = x this.array[index + 1] = y this.array[index + 2] = z return this } setXYZW(index, x, y, z, w) { index *= this.itemSize this.array[index + 0] = x this.array[index + 1] = y this.array[index + 2] = z this.array[index + 3] = w return this } onUpload(callback) { this.onUploadCallback = callback return this } clone() { return new this.constructor(this.array, this.itemSize).copy(this) } toJSON() { const data = { itemSize: this.itemSize, type: this.array.constructor.name, array: Array.prototype.slice.call(this.array), normalized: this.normalized } if (this.name !== '') data.name = this.name if (this.usage !== StaticDrawUsage) data.usage = this.usage if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange return data } } // class Int8BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Int8Array(array), itemSize, normalized) } } class Uint8BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint8Array(array), itemSize, normalized) } } class Uint8ClampedBufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint8ClampedArray(array), itemSize, normalized) } } class Int16BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Int16Array(array), itemSize, normalized) } } class Uint16BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint16Array(array), itemSize, normalized) } } class Int32BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Int32Array(array), itemSize, normalized) } } class Uint32BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint32Array(array), itemSize, normalized) } } class Float16BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint16Array(array), itemSize, normalized) this.isFloat16BufferAttribute = true } } class Float32BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Float32Array(array), itemSize, normalized) } } class Float64BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Float64Array(array), itemSize, normalized) } } let _id$1 = 0 const _m1 = /*@__PURE__*/ new Matrix4() const _obj = /*@__PURE__*/ new Object3D() const _offset = /*@__PURE__*/ new Vector3() const _box$1 = /*@__PURE__*/ new Box3() const _boxMorphTargets = /*@__PURE__*/ new Box3() const _vector$8 = /*@__PURE__*/ new Vector3() class BufferGeometry extends EventDispatcher { constructor() { super() this.isBufferGeometry = true Object.defineProperty(this, 'id', { value: _id$1++ }) this.uuid = generateUUID() this.name = '' this.type = 'BufferGeometry' this.index = null this.attributes = {} this.morphAttributes = {} this.morphTargetsRelative = false this.groups = [] this.boundingBox = null this.boundingSphere = null this.drawRange = { start: 0, count: Infinity } this.userData = {} } getIndex() { return this.index } setIndex(index) { if (Array.isArray(index)) { this.index = new (arrayNeedsUint32(index) ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1) } else { this.index = index } return this } getAttribute(name) { return this.attributes[name] } setAttribute(name, attribute) { this.attributes[name] = attribute return this } deleteAttribute(name) { delete this.attributes[name] return this } hasAttribute(name) { return this.attributes[name] !== undefined } addGroup(start, count, materialIndex = 0) { this.groups.push({ start: start, count: count, materialIndex: materialIndex }) } clearGroups() { this.groups = [] } setDrawRange(start, count) { this.drawRange.start = start this.drawRange.count = count } applyMatrix4(matrix) { const position = this.attributes.position if (position !== undefined) { position.applyMatrix4(matrix) position.needsUpdate = true } const normal = this.attributes.normal if (normal !== undefined) { const normalMatrix = new Matrix3().getNormalMatrix(matrix) normal.applyNormalMatrix(normalMatrix) normal.needsUpdate = true } const tangent = this.attributes.tangent if (tangent !== undefined) { tangent.transformDirection(matrix) tangent.needsUpdate = true } if (this.boundingBox !== null) { this.computeBoundingBox() } if (this.boundingSphere !== null) { this.computeBoundingSphere() } return this } applyQuaternion(q) { _m1.makeRotationFromQuaternion(q) this.applyMatrix4(_m1) return this } rotateX(angle) { // rotate geometry around world x-axis _m1.makeRotationX(angle) this.applyMatrix4(_m1) return this } rotateY(angle) { // rotate geometry around world y-axis _m1.makeRotationY(angle) this.applyMatrix4(_m1) return this } rotateZ(angle) { // rotate geometry around world z-axis _m1.makeRotationZ(angle) this.applyMatrix4(_m1) return this } translate(x, y, z) { // translate geometry _m1.makeTranslation(x, y, z) this.applyMatrix4(_m1) return this } scale(x, y, z) { // scale geometry _m1.makeScale(x, y, z) this.applyMatrix4(_m1) return this } lookAt(vector) { _obj.lookAt(vector) _obj.updateMatrix() this.applyMatrix4(_obj.matrix) return this } center() { this.computeBoundingBox() this.boundingBox.getCenter(_offset).negate() this.translate(_offset.x, _offset.y, _offset.z) return this } setFromPoints(points) { const position = [] for (let i = 0, l = points.length; i < l; i++) { const point = points[i] position.push(point.x, point.y, point.z || 0) } this.setAttribute('position', new Float32BufferAttribute(position, 3)) return this } computeBoundingBox() { if (this.boundingBox === null) { this.boundingBox = new Box3() } const position = this.attributes.position const morphAttributesPosition = this.morphAttributes.position if (position && position.isGLBufferAttribute) { console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this) this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity)) return } if (position !== undefined) { this.boundingBox.setFromBufferAttribute(position) // process morph attributes if present if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i] _box$1.setFromBufferAttribute(morphAttribute) if (this.morphTargetsRelative) { _vector$8.addVectors(this.boundingBox.min, _box$1.min) this.boundingBox.expandByPoint(_vector$8) _vector$8.addVectors(this.boundingBox.max, _box$1.max) this.boundingBox.expandByPoint(_vector$8) } else { this.boundingBox.expandByPoint(_box$1.min) this.boundingBox.expandByPoint(_box$1.max) } } } } else { this.boundingBox.makeEmpty() } if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) { console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this) } } computeBoundingSphere() { if (this.boundingSphere === null) { this.boundingSphere = new Sphere() } const position = this.attributes.position const morphAttributesPosition = this.morphAttributes.position if (position && position.isGLBufferAttribute) { console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this) this.boundingSphere.set(new Vector3(), Infinity) return } if (position) { // first, find the center of the bounding sphere const center = this.boundingSphere.center _box$1.setFromBufferAttribute(position) // process morph attributes if present if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i] _boxMorphTargets.setFromBufferAttribute(morphAttribute) if (this.morphTargetsRelative) { _vector$8.addVectors(_box$1.min, _boxMorphTargets.min) _box$1.expandByPoint(_vector$8) _vector$8.addVectors(_box$1.max, _boxMorphTargets.max) _box$1.expandByPoint(_vector$8) } else { _box$1.expandByPoint(_boxMorphTargets.min) _box$1.expandByPoint(_boxMorphTargets.max) } } } _box$1.getCenter(center) // second, try to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case let maxRadiusSq = 0 for (let i = 0, il = position.count; i < il; i++) { _vector$8.fromBufferAttribute(position, i) maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)) } // process morph attributes if present if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i] const morphTargetsRelative = this.morphTargetsRelative for (let j = 0, jl = morphAttribute.count; j < jl; j++) { _vector$8.fromBufferAttribute(morphAttribute, j) if (morphTargetsRelative) { _offset.fromBufferAttribute(position, j) _vector$8.add(_offset) } maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)) } } } this.boundingSphere.radius = Math.sqrt(maxRadiusSq) if (isNaN(this.boundingSphere.radius)) { console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this) } } } computeTangents() { const index = this.index const attributes = this.attributes // based on http://www.terathon.com/code/tangent.html // (per vertex tangents) if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) { console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)') return } const indices = index.array const positions = attributes.position.array const normals = attributes.normal.array const uvs = attributes.uv.array const nVertices = positions.length / 3 if (this.hasAttribute('tangent') === false) { this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4)) } const tangents = this.getAttribute('tangent').array const tan1 = [], tan2 = [] for (let i = 0; i < nVertices; i++) { tan1[i] = new Vector3() tan2[i] = new Vector3() } const vA = new Vector3(), vB = new Vector3(), vC = new Vector3(), uvA = new Vector2(), uvB = new Vector2(), uvC = new Vector2(), sdir = new Vector3(), tdir = new Vector3() function handleTriangle(a, b, c) { vA.fromArray(positions, a * 3) vB.fromArray(positions, b * 3) vC.fromArray(positions, c * 3) uvA.fromArray(uvs, a * 2) uvB.fromArray(uvs, b * 2) uvC.fromArray(uvs, c * 2) vB.sub(vA) vC.sub(vA) uvB.sub(uvA) uvC.sub(uvA) const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y) // silently ignore degenerate uv triangles having coincident or colinear vertices if (!isFinite(r)) return sdir.copy(vB) .multiplyScalar(uvC.y) .addScaledVector(vC, -uvB.y) .multiplyScalar(r) tdir.copy(vC) .multiplyScalar(uvB.x) .addScaledVector(vB, -uvC.x) .multiplyScalar(r) tan1[a].add(sdir) tan1[b].add(sdir) tan1[c].add(sdir) tan2[a].add(tdir) tan2[b].add(tdir) tan2[c].add(tdir) } let groups = this.groups if (groups.length === 0) { groups = [ { start: 0, count: indices.length } ] } for (let i = 0, il = groups.length; i < il; ++i) { const group = groups[i] const start = group.start const count = group.count for (let j = start, jl = start + count; j < jl; j += 3) { handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]) } } const tmp = new Vector3(), tmp2 = new Vector3() const n = new Vector3(), n2 = new Vector3() function handleVertex(v) { n.fromArray(normals, v * 3) n2.copy(n) const t = tan1[v] // Gram-Schmidt orthogonalize tmp.copy(t) tmp.sub(n.multiplyScalar(n.dot(t))).normalize() // Calculate handedness tmp2.crossVectors(n2, t) const test = tmp2.dot(tan2[v]) const w = test < 0.0 ? -1.0 : 1.0 tangents[v * 4] = tmp.x tangents[v * 4 + 1] = tmp.y tangents[v * 4 + 2] = tmp.z tangents[v * 4 + 3] = w } for (let i = 0, il = groups.length; i < il; ++i) { const group = groups[i] const start = group.start const count = group.count for (let j = start, jl = start + count; j < jl; j += 3) { handleVertex(indices[j + 0]) handleVertex(indices[j + 1]) handleVertex(indices[j + 2]) } } } computeVertexNormals() { const index = this.index const positionAttribute = this.getAttribute('position') if (positionAttribute !== undefined) { let normalAttribute = this.getAttribute('normal') if (normalAttribute === undefined) { normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3) this.setAttribute('normal', normalAttribute) } else { // reset existing normals to zero for (let i = 0, il = normalAttribute.count; i < il; i++) { normalAttribute.setXYZ(i, 0, 0, 0) } } const pA = new Vector3(), pB = new Vector3(), pC = new Vector3() const nA = new Vector3(), nB = new Vector3(), nC = new Vector3() const cb = new Vector3(), ab = new Vector3() // indexed elements if (index) { for (let i = 0, il = index.count; i < il; i += 3) { const vA = index.getX(i + 0) const vB = index.getX(i + 1) const vC = index.getX(i + 2) pA.fromBufferAttribute(positionAttribute, vA) pB.fromBufferAttribute(positionAttribute, vB) pC.fromBufferAttribute(positionAttribute, vC) cb.subVectors(pC, pB) ab.subVectors(pA, pB) cb.cross(ab) nA.fromBufferAttribute(normalAttribute, vA) nB.fromBufferAttribute(normalAttribute, vB) nC.fromBufferAttribute(normalAttribute, vC) nA.add(cb) nB.add(cb) nC.add(cb) normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z) normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z) normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z) } } else { // non-indexed elements (unconnected triangle soup) for (let i = 0, il = positionAttribute.count; i < il; i += 3) { pA.fromBufferAttribute(positionAttribute, i + 0) pB.fromBufferAttribute(positionAttribute, i + 1) pC.fromBufferAttribute(positionAttribute, i + 2) cb.subVectors(pC, pB) ab.subVectors(pA, pB) cb.cross(ab) normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z) normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z) normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z) } } this.normalizeNormals() normalAttribute.needsUpdate = true } } merge(geometry, offset) { if (!(geometry && geometry.isBufferGeometry)) { console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry) return } if (offset === undefined) { offset = 0 console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.') } const attributes = this.attributes for (const key in attributes) { if (geometry.attributes[key] === undefined) continue const attribute1 = attributes[key] const attributeArray1 = attribute1.array const attribute2 = geometry.attributes[key] const attributeArray2 = attribute2.array const attributeOffset = attribute2.itemSize * offset const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset) for (let i = 0, j = attributeOffset; i < length; i++, j++) { attributeArray1[j] = attributeArray2[i] } } return this } normalizeNormals() { const normals = this.attributes.normal for (let i = 0, il = normals.count; i < il; i++) { _vector$8.fromBufferAttribute(normals, i) _vector$8.normalize() normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z) } } toNonIndexed() { function convertBufferAttribute(attribute, indices) { const array = attribute.array const itemSize = attribute.itemSize const normalized = attribute.normalized const array2 = new array.constructor(indices.length * itemSize) let index = 0, index2 = 0 for (let i = 0, l = indices.length; i < l; i++) { if (attribute.isInterleavedBufferAttribute) { index = indices[i] * attribute.data.stride + attribute.offset } else { index = indices[i] * itemSize } for (let j = 0; j < itemSize; j++) { array2[index2++] = array[index++] } } return new BufferAttribute(array2, itemSize, normalized) } // if (this.index === null) { console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.') return this } const geometry2 = new BufferGeometry() const indices = this.index.array const attributes = this.attributes // attributes for (const name in attributes) { const attribute = attributes[name] const newAttribute = convertBufferAttribute(attribute, indices) geometry2.setAttribute(name, newAttribute) } // morph attributes const morphAttributes = this.morphAttributes for (const name in morphAttributes) { const morphArray = [] const morphAttribute = morphAttributes[name] // morphAttribute: array of Float32BufferAttributes for (let i = 0, il = morphAttribute.length; i < il; i++) { const attribute = morphAttribute[i] const newAttribute = convertBufferAttribute(attribute, indices) morphArray.push(newAttribute) } geometry2.morphAttributes[name] = morphArray } geometry2.morphTargetsRelative = this.morphTargetsRelative // groups const groups = this.groups for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i] geometry2.addGroup(group.start, group.count, group.materialIndex) } return geometry2 } toJSON() { const data = { metadata: { version: 4.5, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } } // standard BufferGeometry serialization data.uuid = this.uuid data.type = this.type if (this.name !== '') data.name = this.name if (Object.keys(this.userData).length > 0) data.userData = this.userData if (this.parameters !== undefined) { const parameters = this.parameters for (const key in parameters) { if (parameters[key] !== undefined) data[key] = parameters[key] } return data } // for simplicity the code assumes attributes are not shared across geometries, see #15811 data.data = { attributes: {} } const index = this.index if (index !== null) { data.data.index = { type: index.array.constructor.name, array: Array.prototype.slice.call(index.array) } } const attributes = this.attributes for (const key in attributes) { const attribute = attributes[key] data.data.attributes[key] = attribute.toJSON(data.data) } const morphAttributes = {} let hasMorphAttributes = false for (const key in this.morphAttributes) { const attributeArray = this.morphAttributes[key] const array = [] for (let i = 0, il = attributeArray.length; i < il; i++) { const attribute = attributeArray[i] array.push(attribute.toJSON(data.data)) } if (array.length > 0) { morphAttributes[key] = array hasMorphAttributes = true } } if (hasMorphAttributes) { data.data.morphAttributes = morphAttributes data.data.morphTargetsRelative = this.morphTargetsRelative } const groups = this.groups if (groups.length > 0) { data.data.groups = JSON.parse(JSON.stringify(groups)) } const boundingSphere = this.boundingSphere if (boundingSphere !== null) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius } } return data } clone() { return new this.constructor().copy(this) } copy(source) { // reset this.index = null this.attributes = {} this.morphAttributes = {} this.groups = [] this.boundingBox = null this.boundingSphere = null // used for storing cloned, shared data const data = {} // name this.name = source.name // index const index = source.index if (index !== null) { this.setIndex(index.clone(data)) } // attributes const attributes = source.attributes for (const name in attributes) { const attribute = attributes[name] this.setAttribute(name, attribute.clone(data)) } // morph attributes const morphAttributes = source.morphAttributes for (const name in morphAttributes) { const array = [] const morphAttribute = morphAttributes[name] // morphAttribute: array of Float32BufferAttributes for (let i = 0, l = morphAttribute.length; i < l; i++) { array.push(morphAttribute[i].clone(data)) } this.morphAttributes[name] = array } this.morphTargetsRelative = source.morphTargetsRelative // groups const groups = source.groups for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i] this.addGroup(group.start, group.count, group.materialIndex) } // bounding box const boundingBox = source.boundingBox if (boundingBox !== null) { this.boundingBox = boundingBox.clone() } // bounding sphere const boundingSphere = source.boundingSphere if (boundingSphere !== null) { this.boundingSphere = boundingSphere.clone() } // draw range this.drawRange.start = source.drawRange.start this.drawRange.count = source.drawRange.count // user data this.userData = source.userData // geometry generator parameters if (source.parameters !== undefined) this.parameters = Object.assign({}, source.parameters) return this } dispose() { this.dispatchEvent({ type: 'dispose' }) } } const _inverseMatrix$2 = /*@__PURE__*/ new Matrix4() const _ray$2 = /*@__PURE__*/ new Ray() const _sphere$3 = /*@__PURE__*/ new Sphere() const _vA$1 = /*@__PURE__*/ new Vector3() const _vB$1 = /*@__PURE__*/ new Vector3() const _vC$1 = /*@__PURE__*/ new Vector3() const _tempA = /*@__PURE__*/ new Vector3() const _tempB = /*@__PURE__*/ new Vector3() const _tempC = /*@__PURE__*/ new Vector3() const _morphA = /*@__PURE__*/ new Vector3() const _morphB = /*@__PURE__*/ new Vector3() const _morphC = /*@__PURE__*/ new Vector3() const _uvA$1 = /*@__PURE__*/ new Vector2() const _uvB$1 = /*@__PURE__*/ new Vector2() const _uvC$1 = /*@__PURE__*/ new Vector2() const _intersectionPoint = /*@__PURE__*/ new Vector3() const _intersectionPointWorld = /*@__PURE__*/ new Vector3() class Mesh extends Object3D { constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) { super() this.isMesh = true this.type = 'Mesh' this.geometry = geometry this.material = material this.updateMorphTargets() } copy(source, recursive) { super.copy(source, recursive) if (source.morphTargetInfluences !== undefined) { this.morphTargetInfluences = source.morphTargetInfluences.slice() } if (source.morphTargetDictionary !== undefined) { this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary) } this.material = source.material this.geometry = source.geometry return this } updateMorphTargets() { const geometry = this.geometry const morphAttributes = geometry.morphAttributes const keys = Object.keys(morphAttributes) if (keys.length > 0) { const morphAttribute = morphAttributes[keys[0]] if (morphAttribute !== undefined) { this.morphTargetInfluences = [] this.morphTargetDictionary = {} for (let m = 0, ml = morphAttribute.length; m < ml; m++) { const name = morphAttribute[m].name || String(m) this.morphTargetInfluences.push(0) this.morphTargetDictionary[name] = m } } } } raycast(raycaster, intersects) { const geometry = this.geometry const material = this.material const matrixWorld = this.matrixWorld if (material === undefined) return // Checking boundingSphere distance to ray if (geometry.boundingSphere === null) geometry.computeBoundingSphere() _sphere$3.copy(geometry.boundingSphere) _sphere$3.applyMatrix4(matrixWorld) if (raycaster.ray.intersectsSphere(_sphere$3) === false) return // _inverseMatrix$2.copy(matrixWorld).invert() _ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2) // Check boundingBox before continuing if (geometry.boundingBox !== null) { if (_ray$2.intersectsBox(geometry.boundingBox) === false) return } let intersection const index = geometry.index const position = geometry.attributes.position const morphPosition = geometry.morphAttributes.position const morphTargetsRelative = geometry.morphTargetsRelative const uv = geometry.attributes.uv const uv2 = geometry.attributes.uv2 const groups = geometry.groups const drawRange = geometry.drawRange if (index !== null) { // indexed buffer geometry if (Array.isArray(material)) { for (let i = 0, il = groups.length; i < il; i++) { const group = groups[i] const groupMaterial = material[group.materialIndex] const start = Math.max(group.start, drawRange.start) const end = Math.min(index.count, Math.min(group.start + group.count, drawRange.start + drawRange.count)) for (let j = start, jl = end; j < jl; j += 3) { const a = index.getX(j) const b = index.getX(j + 1) const c = index.getX(j + 2) intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) if (intersection) { intersection.faceIndex = Math.floor(j / 3) // triangle number in indexed buffer semantics intersection.face.materialIndex = group.materialIndex intersects.push(intersection) } } } } else { const start = Math.max(0, drawRange.start) const end = Math.min(index.count, drawRange.start + drawRange.count) for (let i = start, il = end; i < il; i += 3) { const a = index.getX(i) const b = index.getX(i + 1) const c = index.getX(i + 2) intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) if (intersection) { intersection.faceIndex = Math.floor(i / 3) // triangle number in indexed buffer semantics intersects.push(intersection) } } } } else if (position !== undefined) { // non-indexed buffer geometry if (Array.isArray(material)) { for (let i = 0, il = groups.length; i < il; i++) { const group = groups[i] const groupMaterial = material[group.materialIndex] const start = Math.max(group.start, drawRange.start) const end = Math.min(position.count, Math.min(group.start + group.count, drawRange.start + drawRange.count)) for (let j = start, jl = end; j < jl; j += 3) { const a = j const b = j + 1 const c = j + 2 intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) if (intersection) { intersection.faceIndex = Math.floor(j / 3) // triangle number in non-indexed buffer semantics intersection.face.materialIndex = group.materialIndex intersects.push(intersection) } } } } else { const start = Math.max(0, drawRange.start) const end = Math.min(position.count, drawRange.start + drawRange.count) for (let i = start, il = end; i < il; i += 3) { const a = i const b = i + 1 const c = i + 2 intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) if (intersection) { intersection.faceIndex = Math.floor(i / 3) // triangle number in non-indexed buffer semantics intersects.push(intersection) } } } } } } function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) { let intersect if (material.side === BackSide) { intersect = ray.intersectTriangle(pC, pB, pA, true, point) } else { intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point) } if (intersect === null) return null _intersectionPointWorld.copy(point) _intersectionPointWorld.applyMatrix4(object.matrixWorld) const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld) if (distance < raycaster.near || distance > raycaster.far) return null return { distance: distance, point: _intersectionPointWorld.clone(), object: object } } function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) { _vA$1.fromBufferAttribute(position, a) _vB$1.fromBufferAttribute(position, b) _vC$1.fromBufferAttribute(position, c) const morphInfluences = object.morphTargetInfluences if (morphPosition && morphInfluences) { _morphA.set(0, 0, 0) _morphB.set(0, 0, 0) _morphC.set(0, 0, 0) for (let i = 0, il = morphPosition.length; i < il; i++) { const influence = morphInfluences[i] const morphAttribute = morphPosition[i] if (influence === 0) continue _tempA.fromBufferAttribute(morphAttribute, a) _tempB.fromBufferAttribute(morphAttribute, b) _tempC.fromBufferAttribute(morphAttribute, c) if (morphTargetsRelative) { _morphA.addScaledVector(_tempA, influence) _morphB.addScaledVector(_tempB, influence) _morphC.addScaledVector(_tempC, influence) } else { _morphA.addScaledVector(_tempA.sub(_vA$1), influence) _morphB.addScaledVector(_tempB.sub(_vB$1), influence) _morphC.addScaledVector(_tempC.sub(_vC$1), influence) } } _vA$1.add(_morphA) _vB$1.add(_morphB) _vC$1.add(_morphC) } if (object.isSkinnedMesh) { object.boneTransform(a, _vA$1) object.boneTransform(b, _vB$1) object.boneTransform(c, _vC$1) } const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint) if (intersection) { if (uv) { _uvA$1.fromBufferAttribute(uv, a) _uvB$1.fromBufferAttribute(uv, b) _uvC$1.fromBufferAttribute(uv, c) intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2()) } if (uv2) { _uvA$1.fromBufferAttribute(uv2, a) _uvB$1.fromBufferAttribute(uv2, b) _uvC$1.fromBufferAttribute(uv2, c) intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2()) } const face = { a: a, b: b, c: c, normal: new Vector3(), materialIndex: 0 } Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal) intersection.face = face } return intersection } class BoxGeometry extends BufferGeometry { constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) { super() this.type = 'BoxGeometry' this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments } const scope = this // segments widthSegments = Math.floor(widthSegments) heightSegments = Math.floor(heightSegments) depthSegments = Math.floor(depthSegments) // buffers const indices = [] const vertices = [] const normals = [] const uvs = [] // helper variables let numberOfVertices = 0 let groupStart = 0 // build each side of the box geometry buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0) // px buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1) // nx buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2) // py buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3) // ny buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4) // pz buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5) // nz // build geometry this.setIndex(indices) this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) this.setAttribute('normal', new Float32BufferAttribute(normals, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)) function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) { const segmentWidth = width / gridX const segmentHeight = height / gridY const widthHalf = width / 2 const heightHalf = height / 2 const depthHalf = depth / 2 const gridX1 = gridX + 1 const gridY1 = gridY + 1 let vertexCounter = 0 let groupCount = 0 const vector = new Vector3() // generate vertices, normals and uvs for (let iy = 0; iy < gridY1; iy++) { const y = iy * segmentHeight - heightHalf for (let ix = 0; ix < gridX1; ix++) { const x = ix * segmentWidth - widthHalf // set values to correct vector component vector[u] = x * udir vector[v] = y * vdir vector[w] = depthHalf // now apply vector to vertex buffer vertices.push(vector.x, vector.y, vector.z) // set values to correct vector component vector[u] = 0 vector[v] = 0 vector[w] = depth > 0 ? 1 : -1 // now apply vector to normal buffer normals.push(vector.x, vector.y, vector.z) // uvs uvs.push(ix / gridX) uvs.push(1 - iy / gridY) // counters vertexCounter += 1 } } // indices // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for (let iy = 0; iy < gridY; iy++) { for (let ix = 0; ix < gridX; ix++) { const a = numberOfVertices + ix + gridX1 * iy const b = numberOfVertices + ix + gridX1 * (iy + 1) const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1) const d = numberOfVertices + (ix + 1) + gridX1 * iy // faces indices.push(a, b, d) indices.push(b, c, d) // increase counter groupCount += 6 } } // add a group to the geometry. this will ensure multi material support scope.addGroup(groupStart, groupCount, materialIndex) // calculate new start value for groups groupStart += groupCount // update total number of vertices numberOfVertices += vertexCounter } } static fromJSON(data) { return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments) } } /** * Uniform Utilities */ function cloneUniforms(src) { const dst = {} for (const u in src) { dst[u] = {} for (const p in src[u]) { const property = src[u][p] if ( property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion) ) { dst[u][p] = property.clone() } else if (Array.isArray(property)) { dst[u][p] = property.slice() } else { dst[u][p] = property } } } return dst } function mergeUniforms(uniforms) { const merged = {} for (let u = 0; u < uniforms.length; u++) { const tmp = cloneUniforms(uniforms[u]) for (const p in tmp) { merged[p] = tmp[p] } } return merged } // Legacy const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms } var default_vertex = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}' var default_fragment = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}' class ShaderMaterial extends Material { constructor(parameters) { super() this.isShaderMaterial = true this.type = 'ShaderMaterial' this.defines = {} this.uniforms = {} this.vertexShader = default_vertex this.fragmentShader = default_fragment this.linewidth = 1 this.wireframe = false this.wireframeLinewidth = 1 this.fog = false // set to use scene fog this.lights = false // set to use scene lights this.clipping = false // set to use user-defined clipping planes this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD } // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { color: [1, 1, 1], uv: [0, 0], uv2: [0, 0] } this.index0AttributeName = undefined this.uniformsNeedUpdate = false this.glslVersion = null if (parameters !== undefined) { if (parameters.attributes !== undefined) { console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.') } this.setValues(parameters) } } copy(source) { super.copy(source) this.fragmentShader = source.fragmentShader this.vertexShader = source.vertexShader this.uniforms = cloneUniforms(source.uniforms) this.defines = Object.assign({}, source.defines) this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.fog = source.fog this.lights = source.lights this.clipping = source.clipping this.extensions = Object.assign({}, source.extensions) this.glslVersion = source.glslVersion return this } toJSON(meta) { const data = super.toJSON(meta) data.glslVersion = this.glslVersion data.uniforms = {} for (const name in this.uniforms) { const uniform = this.uniforms[name] const value = uniform.value if (value && value.isTexture) { data.uniforms[name] = { type: 't', value: value.toJSON(meta).uuid } } else if (value && value.isColor) { data.uniforms[name] = { type: 'c', value: value.getHex() } } else if (value && value.isVector2) { data.uniforms[name] = { type: 'v2', value: value.toArray() } } else if (value && value.isVector3) { data.uniforms[name] = { type: 'v3', value: value.toArray() } } else if (value && value.isVector4) { data.uniforms[name] = { type: 'v4', value: value.toArray() } } else if (value && value.isMatrix3) { data.uniforms[name] = { type: 'm3', value: value.toArray() } } else if (value && value.isMatrix4) { data.uniforms[name] = { type: 'm4', value: value.toArray() } } else { data.uniforms[name] = { value: value } // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far } } if (Object.keys(this.defines).length > 0) data.defines = this.defines data.vertexShader = this.vertexShader data.fragmentShader = this.fragmentShader const extensions = {} for (const key in this.extensions) { if (this.extensions[key] === true) extensions[key] = true } if (Object.keys(extensions).length > 0) data.extensions = extensions return data } } class Camera extends Object3D { constructor() { super() this.isCamera = true this.type = 'Camera' this.matrixWorldInverse = new Matrix4() this.projectionMatrix = new Matrix4() this.projectionMatrixInverse = new Matrix4() } copy(source, recursive) { super.copy(source, recursive) this.matrixWorldInverse.copy(source.matrixWorldInverse) this.projectionMatrix.copy(source.projectionMatrix) this.projectionMatrixInverse.copy(source.projectionMatrixInverse) return this } getWorldDirection(target) { this.updateWorldMatrix(true, false) const e = this.matrixWorld.elements return target.set(-e[8], -e[9], -e[10]).normalize() } updateMatrixWorld(force) { super.updateMatrixWorld(force) this.matrixWorldInverse.copy(this.matrixWorld).invert() } updateWorldMatrix(updateParents, updateChildren) { super.updateWorldMatrix(updateParents, updateChildren) this.matrixWorldInverse.copy(this.matrixWorld).invert() } clone() { return new this.constructor().copy(this) } } class PerspectiveCamera extends Camera { constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) { super() this.isPerspectiveCamera = true this.type = 'PerspectiveCamera' this.fov = fov this.zoom = 1 this.near = near this.far = far this.focus = 10 this.aspect = aspect this.view = null this.filmGauge = 35 // width of the film (default in millimeters) this.filmOffset = 0 // horizontal film offset (same unit as gauge) this.updateProjectionMatrix() } copy(source, recursive) { super.copy(source, recursive) this.fov = source.fov this.zoom = source.zoom this.near = source.near this.far = source.far this.focus = source.focus this.aspect = source.aspect this.view = source.view === null ? null : Object.assign({}, source.view) this.filmGauge = source.filmGauge this.filmOffset = source.filmOffset return this } /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength(focalLength) { /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */ const vExtentSlope = (0.5 * this.getFilmHeight()) / focalLength this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope) this.updateProjectionMatrix() } /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength() { const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov) return (0.5 * this.getFilmHeight()) / vExtentSlope } getEffectiveFOV() { return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom) } getFilmWidth() { // film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min(this.aspect, 1) } getFilmHeight() { // film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max(this.aspect, 1) } /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * const w = 1920; * const h = 1080; * const fullWidth = w * 3; * const fullHeight = h * 2; * * --A-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset(fullWidth, fullHeight, x, y, width, height) { this.aspect = fullWidth / fullHeight if (this.view === null) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 } } this.view.enabled = true this.view.fullWidth = fullWidth this.view.fullHeight = fullHeight this.view.offsetX = x this.view.offsetY = y this.view.width = width this.view.height = height this.updateProjectionMatrix() } clearViewOffset() { if (this.view !== null) { this.view.enabled = false } this.updateProjectionMatrix() } updateProjectionMatrix() { const near = this.near let top = (near * Math.tan(DEG2RAD * 0.5 * this.fov)) / this.zoom let height = 2 * top let width = this.aspect * height let left = -0.5 * width const view = this.view if (this.view !== null && this.view.enabled) { const fullWidth = view.fullWidth, fullHeight = view.fullHeight left += (view.offsetX * width) / fullWidth top -= (view.offsetY * height) / fullHeight width *= view.width / fullWidth height *= view.height / fullHeight } const skew = this.filmOffset if (skew !== 0) left += (near * skew) / this.getFilmWidth() this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far) this.projectionMatrixInverse.copy(this.projectionMatrix).invert() } toJSON(meta) { const data = super.toJSON(meta) data.object.fov = this.fov data.object.zoom = this.zoom data.object.near = this.near data.object.far = this.far data.object.focus = this.focus data.object.aspect = this.aspect if (this.view !== null) data.object.view = Object.assign({}, this.view) data.object.filmGauge = this.filmGauge data.object.filmOffset = this.filmOffset return data } } const fov = 90, aspect = 1 class CubeCamera extends Object3D { constructor(near, far, renderTarget) { super() this.type = 'CubeCamera' if (renderTarget.isWebGLCubeRenderTarget !== true) { console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.') return } this.renderTarget = renderTarget const cameraPX = new PerspectiveCamera(fov, aspect, near, far) cameraPX.layers = this.layers cameraPX.up.set(0, -1, 0) cameraPX.lookAt(new Vector3(1, 0, 0)) this.add(cameraPX) const cameraNX = new PerspectiveCamera(fov, aspect, near, far) cameraNX.layers = this.layers cameraNX.up.set(0, -1, 0) cameraNX.lookAt(new Vector3(-1, 0, 0)) this.add(cameraNX) const cameraPY = new PerspectiveCamera(fov, aspect, near, far) cameraPY.layers = this.layers cameraPY.up.set(0, 0, 1) cameraPY.lookAt(new Vector3(0, 1, 0)) this.add(cameraPY) const cameraNY = new PerspectiveCamera(fov, aspect, near, far) cameraNY.layers = this.layers cameraNY.up.set(0, 0, -1) cameraNY.lookAt(new Vector3(0, -1, 0)) this.add(cameraNY) const cameraPZ = new PerspectiveCamera(fov, aspect, near, far) cameraPZ.layers = this.layers cameraPZ.up.set(0, -1, 0) cameraPZ.lookAt(new Vector3(0, 0, 1)) this.add(cameraPZ) const cameraNZ = new PerspectiveCamera(fov, aspect, near, far) cameraNZ.layers = this.layers cameraNZ.up.set(0, -1, 0) cameraNZ.lookAt(new Vector3(0, 0, -1)) this.add(cameraNZ) } update(renderer, scene) { if (this.parent === null) this.updateMatrixWorld() const renderTarget = this.renderTarget const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children const currentRenderTarget = renderer.getRenderTarget() const currentToneMapping = renderer.toneMapping const currentXrEnabled = renderer.xr.enabled renderer.toneMapping = NoToneMapping renderer.xr.enabled = false const generateMipmaps = renderTarget.texture.generateMipmaps renderTarget.texture.generateMipmaps = false renderer.setRenderTarget(renderTarget, 0) renderer.render(scene, cameraPX) renderer.setRenderTarget(renderTarget, 1) renderer.render(scene, cameraNX) renderer.setRenderTarget(renderTarget, 2) renderer.render(scene, cameraPY) renderer.setRenderTarget(renderTarget, 3) renderer.render(scene, cameraNY) renderer.setRenderTarget(renderTarget, 4) renderer.render(scene, cameraPZ) renderTarget.texture.generateMipmaps = generateMipmaps renderer.setRenderTarget(renderTarget, 5) renderer.render(scene, cameraNZ) renderer.setRenderTarget(currentRenderTarget) renderer.toneMapping = currentToneMapping renderer.xr.enabled = currentXrEnabled renderTarget.texture.needsPMREMUpdate = true } } class CubeTexture extends Texture { constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) { images = images !== undefined ? images : [] mapping = mapping !== undefined ? mapping : CubeReflectionMapping super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) this.isCubeTexture = true this.flipY = false } get images() { return this.image } set images(value) { this.image = value } } class WebGLCubeRenderTarget extends WebGLRenderTarget { constructor(size, options = {}) { super(size, size, options) this.isWebGLCubeRenderTarget = true const image = { width: size, height: size, depth: 1 } const images = [image, image, image, image, image, image] this.texture = new CubeTexture(images, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding) // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js) // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words, // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly. // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures). this.texture.isRenderTargetTexture = true this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter } fromEquirectangularTexture(renderer, texture) { this.texture.type = texture.type this.texture.encoding = texture.encoding this.texture.generateMipmaps = texture.generateMipmaps this.texture.minFilter = texture.minFilter this.texture.magFilter = texture.magFilter const shader = { uniforms: { tEquirect: { value: null } }, vertexShader: /* glsl */ ` varying vec3 vWorldDirection; vec3 transformDirection( in vec3 dir, in mat4 matrix ) { return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); } void main() { vWorldDirection = transformDirection( position, modelMatrix ); #include #include } `, fragmentShader: /* glsl */ ` uniform sampler2D tEquirect; varying vec3 vWorldDirection; #include void main() { vec3 direction = normalize( vWorldDirection ); vec2 sampleUV = equirectUv( direction ); gl_FragColor = texture2D( tEquirect, sampleUV ); } ` } const geometry = new BoxGeometry(5, 5, 5) const material = new ShaderMaterial({ name: 'CubemapFromEquirect', uniforms: cloneUniforms(shader.uniforms), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, side: BackSide, blending: NoBlending }) material.uniforms.tEquirect.value = texture const mesh = new Mesh(geometry, material) const currentMinFilter = texture.minFilter // Avoid blurred poles if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter const camera = new CubeCamera(1, 10, this) camera.update(renderer, mesh) texture.minFilter = currentMinFilter mesh.geometry.dispose() mesh.material.dispose() return this } clear(renderer, color, depth, stencil) { const currentRenderTarget = renderer.getRenderTarget() for (let i = 0; i < 6; i++) { renderer.setRenderTarget(this, i) renderer.clear(color, depth, stencil) } renderer.setRenderTarget(currentRenderTarget) } } const _vector1 = /*@__PURE__*/ new Vector3() const _vector2 = /*@__PURE__*/ new Vector3() const _normalMatrix = /*@__PURE__*/ new Matrix3() class Plane { constructor(normal = new Vector3(1, 0, 0), constant = 0) { this.isPlane = true // normal is assumed to be normalized this.normal = normal this.constant = constant } set(normal, constant) { this.normal.copy(normal) this.constant = constant return this } setComponents(x, y, z, w) { this.normal.set(x, y, z) this.constant = w return this } setFromNormalAndCoplanarPoint(normal, point) { this.normal.copy(normal) this.constant = -point.dot(this.normal) return this } setFromCoplanarPoints(a, b, c) { const normal = _vector1 .subVectors(c, b) .cross(_vector2.subVectors(a, b)) .normalize() // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint(normal, a) return this } copy(plane) { this.normal.copy(plane.normal) this.constant = plane.constant return this } normalize() { // Note: will lead to a divide by zero if the plane is invalid. const inverseNormalLength = 1.0 / this.normal.length() this.normal.multiplyScalar(inverseNormalLength) this.constant *= inverseNormalLength return this } negate() { this.constant *= -1 this.normal.negate() return this } distanceToPoint(point) { return this.normal.dot(point) + this.constant } distanceToSphere(sphere) { return this.distanceToPoint(sphere.center) - sphere.radius } projectPoint(point, target) { return target .copy(this.normal) .multiplyScalar(-this.distanceToPoint(point)) .add(point) } intersectLine(line, target) { const direction = line.delta(_vector1) const denominator = this.normal.dot(direction) if (denominator === 0) { // line is coplanar, return origin if (this.distanceToPoint(line.start) === 0) { return target.copy(line.start) } // Unsure if this is the correct method to handle this case. return null } const t = -(line.start.dot(this.normal) + this.constant) / denominator if (t < 0 || t > 1) { return null } return target .copy(direction) .multiplyScalar(t) .add(line.start) } intersectsLine(line) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. const startSign = this.distanceToPoint(line.start) const endSign = this.distanceToPoint(line.end) return (startSign < 0 && endSign > 0) || (endSign < 0 && startSign > 0) } intersectsBox(box) { return box.intersectsPlane(this) } intersectsSphere(sphere) { return sphere.intersectsPlane(this) } coplanarPoint(target) { return target.copy(this.normal).multiplyScalar(-this.constant) } applyMatrix4(matrix, optionalNormalMatrix) { const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix) const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix) const normal = this.normal.applyMatrix3(normalMatrix).normalize() this.constant = -referencePoint.dot(normal) return this } translate(offset) { this.constant -= offset.dot(this.normal) return this } equals(plane) { return plane.normal.equals(this.normal) && plane.constant === this.constant } clone() { return new this.constructor().copy(this) } } const _sphere$2 = /*@__PURE__*/ new Sphere() const _vector$7 = /*@__PURE__*/ new Vector3() class Frustum { constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) { this.planes = [p0, p1, p2, p3, p4, p5] } set(p0, p1, p2, p3, p4, p5) { const planes = this.planes planes[0].copy(p0) planes[1].copy(p1) planes[2].copy(p2) planes[3].copy(p3) planes[4].copy(p4) planes[5].copy(p5) return this } copy(frustum) { const planes = this.planes for (let i = 0; i < 6; i++) { planes[i].copy(frustum.planes[i]) } return this } setFromProjectionMatrix(m) { const planes = this.planes const me = m.elements const me0 = me[0], me1 = me[1], me2 = me[2], me3 = me[3] const me4 = me[4], me5 = me[5], me6 = me[6], me7 = me[7] const me8 = me[8], me9 = me[9], me10 = me[10], me11 = me[11] const me12 = me[12], me13 = me[13], me14 = me[14], me15 = me[15] planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize() planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize() planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize() planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize() planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize() planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize() return this } intersectsObject(object) { const geometry = object.geometry if (geometry.boundingSphere === null) geometry.computeBoundingSphere() _sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld) return this.intersectsSphere(_sphere$2) } intersectsSprite(sprite) { _sphere$2.center.set(0, 0, 0) _sphere$2.radius = 0.7071067811865476 _sphere$2.applyMatrix4(sprite.matrixWorld) return this.intersectsSphere(_sphere$2) } intersectsSphere(sphere) { const planes = this.planes const center = sphere.center const negRadius = -sphere.radius for (let i = 0; i < 6; i++) { const distance = planes[i].distanceToPoint(center) if (distance < negRadius) { return false } } return true } intersectsBox(box) { const planes = this.planes for (let i = 0; i < 6; i++) { const plane = planes[i] // corner at max distance _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z if (plane.distanceToPoint(_vector$7) < 0) { return false } } return true } containsPoint(point) { const planes = this.planes for (let i = 0; i < 6; i++) { if (planes[i].distanceToPoint(point) < 0) { return false } } return true } clone() { return new this.constructor().copy(this) } } function WebGLAnimation() { let context = null let isAnimating = false let animationLoop = null let requestId = null function onAnimationFrame(time, frame) { animationLoop(time, frame) requestId = context.requestAnimationFrame(onAnimationFrame) } return { start: function() { if (isAnimating === true) return if (animationLoop === null) return requestId = context.requestAnimationFrame(onAnimationFrame) isAnimating = true }, stop: function() { context.cancelAnimationFrame(requestId) isAnimating = false }, setAnimationLoop: function(callback) { animationLoop = callback }, setContext: function(value) { context = value } } } function WebGLAttributes(gl, capabilities) { const isWebGL2 = capabilities.isWebGL2 const buffers = new WeakMap() function createBuffer(attribute, bufferType) { const array = attribute.array const usage = attribute.usage const buffer = gl.createBuffer() gl.bindBuffer(bufferType, buffer) gl.bufferData(bufferType, array, usage) attribute.onUploadCallback() let type if (array instanceof Float32Array) { type = 5126 } else if (array instanceof Uint16Array) { if (attribute.isFloat16BufferAttribute) { if (isWebGL2) { type = 5131 } else { throw new Error('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.') } } else { type = 5123 } } else if (array instanceof Int16Array) { type = 5122 } else if (array instanceof Uint32Array) { type = 5125 } else if (array instanceof Int32Array) { type = 5124 } else if (array instanceof Int8Array) { type = 5120 } else if (array instanceof Uint8Array) { type = 5121 } else if (array instanceof Uint8ClampedArray) { type = 5121 } else { throw new Error('THREE.WebGLAttributes: Unsupported buffer data format: ' + array) } return { buffer: buffer, type: type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version } } function updateBuffer(buffer, attribute, bufferType) { const array = attribute.array const updateRange = attribute.updateRange gl.bindBuffer(bufferType, buffer) if (updateRange.count === -1) { // Not using update ranges gl.bufferSubData(bufferType, 0, array) } else { if (isWebGL2) { gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count) } else { gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count)) } updateRange.count = -1 // reset range } } // function get(attribute) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data return buffers.get(attribute) } function remove(attribute) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data const data = buffers.get(attribute) if (data) { gl.deleteBuffer(data.buffer) buffers.delete(attribute) } } function update(attribute, bufferType) { if (attribute.isGLBufferAttribute) { const cached = buffers.get(attribute) if (!cached || cached.version < attribute.version) { buffers.set(attribute, { buffer: attribute.buffer, type: attribute.type, bytesPerElement: attribute.elementSize, version: attribute.version }) } return } if (attribute.isInterleavedBufferAttribute) attribute = attribute.data const data = buffers.get(attribute) if (data === undefined) { buffers.set(attribute, createBuffer(attribute, bufferType)) } else if (data.version < attribute.version) { updateBuffer(data.buffer, attribute, bufferType) data.version = attribute.version } } return { get: get, remove: remove, update: update } } class PlaneGeometry extends BufferGeometry { constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) { super() this.type = 'PlaneGeometry' this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments } const width_half = width / 2 const height_half = height / 2 const gridX = Math.floor(widthSegments) const gridY = Math.floor(heightSegments) const gridX1 = gridX + 1 const gridY1 = gridY + 1 const segment_width = width / gridX const segment_height = height / gridY // const indices = [] const vertices = [] const normals = [] const uvs = [] for (let iy = 0; iy < gridY1; iy++) { const y = iy * segment_height - height_half for (let ix = 0; ix < gridX1; ix++) { const x = ix * segment_width - width_half vertices.push(x, -y, 0) normals.push(0, 0, 1) uvs.push(ix / gridX) uvs.push(1 - iy / gridY) } } for (let iy = 0; iy < gridY; iy++) { for (let ix = 0; ix < gridX; ix++) { const a = ix + gridX1 * iy const b = ix + gridX1 * (iy + 1) const c = ix + 1 + gridX1 * (iy + 1) const d = ix + 1 + gridX1 * iy indices.push(a, b, d) indices.push(b, c, d) } } this.setIndex(indices) this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) this.setAttribute('normal', new Float32BufferAttribute(normals, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)) } static fromJSON(data) { return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments) } } var alphamap_fragment = '#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif' var alphamap_pars_fragment = '#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif' var alphatest_fragment = '#ifdef USE_ALPHATEST\n\tif ( diffuseColor.a < alphaTest ) discard;\n#endif' var alphatest_pars_fragment = '#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif' var aomap_fragment = '#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif' var aomap_pars_fragment = '#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif' var begin_vertex = 'vec3 transformed = vec3( position );' var beginnormal_vertex = 'vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif' var bsdfs = 'vec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat F_Schlick( const in float f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nvec3 Schlick_to_F0( const in vec3 f, const in float f90, const in float dotVH ) {\n float x = clamp( 1.0 - dotVH, 0.0, 1.0 );\n float x2 = x * x;\n float x5 = clamp( x * x2 * x2, 0.0, 0.9999 );\n return ( f - vec3( f90 ) * x5 ) / ( 1.0 - x5 );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\n#ifdef USE_IRIDESCENCE\nvec3 BRDF_GGX_Iridescence( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float iridescence, const in vec3 iridescenceFresnel, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = mix(F_Schlick( f0, f90, dotVH ), iridescenceFresnel, iridescence);\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\n#endif\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenColor * ( D * V );\n}\n#endif' var iridescence_fragment = '#ifdef USE_IRIDESCENCE\nconst mat3 XYZ_TO_REC709 = mat3(\n 3.2404542, -0.9692660, 0.0556434,\n -1.5371385, 1.8760108, -0.2040259,\n -0.4985314, 0.0415560, 1.0572252\n);\nvec3 Fresnel0ToIor( vec3 fresnel0 ) {\n vec3 sqrtF0 = sqrt( fresnel0 );\n return ( vec3( 1.0 ) + sqrtF0 ) / ( vec3( 1.0 ) - sqrtF0 );\n}\nvec3 IorToFresnel0( vec3 transmittedIor, float incidentIor ) {\n return pow2( ( transmittedIor - vec3( incidentIor ) ) / ( transmittedIor + vec3( incidentIor ) ) );\n}\nfloat IorToFresnel0( float transmittedIor, float incidentIor ) {\n return pow2( ( transmittedIor - incidentIor ) / ( transmittedIor + incidentIor ));\n}\nvec3 evalSensitivity( float OPD, vec3 shift ) {\n float phase = 2.0 * PI * OPD * 1.0e-9;\n vec3 val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 );\n vec3 pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 );\n vec3 var = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 );\n vec3 xyz = val * sqrt( 2.0 * PI * var ) * cos( pos * phase + shift ) * exp( -pow2( phase ) * var );\n xyz.x += 9.7470e-14 * sqrt( 2.0 * PI * 4.5282e+09 ) * cos( 2.2399e+06 * phase + shift[0] ) * exp( -4.5282e+09 * pow2( phase ) );\n xyz /= 1.0685e-7;\n vec3 srgb = XYZ_TO_REC709 * xyz;\n return srgb;\n}\nvec3 evalIridescence( float outsideIOR, float eta2, float cosTheta1, float thinFilmThickness, vec3 baseF0 ) {\n vec3 I;\n float iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) );\n float sinTheta2Sq = pow2( outsideIOR / iridescenceIOR ) * ( 1.0 - pow2( cosTheta1 ) );\n float cosTheta2Sq = 1.0 - sinTheta2Sq;\n if ( cosTheta2Sq < 0.0 ) {\n return vec3( 1.0 );\n }\n float cosTheta2 = sqrt( cosTheta2Sq );\n float R0 = IorToFresnel0( iridescenceIOR, outsideIOR );\n float R12 = F_Schlick( R0, 1.0, cosTheta1 );\n float R21 = R12;\n float T121 = 1.0 - R12;\n float phi12 = 0.0;\n if ( iridescenceIOR < outsideIOR ) phi12 = PI;\n float phi21 = PI - phi12;\n vec3 baseIOR = Fresnel0ToIor( clamp( baseF0, 0.0, 0.9999 ) ); vec3 R1 = IorToFresnel0( baseIOR, iridescenceIOR );\n vec3 R23 = F_Schlick( R1, 1.0, cosTheta2 );\n vec3 phi23 = vec3( 0.0 );\n if ( baseIOR[0] < iridescenceIOR ) phi23[0] = PI;\n if ( baseIOR[1] < iridescenceIOR ) phi23[1] = PI;\n if ( baseIOR[2] < iridescenceIOR ) phi23[2] = PI;\n float OPD = 2.0 * iridescenceIOR * thinFilmThickness * cosTheta2;\n vec3 phi = vec3( phi21 ) + phi23;\n vec3 R123 = clamp( R12 * R23, 1e-5, 0.9999 );\n vec3 r123 = sqrt( R123 );\n vec3 Rs = pow2( T121 ) * R23 / ( vec3( 1.0 ) - R123 );\n vec3 C0 = R12 + Rs;\n I = C0;\n vec3 Cm = Rs - T121;\n for ( int m = 1; m <= 2; ++m ) {\n Cm *= r123;\n vec3 Sm = 2.0 * evalSensitivity( float( m ) * OPD, float( m ) * phi );\n I += Cm * Sm;\n }\n return max( I, vec3( 0.0 ) );\n}\n#endif' var bumpmap_pars_fragment = '#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif' var clipping_planes_fragment = '#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif' var clipping_planes_pars_fragment = '#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif' var clipping_planes_pars_vertex = '#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif' var clipping_planes_vertex = '#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif' var color_fragment = '#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif' var color_pars_fragment = '#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif' var color_pars_vertex = '#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif' var color_vertex = '#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif' var common = '#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nvec3 pow2( const in vec3 x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}' var cube_uv_reflection_fragment = '#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 2.0 ) + 1.0;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tuv.x += filterInt * 3.0 * cubeUV_minTileSize;\n\t\tuv.y += 4.0 * ( exp2( CUBEUV_MAX_MIP ) - faceSize );\n\t\tuv.x *= CUBEUV_TEXEL_WIDTH;\n\t\tuv.y *= CUBEUV_TEXEL_HEIGHT;\n\t\t#ifdef texture2DGradEXT\n\t\t\treturn texture2DGradEXT( envMap, uv, vec2( 0.0 ), vec2( 0.0 ) ).rgb;\n\t\t#else\n\t\t\treturn texture2D( envMap, uv ).rgb;\n\t\t#endif\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, CUBEUV_MAX_MIP );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif' var defaultnormal_vertex = 'vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif' var displacementmap_pars_vertex = '#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif' var displacementmap_vertex = '#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif' var emissivemap_fragment = '#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif' var emissivemap_pars_fragment = '#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif' var encodings_fragment = 'gl_FragColor = linearToOutputTexel( gl_FragColor );' var encodings_pars_fragment = 'vec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}' var envmap_fragment = '#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif' var envmap_common_pars_fragment = '#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif' var envmap_pars_fragment = '#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif' var envmap_pars_vertex = '#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif' var envmap_vertex = '#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif' var fog_vertex = '#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif' var fog_pars_vertex = '#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif' var fog_fragment = '#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif' var fog_pars_fragment = '#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif' var gradientmap_pars_fragment = '#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn vec3( texture2D( gradientMap, coord ).r );\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}' var lightmap_fragment = '#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif' var lightmap_pars_fragment = '#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif' var lights_lambert_vertex = 'vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry.normal );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry.normal );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry.normal );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif' var lights_pars_begin = 'uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif' var envmap_physical_pars_fragment = '#if defined( USE_ENVMAP )\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec = reflect( - viewDir, normal );\n\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif' var lights_toon_fragment = 'ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;' var lights_toon_pars_fragment = 'varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)' var lights_phong_fragment = 'BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;' var lights_phong_pars_fragment = 'varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)' var lights_physical_fragment = 'PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularColorFactor = specularColor;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARCOLORMAP\n\t\t\tspecularColorFactor *= texture2D( specularColorMap, vUv ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularColorFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_IRIDESCENCE\n\tmaterial.iridescence = iridescence;\n\tmaterial.iridescenceIOR = iridescenceIOR;\n\t#ifdef USE_IRIDESCENCEMAP\n\t\tmaterial.iridescence *= texture2D( iridescenceMap, vUv ).r;\n\t#endif\n\t#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\t\tmaterial.iridescenceThickness = (iridescenceThicknessMaximum - iridescenceThicknessMinimum) * texture2D( iridescenceThicknessMap, vUv ).g + iridescenceThicknessMinimum;\n\t#else\n\t\tmaterial.iridescenceThickness = iridescenceThicknessMaximum;\n\t#endif\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheenColor;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tmaterial.sheenColor *= texture2D( sheenColorMap, vUv ).rgb;\n\t#endif\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tmaterial.sheenRoughness *= texture2D( sheenRoughnessMap, vUv ).a;\n\t#endif\n#endif' var lights_physical_pars_fragment = 'struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_IRIDESCENCE\n\t\tfloat iridescence;\n\t\tfloat iridescenceIOR;\n\t\tfloat iridescenceThickness;\n\t\tvec3 iridescenceFresnel;\n\t\tvec3 iridescenceF0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenColor;\n\t\tfloat sheenRoughness;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec3 sheenSpecular = vec3( 0.0 );\nfloat IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat r2 = roughness * roughness;\n\tfloat a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;\n\tfloat b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;\n\tfloat DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );\n\treturn saturate( DG * RECIPROCAL_PI );\n}\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\n#ifdef USE_IRIDESCENCE\nvoid computeMultiscatteringIridescence( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float iridescence, const in vec3 iridescenceF0, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#else\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#endif\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\t#ifdef USE_IRIDESCENCE\n\t\tvec3 Fr = mix( specularColor, iridescenceF0, iridescence );\n\t#else\n\t\tvec3 Fr = specularColor;\n\t#endif\n\tvec3 FssEss = Fr * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = Fr + ( 1.0 - Fr ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenColor, material.sheenRoughness );\n\t#endif\n\t#ifdef USE_IRIDESCENCE\n\t\treflectedLight.directSpecular += irradiance * BRDF_GGX_Iridescence( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness );\n\t#else\n\t\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecular += irradiance * material.sheenColor * IBLSheenBRDF( geometry.normal, geometry.viewDir, material.sheenRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\t#ifdef USE_IRIDESCENCE\n\t\tcomputeMultiscatteringIridescence( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness, singleScattering, multiScattering );\n\t#else\n\t\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\t#endif\n\tvec3 totalScattering = singleScattering + multiScattering;\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - max( max( totalScattering.r, totalScattering.g ), totalScattering.b ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}' var lights_fragment_begin = '\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\n#ifdef USE_IRIDESCENCE\nfloat dotNVi = saturate( dot( normal, geometry.viewDir ) );\nif ( material.iridescenceThickness == 0.0 ) {\n\tmaterial.iridescence = 0.0;\n} else {\n\tmaterial.iridescence = saturate( material.iridescence );\n}\nif ( material.iridescence > 0.0 ) {\n\tmaterial.iridescenceFresnel = evalIridescence( 1.0, material.iridescenceIOR, dotNVi, material.iridescenceThickness, material.specularColor );\n\tmaterial.iridescenceF0 = Schlick_to_F0( material.iridescenceFresnel, 1.0, dotNVi );\n}\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry.normal );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif' var lights_fragment_maps = '#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry.normal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif' var lights_fragment_end = '#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif' var logdepthbuf_fragment = '#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif' var logdepthbuf_pars_fragment = '#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif' var logdepthbuf_pars_vertex = '#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif' var logdepthbuf_vertex = '#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif' var map_fragment = '#ifdef USE_MAP\n\tvec4 sampledDiffuseColor = texture2D( map, vUv );\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\tsampledDiffuseColor = vec4( mix( pow( sampledDiffuseColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), sampledDiffuseColor.rgb * 0.0773993808, vec3( lessThanEqual( sampledDiffuseColor.rgb, vec3( 0.04045 ) ) ) ), sampledDiffuseColor.w );\n\t#endif\n\tdiffuseColor *= sampledDiffuseColor;\n#endif' var map_pars_fragment = '#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif' var map_particle_fragment = '#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tdiffuseColor *= texture2D( map, uv );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif' var map_particle_pars_fragment = '#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif' var metalnessmap_fragment = 'float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif' var metalnessmap_pars_fragment = '#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif' var morphcolor_vertex = '#if defined( USE_MORPHCOLORS ) && defined( MORPHTARGETS_TEXTURE )\n\tvColor *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t#if defined( USE_COLOR_ALPHA )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ) * morphTargetInfluences[ i ];\n\t\t#elif defined( USE_COLOR )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ).rgb * morphTargetInfluences[ i ];\n\t\t#endif\n\t}\n#endif' var morphnormal_vertex = '#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1 ).xyz * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\t\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\t\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\t\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n\t#endif\n#endif' var morphtarget_pars_vertex = '#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t\tuniform sampler2DArray morphTargetsTexture;\n\t\tuniform ivec2 morphTargetsTextureSize;\n\t\tvec4 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset ) {\n\t\t\tint texelIndex = vertexIndex * MORPHTARGETS_TEXTURE_STRIDE + offset;\n\t\t\tint y = texelIndex / morphTargetsTextureSize.x;\n\t\t\tint x = texelIndex - y * morphTargetsTextureSize.x;\n\t\t\tivec3 morphUV = ivec3( x, y, morphTargetIndex );\n\t\t\treturn texelFetch( morphTargetsTexture, morphUV, 0 );\n\t\t}\n\t#else\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\tuniform float morphTargetInfluences[ 8 ];\n\t\t#else\n\t\t\tuniform float morphTargetInfluences[ 4 ];\n\t\t#endif\n\t#endif\n#endif' var morphtarget_vertex = '#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0 ).xyz * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\t\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\t\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\t\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t\t#endif\n\t#endif\n#endif' var normal_fragment_begin = 'float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;' var normal_fragment_maps = '#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif' var normal_pars_fragment = '#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif' var normal_pars_vertex = '#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif' var normal_vertex = '#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif' var normalmap_pars_fragment = '#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif' var clearcoat_normal_fragment_begin = '#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif' var clearcoat_normal_fragment_maps = '#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif' var clearcoat_pars_fragment = '#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif' var iridescence_pars_fragment = '#ifdef USE_IRIDESCENCEMAP\n\tuniform sampler2D iridescenceMap;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tuniform sampler2D iridescenceThicknessMap;\n#endif' var output_fragment = '#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );' var packing = 'vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}' var premultiplied_alpha_fragment = '#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif' var project_vertex = 'vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;' var dithering_fragment = '#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif' var dithering_pars_fragment = '#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif' var roughnessmap_fragment = 'float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif' var roughnessmap_pars_fragment = '#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif' var shadowmap_pars_fragment = '#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif' var shadowmap_pars_vertex = '#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif' var shadowmap_vertex = '#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif' var shadowmask_pars_fragment = 'float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}' var skinbase_vertex = '#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif' var skinning_pars_vertex = '#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\tuniform highp sampler2D boneTexture;\n\tuniform int boneTextureSize;\n\tmat4 getBoneMatrix( const in float i ) {\n\t\tfloat j = i * 4.0;\n\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\ty = dy * ( y + 0.5 );\n\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\treturn bone;\n\t}\n#endif' var skinning_vertex = '#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif' var skinnormal_vertex = '#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif' var specularmap_fragment = 'float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif' var specularmap_pars_fragment = '#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif' var tonemapping_fragment = '#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif' var tonemapping_pars_fragment = '#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }' var transmission_fragment = '#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationColor, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = mix( transmissionAlpha, transmission.a, transmissionFactor );\n#endif' var transmission_pars_fragment = '#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( const in float roughness, const in float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef texture2DLodEXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( const in vec3 radiance, const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,\n\t\tconst in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,\n\t\tconst in mat4 viewMatrix, const in mat4 projMatrix, const in float ior, const in float thickness,\n\t\tconst in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif' var uv_pars_fragment = '#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif' var uv_pars_vertex = '#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif' var uv_vertex = '#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif' var uv2_pars_fragment = '#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif' var uv2_pars_vertex = '#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif' var uv2_vertex = '#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif' var worldpos_vertex = '#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif' const vertex$g = 'varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}' const fragment$g = 'uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tgl_FragColor = texture2D( t2D, vUv );\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\tgl_FragColor = vec4( mix( pow( gl_FragColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), gl_FragColor.rgb * 0.0773993808, vec3( lessThanEqual( gl_FragColor.rgb, vec3( 0.04045 ) ) ) ), gl_FragColor.w );\n\t#endif\n\t#include \n\t#include \n}' const vertex$f = 'varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}' const fragment$f = '#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}' const vertex$e = '#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}' const fragment$e = '#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}' const vertex$d = '#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}' const fragment$d = '#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}' const vertex$c = 'varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}' const fragment$c = 'uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\t#include \n\t#include \n}' const vertex$b = 'uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const fragment$b = 'uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const vertex$a = '#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const fragment$a = 'uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexel.rgb * lightMapIntensity * RECIPROCAL_PI;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const vertex$9 = '#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const fragment$9 = 'uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const vertex$8 = '#define MATCAP\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}' const fragment$8 = '#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t#else\n\t\tvec4 matcapColor = vec4( vec3( mix( 0.2, 0.8, uv.y ) ), 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const vertex$7 = '#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}' const fragment$7 = '#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n\t#ifdef OPAQUE\n\t\tgl_FragColor.a = 1.0;\n\t#endif\n}' const vertex$6 = '#define PHONG\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}' const fragment$6 = '#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const vertex$5 = '#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}' const fragment$5 = '#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARCOLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include \n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const vertex$4 = '#define TOON\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}' const fragment$4 = '#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const vertex$3 = 'uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}' const fragment$3 = 'uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const vertex$2 = '#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}' const fragment$2 = 'uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}' const vertex$1 = 'uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}' const fragment$1 = 'uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n}' const ShaderChunk = { alphamap_fragment: alphamap_fragment, alphamap_pars_fragment: alphamap_pars_fragment, alphatest_fragment: alphatest_fragment, alphatest_pars_fragment: alphatest_pars_fragment, aomap_fragment: aomap_fragment, aomap_pars_fragment: aomap_pars_fragment, begin_vertex: begin_vertex, beginnormal_vertex: beginnormal_vertex, bsdfs: bsdfs, iridescence_fragment: iridescence_fragment, bumpmap_pars_fragment: bumpmap_pars_fragment, clipping_planes_fragment: clipping_planes_fragment, clipping_planes_pars_fragment: clipping_planes_pars_fragment, clipping_planes_pars_vertex: clipping_planes_pars_vertex, clipping_planes_vertex: clipping_planes_vertex, color_fragment: color_fragment, color_pars_fragment: color_pars_fragment, color_pars_vertex: color_pars_vertex, color_vertex: color_vertex, common: common, cube_uv_reflection_fragment: cube_uv_reflection_fragment, defaultnormal_vertex: defaultnormal_vertex, displacementmap_pars_vertex: displacementmap_pars_vertex, displacementmap_vertex: displacementmap_vertex, emissivemap_fragment: emissivemap_fragment, emissivemap_pars_fragment: emissivemap_pars_fragment, encodings_fragment: encodings_fragment, encodings_pars_fragment: encodings_pars_fragment, envmap_fragment: envmap_fragment, envmap_common_pars_fragment: envmap_common_pars_fragment, envmap_pars_fragment: envmap_pars_fragment, envmap_pars_vertex: envmap_pars_vertex, envmap_physical_pars_fragment: envmap_physical_pars_fragment, envmap_vertex: envmap_vertex, fog_vertex: fog_vertex, fog_pars_vertex: fog_pars_vertex, fog_fragment: fog_fragment, fog_pars_fragment: fog_pars_fragment, gradientmap_pars_fragment: gradientmap_pars_fragment, lightmap_fragment: lightmap_fragment, lightmap_pars_fragment: lightmap_pars_fragment, lights_lambert_vertex: lights_lambert_vertex, lights_pars_begin: lights_pars_begin, lights_toon_fragment: lights_toon_fragment, lights_toon_pars_fragment: lights_toon_pars_fragment, lights_phong_fragment: lights_phong_fragment, lights_phong_pars_fragment: lights_phong_pars_fragment, lights_physical_fragment: lights_physical_fragment, lights_physical_pars_fragment: lights_physical_pars_fragment, lights_fragment_begin: lights_fragment_begin, lights_fragment_maps: lights_fragment_maps, lights_fragment_end: lights_fragment_end, logdepthbuf_fragment: logdepthbuf_fragment, logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, logdepthbuf_vertex: logdepthbuf_vertex, map_fragment: map_fragment, map_pars_fragment: map_pars_fragment, map_particle_fragment: map_particle_fragment, map_particle_pars_fragment: map_particle_pars_fragment, metalnessmap_fragment: metalnessmap_fragment, metalnessmap_pars_fragment: metalnessmap_pars_fragment, morphcolor_vertex: morphcolor_vertex, morphnormal_vertex: morphnormal_vertex, morphtarget_pars_vertex: morphtarget_pars_vertex, morphtarget_vertex: morphtarget_vertex, normal_fragment_begin: normal_fragment_begin, normal_fragment_maps: normal_fragment_maps, normal_pars_fragment: normal_pars_fragment, normal_pars_vertex: normal_pars_vertex, normal_vertex: normal_vertex, normalmap_pars_fragment: normalmap_pars_fragment, clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin, clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps, clearcoat_pars_fragment: clearcoat_pars_fragment, iridescence_pars_fragment: iridescence_pars_fragment, output_fragment: output_fragment, packing: packing, premultiplied_alpha_fragment: premultiplied_alpha_fragment, project_vertex: project_vertex, dithering_fragment: dithering_fragment, dithering_pars_fragment: dithering_pars_fragment, roughnessmap_fragment: roughnessmap_fragment, roughnessmap_pars_fragment: roughnessmap_pars_fragment, shadowmap_pars_fragment: shadowmap_pars_fragment, shadowmap_pars_vertex: shadowmap_pars_vertex, shadowmap_vertex: shadowmap_vertex, shadowmask_pars_fragment: shadowmask_pars_fragment, skinbase_vertex: skinbase_vertex, skinning_pars_vertex: skinning_pars_vertex, skinning_vertex: skinning_vertex, skinnormal_vertex: skinnormal_vertex, specularmap_fragment: specularmap_fragment, specularmap_pars_fragment: specularmap_pars_fragment, tonemapping_fragment: tonemapping_fragment, tonemapping_pars_fragment: tonemapping_pars_fragment, transmission_fragment: transmission_fragment, transmission_pars_fragment: transmission_pars_fragment, uv_pars_fragment: uv_pars_fragment, uv_pars_vertex: uv_pars_vertex, uv_vertex: uv_vertex, uv2_pars_fragment: uv2_pars_fragment, uv2_pars_vertex: uv2_pars_vertex, uv2_vertex: uv2_vertex, worldpos_vertex: worldpos_vertex, background_vert: vertex$g, background_frag: fragment$g, cube_vert: vertex$f, cube_frag: fragment$f, depth_vert: vertex$e, depth_frag: fragment$e, distanceRGBA_vert: vertex$d, distanceRGBA_frag: fragment$d, equirect_vert: vertex$c, equirect_frag: fragment$c, linedashed_vert: vertex$b, linedashed_frag: fragment$b, meshbasic_vert: vertex$a, meshbasic_frag: fragment$a, meshlambert_vert: vertex$9, meshlambert_frag: fragment$9, meshmatcap_vert: vertex$8, meshmatcap_frag: fragment$8, meshnormal_vert: vertex$7, meshnormal_frag: fragment$7, meshphong_vert: vertex$6, meshphong_frag: fragment$6, meshphysical_vert: vertex$5, meshphysical_frag: fragment$5, meshtoon_vert: vertex$4, meshtoon_frag: fragment$4, points_vert: vertex$3, points_frag: fragment$3, shadow_vert: vertex$2, shadow_frag: fragment$2, sprite_vert: vertex$1, sprite_frag: fragment$1 } /** * Uniforms library for shared webgl shaders */ const UniformsLib = { common: { diffuse: { value: new Color(0xffffff) }, opacity: { value: 1.0 }, map: { value: null }, uvTransform: { value: new Matrix3() }, uv2Transform: { value: new Matrix3() }, alphaMap: { value: null }, alphaTest: { value: 0 } }, specularmap: { specularMap: { value: null } }, envmap: { envMap: { value: null }, flipEnvMap: { value: -1 }, reflectivity: { value: 1.0 }, // basic, lambert, phong ior: { value: 1.5 }, // physical refractionRatio: { value: 0.98 } // basic, lambert, phong }, aomap: { aoMap: { value: null }, aoMapIntensity: { value: 1 } }, lightmap: { lightMap: { value: null }, lightMapIntensity: { value: 1 } }, emissivemap: { emissiveMap: { value: null } }, bumpmap: { bumpMap: { value: null }, bumpScale: { value: 1 } }, normalmap: { normalMap: { value: null }, normalScale: { value: new Vector2(1, 1) } }, displacementmap: { displacementMap: { value: null }, displacementScale: { value: 1 }, displacementBias: { value: 0 } }, roughnessmap: { roughnessMap: { value: null } }, metalnessmap: { metalnessMap: { value: null } }, gradientmap: { gradientMap: { value: null } }, fog: { fogDensity: { value: 0.00025 }, fogNear: { value: 1 }, fogFar: { value: 2000 }, fogColor: { value: new Color(0xffffff) } }, lights: { ambientLightColor: { value: [] }, lightProbe: { value: [] }, directionalLights: { value: [], properties: { direction: {}, color: {} } }, directionalLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] }, spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {} } }, spotLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, spotShadowMap: { value: [] }, spotShadowMatrix: { value: [] }, pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {} } }, pointLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {}, shadowCameraNear: {}, shadowCameraFar: {} } }, pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] }, hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } }, // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src rectAreaLights: { value: [], properties: { color: {}, position: {}, width: {}, height: {} } }, ltc_1: { value: null }, ltc_2: { value: null } }, points: { diffuse: { value: new Color(0xffffff) }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, map: { value: null }, alphaMap: { value: null }, alphaTest: { value: 0 }, uvTransform: { value: new Matrix3() } }, sprite: { diffuse: { value: new Color(0xffffff) }, opacity: { value: 1.0 }, center: { value: new Vector2(0.5, 0.5) }, rotation: { value: 0.0 }, map: { value: null }, alphaMap: { value: null }, alphaTest: { value: 0 }, uvTransform: { value: new Matrix3() } } } const ShaderLib = { basic: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog]), vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag }, lambert: { uniforms: mergeUniforms([ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color(0x000000) } } ]), vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag }, phong: { uniforms: mergeUniforms([ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color(0x000000) }, specular: { value: new Color(0x111111) }, shininess: { value: 30 } } ]), vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag }, standard: { uniforms: mergeUniforms([ UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color(0x000000) }, roughness: { value: 1.0 }, metalness: { value: 0.0 }, envMapIntensity: { value: 1 } // temporary } ]), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }, toon: { uniforms: mergeUniforms([ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color(0x000000) } } ]), vertexShader: ShaderChunk.meshtoon_vert, fragmentShader: ShaderChunk.meshtoon_frag }, matcap: { uniforms: mergeUniforms([ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, { matcap: { value: null } } ]), vertexShader: ShaderChunk.meshmatcap_vert, fragmentShader: ShaderChunk.meshmatcap_frag }, points: { uniforms: mergeUniforms([UniformsLib.points, UniformsLib.fog]), vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag }, dashed: { uniforms: mergeUniforms([ UniformsLib.common, UniformsLib.fog, { scale: { value: 1 }, dashSize: { value: 1 }, totalSize: { value: 2 } } ]), vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag }, depth: { uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap]), vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag }, normal: { uniforms: mergeUniforms([ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { opacity: { value: 1.0 } } ]), vertexShader: ShaderChunk.meshnormal_vert, fragmentShader: ShaderChunk.meshnormal_frag }, sprite: { uniforms: mergeUniforms([UniformsLib.sprite, UniformsLib.fog]), vertexShader: ShaderChunk.sprite_vert, fragmentShader: ShaderChunk.sprite_frag }, background: { uniforms: { uvTransform: { value: new Matrix3() }, t2D: { value: null } }, vertexShader: ShaderChunk.background_vert, fragmentShader: ShaderChunk.background_frag }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ cube: { uniforms: mergeUniforms([ UniformsLib.envmap, { opacity: { value: 1.0 } } ]), vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag }, equirect: { uniforms: { tEquirect: { value: null } }, vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag }, distanceRGBA: { uniforms: mergeUniforms([ UniformsLib.common, UniformsLib.displacementmap, { referencePosition: { value: new Vector3() }, nearDistance: { value: 1 }, farDistance: { value: 1000 } } ]), vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag }, shadow: { uniforms: mergeUniforms([ UniformsLib.lights, UniformsLib.fog, { color: { value: new Color(0x00000) }, opacity: { value: 1.0 } } ]), vertexShader: ShaderChunk.shadow_vert, fragmentShader: ShaderChunk.shadow_frag } } ShaderLib.physical = { uniforms: mergeUniforms([ ShaderLib.standard.uniforms, { clearcoat: { value: 0 }, clearcoatMap: { value: null }, clearcoatRoughness: { value: 0 }, clearcoatRoughnessMap: { value: null }, clearcoatNormalScale: { value: new Vector2(1, 1) }, clearcoatNormalMap: { value: null }, iridescence: { value: 0 }, iridescenceMap: { value: null }, iridescenceIOR: { value: 1.3 }, iridescenceThicknessMinimum: { value: 100 }, iridescenceThicknessMaximum: { value: 400 }, iridescenceThicknessMap: { value: null }, sheen: { value: 0 }, sheenColor: { value: new Color(0x000000) }, sheenColorMap: { value: null }, sheenRoughness: { value: 1 }, sheenRoughnessMap: { value: null }, transmission: { value: 0 }, transmissionMap: { value: null }, transmissionSamplerSize: { value: new Vector2() }, transmissionSamplerMap: { value: null }, thickness: { value: 0 }, thicknessMap: { value: null }, attenuationDistance: { value: 0 }, attenuationColor: { value: new Color(0x000000) }, specularIntensity: { value: 1 }, specularIntensityMap: { value: null }, specularColor: { value: new Color(1, 1, 1) }, specularColorMap: { value: null } } ]), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag } function WebGLBackground(renderer, cubemaps, state, objects, alpha, premultipliedAlpha) { const clearColor = new Color(0x000000) let clearAlpha = alpha === true ? 0 : 1 let planeMesh let boxMesh let currentBackground = null let currentBackgroundVersion = 0 let currentTonemapping = null function render(renderList, scene) { let forceClear = false let background = scene.isScene === true ? scene.background : null if (background && background.isTexture) { background = cubemaps.get(background) } // Ignore background in AR // TODO: Reconsider this. const xr = renderer.xr const session = xr.getSession && xr.getSession() if (session && session.environmentBlendMode === 'additive') { background = null } if (background === null) { setClear(clearColor, clearAlpha) } else if (background && background.isColor) { setClear(background, 1) forceClear = true } if (renderer.autoClear || forceClear) { renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil) } if (background && (background.isCubeTexture || background.mapping === CubeUVReflectionMapping)) { if (boxMesh === undefined) { boxMesh = new Mesh( new BoxGeometry(1, 1, 1), new ShaderMaterial({ name: 'BackgroundCubeMaterial', uniforms: cloneUniforms(ShaderLib.cube.uniforms), vertexShader: ShaderLib.cube.vertexShader, fragmentShader: ShaderLib.cube.fragmentShader, side: BackSide, depthTest: false, depthWrite: false, fog: false }) ) boxMesh.geometry.deleteAttribute('normal') boxMesh.geometry.deleteAttribute('uv') boxMesh.onBeforeRender = function(renderer, scene, camera) { this.matrixWorld.copyPosition(camera.matrixWorld) } // enable code injection for non-built-in material Object.defineProperty(boxMesh.material, 'envMap', { get: function() { return this.uniforms.envMap.value } }) objects.update(boxMesh) } boxMesh.material.uniforms.envMap.value = background boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background.isRenderTargetTexture === false ? -1 : 1 if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) { boxMesh.material.needsUpdate = true currentBackground = background currentBackgroundVersion = background.version currentTonemapping = renderer.toneMapping } boxMesh.layers.enableAll() // push to the pre-sorted opaque render list renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null) } else if (background && background.isTexture) { if (planeMesh === undefined) { planeMesh = new Mesh( new PlaneGeometry(2, 2), new ShaderMaterial({ name: 'BackgroundMaterial', uniforms: cloneUniforms(ShaderLib.background.uniforms), vertexShader: ShaderLib.background.vertexShader, fragmentShader: ShaderLib.background.fragmentShader, side: FrontSide, depthTest: false, depthWrite: false, fog: false }) ) planeMesh.geometry.deleteAttribute('normal') // enable code injection for non-built-in material Object.defineProperty(planeMesh.material, 'map', { get: function() { return this.uniforms.t2D.value } }) objects.update(planeMesh) } planeMesh.material.uniforms.t2D.value = background if (background.matrixAutoUpdate === true) { background.updateMatrix() } planeMesh.material.uniforms.uvTransform.value.copy(background.matrix) if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) { planeMesh.material.needsUpdate = true currentBackground = background currentBackgroundVersion = background.version currentTonemapping = renderer.toneMapping } planeMesh.layers.enableAll() // push to the pre-sorted opaque render list renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null) } } function setClear(color, alpha) { state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha) } return { getClearColor: function() { return clearColor }, setClearColor: function(color, alpha = 1) { clearColor.set(color) clearAlpha = alpha setClear(clearColor, clearAlpha) }, getClearAlpha: function() { return clearAlpha }, setClearAlpha: function(alpha) { clearAlpha = alpha setClear(clearColor, clearAlpha) }, render: render } } function WebGLBindingStates(gl, extensions, attributes, capabilities) { const maxVertexAttributes = gl.getParameter(34921) const extension = capabilities.isWebGL2 ? null : extensions.get('OES_vertex_array_object') const vaoAvailable = capabilities.isWebGL2 || extension !== null const bindingStates = {} const defaultState = createBindingState(null) let currentState = defaultState let forceUpdate = false function setup(object, material, program, geometry, index) { let updateBuffers = false if (vaoAvailable) { const state = getBindingState(geometry, program, material) if (currentState !== state) { currentState = state bindVertexArrayObject(currentState.object) } updateBuffers = needsUpdate(object, geometry, program, index) if (updateBuffers) saveCache(object, geometry, program, index) } else { const wireframe = material.wireframe === true if (currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe) { currentState.geometry = geometry.id currentState.program = program.id currentState.wireframe = wireframe updateBuffers = true } } if (index !== null) { attributes.update(index, 34963) } if (updateBuffers || forceUpdate) { forceUpdate = false setupVertexAttributes(object, material, program, geometry) if (index !== null) { gl.bindBuffer(34963, attributes.get(index).buffer) } } } function createVertexArrayObject() { if (capabilities.isWebGL2) return gl.createVertexArray() return extension.createVertexArrayOES() } function bindVertexArrayObject(vao) { if (capabilities.isWebGL2) return gl.bindVertexArray(vao) return extension.bindVertexArrayOES(vao) } function deleteVertexArrayObject(vao) { if (capabilities.isWebGL2) return gl.deleteVertexArray(vao) return extension.deleteVertexArrayOES(vao) } function getBindingState(geometry, program, material) { const wireframe = material.wireframe === true let programMap = bindingStates[geometry.id] if (programMap === undefined) { programMap = {} bindingStates[geometry.id] = programMap } let stateMap = programMap[program.id] if (stateMap === undefined) { stateMap = {} programMap[program.id] = stateMap } let state = stateMap[wireframe] if (state === undefined) { state = createBindingState(createVertexArrayObject()) stateMap[wireframe] = state } return state } function createBindingState(vao) { const newAttributes = [] const enabledAttributes = [] const attributeDivisors = [] for (let i = 0; i < maxVertexAttributes; i++) { newAttributes[i] = 0 enabledAttributes[i] = 0 attributeDivisors[i] = 0 } return { // for backward compatibility on non-VAO support browser geometry: null, program: null, wireframe: false, newAttributes: newAttributes, enabledAttributes: enabledAttributes, attributeDivisors: attributeDivisors, object: vao, attributes: {}, index: null } } function needsUpdate(object, geometry, program, index) { const cachedAttributes = currentState.attributes const geometryAttributes = geometry.attributes let attributesNum = 0 const programAttributes = program.getAttributes() for (const name in programAttributes) { const programAttribute = programAttributes[name] if (programAttribute.location >= 0) { const cachedAttribute = cachedAttributes[name] let geometryAttribute = geometryAttributes[name] if (geometryAttribute === undefined) { if (name === 'instanceMatrix' && object.instanceMatrix) geometryAttribute = object.instanceMatrix if (name === 'instanceColor' && object.instanceColor) geometryAttribute = object.instanceColor } if (cachedAttribute === undefined) return true if (cachedAttribute.attribute !== geometryAttribute) return true if (geometryAttribute && cachedAttribute.data !== geometryAttribute.data) return true attributesNum++ } } if (currentState.attributesNum !== attributesNum) return true if (currentState.index !== index) return true return false } function saveCache(object, geometry, program, index) { const cache = {} const attributes = geometry.attributes let attributesNum = 0 const programAttributes = program.getAttributes() for (const name in programAttributes) { const programAttribute = programAttributes[name] if (programAttribute.location >= 0) { let attribute = attributes[name] if (attribute === undefined) { if (name === 'instanceMatrix' && object.instanceMatrix) attribute = object.instanceMatrix if (name === 'instanceColor' && object.instanceColor) attribute = object.instanceColor } const data = {} data.attribute = attribute if (attribute && attribute.data) { data.data = attribute.data } cache[name] = data attributesNum++ } } currentState.attributes = cache currentState.attributesNum = attributesNum currentState.index = index } function initAttributes() { const newAttributes = currentState.newAttributes for (let i = 0, il = newAttributes.length; i < il; i++) { newAttributes[i] = 0 } } function enableAttribute(attribute) { enableAttributeAndDivisor(attribute, 0) } function enableAttributeAndDivisor(attribute, meshPerAttribute) { const newAttributes = currentState.newAttributes const enabledAttributes = currentState.enabledAttributes const attributeDivisors = currentState.attributeDivisors newAttributes[attribute] = 1 if (enabledAttributes[attribute] === 0) { gl.enableVertexAttribArray(attribute) enabledAttributes[attribute] = 1 } if (attributeDivisors[attribute] !== meshPerAttribute) { const extension = capabilities.isWebGL2 ? gl : extensions.get('ANGLE_instanced_arrays') extension[capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE'](attribute, meshPerAttribute) attributeDivisors[attribute] = meshPerAttribute } } function disableUnusedAttributes() { const newAttributes = currentState.newAttributes const enabledAttributes = currentState.enabledAttributes for (let i = 0, il = enabledAttributes.length; i < il; i++) { if (enabledAttributes[i] !== newAttributes[i]) { gl.disableVertexAttribArray(i) enabledAttributes[i] = 0 } } } function vertexAttribPointer(index, size, type, normalized, stride, offset) { if (capabilities.isWebGL2 === true && (type === 5124 || type === 5125)) { gl.vertexAttribIPointer(index, size, type, stride, offset) } else { gl.vertexAttribPointer(index, size, type, normalized, stride, offset) } } function setupVertexAttributes(object, material, program, geometry) { if (capabilities.isWebGL2 === false && (object.isInstancedMesh || geometry.isInstancedBufferGeometry)) { if (extensions.get('ANGLE_instanced_arrays') === null) return } initAttributes() const geometryAttributes = geometry.attributes const programAttributes = program.getAttributes() const materialDefaultAttributeValues = material.defaultAttributeValues for (const name in programAttributes) { const programAttribute = programAttributes[name] if (programAttribute.location >= 0) { let geometryAttribute = geometryAttributes[name] if (geometryAttribute === undefined) { if (name === 'instanceMatrix' && object.instanceMatrix) geometryAttribute = object.instanceMatrix if (name === 'instanceColor' && object.instanceColor) geometryAttribute = object.instanceColor } if (geometryAttribute !== undefined) { const normalized = geometryAttribute.normalized const size = geometryAttribute.itemSize const attribute = attributes.get(geometryAttribute) // TODO Attribute may not be available on context restore if (attribute === undefined) continue const buffer = attribute.buffer const type = attribute.type const bytesPerElement = attribute.bytesPerElement if (geometryAttribute.isInterleavedBufferAttribute) { const data = geometryAttribute.data const stride = data.stride const offset = geometryAttribute.offset if (data.isInstancedInterleavedBuffer) { for (let i = 0; i < programAttribute.locationSize; i++) { enableAttributeAndDivisor(programAttribute.location + i, data.meshPerAttribute) } if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) { geometry._maxInstanceCount = data.meshPerAttribute * data.count } } else { for (let i = 0; i < programAttribute.locationSize; i++) { enableAttribute(programAttribute.location + i) } } gl.bindBuffer(34962, buffer) for (let i = 0; i < programAttribute.locationSize; i++) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, (offset + (size / programAttribute.locationSize) * i) * bytesPerElement ) } } else { if (geometryAttribute.isInstancedBufferAttribute) { for (let i = 0; i < programAttribute.locationSize; i++) { enableAttributeAndDivisor(programAttribute.location + i, geometryAttribute.meshPerAttribute) } if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) { geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count } } else { for (let i = 0; i < programAttribute.locationSize; i++) { enableAttribute(programAttribute.location + i) } } gl.bindBuffer(34962, buffer) for (let i = 0; i < programAttribute.locationSize; i++) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, (size / programAttribute.locationSize) * i * bytesPerElement ) } } } else if (materialDefaultAttributeValues !== undefined) { const value = materialDefaultAttributeValues[name] if (value !== undefined) { switch (value.length) { case 2: gl.vertexAttrib2fv(programAttribute.location, value) break case 3: gl.vertexAttrib3fv(programAttribute.location, value) break case 4: gl.vertexAttrib4fv(programAttribute.location, value) break default: gl.vertexAttrib1fv(programAttribute.location, value) } } } } } disableUnusedAttributes() } function dispose() { reset() for (const geometryId in bindingStates) { const programMap = bindingStates[geometryId] for (const programId in programMap) { const stateMap = programMap[programId] for (const wireframe in stateMap) { deleteVertexArrayObject(stateMap[wireframe].object) delete stateMap[wireframe] } delete programMap[programId] } delete bindingStates[geometryId] } } function releaseStatesOfGeometry(geometry) { if (bindingStates[geometry.id] === undefined) return const programMap = bindingStates[geometry.id] for (const programId in programMap) { const stateMap = programMap[programId] for (const wireframe in stateMap) { deleteVertexArrayObject(stateMap[wireframe].object) delete stateMap[wireframe] } delete programMap[programId] } delete bindingStates[geometry.id] } function releaseStatesOfProgram(program) { for (const geometryId in bindingStates) { const programMap = bindingStates[geometryId] if (programMap[program.id] === undefined) continue const stateMap = programMap[program.id] for (const wireframe in stateMap) { deleteVertexArrayObject(stateMap[wireframe].object) delete stateMap[wireframe] } delete programMap[program.id] } } function reset() { resetDefaultState() forceUpdate = true if (currentState === defaultState) return currentState = defaultState bindVertexArrayObject(currentState.object) } // for backward-compatibility function resetDefaultState() { defaultState.geometry = null defaultState.program = null defaultState.wireframe = false } return { setup: setup, reset: reset, resetDefaultState: resetDefaultState, dispose: dispose, releaseStatesOfGeometry: releaseStatesOfGeometry, releaseStatesOfProgram: releaseStatesOfProgram, initAttributes: initAttributes, enableAttribute: enableAttribute, disableUnusedAttributes: disableUnusedAttributes } } function WebGLBufferRenderer(gl, extensions, info, capabilities) { const isWebGL2 = capabilities.isWebGL2 let mode function setMode(value) { mode = value } function render(start, count) { gl.drawArrays(mode, start, count) info.update(count, mode, 1) } function renderInstances(start, count, primcount) { if (primcount === 0) return let extension, methodName if (isWebGL2) { extension = gl methodName = 'drawArraysInstanced' } else { extension = extensions.get('ANGLE_instanced_arrays') methodName = 'drawArraysInstancedANGLE' if (extension === null) { console.error('THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.') return } } extension[methodName](mode, start, count, primcount) info.update(count, mode, primcount) } // this.setMode = setMode this.render = render this.renderInstances = renderInstances } function WebGLCapabilities(gl, extensions, parameters) { let maxAnisotropy function getMaxAnisotropy() { if (maxAnisotropy !== undefined) return maxAnisotropy if (extensions.has('EXT_texture_filter_anisotropic') === true) { const extension = extensions.get('EXT_texture_filter_anisotropic') maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT) } else { maxAnisotropy = 0 } return maxAnisotropy } function getMaxPrecision(precision) { if (precision === 'highp') { if (gl.getShaderPrecisionFormat(35633, 36338).precision > 0 && gl.getShaderPrecisionFormat(35632, 36338).precision > 0) { return 'highp' } precision = 'mediump' } if (precision === 'mediump') { if (gl.getShaderPrecisionFormat(35633, 36337).precision > 0 && gl.getShaderPrecisionFormat(35632, 36337).precision > 0) { return 'mediump' } } return 'lowp' } const isWebGL2 = (typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext) || (typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext) let precision = parameters.precision !== undefined ? parameters.precision : 'highp' const maxPrecision = getMaxPrecision(precision) if (maxPrecision !== precision) { console.warn('THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.') precision = maxPrecision } const drawBuffers = isWebGL2 || extensions.has('WEBGL_draw_buffers') const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true const maxTextures = gl.getParameter(34930) const maxVertexTextures = gl.getParameter(35660) const maxTextureSize = gl.getParameter(3379) const maxCubemapSize = gl.getParameter(34076) const maxAttributes = gl.getParameter(34921) const maxVertexUniforms = gl.getParameter(36347) const maxVaryings = gl.getParameter(36348) const maxFragmentUniforms = gl.getParameter(36349) const vertexTextures = maxVertexTextures > 0 const floatFragmentTextures = isWebGL2 || extensions.has('OES_texture_float') const floatVertexTextures = vertexTextures && floatFragmentTextures const maxSamples = isWebGL2 ? gl.getParameter(36183) : 0 return { isWebGL2: isWebGL2, drawBuffers: drawBuffers, getMaxAnisotropy: getMaxAnisotropy, getMaxPrecision: getMaxPrecision, precision: precision, logarithmicDepthBuffer: logarithmicDepthBuffer, maxTextures: maxTextures, maxVertexTextures: maxVertexTextures, maxTextureSize: maxTextureSize, maxCubemapSize: maxCubemapSize, maxAttributes: maxAttributes, maxVertexUniforms: maxVertexUniforms, maxVaryings: maxVaryings, maxFragmentUniforms: maxFragmentUniforms, vertexTextures: vertexTextures, floatFragmentTextures: floatFragmentTextures, floatVertexTextures: floatVertexTextures, maxSamples: maxSamples } } function WebGLClipping(properties) { const scope = this let globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false const plane = new Plane(), viewNormalMatrix = new Matrix3(), uniform = { value: null, needsUpdate: false } this.uniform = uniform this.numPlanes = 0 this.numIntersection = 0 this.init = function(planes, enableLocalClipping, camera) { const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled localClippingEnabled = enableLocalClipping globalState = projectPlanes(planes, camera, 0) numGlobalPlanes = planes.length return enabled } this.beginShadows = function() { renderingShadows = true projectPlanes(null) } this.endShadows = function() { renderingShadows = false resetGlobalState() } this.setState = function(material, camera, useCache) { const planes = material.clippingPlanes, clipIntersection = material.clipIntersection, clipShadows = material.clipShadows const materialProperties = properties.get(material) if (!localClippingEnabled || planes === null || planes.length === 0 || (renderingShadows && !clipShadows)) { // there's no local clipping if (renderingShadows) { // there's no global clipping projectPlanes(null) } else { resetGlobalState() } } else { const nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4 let dstArray = materialProperties.clippingState || null uniform.value = dstArray // ensure unique state dstArray = projectPlanes(planes, camera, lGlobal, useCache) for (let i = 0; i !== lGlobal; ++i) { dstArray[i] = globalState[i] } materialProperties.clippingState = dstArray this.numIntersection = clipIntersection ? this.numPlanes : 0 this.numPlanes += nGlobal } } function resetGlobalState() { if (uniform.value !== globalState) { uniform.value = globalState uniform.needsUpdate = numGlobalPlanes > 0 } scope.numPlanes = numGlobalPlanes scope.numIntersection = 0 } function projectPlanes(planes, camera, dstOffset, skipTransform) { const nPlanes = planes !== null ? planes.length : 0 let dstArray = null if (nPlanes !== 0) { dstArray = uniform.value if (skipTransform !== true || dstArray === null) { const flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse viewNormalMatrix.getNormalMatrix(viewMatrix) if (dstArray === null || dstArray.length < flatSize) { dstArray = new Float32Array(flatSize) } for (let i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) { plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix) plane.normal.toArray(dstArray, i4) dstArray[i4 + 3] = plane.constant } } uniform.value = dstArray uniform.needsUpdate = true } scope.numPlanes = nPlanes scope.numIntersection = 0 return dstArray } } function WebGLCubeMaps(renderer) { let cubemaps = new WeakMap() function mapTextureMapping(texture, mapping) { if (mapping === EquirectangularReflectionMapping) { texture.mapping = CubeReflectionMapping } else if (mapping === EquirectangularRefractionMapping) { texture.mapping = CubeRefractionMapping } return texture } function get(texture) { if (texture && texture.isTexture && texture.isRenderTargetTexture === false) { const mapping = texture.mapping if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) { if (cubemaps.has(texture)) { const cubemap = cubemaps.get(texture).texture return mapTextureMapping(cubemap, texture.mapping) } else { const image = texture.image if (image && image.height > 0) { const renderTarget = new WebGLCubeRenderTarget(image.height / 2) renderTarget.fromEquirectangularTexture(renderer, texture) cubemaps.set(texture, renderTarget) texture.addEventListener('dispose', onTextureDispose) return mapTextureMapping(renderTarget.texture, texture.mapping) } else { // image not yet ready. try the conversion next frame return null } } } } return texture } function onTextureDispose(event) { const texture = event.target texture.removeEventListener('dispose', onTextureDispose) const cubemap = cubemaps.get(texture) if (cubemap !== undefined) { cubemaps.delete(texture) cubemap.dispose() } } function dispose() { cubemaps = new WeakMap() } return { get: get, dispose: dispose } } class OrthographicCamera extends Camera { constructor(left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000) { super() this.isOrthographicCamera = true this.type = 'OrthographicCamera' this.zoom = 1 this.view = null this.left = left this.right = right this.top = top this.bottom = bottom this.near = near this.far = far this.updateProjectionMatrix() } copy(source, recursive) { super.copy(source, recursive) this.left = source.left this.right = source.right this.top = source.top this.bottom = source.bottom this.near = source.near this.far = source.far this.zoom = source.zoom this.view = source.view === null ? null : Object.assign({}, source.view) return this } setViewOffset(fullWidth, fullHeight, x, y, width, height) { if (this.view === null) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 } } this.view.enabled = true this.view.fullWidth = fullWidth this.view.fullHeight = fullHeight this.view.offsetX = x this.view.offsetY = y this.view.width = width this.view.height = height this.updateProjectionMatrix() } clearViewOffset() { if (this.view !== null) { this.view.enabled = false } this.updateProjectionMatrix() } updateProjectionMatrix() { const dx = (this.right - this.left) / (2 * this.zoom) const dy = (this.top - this.bottom) / (2 * this.zoom) const cx = (this.right + this.left) / 2 const cy = (this.top + this.bottom) / 2 let left = cx - dx let right = cx + dx let top = cy + dy let bottom = cy - dy if (this.view !== null && this.view.enabled) { const scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom const scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom left += scaleW * this.view.offsetX right = left + scaleW * this.view.width top -= scaleH * this.view.offsetY bottom = top - scaleH * this.view.height } this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far) this.projectionMatrixInverse.copy(this.projectionMatrix).invert() } toJSON(meta) { const data = super.toJSON(meta) data.object.zoom = this.zoom data.object.left = this.left data.object.right = this.right data.object.top = this.top data.object.bottom = this.bottom data.object.near = this.near data.object.far = this.far if (this.view !== null) data.object.view = Object.assign({}, this.view) return data } } const LOD_MIN = 4 // The standard deviations (radians) associated with the extra mips. These are // chosen to approximate a Trowbridge-Reitz distribution function times the // geometric shadowing function. These sigma values squared must match the // variance #defines in cube_uv_reflection_fragment.glsl.js. const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582] // The maximum length of the blur for loop. Smaller sigmas will use fewer // samples and exit early, but not recompile the shader. const MAX_SAMPLES = 20 const _flatCamera = /*@__PURE__*/ new OrthographicCamera() const _clearColor = /*@__PURE__*/ new Color() let _oldTarget = null // Golden Ratio const PHI = (1 + Math.sqrt(5)) / 2 const INV_PHI = 1 / PHI // Vertices of a dodecahedron (except the opposites, which represent the // same axis), used as axis directions evenly spread on a sphere. const _axisDirections = [ /*@__PURE__*/ new Vector3(1, 1, 1), /*@__PURE__*/ new Vector3(-1, 1, 1), /*@__PURE__*/ new Vector3(1, 1, -1), /*@__PURE__*/ new Vector3(-1, 1, -1), /*@__PURE__*/ new Vector3(0, PHI, INV_PHI), /*@__PURE__*/ new Vector3(0, PHI, -INV_PHI), /*@__PURE__*/ new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/ new Vector3(-INV_PHI, 0, PHI), /*@__PURE__*/ new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/ new Vector3(-PHI, INV_PHI, 0) ] /** * This class generates a Prefiltered, Mipmapped Radiance Environment Map * (PMREM) from a cubeMap environment texture. This allows different levels of * blur to be quickly accessed based on material roughness. It is packed into a * special CubeUV format that allows us to perform custom interpolation so that * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap * chain, it only goes down to the LOD_MIN level (above), and then creates extra * even more filtered 'mips' at the same LOD_MIN resolution, associated with * higher roughness levels. In this way we maintain resolution to smoothly * interpolate diffuse lighting while limiting sampling computation. * * Paper: Fast, Accurate Image-Based Lighting * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view */ class PMREMGenerator { constructor(renderer) { this._renderer = renderer this._pingPongRenderTarget = null this._lodMax = 0 this._cubeSize = 0 this._lodPlanes = [] this._sizeLods = [] this._sigmas = [] this._blurMaterial = null this._cubemapMaterial = null this._equirectMaterial = null this._compileMaterial(this._blurMaterial) } /** * Generates a PMREM from a supplied Scene, which can be faster than using an * image if networking bandwidth is low. Optional sigma specifies a blur radius * in radians to be applied to the scene before PMREM generation. Optional near * and far planes ensure the scene is rendered in its entirety (the cubeCamera * is placed at the origin). */ fromScene(scene, sigma = 0, near = 0.1, far = 100) { _oldTarget = this._renderer.getRenderTarget() this._setSize(256) const cubeUVRenderTarget = this._allocateTargets() cubeUVRenderTarget.depthBuffer = true this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget) if (sigma > 0) { this._blur(cubeUVRenderTarget, 0, 0, sigma) } this._applyPMREM(cubeUVRenderTarget) this._cleanup(cubeUVRenderTarget) return cubeUVRenderTarget } /** * Generates a PMREM from an equirectangular texture, which can be either LDR * or HDR. The ideal input image size is 1k (1024 x 512), * as this matches best with the 256 x 256 cubemap output. */ fromEquirectangular(equirectangular, renderTarget = null) { return this._fromTexture(equirectangular, renderTarget) } /** * Generates a PMREM from an cubemap texture, which can be either LDR * or HDR. The ideal input cube size is 256 x 256, * as this matches best with the 256 x 256 cubemap output. */ fromCubemap(cubemap, renderTarget = null) { return this._fromTexture(cubemap, renderTarget) } /** * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileCubemapShader() { if (this._cubemapMaterial === null) { this._cubemapMaterial = _getCubemapMaterial() this._compileMaterial(this._cubemapMaterial) } } /** * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileEquirectangularShader() { if (this._equirectMaterial === null) { this._equirectMaterial = _getEquirectMaterial() this._compileMaterial(this._equirectMaterial) } } /** * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on * one of them will cause any others to also become unusable. */ dispose() { this._dispose() if (this._cubemapMaterial !== null) this._cubemapMaterial.dispose() if (this._equirectMaterial !== null) this._equirectMaterial.dispose() } // private interface _setSize(cubeSize) { this._lodMax = Math.floor(Math.log2(cubeSize)) this._cubeSize = Math.pow(2, this._lodMax) } _dispose() { if (this._blurMaterial !== null) this._blurMaterial.dispose() if (this._pingPongRenderTarget !== null) this._pingPongRenderTarget.dispose() for (let i = 0; i < this._lodPlanes.length; i++) { this._lodPlanes[i].dispose() } } _cleanup(outputTarget) { this._renderer.setRenderTarget(_oldTarget) outputTarget.scissorTest = false _setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height) } _fromTexture(texture, renderTarget) { if (texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping) { this._setSize(texture.image.length === 0 ? 16 : texture.image[0].width || texture.image[0].image.width) } else { // Equirectangular this._setSize(texture.image.width / 4) } _oldTarget = this._renderer.getRenderTarget() const cubeUVRenderTarget = renderTarget || this._allocateTargets() this._textureToCubeUV(texture, cubeUVRenderTarget) this._applyPMREM(cubeUVRenderTarget) this._cleanup(cubeUVRenderTarget) return cubeUVRenderTarget } _allocateTargets() { const width = 3 * Math.max(this._cubeSize, 16 * 7) const height = 4 * this._cubeSize const params = { magFilter: LinearFilter, minFilter: LinearFilter, generateMipmaps: false, type: HalfFloatType, format: RGBAFormat, encoding: LinearEncoding, depthBuffer: false } const cubeUVRenderTarget = _createRenderTarget(width, height, params) if (this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width) { if (this._pingPongRenderTarget !== null) { this._dispose() } this._pingPongRenderTarget = _createRenderTarget(width, height, params) const { _lodMax } = this ;({ sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas } = _createPlanes(_lodMax)) this._blurMaterial = _getBlurShader(_lodMax, width, height) } return cubeUVRenderTarget } _compileMaterial(material) { const tmpMesh = new Mesh(this._lodPlanes[0], material) this._renderer.compile(tmpMesh, _flatCamera) } _sceneToCubeUV(scene, near, far, cubeUVRenderTarget) { const fov = 90 const aspect = 1 const cubeCamera = new PerspectiveCamera(fov, aspect, near, far) const upSign = [1, -1, 1, 1, 1, 1] const forwardSign = [1, 1, 1, -1, -1, -1] const renderer = this._renderer const originalAutoClear = renderer.autoClear const toneMapping = renderer.toneMapping renderer.getClearColor(_clearColor) renderer.toneMapping = NoToneMapping renderer.autoClear = false const backgroundMaterial = new MeshBasicMaterial({ name: 'PMREM.Background', side: BackSide, depthWrite: false, depthTest: false }) const backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial) let useSolidColor = false const background = scene.background if (background) { if (background.isColor) { backgroundMaterial.color.copy(background) scene.background = null useSolidColor = true } } else { backgroundMaterial.color.copy(_clearColor) useSolidColor = true } for (let i = 0; i < 6; i++) { const col = i % 3 if (col === 0) { cubeCamera.up.set(0, upSign[i], 0) cubeCamera.lookAt(forwardSign[i], 0, 0) } else if (col === 1) { cubeCamera.up.set(0, 0, upSign[i]) cubeCamera.lookAt(0, forwardSign[i], 0) } else { cubeCamera.up.set(0, upSign[i], 0) cubeCamera.lookAt(0, 0, forwardSign[i]) } const size = this._cubeSize _setViewport(cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size) renderer.setRenderTarget(cubeUVRenderTarget) if (useSolidColor) { renderer.render(backgroundBox, cubeCamera) } renderer.render(scene, cubeCamera) } backgroundBox.geometry.dispose() backgroundBox.material.dispose() renderer.toneMapping = toneMapping renderer.autoClear = originalAutoClear scene.background = background } _textureToCubeUV(texture, cubeUVRenderTarget) { const renderer = this._renderer const isCubeTexture = texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping if (isCubeTexture) { if (this._cubemapMaterial === null) { this._cubemapMaterial = _getCubemapMaterial() } this._cubemapMaterial.uniforms.flipEnvMap.value = texture.isRenderTargetTexture === false ? -1 : 1 } else { if (this._equirectMaterial === null) { this._equirectMaterial = _getEquirectMaterial() } } const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial const mesh = new Mesh(this._lodPlanes[0], material) const uniforms = material.uniforms uniforms['envMap'].value = texture const size = this._cubeSize _setViewport(cubeUVRenderTarget, 0, 0, 3 * size, 2 * size) renderer.setRenderTarget(cubeUVRenderTarget) renderer.render(mesh, _flatCamera) } _applyPMREM(cubeUVRenderTarget) { const renderer = this._renderer const autoClear = renderer.autoClear renderer.autoClear = false for (let i = 1; i < this._lodPlanes.length; i++) { const sigma = Math.sqrt(this._sigmas[i] * this._sigmas[i] - this._sigmas[i - 1] * this._sigmas[i - 1]) const poleAxis = _axisDirections[(i - 1) % _axisDirections.length] this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis) } renderer.autoClear = autoClear } /** * This is a two-pass Gaussian blur for a cubemap. Normally this is done * vertically and horizontally, but this breaks down on a cube. Here we apply * the blur latitudinally (around the poles), and then longitudinally (towards * the poles) to approximate the orthogonally-separable blur. It is least * accurate at the poles, but still does a decent job. */ _blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) { const pingPongRenderTarget = this._pingPongRenderTarget this._halfBlur(cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis) this._halfBlur(pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis) } _halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) { const renderer = this._renderer const blurMaterial = this._blurMaterial if (direction !== 'latitudinal' && direction !== 'longitudinal') { console.error('blur direction must be either latitudinal or longitudinal!') } // Number of standard deviations at which to cut off the discrete approximation. const STANDARD_DEVIATIONS = 3 const blurMesh = new Mesh(this._lodPlanes[lodOut], blurMaterial) const blurUniforms = blurMaterial.uniforms const pixels = this._sizeLods[lodIn] - 1 const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : (2 * Math.PI) / (2 * MAX_SAMPLES - 1) const sigmaPixels = sigmaRadians / radiansPerPixel const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES if (samples > MAX_SAMPLES) { console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`) } const weights = [] let sum = 0 for (let i = 0; i < MAX_SAMPLES; ++i) { const x = i / sigmaPixels const weight = Math.exp((-x * x) / 2) weights.push(weight) if (i === 0) { sum += weight } else if (i < samples) { sum += 2 * weight } } for (let i = 0; i < weights.length; i++) { weights[i] = weights[i] / sum } blurUniforms['envMap'].value = targetIn.texture blurUniforms['samples'].value = samples blurUniforms['weights'].value = weights blurUniforms['latitudinal'].value = direction === 'latitudinal' if (poleAxis) { blurUniforms['poleAxis'].value = poleAxis } const { _lodMax } = this blurUniforms['dTheta'].value = radiansPerPixel blurUniforms['mipInt'].value = _lodMax - lodIn const outputSize = this._sizeLods[lodOut] const x = 3 * outputSize * (lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0) const y = 4 * (this._cubeSize - outputSize) _setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize) renderer.setRenderTarget(targetOut) renderer.render(blurMesh, _flatCamera) } } function _createPlanes(lodMax) { const lodPlanes = [] const sizeLods = [] const sigmas = [] let lod = lodMax const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length for (let i = 0; i < totalLods; i++) { const sizeLod = Math.pow(2, lod) sizeLods.push(sizeLod) let sigma = 1.0 / sizeLod if (i > lodMax - LOD_MIN) { sigma = EXTRA_LOD_SIGMA[i - lodMax + LOD_MIN - 1] } else if (i === 0) { sigma = 0 } sigmas.push(sigma) const texelSize = 1.0 / (sizeLod - 2) const min = -texelSize const max = 1 + texelSize const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max] const cubeFaces = 6 const vertices = 6 const positionSize = 3 const uvSize = 2 const faceIndexSize = 1 const position = new Float32Array(positionSize * vertices * cubeFaces) const uv = new Float32Array(uvSize * vertices * cubeFaces) const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces) for (let face = 0; face < cubeFaces; face++) { const x = ((face % 3) * 2) / 3 - 1 const y = face > 2 ? 0 : -1 const coordinates = [x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0] position.set(coordinates, positionSize * vertices * face) uv.set(uv1, uvSize * vertices * face) const fill = [face, face, face, face, face, face] faceIndex.set(fill, faceIndexSize * vertices * face) } const planes = new BufferGeometry() planes.setAttribute('position', new BufferAttribute(position, positionSize)) planes.setAttribute('uv', new BufferAttribute(uv, uvSize)) planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize)) lodPlanes.push(planes) if (lod > LOD_MIN) { lod-- } } return { lodPlanes, sizeLods, sigmas } } function _createRenderTarget(width, height, params) { const cubeUVRenderTarget = new WebGLRenderTarget(width, height, params) cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping cubeUVRenderTarget.texture.name = 'PMREM.cubeUv' cubeUVRenderTarget.scissorTest = true return cubeUVRenderTarget } function _setViewport(target, x, y, width, height) { target.viewport.set(x, y, width, height) target.scissor.set(x, y, width, height) } function _getBlurShader(lodMax, width, height) { const weights = new Float32Array(MAX_SAMPLES) const poleAxis = new Vector3(0, 1, 0) const shaderMaterial = new ShaderMaterial({ name: 'SphericalGaussianBlur', defines: { n: MAX_SAMPLES, CUBEUV_TEXEL_WIDTH: 1.0 / width, CUBEUV_TEXEL_HEIGHT: 1.0 / height, CUBEUV_MAX_MIP: `${lodMax}.0` }, uniforms: { envMap: { value: null }, samples: { value: 1 }, weights: { value: weights }, latitudinal: { value: false }, dTheta: { value: 0 }, mipInt: { value: 0 }, poleAxis: { value: poleAxis } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */ ` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform int samples; uniform float weights[ n ]; uniform bool latitudinal; uniform float dTheta; uniform float mipInt; uniform vec3 poleAxis; #define ENVMAP_TYPE_CUBE_UV #include vec3 getSample( float theta, vec3 axis ) { float cosTheta = cos( theta ); // Rodrigues' axis-angle rotation vec3 sampleDirection = vOutputDirection * cosTheta + cross( axis, vOutputDirection ) * sin( theta ) + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); return bilinearCubeUV( envMap, sampleDirection, mipInt ); } void main() { vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); if ( all( equal( axis, vec3( 0.0 ) ) ) ) { axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); } axis = normalize( axis ); gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); for ( int i = 1; i < n; i++ ) { if ( i >= samples ) { break; } float theta = dTheta * float( i ); gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); } } `, blending: NoBlending, depthTest: false, depthWrite: false }) return shaderMaterial } function _getEquirectMaterial() { return new ShaderMaterial({ name: 'EquirectangularToCubeUV', uniforms: { envMap: { value: null } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */ ` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; #include void main() { vec3 outputDirection = normalize( vOutputDirection ); vec2 uv = equirectUv( outputDirection ); gl_FragColor = vec4( texture2D ( envMap, uv ).rgb, 1.0 ); } `, blending: NoBlending, depthTest: false, depthWrite: false }) } function _getCubemapMaterial() { return new ShaderMaterial({ name: 'CubemapToCubeUV', uniforms: { envMap: { value: null }, flipEnvMap: { value: -1 } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */ ` precision mediump float; precision mediump int; uniform float flipEnvMap; varying vec3 vOutputDirection; uniform samplerCube envMap; void main() { gl_FragColor = textureCube( envMap, vec3( flipEnvMap * vOutputDirection.x, vOutputDirection.yz ) ); } `, blending: NoBlending, depthTest: false, depthWrite: false }) } function _getCommonVertexShader() { return /* glsl */ ` precision mediump float; precision mediump int; attribute float faceIndex; varying vec3 vOutputDirection; // RH coordinate system; PMREM face-indexing convention vec3 getDirection( vec2 uv, float face ) { uv = 2.0 * uv - 1.0; vec3 direction = vec3( uv, 1.0 ); if ( face == 0.0 ) { direction = direction.zyx; // ( 1, v, u ) pos x } else if ( face == 1.0 ) { direction = direction.xzy; direction.xz *= -1.0; // ( -u, 1, -v ) pos y } else if ( face == 2.0 ) { direction.x *= -1.0; // ( -u, v, 1 ) pos z } else if ( face == 3.0 ) { direction = direction.zyx; direction.xz *= -1.0; // ( -1, v, -u ) neg x } else if ( face == 4.0 ) { direction = direction.xzy; direction.xy *= -1.0; // ( -u, -1, v ) neg y } else if ( face == 5.0 ) { direction.z *= -1.0; // ( u, v, -1 ) neg z } return direction; } void main() { vOutputDirection = getDirection( uv, faceIndex ); gl_Position = vec4( position, 1.0 ); } ` } function WebGLCubeUVMaps(renderer) { let cubeUVmaps = new WeakMap() let pmremGenerator = null function get(texture) { if (texture && texture.isTexture) { const mapping = texture.mapping const isEquirectMap = mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping const isCubeMap = mapping === CubeReflectionMapping || mapping === CubeRefractionMapping // equirect/cube map to cubeUV conversion if (isEquirectMap || isCubeMap) { if (texture.isRenderTargetTexture && texture.needsPMREMUpdate === true) { texture.needsPMREMUpdate = false let renderTarget = cubeUVmaps.get(texture) if (pmremGenerator === null) pmremGenerator = new PMREMGenerator(renderer) renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular(texture, renderTarget) : pmremGenerator.fromCubemap(texture, renderTarget) cubeUVmaps.set(texture, renderTarget) return renderTarget.texture } else { if (cubeUVmaps.has(texture)) { return cubeUVmaps.get(texture).texture } else { const image = texture.image if ((isEquirectMap && image && image.height > 0) || (isCubeMap && image && isCubeTextureComplete(image))) { if (pmremGenerator === null) pmremGenerator = new PMREMGenerator(renderer) const renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular(texture) : pmremGenerator.fromCubemap(texture) cubeUVmaps.set(texture, renderTarget) texture.addEventListener('dispose', onTextureDispose) return renderTarget.texture } else { // image not yet ready. try the conversion next frame return null } } } } } return texture } function isCubeTextureComplete(image) { let count = 0 const length = 6 for (let i = 0; i < length; i++) { if (image[i] !== undefined) count++ } return count === length } function onTextureDispose(event) { const texture = event.target texture.removeEventListener('dispose', onTextureDispose) const cubemapUV = cubeUVmaps.get(texture) if (cubemapUV !== undefined) { cubeUVmaps.delete(texture) cubemapUV.dispose() } } function dispose() { cubeUVmaps = new WeakMap() if (pmremGenerator !== null) { pmremGenerator.dispose() pmremGenerator = null } } return { get: get, dispose: dispose } } function WebGLExtensions(gl) { const extensions = {} function getExtension(name) { if (extensions[name] !== undefined) { return extensions[name] } let extension switch (name) { case 'WEBGL_depth_texture': extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture') break case 'EXT_texture_filter_anisotropic': extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic') break case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc') break case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc') break default: extension = gl.getExtension(name) } extensions[name] = extension return extension } return { has: function(name) { return getExtension(name) !== null }, init: function(capabilities) { if (capabilities.isWebGL2) { getExtension('EXT_color_buffer_float') } else { getExtension('WEBGL_depth_texture') getExtension('OES_texture_float') getExtension('OES_texture_half_float') getExtension('OES_texture_half_float_linear') getExtension('OES_standard_derivatives') getExtension('OES_element_index_uint') getExtension('OES_vertex_array_object') getExtension('ANGLE_instanced_arrays') } getExtension('OES_texture_float_linear') getExtension('EXT_color_buffer_half_float') getExtension('WEBGL_multisampled_render_to_texture') }, get: function(name) { const extension = getExtension(name) if (extension === null) { console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.') } return extension } } } function WebGLGeometries(gl, attributes, info, bindingStates) { const geometries = {} const wireframeAttributes = new WeakMap() function onGeometryDispose(event) { const geometry = event.target if (geometry.index !== null) { attributes.remove(geometry.index) } for (const name in geometry.attributes) { attributes.remove(geometry.attributes[name]) } geometry.removeEventListener('dispose', onGeometryDispose) delete geometries[geometry.id] const attribute = wireframeAttributes.get(geometry) if (attribute) { attributes.remove(attribute) wireframeAttributes.delete(geometry) } bindingStates.releaseStatesOfGeometry(geometry) if (geometry.isInstancedBufferGeometry === true) { delete geometry._maxInstanceCount } // info.memory.geometries-- } function get(object, geometry) { if (geometries[geometry.id] === true) return geometry geometry.addEventListener('dispose', onGeometryDispose) geometries[geometry.id] = true info.memory.geometries++ return geometry } function update(geometry) { const geometryAttributes = geometry.attributes // Updating index buffer in VAO now. See WebGLBindingStates. for (const name in geometryAttributes) { attributes.update(geometryAttributes[name], 34962) } // morph targets const morphAttributes = geometry.morphAttributes for (const name in morphAttributes) { const array = morphAttributes[name] for (let i = 0, l = array.length; i < l; i++) { attributes.update(array[i], 34962) } } } function updateWireframeAttribute(geometry) { const indices = [] const geometryIndex = geometry.index const geometryPosition = geometry.attributes.position let version = 0 if (geometryIndex !== null) { const array = geometryIndex.array version = geometryIndex.version for (let i = 0, l = array.length; i < l; i += 3) { const a = array[i + 0] const b = array[i + 1] const c = array[i + 2] indices.push(a, b, b, c, c, a) } } else { const array = geometryPosition.array version = geometryPosition.version for (let i = 0, l = array.length / 3 - 1; i < l; i += 3) { const a = i + 0 const b = i + 1 const c = i + 2 indices.push(a, b, b, c, c, a) } } const attribute = new (arrayNeedsUint32(indices) ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1) attribute.version = version // Updating index buffer in VAO now. See WebGLBindingStates // const previousAttribute = wireframeAttributes.get(geometry) if (previousAttribute) attributes.remove(previousAttribute) // wireframeAttributes.set(geometry, attribute) } function getWireframeAttribute(geometry) { const currentAttribute = wireframeAttributes.get(geometry) if (currentAttribute) { const geometryIndex = geometry.index if (geometryIndex !== null) { // if the attribute is obsolete, create a new one if (currentAttribute.version < geometryIndex.version) { updateWireframeAttribute(geometry) } } } else { updateWireframeAttribute(geometry) } return wireframeAttributes.get(geometry) } return { get: get, update: update, getWireframeAttribute: getWireframeAttribute } } function WebGLIndexedBufferRenderer(gl, extensions, info, capabilities) { const isWebGL2 = capabilities.isWebGL2 let mode function setMode(value) { mode = value } let type, bytesPerElement function setIndex(value) { type = value.type bytesPerElement = value.bytesPerElement } function render(start, count) { gl.drawElements(mode, count, type, start * bytesPerElement) info.update(count, mode, 1) } function renderInstances(start, count, primcount) { if (primcount === 0) return let extension, methodName if (isWebGL2) { extension = gl methodName = 'drawElementsInstanced' } else { extension = extensions.get('ANGLE_instanced_arrays') methodName = 'drawElementsInstancedANGLE' if (extension === null) { console.error('THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.') return } } extension[methodName](mode, count, type, start * bytesPerElement, primcount) info.update(count, mode, primcount) } // this.setMode = setMode this.setIndex = setIndex this.render = render this.renderInstances = renderInstances } function WebGLInfo(gl) { const memory = { geometries: 0, textures: 0 } const render = { frame: 0, calls: 0, triangles: 0, points: 0, lines: 0 } function update(count, mode, instanceCount) { render.calls++ switch (mode) { case 4: render.triangles += instanceCount * (count / 3) break case 1: render.lines += instanceCount * (count / 2) break case 3: render.lines += instanceCount * (count - 1) break case 2: render.lines += instanceCount * count break case 0: render.points += instanceCount * count break default: console.error('THREE.WebGLInfo: Unknown draw mode:', mode) break } } function reset() { render.frame++ render.calls = 0 render.triangles = 0 render.points = 0 render.lines = 0 } return { memory: memory, render: render, programs: null, autoReset: true, reset: reset, update: update } } function numericalSort(a, b) { return a[0] - b[0] } function absNumericalSort(a, b) { return Math.abs(b[1]) - Math.abs(a[1]) } function denormalize(morph, attribute) { let denominator = 1 const array = attribute.isInterleavedBufferAttribute ? attribute.data.array : attribute.array if (array instanceof Int8Array) denominator = 127 else if (array instanceof Int16Array) denominator = 32767 else if (array instanceof Int32Array) denominator = 2147483647 else console.error('THREE.WebGLMorphtargets: Unsupported morph attribute data type: ', array) morph.divideScalar(denominator) } function WebGLMorphtargets(gl, capabilities, textures) { const influencesList = {} const morphInfluences = new Float32Array(8) const morphTextures = new WeakMap() const morph = new Vector4() const workInfluences = [] for (let i = 0; i < 8; i++) { workInfluences[i] = [i, 0] } function update(object, geometry, material, program) { const objectInfluences = object.morphTargetInfluences if (capabilities.isWebGL2 === true) { // instead of using attributes, the WebGL 2 code path encodes morph targets // into an array of data textures. Each layer represents a single morph target. const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color const morphTargetsCount = morphAttribute !== undefined ? morphAttribute.length : 0 let entry = morphTextures.get(geometry) if (entry === undefined || entry.count !== morphTargetsCount) { if (entry !== undefined) entry.texture.dispose() const hasMorphPosition = geometry.morphAttributes.position !== undefined const hasMorphNormals = geometry.morphAttributes.normal !== undefined const hasMorphColors = geometry.morphAttributes.color !== undefined const morphTargets = geometry.morphAttributes.position || [] const morphNormals = geometry.morphAttributes.normal || [] const morphColors = geometry.morphAttributes.color || [] let vertexDataCount = 0 if (hasMorphPosition === true) vertexDataCount = 1 if (hasMorphNormals === true) vertexDataCount = 2 if (hasMorphColors === true) vertexDataCount = 3 let width = geometry.attributes.position.count * vertexDataCount let height = 1 if (width > capabilities.maxTextureSize) { height = Math.ceil(width / capabilities.maxTextureSize) width = capabilities.maxTextureSize } const buffer = new Float32Array(width * height * 4 * morphTargetsCount) const texture = new DataArrayTexture(buffer, width, height, morphTargetsCount) texture.type = FloatType texture.needsUpdate = true // fill buffer const vertexDataStride = vertexDataCount * 4 for (let i = 0; i < morphTargetsCount; i++) { const morphTarget = morphTargets[i] const morphNormal = morphNormals[i] const morphColor = morphColors[i] const offset = width * height * 4 * i for (let j = 0; j < morphTarget.count; j++) { const stride = j * vertexDataStride if (hasMorphPosition === true) { morph.fromBufferAttribute(morphTarget, j) if (morphTarget.normalized === true) denormalize(morph, morphTarget) buffer[offset + stride + 0] = morph.x buffer[offset + stride + 1] = morph.y buffer[offset + stride + 2] = morph.z buffer[offset + stride + 3] = 0 } if (hasMorphNormals === true) { morph.fromBufferAttribute(morphNormal, j) if (morphNormal.normalized === true) denormalize(morph, morphNormal) buffer[offset + stride + 4] = morph.x buffer[offset + stride + 5] = morph.y buffer[offset + stride + 6] = morph.z buffer[offset + stride + 7] = 0 } if (hasMorphColors === true) { morph.fromBufferAttribute(morphColor, j) if (morphColor.normalized === true) denormalize(morph, morphColor) buffer[offset + stride + 8] = morph.x buffer[offset + stride + 9] = morph.y buffer[offset + stride + 10] = morph.z buffer[offset + stride + 11] = morphColor.itemSize === 4 ? morph.w : 1 } } } entry = { count: morphTargetsCount, texture: texture, size: new Vector2(width, height) } morphTextures.set(geometry, entry) function disposeTexture() { texture.dispose() morphTextures.delete(geometry) geometry.removeEventListener('dispose', disposeTexture) } geometry.addEventListener('dispose', disposeTexture) } // let morphInfluencesSum = 0 for (let i = 0; i < objectInfluences.length; i++) { morphInfluencesSum += objectInfluences[i] } const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence) program.getUniforms().setValue(gl, 'morphTargetInfluences', objectInfluences) program.getUniforms().setValue(gl, 'morphTargetsTexture', entry.texture, textures) program.getUniforms().setValue(gl, 'morphTargetsTextureSize', entry.size) } else { // When object doesn't have morph target influences defined, we treat it as a 0-length array // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences const length = objectInfluences === undefined ? 0 : objectInfluences.length let influences = influencesList[geometry.id] if (influences === undefined || influences.length !== length) { // initialise list influences = [] for (let i = 0; i < length; i++) { influences[i] = [i, 0] } influencesList[geometry.id] = influences } // Collect influences for (let i = 0; i < length; i++) { const influence = influences[i] influence[0] = i influence[1] = objectInfluences[i] } influences.sort(absNumericalSort) for (let i = 0; i < 8; i++) { if (i < length && influences[i][1]) { workInfluences[i][0] = influences[i][0] workInfluences[i][1] = influences[i][1] } else { workInfluences[i][0] = Number.MAX_SAFE_INTEGER workInfluences[i][1] = 0 } } workInfluences.sort(numericalSort) const morphTargets = geometry.morphAttributes.position const morphNormals = geometry.morphAttributes.normal let morphInfluencesSum = 0 for (let i = 0; i < 8; i++) { const influence = workInfluences[i] const index = influence[0] const value = influence[1] if (index !== Number.MAX_SAFE_INTEGER && value) { if (morphTargets && geometry.getAttribute('morphTarget' + i) !== morphTargets[index]) { geometry.setAttribute('morphTarget' + i, morphTargets[index]) } if (morphNormals && geometry.getAttribute('morphNormal' + i) !== morphNormals[index]) { geometry.setAttribute('morphNormal' + i, morphNormals[index]) } morphInfluences[i] = value morphInfluencesSum += value } else { if (morphTargets && geometry.hasAttribute('morphTarget' + i) === true) { geometry.deleteAttribute('morphTarget' + i) } if (morphNormals && geometry.hasAttribute('morphNormal' + i) === true) { geometry.deleteAttribute('morphNormal' + i) } morphInfluences[i] = 0 } } // GLSL shader uses formula baseinfluence * base + sum(target * influence) // This allows us to switch between absolute morphs and relative morphs without changing shader code // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence) const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence) program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences) } } return { update: update } } function WebGLObjects(gl, geometries, attributes, info) { let updateMap = new WeakMap() function update(object) { const frame = info.render.frame const geometry = object.geometry const buffergeometry = geometries.get(object, geometry) // Update once per frame if (updateMap.get(buffergeometry) !== frame) { geometries.update(buffergeometry) updateMap.set(buffergeometry, frame) } if (object.isInstancedMesh) { if (object.hasEventListener('dispose', onInstancedMeshDispose) === false) { object.addEventListener('dispose', onInstancedMeshDispose) } attributes.update(object.instanceMatrix, 34962) if (object.instanceColor !== null) { attributes.update(object.instanceColor, 34962) } } return buffergeometry } function dispose() { updateMap = new WeakMap() } function onInstancedMeshDispose(event) { const instancedMesh = event.target instancedMesh.removeEventListener('dispose', onInstancedMeshDispose) attributes.remove(instancedMesh.instanceMatrix) if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor) } return { update: update, dispose: dispose } } /** * Uniforms of a program. * Those form a tree structure with a special top-level container for the root, * which you get by calling 'new WebGLUniforms( gl, program )'. * * * Properties of inner nodes including the top-level container: * * .seq - array of nested uniforms * .map - nested uniforms by name * * * Methods of all nodes except the top-level container: * * .setValue( gl, value, [textures] ) * * uploads a uniform value(s) * the 'textures' parameter is needed for sampler uniforms * * * Static methods of the top-level container (textures factorizations): * * .upload( gl, seq, values, textures ) * * sets uniforms in 'seq' to 'values[id].value' * * .seqWithValue( seq, values ) : filteredSeq * * filters 'seq' entries with corresponding entry in values * * * Methods of the top-level container (textures factorizations): * * .setValue( gl, name, value, textures ) * * sets uniform with name 'name' to 'value' * * .setOptional( gl, obj, prop ) * * like .set for an optional property of the object * */ const emptyTexture = new Texture() const emptyArrayTexture = new DataArrayTexture() const empty3dTexture = new Data3DTexture() const emptyCubeTexture = new CubeTexture() // --- Utilities --- // Array Caches (provide typed arrays for temporary by size) const arrayCacheF32 = [] const arrayCacheI32 = [] // Float32Array caches used for uploading Matrix uniforms const mat4array = new Float32Array(16) const mat3array = new Float32Array(9) const mat2array = new Float32Array(4) // Flattening for arrays of vectors and matrices function flatten(array, nBlocks, blockSize) { const firstElem = array[0] if (firstElem <= 0 || firstElem > 0) return array // unoptimized: ! isNaN( firstElem ) // see http://jacksondunstan.com/articles/983 const n = nBlocks * blockSize let r = arrayCacheF32[n] if (r === undefined) { r = new Float32Array(n) arrayCacheF32[n] = r } if (nBlocks !== 0) { firstElem.toArray(r, 0) for (let i = 1, offset = 0; i !== nBlocks; ++i) { offset += blockSize array[i].toArray(r, offset) } } return r } function arraysEqual(a, b) { if (a.length !== b.length) return false for (let i = 0, l = a.length; i < l; i++) { if (a[i] !== b[i]) return false } return true } function copyArray(a, b) { for (let i = 0, l = b.length; i < l; i++) { a[i] = b[i] } } // Texture unit allocation function allocTexUnits(textures, n) { let r = arrayCacheI32[n] if (r === undefined) { r = new Int32Array(n) arrayCacheI32[n] = r } for (let i = 0; i !== n; ++i) { r[i] = textures.allocateTextureUnit() } return r } // --- Setters --- // Note: Defining these methods externally, because they come in a bunch // and this way their names minify. // Single scalar function setValueV1f(gl, v) { const cache = this.cache if (cache[0] === v) return gl.uniform1f(this.addr, v) cache[0] = v } // Single float vector (from flat array or THREE.VectorN) function setValueV2f(gl, v) { const cache = this.cache if (v.x !== undefined) { if (cache[0] !== v.x || cache[1] !== v.y) { gl.uniform2f(this.addr, v.x, v.y) cache[0] = v.x cache[1] = v.y } } else { if (arraysEqual(cache, v)) return gl.uniform2fv(this.addr, v) copyArray(cache, v) } } function setValueV3f(gl, v) { const cache = this.cache if (v.x !== undefined) { if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) { gl.uniform3f(this.addr, v.x, v.y, v.z) cache[0] = v.x cache[1] = v.y cache[2] = v.z } } else if (v.r !== undefined) { if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) { gl.uniform3f(this.addr, v.r, v.g, v.b) cache[0] = v.r cache[1] = v.g cache[2] = v.b } } else { if (arraysEqual(cache, v)) return gl.uniform3fv(this.addr, v) copyArray(cache, v) } } function setValueV4f(gl, v) { const cache = this.cache if (v.x !== undefined) { if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) { gl.uniform4f(this.addr, v.x, v.y, v.z, v.w) cache[0] = v.x cache[1] = v.y cache[2] = v.z cache[3] = v.w } } else { if (arraysEqual(cache, v)) return gl.uniform4fv(this.addr, v) copyArray(cache, v) } } // Single matrix (from flat array or THREE.MatrixN) function setValueM2(gl, v) { const cache = this.cache const elements = v.elements if (elements === undefined) { if (arraysEqual(cache, v)) return gl.uniformMatrix2fv(this.addr, false, v) copyArray(cache, v) } else { if (arraysEqual(cache, elements)) return mat2array.set(elements) gl.uniformMatrix2fv(this.addr, false, mat2array) copyArray(cache, elements) } } function setValueM3(gl, v) { const cache = this.cache const elements = v.elements if (elements === undefined) { if (arraysEqual(cache, v)) return gl.uniformMatrix3fv(this.addr, false, v) copyArray(cache, v) } else { if (arraysEqual(cache, elements)) return mat3array.set(elements) gl.uniformMatrix3fv(this.addr, false, mat3array) copyArray(cache, elements) } } function setValueM4(gl, v) { const cache = this.cache const elements = v.elements if (elements === undefined) { if (arraysEqual(cache, v)) return gl.uniformMatrix4fv(this.addr, false, v) copyArray(cache, v) } else { if (arraysEqual(cache, elements)) return mat4array.set(elements) gl.uniformMatrix4fv(this.addr, false, mat4array) copyArray(cache, elements) } } // Single integer / boolean function setValueV1i(gl, v) { const cache = this.cache if (cache[0] === v) return gl.uniform1i(this.addr, v) cache[0] = v } // Single integer / boolean vector (from flat array) function setValueV2i(gl, v) { const cache = this.cache if (arraysEqual(cache, v)) return gl.uniform2iv(this.addr, v) copyArray(cache, v) } function setValueV3i(gl, v) { const cache = this.cache if (arraysEqual(cache, v)) return gl.uniform3iv(this.addr, v) copyArray(cache, v) } function setValueV4i(gl, v) { const cache = this.cache if (arraysEqual(cache, v)) return gl.uniform4iv(this.addr, v) copyArray(cache, v) } // Single unsigned integer function setValueV1ui(gl, v) { const cache = this.cache if (cache[0] === v) return gl.uniform1ui(this.addr, v) cache[0] = v } // Single unsigned integer vector (from flat array) function setValueV2ui(gl, v) { const cache = this.cache if (arraysEqual(cache, v)) return gl.uniform2uiv(this.addr, v) copyArray(cache, v) } function setValueV3ui(gl, v) { const cache = this.cache if (arraysEqual(cache, v)) return gl.uniform3uiv(this.addr, v) copyArray(cache, v) } function setValueV4ui(gl, v) { const cache = this.cache if (arraysEqual(cache, v)) return gl.uniform4uiv(this.addr, v) copyArray(cache, v) } // Single texture (2D / Cube) function setValueT1(gl, v, textures) { const cache = this.cache const unit = textures.allocateTextureUnit() if (cache[0] !== unit) { gl.uniform1i(this.addr, unit) cache[0] = unit } textures.setTexture2D(v || emptyTexture, unit) } function setValueT3D1(gl, v, textures) { const cache = this.cache const unit = textures.allocateTextureUnit() if (cache[0] !== unit) { gl.uniform1i(this.addr, unit) cache[0] = unit } textures.setTexture3D(v || empty3dTexture, unit) } function setValueT6(gl, v, textures) { const cache = this.cache const unit = textures.allocateTextureUnit() if (cache[0] !== unit) { gl.uniform1i(this.addr, unit) cache[0] = unit } textures.setTextureCube(v || emptyCubeTexture, unit) } function setValueT2DArray1(gl, v, textures) { const cache = this.cache const unit = textures.allocateTextureUnit() if (cache[0] !== unit) { gl.uniform1i(this.addr, unit) cache[0] = unit } textures.setTexture2DArray(v || emptyArrayTexture, unit) } // Helper to pick the right setter for the singular case function getSingularSetter(type) { switch (type) { case 0x1406: return setValueV1f // FLOAT case 0x8b50: return setValueV2f // _VEC2 case 0x8b51: return setValueV3f // _VEC3 case 0x8b52: return setValueV4f // _VEC4 case 0x8b5a: return setValueM2 // _MAT2 case 0x8b5b: return setValueM3 // _MAT3 case 0x8b5c: return setValueM4 // _MAT4 case 0x1404: case 0x8b56: return setValueV1i // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2i // _VEC2 case 0x8b54: case 0x8b58: return setValueV3i // _VEC3 case 0x8b55: case 0x8b59: return setValueV4i // _VEC4 case 0x1405: return setValueV1ui // UINT case 0x8dc6: return setValueV2ui // _VEC2 case 0x8dc7: return setValueV3ui // _VEC3 case 0x8dc8: return setValueV4ui // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1 case 0x8b5f: // SAMPLER_3D case 0x8dcb: // INT_SAMPLER_3D case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D return setValueT3D1 case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6 case 0x8dc1: // SAMPLER_2D_ARRAY case 0x8dcf: // INT_SAMPLER_2D_ARRAY case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW return setValueT2DArray1 } } // Array of scalars function setValueV1fArray(gl, v) { gl.uniform1fv(this.addr, v) } // Array of vectors (from flat array or array of THREE.VectorN) function setValueV2fArray(gl, v) { const data = flatten(v, this.size, 2) gl.uniform2fv(this.addr, data) } function setValueV3fArray(gl, v) { const data = flatten(v, this.size, 3) gl.uniform3fv(this.addr, data) } function setValueV4fArray(gl, v) { const data = flatten(v, this.size, 4) gl.uniform4fv(this.addr, data) } // Array of matrices (from flat array or array of THREE.MatrixN) function setValueM2Array(gl, v) { const data = flatten(v, this.size, 4) gl.uniformMatrix2fv(this.addr, false, data) } function setValueM3Array(gl, v) { const data = flatten(v, this.size, 9) gl.uniformMatrix3fv(this.addr, false, data) } function setValueM4Array(gl, v) { const data = flatten(v, this.size, 16) gl.uniformMatrix4fv(this.addr, false, data) } // Array of integer / boolean function setValueV1iArray(gl, v) { gl.uniform1iv(this.addr, v) } // Array of integer / boolean vectors (from flat array) function setValueV2iArray(gl, v) { gl.uniform2iv(this.addr, v) } function setValueV3iArray(gl, v) { gl.uniform3iv(this.addr, v) } function setValueV4iArray(gl, v) { gl.uniform4iv(this.addr, v) } // Array of unsigned integer function setValueV1uiArray(gl, v) { gl.uniform1uiv(this.addr, v) } // Array of unsigned integer vectors (from flat array) function setValueV2uiArray(gl, v) { gl.uniform2uiv(this.addr, v) } function setValueV3uiArray(gl, v) { gl.uniform3uiv(this.addr, v) } function setValueV4uiArray(gl, v) { gl.uniform4uiv(this.addr, v) } // Array of textures (2D / 3D / Cube / 2DArray) function setValueT1Array(gl, v, textures) { const n = v.length const units = allocTexUnits(textures, n) gl.uniform1iv(this.addr, units) for (let i = 0; i !== n; ++i) { textures.setTexture2D(v[i] || emptyTexture, units[i]) } } function setValueT3DArray(gl, v, textures) { const n = v.length const units = allocTexUnits(textures, n) gl.uniform1iv(this.addr, units) for (let i = 0; i !== n; ++i) { textures.setTexture3D(v[i] || empty3dTexture, units[i]) } } function setValueT6Array(gl, v, textures) { const n = v.length const units = allocTexUnits(textures, n) gl.uniform1iv(this.addr, units) for (let i = 0; i !== n; ++i) { textures.setTextureCube(v[i] || emptyCubeTexture, units[i]) } } function setValueT2DArrayArray(gl, v, textures) { const n = v.length const units = allocTexUnits(textures, n) gl.uniform1iv(this.addr, units) for (let i = 0; i !== n; ++i) { textures.setTexture2DArray(v[i] || emptyArrayTexture, units[i]) } } // Helper to pick the right setter for a pure (bottom-level) array function getPureArraySetter(type) { switch (type) { case 0x1406: return setValueV1fArray // FLOAT case 0x8b50: return setValueV2fArray // _VEC2 case 0x8b51: return setValueV3fArray // _VEC3 case 0x8b52: return setValueV4fArray // _VEC4 case 0x8b5a: return setValueM2Array // _MAT2 case 0x8b5b: return setValueM3Array // _MAT3 case 0x8b5c: return setValueM4Array // _MAT4 case 0x1404: case 0x8b56: return setValueV1iArray // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2iArray // _VEC2 case 0x8b54: case 0x8b58: return setValueV3iArray // _VEC3 case 0x8b55: case 0x8b59: return setValueV4iArray // _VEC4 case 0x1405: return setValueV1uiArray // UINT case 0x8dc6: return setValueV2uiArray // _VEC2 case 0x8dc7: return setValueV3uiArray // _VEC3 case 0x8dc8: return setValueV4uiArray // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1Array case 0x8b5f: // SAMPLER_3D case 0x8dcb: // INT_SAMPLER_3D case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D return setValueT3DArray case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6Array case 0x8dc1: // SAMPLER_2D_ARRAY case 0x8dcf: // INT_SAMPLER_2D_ARRAY case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW return setValueT2DArrayArray } } // --- Uniform Classes --- class SingleUniform { constructor(id, activeInfo, addr) { this.id = id this.addr = addr this.cache = [] this.setValue = getSingularSetter(activeInfo.type) // this.path = activeInfo.name; // DEBUG } } class PureArrayUniform { constructor(id, activeInfo, addr) { this.id = id this.addr = addr this.cache = [] this.size = activeInfo.size this.setValue = getPureArraySetter(activeInfo.type) // this.path = activeInfo.name; // DEBUG } } class StructuredUniform { constructor(id) { this.id = id this.seq = [] this.map = {} } setValue(gl, value, textures) { const seq = this.seq for (let i = 0, n = seq.length; i !== n; ++i) { const u = seq[i] u.setValue(gl, value[u.id], textures) } } } // --- Top-level --- // Parser - builds up the property tree from the path strings const RePathPart = /(\w+)(\])?(\[|\.)?/g // extracts // - the identifier (member name or array index) // - followed by an optional right bracket (found when array index) // - followed by an optional left bracket or dot (type of subscript) // // Note: These portions can be read in a non-overlapping fashion and // allow straightforward parsing of the hierarchy that WebGL encodes // in the uniform names. function addUniform(container, uniformObject) { container.seq.push(uniformObject) container.map[uniformObject.id] = uniformObject } function parseUniform(activeInfo, addr, container) { const path = activeInfo.name, pathLength = path.length // reset RegExp object, because of the early exit of a previous run RePathPart.lastIndex = 0 while (true) { const match = RePathPart.exec(path), matchEnd = RePathPart.lastIndex let id = match[1] const idIsIndex = match[2] === ']', subscript = match[3] if (idIsIndex) id = id | 0 // convert to integer if (subscript === undefined || (subscript === '[' && matchEnd + 2 === pathLength)) { // bare name or "pure" bottom-level array "[0]" suffix addUniform(container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr)) break } else { // step into inner node / create it in case it doesn't exist const map = container.map let next = map[id] if (next === undefined) { next = new StructuredUniform(id) addUniform(container, next) } container = next } } } // Root Container class WebGLUniforms { constructor(gl, program) { this.seq = [] this.map = {} const n = gl.getProgramParameter(program, 35718) for (let i = 0; i < n; ++i) { const info = gl.getActiveUniform(program, i), addr = gl.getUniformLocation(program, info.name) parseUniform(info, addr, this) } } setValue(gl, name, value, textures) { const u = this.map[name] if (u !== undefined) u.setValue(gl, value, textures) } setOptional(gl, object, name) { const v = object[name] if (v !== undefined) this.setValue(gl, name, v) } static upload(gl, seq, values, textures) { for (let i = 0, n = seq.length; i !== n; ++i) { const u = seq[i], v = values[u.id] if (v.needsUpdate !== false) { // note: always updating when .needsUpdate is undefined u.setValue(gl, v.value, textures) } } } static seqWithValue(seq, values) { const r = [] for (let i = 0, n = seq.length; i !== n; ++i) { const u = seq[i] if (u.id in values) r.push(u) } return r } } function WebGLShader(gl, type, string) { const shader = gl.createShader(type) gl.shaderSource(shader, string) gl.compileShader(shader) return shader } let programIdCount = 0 function handleSource(string, errorLine) { const lines = string.split('\n') const lines2 = [] const from = Math.max(errorLine - 6, 0) const to = Math.min(errorLine + 6, lines.length) for (let i = from; i < to; i++) { const line = i + 1 lines2.push(`${line === errorLine ? '>' : ' '} ${line}: ${lines[i]}`) } return lines2.join('\n') } function getEncodingComponents(encoding) { switch (encoding) { case LinearEncoding: return ['Linear', '( value )'] case sRGBEncoding: return ['sRGB', '( value )'] default: console.warn('THREE.WebGLProgram: Unsupported encoding:', encoding) return ['Linear', '( value )'] } } function getShaderErrors(gl, shader, type) { const status = gl.getShaderParameter(shader, 35713) const errors = gl.getShaderInfoLog(shader).trim() if (status && errors === '') return '' const errorMatches = /ERROR: 0:(\d+)/.exec(errors) if (errorMatches) { // --enable-privileged-webgl-extension // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); const errorLine = parseInt(errorMatches[1]) return type.toUpperCase() + '\n\n' + errors + '\n\n' + handleSource(gl.getShaderSource(shader), errorLine) } else { return errors } } function getTexelEncodingFunction(functionName, encoding) { const components = getEncodingComponents(encoding) return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }' } function getToneMappingFunction(functionName, toneMapping) { let toneMappingName switch (toneMapping) { case LinearToneMapping: toneMappingName = 'Linear' break case ReinhardToneMapping: toneMappingName = 'Reinhard' break case CineonToneMapping: toneMappingName = 'OptimizedCineon' break case ACESFilmicToneMapping: toneMappingName = 'ACESFilmic' break case CustomToneMapping: toneMappingName = 'Custom' break default: console.warn('THREE.WebGLProgram: Unsupported toneMapping:', toneMapping) toneMappingName = 'Linear' } return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }' } function generateExtensions(parameters) { const chunks = [ parameters.extensionDerivatives || !!parameters.envMapCubeUVHeight || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ? '#extension GL_OES_standard_derivatives : enable' : '', (parameters.extensionFragDepth || parameters.logarithmicDepthBuffer) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ? '#extension GL_EXT_draw_buffers : require' : '', (parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : '' ] return chunks.filter(filterEmptyLine).join('\n') } function generateDefines(defines) { const chunks = [] for (const name in defines) { const value = defines[name] if (value === false) continue chunks.push('#define ' + name + ' ' + value) } return chunks.join('\n') } function fetchAttributeLocations(gl, program) { const attributes = {} const n = gl.getProgramParameter(program, 35721) for (let i = 0; i < n; i++) { const info = gl.getActiveAttrib(program, i) const name = info.name let locationSize = 1 if (info.type === 35674) locationSize = 2 if (info.type === 35675) locationSize = 3 if (info.type === 35676) locationSize = 4 // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); attributes[name] = { type: info.type, location: gl.getAttribLocation(program, name), locationSize: locationSize } } return attributes } function filterEmptyLine(string) { return string !== '' } function replaceLightNums(string, parameters) { return string .replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights) .replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights) .replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights) .replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights) .replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights) .replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows) .replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows) .replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows) } function replaceClippingPlaneNums(string, parameters) { return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection) } // Resolve Includes const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm function resolveIncludes(string) { return string.replace(includePattern, includeReplacer) } function includeReplacer(match, include) { const string = ShaderChunk[include] if (string === undefined) { throw new Error('Can not resolve #include <' + include + '>') } return resolveIncludes(string) } // Unroll Loops const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g function unrollLoops(string) { return string.replace(unrollLoopPattern, loopReplacer).replace(deprecatedUnrollLoopPattern, deprecatedLoopReplacer) } function deprecatedLoopReplacer(match, start, end, snippet) { console.warn('WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.') return loopReplacer(match, start, end, snippet) } function loopReplacer(match, start, end, snippet) { let string = '' for (let i = parseInt(start); i < parseInt(end); i++) { string += snippet.replace(/\[\s*i\s*\]/g, '[ ' + i + ' ]').replace(/UNROLLED_LOOP_INDEX/g, i) } return string } // function generatePrecision(parameters) { let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;' if (parameters.precision === 'highp') { precisionstring += '\n#define HIGH_PRECISION' } else if (parameters.precision === 'mediump') { precisionstring += '\n#define MEDIUM_PRECISION' } else if (parameters.precision === 'lowp') { precisionstring += '\n#define LOW_PRECISION' } return precisionstring } function generateShadowMapTypeDefine(parameters) { let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC' if (parameters.shadowMapType === PCFShadowMap) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF' } else if (parameters.shadowMapType === PCFSoftShadowMap) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT' } else if (parameters.shadowMapType === VSMShadowMap) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM' } return shadowMapTypeDefine } function generateEnvMapTypeDefine(parameters) { let envMapTypeDefine = 'ENVMAP_TYPE_CUBE' if (parameters.envMap) { switch (parameters.envMapMode) { case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE' break case CubeUVReflectionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV' break } } return envMapTypeDefine } function generateEnvMapModeDefine(parameters) { let envMapModeDefine = 'ENVMAP_MODE_REFLECTION' if (parameters.envMap) { switch (parameters.envMapMode) { case CubeRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION' break } } return envMapModeDefine } function generateEnvMapBlendingDefine(parameters) { let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE' if (parameters.envMap) { switch (parameters.combine) { case MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY' break case MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX' break case AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD' break } } return envMapBlendingDefine } function generateCubeUVSize(parameters) { const imageHeight = parameters.envMapCubeUVHeight if (imageHeight === null) return null const maxMip = Math.log2(imageHeight) - 2 const texelHeight = 1.0 / imageHeight const texelWidth = 1.0 / (3 * Math.max(Math.pow(2, maxMip), 7 * 16)) return { texelWidth, texelHeight, maxMip } } function WebGLProgram(renderer, cacheKey, parameters, bindingStates) { // TODO Send this event to Three.js DevTools // console.log( 'WebGLProgram', cacheKey ); const gl = renderer.getContext() const defines = parameters.defines let vertexShader = parameters.vertexShader let fragmentShader = parameters.fragmentShader const shadowMapTypeDefine = generateShadowMapTypeDefine(parameters) const envMapTypeDefine = generateEnvMapTypeDefine(parameters) const envMapModeDefine = generateEnvMapModeDefine(parameters) const envMapBlendingDefine = generateEnvMapBlendingDefine(parameters) const envMapCubeUVSize = generateCubeUVSize(parameters) const customExtensions = parameters.isWebGL2 ? '' : generateExtensions(parameters) const customDefines = generateDefines(defines) const program = gl.createProgram() let prefixVertex, prefixFragment let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : '' if (parameters.isRawShaderMaterial) { prefixVertex = [customDefines].filter(filterEmptyLine).join('\n') if (prefixVertex.length > 0) { prefixVertex += '\n' } prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n') if (prefixFragment.length > 0) { prefixFragment += '\n' } } else { prefixVertex = [ generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.iridescenceMap ? '#define USE_IRIDESCENCEMAP' : '', parameters.iridescenceThicknessMap ? '#define USE_IRIDESCENCE_THICKNESSMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularColorMap ? '#define USE_SPECULARCOLORMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.sheenColorMap ? '#define USE_SHEENCOLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEENROUGHNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.morphColors && parameters.isWebGL2 ? '#define USE_MORPHCOLORS' : '', parameters.morphTargetsCount > 0 && parameters.isWebGL2 ? '#define MORPHTARGETS_TEXTURE' : '', parameters.morphTargetsCount > 0 && parameters.isWebGL2 ? '#define MORPHTARGETS_TEXTURE_STRIDE ' + parameters.morphTextureStride : '', parameters.morphTargetsCount > 0 && parameters.isWebGL2 ? '#define MORPHTARGETS_COUNT ' + parameters.morphTargetsCount : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#if ( defined( USE_MORPHTARGETS ) && ! defined( MORPHTARGETS_TEXTURE ) )', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n' ] .filter(filterEmptyLine) .join('\n') prefixFragment = [ customExtensions, generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', envMapCubeUVSize ? '#define CUBEUV_TEXEL_WIDTH ' + envMapCubeUVSize.texelWidth : '', envMapCubeUVSize ? '#define CUBEUV_TEXEL_HEIGHT ' + envMapCubeUVSize.texelHeight : '', envMapCubeUVSize ? '#define CUBEUV_MAX_MIP ' + envMapCubeUVSize.maxMip + '.0' : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.iridescence ? '#define USE_IRIDESCENCE' : '', parameters.iridescenceMap ? '#define USE_IRIDESCENCEMAP' : '', parameters.iridescenceThicknessMap ? '#define USE_IRIDESCENCE_THICKNESSMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularColorMap ? '#define USE_SPECULARCOLORMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.sheenColorMap ? '#define USE_SHEENCOLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEENROUGHNESSMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.decodeVideoTexture ? '#define DECODE_VIDEO_TEXTURE' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', parameters.opaque ? '#define OPAQUE' : '', ShaderChunk['encodings_pars_fragment'], // this code is required here because it is used by the various encoding/decoding function defined below getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding), parameters.useDepthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n' ] .filter(filterEmptyLine) .join('\n') } vertexShader = resolveIncludes(vertexShader) vertexShader = replaceLightNums(vertexShader, parameters) vertexShader = replaceClippingPlaneNums(vertexShader, parameters) fragmentShader = resolveIncludes(fragmentShader) fragmentShader = replaceLightNums(fragmentShader, parameters) fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters) vertexShader = unrollLoops(vertexShader) fragmentShader = unrollLoops(fragmentShader) if (parameters.isWebGL2 && parameters.isRawShaderMaterial !== true) { // GLSL 3.0 conversion for built-in materials and ShaderMaterial versionString = '#version 300 es\n' prefixVertex = ['precision mediump sampler2DArray;', '#define attribute in', '#define varying out', '#define texture2D texture'].join('\n') + '\n' + prefixVertex prefixFragment = [ '#define varying in', parameters.glslVersion === GLSL3 ? '' : 'layout(location = 0) out highp vec4 pc_fragColor;', parameters.glslVersion === GLSL3 ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad' ].join('\n') + '\n' + prefixFragment } const vertexGlsl = versionString + prefixVertex + vertexShader const fragmentGlsl = versionString + prefixFragment + fragmentShader // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); const glVertexShader = WebGLShader(gl, 35633, vertexGlsl) const glFragmentShader = WebGLShader(gl, 35632, fragmentGlsl) gl.attachShader(program, glVertexShader) gl.attachShader(program, glFragmentShader) // Force a particular attribute to index 0. if (parameters.index0AttributeName !== undefined) { gl.bindAttribLocation(program, 0, parameters.index0AttributeName) } else if (parameters.morphTargets === true) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation(program, 0, 'position') } gl.linkProgram(program) // check for link errors if (renderer.debug.checkShaderErrors) { const programLog = gl.getProgramInfoLog(program).trim() const vertexLog = gl.getShaderInfoLog(glVertexShader).trim() const fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim() let runnable = true let haveDiagnostics = true if (gl.getProgramParameter(program, 35714) === false) { runnable = false const vertexErrors = getShaderErrors(gl, glVertexShader, 'vertex') const fragmentErrors = getShaderErrors(gl, glFragmentShader, 'fragment') console.error( 'THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter(program, 35715) + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors ) } else if (programLog !== '') { console.warn('THREE.WebGLProgram: Program Info Log:', programLog) } else if (vertexLog === '' || fragmentLog === '') { haveDiagnostics = false } if (haveDiagnostics) { this.diagnostics = { runnable: runnable, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } } } } // Clean up // Crashes in iOS9 and iOS10. #18402 // gl.detachShader( program, glVertexShader ); // gl.detachShader( program, glFragmentShader ); gl.deleteShader(glVertexShader) gl.deleteShader(glFragmentShader) // set up caching for uniform locations let cachedUniforms this.getUniforms = function() { if (cachedUniforms === undefined) { cachedUniforms = new WebGLUniforms(gl, program) } return cachedUniforms } // set up caching for attribute locations let cachedAttributes this.getAttributes = function() { if (cachedAttributes === undefined) { cachedAttributes = fetchAttributeLocations(gl, program) } return cachedAttributes } // free resource this.destroy = function() { bindingStates.releaseStatesOfProgram(this) gl.deleteProgram(program) this.program = undefined } // this.name = parameters.shaderName this.id = programIdCount++ this.cacheKey = cacheKey this.usedTimes = 1 this.program = program this.vertexShader = glVertexShader this.fragmentShader = glFragmentShader return this } let _id = 0 class WebGLShaderCache { constructor() { this.shaderCache = new Map() this.materialCache = new Map() } update(material) { const vertexShader = material.vertexShader const fragmentShader = material.fragmentShader const vertexShaderStage = this._getShaderStage(vertexShader) const fragmentShaderStage = this._getShaderStage(fragmentShader) const materialShaders = this._getShaderCacheForMaterial(material) if (materialShaders.has(vertexShaderStage) === false) { materialShaders.add(vertexShaderStage) vertexShaderStage.usedTimes++ } if (materialShaders.has(fragmentShaderStage) === false) { materialShaders.add(fragmentShaderStage) fragmentShaderStage.usedTimes++ } return this } remove(material) { const materialShaders = this.materialCache.get(material) for (const shaderStage of materialShaders) { shaderStage.usedTimes-- if (shaderStage.usedTimes === 0) this.shaderCache.delete(shaderStage.code) } this.materialCache.delete(material) return this } getVertexShaderID(material) { return this._getShaderStage(material.vertexShader).id } getFragmentShaderID(material) { return this._getShaderStage(material.fragmentShader).id } dispose() { this.shaderCache.clear() this.materialCache.clear() } _getShaderCacheForMaterial(material) { const cache = this.materialCache if (cache.has(material) === false) { cache.set(material, new Set()) } return cache.get(material) } _getShaderStage(code) { const cache = this.shaderCache if (cache.has(code) === false) { const stage = new WebGLShaderStage(code) cache.set(code, stage) } return cache.get(code) } } class WebGLShaderStage { constructor(code) { this.id = _id++ this.code = code this.usedTimes = 0 } } function WebGLPrograms(renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping) { const _programLayers = new Layers() const _customShaders = new WebGLShaderCache() const programs = [] const isWebGL2 = capabilities.isWebGL2 const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer const vertexTextures = capabilities.vertexTextures let precision = capabilities.precision const shaderIDs = { MeshDepthMaterial: 'depth', MeshDistanceMaterial: 'distanceRGBA', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshToonMaterial: 'toon', MeshStandardMaterial: 'physical', MeshPhysicalMaterial: 'physical', MeshMatcapMaterial: 'matcap', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points', ShadowMaterial: 'shadow', SpriteMaterial: 'sprite' } function getParameters(material, lights, shadows, scene, object) { const fog = scene.fog const geometry = object.geometry const environment = material.isMeshStandardMaterial ? scene.environment : null const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment) const envMapCubeUVHeight = !!envMap && envMap.mapping === CubeUVReflectionMapping ? envMap.image.height : null const shaderID = shaderIDs[material.type] // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) if (material.precision !== null) { precision = capabilities.getMaxPrecision(material.precision) if (precision !== material.precision) { console.warn('THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.') } } // const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color const morphTargetsCount = morphAttribute !== undefined ? morphAttribute.length : 0 let morphTextureStride = 0 if (geometry.morphAttributes.position !== undefined) morphTextureStride = 1 if (geometry.morphAttributes.normal !== undefined) morphTextureStride = 2 if (geometry.morphAttributes.color !== undefined) morphTextureStride = 3 // let vertexShader, fragmentShader let customVertexShaderID, customFragmentShaderID if (shaderID) { const shader = ShaderLib[shaderID] vertexShader = shader.vertexShader fragmentShader = shader.fragmentShader } else { vertexShader = material.vertexShader fragmentShader = material.fragmentShader _customShaders.update(material) customVertexShaderID = _customShaders.getVertexShaderID(material) customFragmentShaderID = _customShaders.getFragmentShaderID(material) } const currentRenderTarget = renderer.getRenderTarget() const useAlphaTest = material.alphaTest > 0 const useClearcoat = material.clearcoat > 0 const useIridescence = material.iridescence > 0 const parameters = { isWebGL2: isWebGL2, shaderID: shaderID, shaderName: material.type, vertexShader: vertexShader, fragmentShader: fragmentShader, defines: material.defines, customVertexShaderID: customVertexShaderID, customFragmentShaderID: customFragmentShaderID, isRawShaderMaterial: material.isRawShaderMaterial === true, glslVersion: material.glslVersion, precision: precision, instancing: object.isInstancedMesh === true, instancingColor: object.isInstancedMesh === true && object.instanceColor !== null, supportsVertexTextures: vertexTextures, outputEncoding: currentRenderTarget === null ? renderer.outputEncoding : currentRenderTarget.isXRRenderTarget === true ? currentRenderTarget.texture.encoding : LinearEncoding, map: !!material.map, matcap: !!material.matcap, envMap: !!envMap, envMapMode: envMap && envMap.mapping, envMapCubeUVHeight: envMapCubeUVHeight, lightMap: !!material.lightMap, aoMap: !!material.aoMap, emissiveMap: !!material.emissiveMap, bumpMap: !!material.bumpMap, normalMap: !!material.normalMap, objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap, tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap, decodeVideoTexture: !!material.map && material.map.isVideoTexture === true && material.map.encoding === sRGBEncoding, clearcoat: useClearcoat, clearcoatMap: useClearcoat && !!material.clearcoatMap, clearcoatRoughnessMap: useClearcoat && !!material.clearcoatRoughnessMap, clearcoatNormalMap: useClearcoat && !!material.clearcoatNormalMap, iridescence: useIridescence, iridescenceMap: useIridescence && !!material.iridescenceMap, iridescenceThicknessMap: useIridescence && !!material.iridescenceThicknessMap, displacementMap: !!material.displacementMap, roughnessMap: !!material.roughnessMap, metalnessMap: !!material.metalnessMap, specularMap: !!material.specularMap, specularIntensityMap: !!material.specularIntensityMap, specularColorMap: !!material.specularColorMap, opaque: material.transparent === false && material.blending === NormalBlending, alphaMap: !!material.alphaMap, alphaTest: useAlphaTest, gradientMap: !!material.gradientMap, sheen: material.sheen > 0, sheenColorMap: !!material.sheenColorMap, sheenRoughnessMap: !!material.sheenRoughnessMap, transmission: material.transmission > 0, transmissionMap: !!material.transmissionMap, thicknessMap: !!material.thicknessMap, combine: material.combine, vertexTangents: !!material.normalMap && !!geometry.attributes.tangent, vertexColors: material.vertexColors, vertexAlphas: material.vertexColors === true && !!geometry.attributes.color && geometry.attributes.color.itemSize === 4, vertexUvs: !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatMap || !!material.clearcoatRoughnessMap || !!material.clearcoatNormalMap || !!material.iridescenceMap || !!material.iridescenceThicknessMap || !!material.displacementMap || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularColorMap || !!material.sheenColorMap || !!material.sheenRoughnessMap, uvsVertexOnly: !( !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatNormalMap || !!material.iridescenceMap || !!material.iridescenceThicknessMap || material.transmission > 0 || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularColorMap || material.sheen > 0 || !!material.sheenColorMap || !!material.sheenRoughnessMap ) && !!material.displacementMap, fog: !!fog, useFog: material.fog === true, fogExp2: fog && fog.isFogExp2, flatShading: !!material.flatShading, sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: logarithmicDepthBuffer, skinning: object.isSkinnedMesh === true, morphTargets: geometry.morphAttributes.position !== undefined, morphNormals: geometry.morphAttributes.normal !== undefined, morphColors: geometry.morphAttributes.color !== undefined, morphTargetsCount: morphTargetsCount, morphTextureStride: morphTextureStride, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length, numDirLightShadows: lights.directionalShadowMap.length, numPointLightShadows: lights.pointShadowMap.length, numSpotLightShadows: lights.spotShadowMap.length, numClippingPlanes: clipping.numPlanes, numClipIntersection: clipping.numIntersection, dithering: material.dithering, shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping, physicallyCorrectLights: renderer.physicallyCorrectLights, premultipliedAlpha: material.premultipliedAlpha, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide, useDepthPacking: !!material.depthPacking, depthPacking: material.depthPacking || 0, index0AttributeName: material.index0AttributeName, extensionDerivatives: material.extensions && material.extensions.derivatives, extensionFragDepth: material.extensions && material.extensions.fragDepth, extensionDrawBuffers: material.extensions && material.extensions.drawBuffers, extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD, rendererExtensionFragDepth: isWebGL2 || extensions.has('EXT_frag_depth'), rendererExtensionDrawBuffers: isWebGL2 || extensions.has('WEBGL_draw_buffers'), rendererExtensionShaderTextureLod: isWebGL2 || extensions.has('EXT_shader_texture_lod'), customProgramCacheKey: material.customProgramCacheKey() } return parameters } function getProgramCacheKey(parameters) { const array = [] if (parameters.shaderID) { array.push(parameters.shaderID) } else { array.push(parameters.customVertexShaderID) array.push(parameters.customFragmentShaderID) } if (parameters.defines !== undefined) { for (const name in parameters.defines) { array.push(name) array.push(parameters.defines[name]) } } if (parameters.isRawShaderMaterial === false) { getProgramCacheKeyParameters(array, parameters) getProgramCacheKeyBooleans(array, parameters) array.push(renderer.outputEncoding) } array.push(parameters.customProgramCacheKey) return array.join() } function getProgramCacheKeyParameters(array, parameters) { array.push(parameters.precision) array.push(parameters.outputEncoding) array.push(parameters.envMapMode) array.push(parameters.envMapCubeUVHeight) array.push(parameters.combine) array.push(parameters.vertexUvs) array.push(parameters.fogExp2) array.push(parameters.sizeAttenuation) array.push(parameters.morphTargetsCount) array.push(parameters.morphAttributeCount) array.push(parameters.numDirLights) array.push(parameters.numPointLights) array.push(parameters.numSpotLights) array.push(parameters.numHemiLights) array.push(parameters.numRectAreaLights) array.push(parameters.numDirLightShadows) array.push(parameters.numPointLightShadows) array.push(parameters.numSpotLightShadows) array.push(parameters.shadowMapType) array.push(parameters.toneMapping) array.push(parameters.numClippingPlanes) array.push(parameters.numClipIntersection) array.push(parameters.depthPacking) } function getProgramCacheKeyBooleans(array, parameters) { _programLayers.disableAll() if (parameters.isWebGL2) _programLayers.enable(0) if (parameters.supportsVertexTextures) _programLayers.enable(1) if (parameters.instancing) _programLayers.enable(2) if (parameters.instancingColor) _programLayers.enable(3) if (parameters.map) _programLayers.enable(4) if (parameters.matcap) _programLayers.enable(5) if (parameters.envMap) _programLayers.enable(6) if (parameters.lightMap) _programLayers.enable(7) if (parameters.aoMap) _programLayers.enable(8) if (parameters.emissiveMap) _programLayers.enable(9) if (parameters.bumpMap) _programLayers.enable(10) if (parameters.normalMap) _programLayers.enable(11) if (parameters.objectSpaceNormalMap) _programLayers.enable(12) if (parameters.tangentSpaceNormalMap) _programLayers.enable(13) if (parameters.clearcoat) _programLayers.enable(14) if (parameters.clearcoatMap) _programLayers.enable(15) if (parameters.clearcoatRoughnessMap) _programLayers.enable(16) if (parameters.clearcoatNormalMap) _programLayers.enable(17) if (parameters.iridescence) _programLayers.enable(18) if (parameters.iridescenceMap) _programLayers.enable(19) if (parameters.iridescenceThicknessMap) _programLayers.enable(20) if (parameters.displacementMap) _programLayers.enable(21) if (parameters.specularMap) _programLayers.enable(22) if (parameters.roughnessMap) _programLayers.enable(23) if (parameters.metalnessMap) _programLayers.enable(24) if (parameters.gradientMap) _programLayers.enable(25) if (parameters.alphaMap) _programLayers.enable(26) if (parameters.alphaTest) _programLayers.enable(27) if (parameters.vertexColors) _programLayers.enable(28) if (parameters.vertexAlphas) _programLayers.enable(29) if (parameters.vertexUvs) _programLayers.enable(30) if (parameters.vertexTangents) _programLayers.enable(31) if (parameters.uvsVertexOnly) _programLayers.enable(32) if (parameters.fog) _programLayers.enable(33) array.push(_programLayers.mask) _programLayers.disableAll() if (parameters.useFog) _programLayers.enable(0) if (parameters.flatShading) _programLayers.enable(1) if (parameters.logarithmicDepthBuffer) _programLayers.enable(2) if (parameters.skinning) _programLayers.enable(3) if (parameters.morphTargets) _programLayers.enable(4) if (parameters.morphNormals) _programLayers.enable(5) if (parameters.morphColors) _programLayers.enable(6) if (parameters.premultipliedAlpha) _programLayers.enable(7) if (parameters.shadowMapEnabled) _programLayers.enable(8) if (parameters.physicallyCorrectLights) _programLayers.enable(9) if (parameters.doubleSided) _programLayers.enable(10) if (parameters.flipSided) _programLayers.enable(11) if (parameters.useDepthPacking) _programLayers.enable(12) if (parameters.dithering) _programLayers.enable(13) if (parameters.specularIntensityMap) _programLayers.enable(14) if (parameters.specularColorMap) _programLayers.enable(15) if (parameters.transmission) _programLayers.enable(16) if (parameters.transmissionMap) _programLayers.enable(17) if (parameters.thicknessMap) _programLayers.enable(18) if (parameters.sheen) _programLayers.enable(19) if (parameters.sheenColorMap) _programLayers.enable(20) if (parameters.sheenRoughnessMap) _programLayers.enable(21) if (parameters.decodeVideoTexture) _programLayers.enable(22) if (parameters.opaque) _programLayers.enable(23) array.push(_programLayers.mask) } function getUniforms(material) { const shaderID = shaderIDs[material.type] let uniforms if (shaderID) { const shader = ShaderLib[shaderID] uniforms = UniformsUtils.clone(shader.uniforms) } else { uniforms = material.uniforms } return uniforms } function acquireProgram(parameters, cacheKey) { let program // Check if code has been already compiled for (let p = 0, pl = programs.length; p < pl; p++) { const preexistingProgram = programs[p] if (preexistingProgram.cacheKey === cacheKey) { program = preexistingProgram ++program.usedTimes break } } if (program === undefined) { program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates) programs.push(program) } return program } function releaseProgram(program) { if (--program.usedTimes === 0) { // Remove from unordered set const i = programs.indexOf(program) programs[i] = programs[programs.length - 1] programs.pop() // Free WebGL resources program.destroy() } } function releaseShaderCache(material) { _customShaders.remove(material) } function dispose() { _customShaders.dispose() } return { getParameters: getParameters, getProgramCacheKey: getProgramCacheKey, getUniforms: getUniforms, acquireProgram: acquireProgram, releaseProgram: releaseProgram, releaseShaderCache: releaseShaderCache, // Exposed for resource monitoring & error feedback via renderer.info: programs: programs, dispose: dispose } } function WebGLProperties() { let properties = new WeakMap() function get(object) { let map = properties.get(object) if (map === undefined) { map = {} properties.set(object, map) } return map } function remove(object) { properties.delete(object) } function update(object, key, value) { properties.get(object)[key] = value } function dispose() { properties = new WeakMap() } return { get: get, remove: remove, update: update, dispose: dispose } } function painterSortStable(a, b) { if (a.groupOrder !== b.groupOrder) { return a.groupOrder - b.groupOrder } else if (a.renderOrder !== b.renderOrder) { return a.renderOrder - b.renderOrder } else if (a.material.id !== b.material.id) { return a.material.id - b.material.id } else if (a.z !== b.z) { return a.z - b.z } else { return a.id - b.id } } function reversePainterSortStable(a, b) { if (a.groupOrder !== b.groupOrder) { return a.groupOrder - b.groupOrder } else if (a.renderOrder !== b.renderOrder) { return a.renderOrder - b.renderOrder } else if (a.z !== b.z) { return b.z - a.z } else { return a.id - b.id } } function WebGLRenderList() { const renderItems = [] let renderItemsIndex = 0 const opaque = [] const transmissive = [] const transparent = [] function init() { renderItemsIndex = 0 opaque.length = 0 transmissive.length = 0 transparent.length = 0 } function getNextRenderItem(object, geometry, material, groupOrder, z, group) { let renderItem = renderItems[renderItemsIndex] if (renderItem === undefined) { renderItem = { id: object.id, object: object, geometry: geometry, material: material, groupOrder: groupOrder, renderOrder: object.renderOrder, z: z, group: group } renderItems[renderItemsIndex] = renderItem } else { renderItem.id = object.id renderItem.object = object renderItem.geometry = geometry renderItem.material = material renderItem.groupOrder = groupOrder renderItem.renderOrder = object.renderOrder renderItem.z = z renderItem.group = group } renderItemsIndex++ return renderItem } function push(object, geometry, material, groupOrder, z, group) { const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group) if (material.transmission > 0.0) { transmissive.push(renderItem) } else if (material.transparent === true) { transparent.push(renderItem) } else { opaque.push(renderItem) } } function unshift(object, geometry, material, groupOrder, z, group) { const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group) if (material.transmission > 0.0) { transmissive.unshift(renderItem) } else if (material.transparent === true) { transparent.unshift(renderItem) } else { opaque.unshift(renderItem) } } function sort(customOpaqueSort, customTransparentSort) { if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable) if (transmissive.length > 1) transmissive.sort(customTransparentSort || reversePainterSortStable) if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable) } function finish() { // Clear references from inactive renderItems in the list for (let i = renderItemsIndex, il = renderItems.length; i < il; i++) { const renderItem = renderItems[i] if (renderItem.id === null) break renderItem.id = null renderItem.object = null renderItem.geometry = null renderItem.material = null renderItem.group = null } } return { opaque: opaque, transmissive: transmissive, transparent: transparent, init: init, push: push, unshift: unshift, finish: finish, sort: sort } } function WebGLRenderLists() { let lists = new WeakMap() function get(scene, renderCallDepth) { let list if (lists.has(scene) === false) { list = new WebGLRenderList() lists.set(scene, [list]) } else { if (renderCallDepth >= lists.get(scene).length) { list = new WebGLRenderList() lists.get(scene).push(list) } else { list = lists.get(scene)[renderCallDepth] } } return list } function dispose() { lists = new WeakMap() } return { get: get, dispose: dispose } } function UniformsCache() { const lights = {} return { get: function(light) { if (lights[light.id] !== undefined) { return lights[light.id] } let uniforms switch (light.type) { case 'DirectionalLight': uniforms = { direction: new Vector3(), color: new Color() } break case 'SpotLight': uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0 } break case 'PointLight': uniforms = { position: new Vector3(), color: new Color(), distance: 0, decay: 0 } break case 'HemisphereLight': uniforms = { direction: new Vector3(), skyColor: new Color(), groundColor: new Color() } break case 'RectAreaLight': uniforms = { color: new Color(), position: new Vector3(), halfWidth: new Vector3(), halfHeight: new Vector3() } break } lights[light.id] = uniforms return uniforms } } } function ShadowUniformsCache() { const lights = {} return { get: function(light) { if (lights[light.id] !== undefined) { return lights[light.id] } let uniforms switch (light.type) { case 'DirectionalLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() } break case 'SpotLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() } break case 'PointLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2(), shadowCameraNear: 1, shadowCameraFar: 1000 } break // TODO (abelnation): set RectAreaLight shadow uniforms } lights[light.id] = uniforms return uniforms } } } let nextVersion = 0 function shadowCastingLightsFirst(lightA, lightB) { return (lightB.castShadow ? 1 : 0) - (lightA.castShadow ? 1 : 0) } function WebGLLights(extensions, capabilities) { const cache = new UniformsCache() const shadowCache = ShadowUniformsCache() const state = { version: 0, hash: { directionalLength: -1, pointLength: -1, spotLength: -1, rectAreaLength: -1, hemiLength: -1, numDirectionalShadows: -1, numPointShadows: -1, numSpotShadows: -1 }, ambient: [0, 0, 0], probe: [], directional: [], directionalShadow: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotShadow: [], spotShadowMap: [], spotShadowMatrix: [], rectArea: [], rectAreaLTC1: null, rectAreaLTC2: null, point: [], pointShadow: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [] } for (let i = 0; i < 9; i++) state.probe.push(new Vector3()) const vector3 = new Vector3() const matrix4 = new Matrix4() const matrix42 = new Matrix4() function setup(lights, physicallyCorrectLights) { let r = 0, g = 0, b = 0 for (let i = 0; i < 9; i++) state.probe[i].set(0, 0, 0) let directionalLength = 0 let pointLength = 0 let spotLength = 0 let rectAreaLength = 0 let hemiLength = 0 let numDirectionalShadows = 0 let numPointShadows = 0 let numSpotShadows = 0 lights.sort(shadowCastingLightsFirst) // artist-friendly light intensity scaling factor const scaleFactor = physicallyCorrectLights !== true ? Math.PI : 1 for (let i = 0, l = lights.length; i < l; i++) { const light = lights[i] const color = light.color const intensity = light.intensity const distance = light.distance const shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null if (light.isAmbientLight) { r += color.r * intensity * scaleFactor g += color.g * intensity * scaleFactor b += color.b * intensity * scaleFactor } else if (light.isLightProbe) { for (let j = 0; j < 9; j++) { state.probe[j].addScaledVector(light.sh.coefficients[j], intensity) } } else if (light.isDirectionalLight) { const uniforms = cache.get(light) uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor) if (light.castShadow) { const shadow = light.shadow const shadowUniforms = shadowCache.get(light) shadowUniforms.shadowBias = shadow.bias shadowUniforms.shadowNormalBias = shadow.normalBias shadowUniforms.shadowRadius = shadow.radius shadowUniforms.shadowMapSize = shadow.mapSize state.directionalShadow[directionalLength] = shadowUniforms state.directionalShadowMap[directionalLength] = shadowMap state.directionalShadowMatrix[directionalLength] = light.shadow.matrix numDirectionalShadows++ } state.directional[directionalLength] = uniforms directionalLength++ } else if (light.isSpotLight) { const uniforms = cache.get(light) uniforms.position.setFromMatrixPosition(light.matrixWorld) uniforms.color.copy(color).multiplyScalar(intensity * scaleFactor) uniforms.distance = distance uniforms.coneCos = Math.cos(light.angle) uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra)) uniforms.decay = light.decay if (light.castShadow) { const shadow = light.shadow const shadowUniforms = shadowCache.get(light) shadowUniforms.shadowBias = shadow.bias shadowUniforms.shadowNormalBias = shadow.normalBias shadowUniforms.shadowRadius = shadow.radius shadowUniforms.shadowMapSize = shadow.mapSize state.spotShadow[spotLength] = shadowUniforms state.spotShadowMap[spotLength] = shadowMap state.spotShadowMatrix[spotLength] = light.shadow.matrix numSpotShadows++ } state.spot[spotLength] = uniforms spotLength++ } else if (light.isRectAreaLight) { const uniforms = cache.get(light) // (a) intensity is the total visible light emitted //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) ); // (b) intensity is the brightness of the light uniforms.color.copy(color).multiplyScalar(intensity) uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0) uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0) state.rectArea[rectAreaLength] = uniforms rectAreaLength++ } else if (light.isPointLight) { const uniforms = cache.get(light) uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor) uniforms.distance = light.distance uniforms.decay = light.decay if (light.castShadow) { const shadow = light.shadow const shadowUniforms = shadowCache.get(light) shadowUniforms.shadowBias = shadow.bias shadowUniforms.shadowNormalBias = shadow.normalBias shadowUniforms.shadowRadius = shadow.radius shadowUniforms.shadowMapSize = shadow.mapSize shadowUniforms.shadowCameraNear = shadow.camera.near shadowUniforms.shadowCameraFar = shadow.camera.far state.pointShadow[pointLength] = shadowUniforms state.pointShadowMap[pointLength] = shadowMap state.pointShadowMatrix[pointLength] = light.shadow.matrix numPointShadows++ } state.point[pointLength] = uniforms pointLength++ } else if (light.isHemisphereLight) { const uniforms = cache.get(light) uniforms.skyColor.copy(light.color).multiplyScalar(intensity * scaleFactor) uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity * scaleFactor) state.hemi[hemiLength] = uniforms hemiLength++ } } if (rectAreaLength > 0) { if (capabilities.isWebGL2) { // WebGL 2 state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1 state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2 } else { // WebGL 1 if (extensions.has('OES_texture_float_linear') === true) { state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1 state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2 } else if (extensions.has('OES_texture_half_float_linear') === true) { state.rectAreaLTC1 = UniformsLib.LTC_HALF_1 state.rectAreaLTC2 = UniformsLib.LTC_HALF_2 } else { console.error('THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.') } } } state.ambient[0] = r state.ambient[1] = g state.ambient[2] = b const hash = state.hash if ( hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows ) { state.directional.length = directionalLength state.spot.length = spotLength state.rectArea.length = rectAreaLength state.point.length = pointLength state.hemi.length = hemiLength state.directionalShadow.length = numDirectionalShadows state.directionalShadowMap.length = numDirectionalShadows state.pointShadow.length = numPointShadows state.pointShadowMap.length = numPointShadows state.spotShadow.length = numSpotShadows state.spotShadowMap.length = numSpotShadows state.directionalShadowMatrix.length = numDirectionalShadows state.pointShadowMatrix.length = numPointShadows state.spotShadowMatrix.length = numSpotShadows hash.directionalLength = directionalLength hash.pointLength = pointLength hash.spotLength = spotLength hash.rectAreaLength = rectAreaLength hash.hemiLength = hemiLength hash.numDirectionalShadows = numDirectionalShadows hash.numPointShadows = numPointShadows hash.numSpotShadows = numSpotShadows state.version = nextVersion++ } } function setupView(lights, camera) { let directionalLength = 0 let pointLength = 0 let spotLength = 0 let rectAreaLength = 0 let hemiLength = 0 const viewMatrix = camera.matrixWorldInverse for (let i = 0, l = lights.length; i < l; i++) { const light = lights[i] if (light.isDirectionalLight) { const uniforms = state.directional[directionalLength] uniforms.direction.setFromMatrixPosition(light.matrixWorld) vector3.setFromMatrixPosition(light.target.matrixWorld) uniforms.direction.sub(vector3) uniforms.direction.transformDirection(viewMatrix) directionalLength++ } else if (light.isSpotLight) { const uniforms = state.spot[spotLength] uniforms.position.setFromMatrixPosition(light.matrixWorld) uniforms.position.applyMatrix4(viewMatrix) uniforms.direction.setFromMatrixPosition(light.matrixWorld) vector3.setFromMatrixPosition(light.target.matrixWorld) uniforms.direction.sub(vector3) uniforms.direction.transformDirection(viewMatrix) spotLength++ } else if (light.isRectAreaLight) { const uniforms = state.rectArea[rectAreaLength] uniforms.position.setFromMatrixPosition(light.matrixWorld) uniforms.position.applyMatrix4(viewMatrix) // extract local rotation of light to derive width/height half vectors matrix42.identity() matrix4.copy(light.matrixWorld) matrix4.premultiply(viewMatrix) matrix42.extractRotation(matrix4) uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0) uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0) uniforms.halfWidth.applyMatrix4(matrix42) uniforms.halfHeight.applyMatrix4(matrix42) rectAreaLength++ } else if (light.isPointLight) { const uniforms = state.point[pointLength] uniforms.position.setFromMatrixPosition(light.matrixWorld) uniforms.position.applyMatrix4(viewMatrix) pointLength++ } else if (light.isHemisphereLight) { const uniforms = state.hemi[hemiLength] uniforms.direction.setFromMatrixPosition(light.matrixWorld) uniforms.direction.transformDirection(viewMatrix) hemiLength++ } } } return { setup: setup, setupView: setupView, state: state } } function WebGLRenderState(extensions, capabilities) { const lights = new WebGLLights(extensions, capabilities) const lightsArray = [] const shadowsArray = [] function init() { lightsArray.length = 0 shadowsArray.length = 0 } function pushLight(light) { lightsArray.push(light) } function pushShadow(shadowLight) { shadowsArray.push(shadowLight) } function setupLights(physicallyCorrectLights) { lights.setup(lightsArray, physicallyCorrectLights) } function setupLightsView(camera) { lights.setupView(lightsArray, camera) } const state = { lightsArray: lightsArray, shadowsArray: shadowsArray, lights: lights } return { init: init, state: state, setupLights: setupLights, setupLightsView: setupLightsView, pushLight: pushLight, pushShadow: pushShadow } } function WebGLRenderStates(extensions, capabilities) { let renderStates = new WeakMap() function get(scene, renderCallDepth = 0) { let renderState if (renderStates.has(scene) === false) { renderState = new WebGLRenderState(extensions, capabilities) renderStates.set(scene, [renderState]) } else { if (renderCallDepth >= renderStates.get(scene).length) { renderState = new WebGLRenderState(extensions, capabilities) renderStates.get(scene).push(renderState) } else { renderState = renderStates.get(scene)[renderCallDepth] } } return renderState } function dispose() { renderStates = new WeakMap() } return { get: get, dispose: dispose } } class MeshDepthMaterial extends Material { constructor(parameters) { super() this.isMeshDepthMaterial = true this.type = 'MeshDepthMaterial' this.depthPacking = BasicDepthPacking this.map = null this.alphaMap = null this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.wireframe = false this.wireframeLinewidth = 1 this.setValues(parameters) } copy(source) { super.copy(source) this.depthPacking = source.depthPacking this.map = source.map this.alphaMap = source.alphaMap this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth return this } } class MeshDistanceMaterial extends Material { constructor(parameters) { super() this.isMeshDistanceMaterial = true this.type = 'MeshDistanceMaterial' this.referencePosition = new Vector3() this.nearDistance = 1 this.farDistance = 1000 this.map = null this.alphaMap = null this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.setValues(parameters) } copy(source) { super.copy(source) this.referencePosition.copy(source.referencePosition) this.nearDistance = source.nearDistance this.farDistance = source.farDistance this.map = source.map this.alphaMap = source.alphaMap this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias return this } } const vertex = 'void main() {\n\tgl_Position = vec4( position, 1.0 );\n}' const fragment = 'uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n\tconst float samples = float( VSM_SAMPLES );\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}' function WebGLShadowMap(_renderer, _objects, _capabilities) { let _frustum = new Frustum() const _shadowMapSize = new Vector2(), _viewportSize = new Vector2(), _viewport = new Vector4(), _depthMaterial = new MeshDepthMaterial({ depthPacking: RGBADepthPacking }), _distanceMaterial = new MeshDistanceMaterial(), _materialCache = {}, _maxTextureSize = _capabilities.maxTextureSize const shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide } const shadowMaterialVertical = new ShaderMaterial({ defines: { VSM_SAMPLES: 8 }, uniforms: { shadow_pass: { value: null }, resolution: { value: new Vector2() }, radius: { value: 4.0 } }, vertexShader: vertex, fragmentShader: fragment }) const shadowMaterialHorizontal = shadowMaterialVertical.clone() shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1 const fullScreenTri = new BufferGeometry() fullScreenTri.setAttribute('position', new BufferAttribute(new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3)) const fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical) const scope = this this.enabled = false this.autoUpdate = true this.needsUpdate = false this.type = PCFShadowMap this.render = function(lights, scene, camera) { if (scope.enabled === false) return if (scope.autoUpdate === false && scope.needsUpdate === false) return if (lights.length === 0) return const currentRenderTarget = _renderer.getRenderTarget() const activeCubeFace = _renderer.getActiveCubeFace() const activeMipmapLevel = _renderer.getActiveMipmapLevel() const _state = _renderer.state // Set GL state for depth map. _state.setBlending(NoBlending) _state.buffers.color.setClear(1, 1, 1, 1) _state.buffers.depth.setTest(true) _state.setScissorTest(false) // render depth map for (let i = 0, il = lights.length; i < il; i++) { const light = lights[i] const shadow = light.shadow if (shadow === undefined) { console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.') continue } if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue _shadowMapSize.copy(shadow.mapSize) const shadowFrameExtents = shadow.getFrameExtents() _shadowMapSize.multiply(shadowFrameExtents) _viewportSize.copy(shadow.mapSize) if (_shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize) { if (_shadowMapSize.x > _maxTextureSize) { _viewportSize.x = Math.floor(_maxTextureSize / shadowFrameExtents.x) _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x shadow.mapSize.x = _viewportSize.x } if (_shadowMapSize.y > _maxTextureSize) { _viewportSize.y = Math.floor(_maxTextureSize / shadowFrameExtents.y) _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y shadow.mapSize.y = _viewportSize.y } } if (shadow.map === null && !shadow.isPointLightShadow && this.type === VSMShadowMap) { shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y) shadow.map.texture.name = light.name + '.shadowMap' shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y) shadow.camera.updateProjectionMatrix() } if (shadow.map === null) { const pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat } shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars) shadow.map.texture.name = light.name + '.shadowMap' shadow.camera.updateProjectionMatrix() } _renderer.setRenderTarget(shadow.map) _renderer.clear() const viewportCount = shadow.getViewportCount() for (let vp = 0; vp < viewportCount; vp++) { const viewport = shadow.getViewport(vp) _viewport.set(_viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w) _state.viewport(_viewport) shadow.updateMatrices(light, vp) _frustum = shadow.getFrustum() renderObject(scene, camera, shadow.camera, light, this.type) } // do blur pass for VSM if (!shadow.isPointLightShadow && this.type === VSMShadowMap) { VSMPass(shadow, camera) } shadow.needsUpdate = false } scope.needsUpdate = false _renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel) } function VSMPass(shadow, camera) { const geometry = _objects.update(fullScreenMesh) if (shadowMaterialVertical.defines.VSM_SAMPLES !== shadow.blurSamples) { shadowMaterialVertical.defines.VSM_SAMPLES = shadow.blurSamples shadowMaterialHorizontal.defines.VSM_SAMPLES = shadow.blurSamples shadowMaterialVertical.needsUpdate = true shadowMaterialHorizontal.needsUpdate = true } // vertical pass shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize shadowMaterialVertical.uniforms.radius.value = shadow.radius _renderer.setRenderTarget(shadow.mapPass) _renderer.clear() _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null) // horizontal pass shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize shadowMaterialHorizontal.uniforms.radius.value = shadow.radius _renderer.setRenderTarget(shadow.map) _renderer.clear() _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null) } function getDepthMaterial(object, material, light, shadowCameraNear, shadowCameraFar, type) { let result = null const customMaterial = light.isPointLight === true ? object.customDistanceMaterial : object.customDepthMaterial if (customMaterial !== undefined) { result = customMaterial } else { result = light.isPointLight === true ? _distanceMaterial : _depthMaterial } if ( (_renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0) || (material.displacementMap && material.displacementScale !== 0) || (material.alphaMap && material.alphaTest > 0) ) { // in this case we need a unique material instance reflecting the // appropriate state const keyA = result.uuid, keyB = material.uuid let materialsForVariant = _materialCache[keyA] if (materialsForVariant === undefined) { materialsForVariant = {} _materialCache[keyA] = materialsForVariant } let cachedMaterial = materialsForVariant[keyB] if (cachedMaterial === undefined) { cachedMaterial = result.clone() materialsForVariant[keyB] = cachedMaterial } result = cachedMaterial } result.visible = material.visible result.wireframe = material.wireframe if (type === VSMShadowMap) { result.side = material.shadowSide !== null ? material.shadowSide : material.side } else { result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side] } result.alphaMap = material.alphaMap result.alphaTest = material.alphaTest result.clipShadows = material.clipShadows result.clippingPlanes = material.clippingPlanes result.clipIntersection = material.clipIntersection result.displacementMap = material.displacementMap result.displacementScale = material.displacementScale result.displacementBias = material.displacementBias result.wireframeLinewidth = material.wireframeLinewidth result.linewidth = material.linewidth if (light.isPointLight === true && result.isMeshDistanceMaterial === true) { result.referencePosition.setFromMatrixPosition(light.matrixWorld) result.nearDistance = shadowCameraNear result.farDistance = shadowCameraFar } return result } function renderObject(object, camera, shadowCamera, light, type) { if (object.visible === false) return const visible = object.layers.test(camera.layers) if (visible && (object.isMesh || object.isLine || object.isPoints)) { if ((object.castShadow || (object.receiveShadow && type === VSMShadowMap)) && (!object.frustumCulled || _frustum.intersectsObject(object))) { object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld) const geometry = _objects.update(object) const material = object.material if (Array.isArray(material)) { const groups = geometry.groups for (let k = 0, kl = groups.length; k < kl; k++) { const group = groups[k] const groupMaterial = material[group.materialIndex] if (groupMaterial && groupMaterial.visible) { const depthMaterial = getDepthMaterial(object, groupMaterial, light, shadowCamera.near, shadowCamera.far, type) _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group) } } } else if (material.visible) { const depthMaterial = getDepthMaterial(object, material, light, shadowCamera.near, shadowCamera.far, type) _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null) } } } const children = object.children for (let i = 0, l = children.length; i < l; i++) { renderObject(children[i], camera, shadowCamera, light, type) } } } function WebGLState(gl, extensions, capabilities) { const isWebGL2 = capabilities.isWebGL2 function ColorBuffer() { let locked = false const color = new Vector4() let currentColorMask = null const currentColorClear = new Vector4(0, 0, 0, 0) return { setMask: function(colorMask) { if (currentColorMask !== colorMask && !locked) { gl.colorMask(colorMask, colorMask, colorMask, colorMask) currentColorMask = colorMask } }, setLocked: function(lock) { locked = lock }, setClear: function(r, g, b, a, premultipliedAlpha) { if (premultipliedAlpha === true) { r *= a g *= a b *= a } color.set(r, g, b, a) if (currentColorClear.equals(color) === false) { gl.clearColor(r, g, b, a) currentColorClear.copy(color) } }, reset: function() { locked = false currentColorMask = null currentColorClear.set(-1, 0, 0, 0) // set to invalid state } } } function DepthBuffer() { let locked = false let currentDepthMask = null let currentDepthFunc = null let currentDepthClear = null return { setTest: function(depthTest) { if (depthTest) { enable(2929) } else { disable(2929) } }, setMask: function(depthMask) { if (currentDepthMask !== depthMask && !locked) { gl.depthMask(depthMask) currentDepthMask = depthMask } }, setFunc: function(depthFunc) { if (currentDepthFunc !== depthFunc) { if (depthFunc) { switch (depthFunc) { case NeverDepth: gl.depthFunc(512) break case AlwaysDepth: gl.depthFunc(519) break case LessDepth: gl.depthFunc(513) break case LessEqualDepth: gl.depthFunc(515) break case EqualDepth: gl.depthFunc(514) break case GreaterEqualDepth: gl.depthFunc(518) break case GreaterDepth: gl.depthFunc(516) break case NotEqualDepth: gl.depthFunc(517) break default: gl.depthFunc(515) } } else { gl.depthFunc(515) } currentDepthFunc = depthFunc } }, setLocked: function(lock) { locked = lock }, setClear: function(depth) { if (currentDepthClear !== depth) { gl.clearDepth(depth) currentDepthClear = depth } }, reset: function() { locked = false currentDepthMask = null currentDepthFunc = null currentDepthClear = null } } } function StencilBuffer() { let locked = false let currentStencilMask = null let currentStencilFunc = null let currentStencilRef = null let currentStencilFuncMask = null let currentStencilFail = null let currentStencilZFail = null let currentStencilZPass = null let currentStencilClear = null return { setTest: function(stencilTest) { if (!locked) { if (stencilTest) { enable(2960) } else { disable(2960) } } }, setMask: function(stencilMask) { if (currentStencilMask !== stencilMask && !locked) { gl.stencilMask(stencilMask) currentStencilMask = stencilMask } }, setFunc: function(stencilFunc, stencilRef, stencilMask) { if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) { gl.stencilFunc(stencilFunc, stencilRef, stencilMask) currentStencilFunc = stencilFunc currentStencilRef = stencilRef currentStencilFuncMask = stencilMask } }, setOp: function(stencilFail, stencilZFail, stencilZPass) { if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) { gl.stencilOp(stencilFail, stencilZFail, stencilZPass) currentStencilFail = stencilFail currentStencilZFail = stencilZFail currentStencilZPass = stencilZPass } }, setLocked: function(lock) { locked = lock }, setClear: function(stencil) { if (currentStencilClear !== stencil) { gl.clearStencil(stencil) currentStencilClear = stencil } }, reset: function() { locked = false currentStencilMask = null currentStencilFunc = null currentStencilRef = null currentStencilFuncMask = null currentStencilFail = null currentStencilZFail = null currentStencilZPass = null currentStencilClear = null } } } // const colorBuffer = new ColorBuffer() const depthBuffer = new DepthBuffer() const stencilBuffer = new StencilBuffer() let enabledCapabilities = {} let currentBoundFramebuffers = {} let currentDrawbuffers = new WeakMap() let defaultDrawbuffers = [] let currentProgram = null let currentBlendingEnabled = false let currentBlending = null let currentBlendEquation = null let currentBlendSrc = null let currentBlendDst = null let currentBlendEquationAlpha = null let currentBlendSrcAlpha = null let currentBlendDstAlpha = null let currentPremultipledAlpha = false let currentFlipSided = null let currentCullFace = null let currentLineWidth = null let currentPolygonOffsetFactor = null let currentPolygonOffsetUnits = null const maxTextures = gl.getParameter(35661) let lineWidthAvailable = false let version = 0 const glVersion = gl.getParameter(7938) if (glVersion.indexOf('WebGL') !== -1) { version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]) lineWidthAvailable = version >= 1.0 } else if (glVersion.indexOf('OpenGL ES') !== -1) { version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]) lineWidthAvailable = version >= 2.0 } let currentTextureSlot = null let currentBoundTextures = {} const scissorParam = gl.getParameter(3088) const viewportParam = gl.getParameter(2978) const currentScissor = new Vector4().fromArray(scissorParam) const currentViewport = new Vector4().fromArray(viewportParam) function createTexture(type, target, count) { const data = new Uint8Array(4) // 4 is required to match default unpack alignment of 4. const texture = gl.createTexture() gl.bindTexture(type, texture) gl.texParameteri(type, 10241, 9728) gl.texParameteri(type, 10240, 9728) for (let i = 0; i < count; i++) { gl.texImage2D(target + i, 0, 6408, 1, 1, 0, 6408, 5121, data) } return texture } const emptyTextures = {} emptyTextures[3553] = createTexture(3553, 3553, 1) emptyTextures[34067] = createTexture(34067, 34069, 6) // init colorBuffer.setClear(0, 0, 0, 1) depthBuffer.setClear(1) stencilBuffer.setClear(0) enable(2929) depthBuffer.setFunc(LessEqualDepth) setFlipSided(false) setCullFace(CullFaceBack) enable(2884) setBlending(NoBlending) // function enable(id) { if (enabledCapabilities[id] !== true) { gl.enable(id) enabledCapabilities[id] = true } } function disable(id) { if (enabledCapabilities[id] !== false) { gl.disable(id) enabledCapabilities[id] = false } } function bindFramebuffer(target, framebuffer) { if (currentBoundFramebuffers[target] !== framebuffer) { gl.bindFramebuffer(target, framebuffer) currentBoundFramebuffers[target] = framebuffer if (isWebGL2) { // 36009 is equivalent to 36160 if (target === 36009) { currentBoundFramebuffers[36160] = framebuffer } if (target === 36160) { currentBoundFramebuffers[36009] = framebuffer } } return true } return false } function drawBuffers(renderTarget, framebuffer) { let drawBuffers = defaultDrawbuffers let needsUpdate = false if (renderTarget) { drawBuffers = currentDrawbuffers.get(framebuffer) if (drawBuffers === undefined) { drawBuffers = [] currentDrawbuffers.set(framebuffer, drawBuffers) } if (renderTarget.isWebGLMultipleRenderTargets) { const textures = renderTarget.texture if (drawBuffers.length !== textures.length || drawBuffers[0] !== 36064) { for (let i = 0, il = textures.length; i < il; i++) { drawBuffers[i] = 36064 + i } drawBuffers.length = textures.length needsUpdate = true } } else { if (drawBuffers[0] !== 36064) { drawBuffers[0] = 36064 needsUpdate = true } } } else { if (drawBuffers[0] !== 1029) { drawBuffers[0] = 1029 needsUpdate = true } } if (needsUpdate) { if (capabilities.isWebGL2) { gl.drawBuffers(drawBuffers) } else { extensions.get('WEBGL_draw_buffers').drawBuffersWEBGL(drawBuffers) } } } function useProgram(program) { if (currentProgram !== program) { gl.useProgram(program) currentProgram = program return true } return false } const equationToGL = { [AddEquation]: 32774, [SubtractEquation]: 32778, [ReverseSubtractEquation]: 32779 } if (isWebGL2) { equationToGL[MinEquation] = 32775 equationToGL[MaxEquation] = 32776 } else { const extension = extensions.get('EXT_blend_minmax') if (extension !== null) { equationToGL[MinEquation] = extension.MIN_EXT equationToGL[MaxEquation] = extension.MAX_EXT } } const factorToGL = { [ZeroFactor]: 0, [OneFactor]: 1, [SrcColorFactor]: 768, [SrcAlphaFactor]: 770, [SrcAlphaSaturateFactor]: 776, [DstColorFactor]: 774, [DstAlphaFactor]: 772, [OneMinusSrcColorFactor]: 769, [OneMinusSrcAlphaFactor]: 771, [OneMinusDstColorFactor]: 775, [OneMinusDstAlphaFactor]: 773 } function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha) { if (blending === NoBlending) { if (currentBlendingEnabled === true) { disable(3042) currentBlendingEnabled = false } return } if (currentBlendingEnabled === false) { enable(3042) currentBlendingEnabled = true } if (blending !== CustomBlending) { if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) { if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) { gl.blendEquation(32774) currentBlendEquation = AddEquation currentBlendEquationAlpha = AddEquation } if (premultipliedAlpha) { switch (blending) { case NormalBlending: gl.blendFuncSeparate(1, 771, 1, 771) break case AdditiveBlending: gl.blendFunc(1, 1) break case SubtractiveBlending: gl.blendFuncSeparate(0, 769, 0, 1) break case MultiplyBlending: gl.blendFuncSeparate(0, 768, 0, 770) break default: console.error('THREE.WebGLState: Invalid blending: ', blending) break } } else { switch (blending) { case NormalBlending: gl.blendFuncSeparate(770, 771, 1, 771) break case AdditiveBlending: gl.blendFunc(770, 1) break case SubtractiveBlending: gl.blendFuncSeparate(0, 769, 0, 1) break case MultiplyBlending: gl.blendFunc(0, 768) break default: console.error('THREE.WebGLState: Invalid blending: ', blending) break } } currentBlendSrc = null currentBlendDst = null currentBlendSrcAlpha = null currentBlendDstAlpha = null currentBlending = blending currentPremultipledAlpha = premultipliedAlpha } return } // custom blending blendEquationAlpha = blendEquationAlpha || blendEquation blendSrcAlpha = blendSrcAlpha || blendSrc blendDstAlpha = blendDstAlpha || blendDst if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) { gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]) currentBlendEquation = blendEquation currentBlendEquationAlpha = blendEquationAlpha } if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) { gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]) currentBlendSrc = blendSrc currentBlendDst = blendDst currentBlendSrcAlpha = blendSrcAlpha currentBlendDstAlpha = blendDstAlpha } currentBlending = blending currentPremultipledAlpha = null } function setMaterial(material, frontFaceCW) { material.side === DoubleSide ? disable(2884) : enable(2884) let flipSided = material.side === BackSide if (frontFaceCW) flipSided = !flipSided setFlipSided(flipSided) material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ) depthBuffer.setFunc(material.depthFunc) depthBuffer.setTest(material.depthTest) depthBuffer.setMask(material.depthWrite) colorBuffer.setMask(material.colorWrite) const stencilWrite = material.stencilWrite stencilBuffer.setTest(stencilWrite) if (stencilWrite) { stencilBuffer.setMask(material.stencilWriteMask) stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask) stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass) } setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits) material.alphaToCoverage === true ? enable(32926) : disable(32926) } // function setFlipSided(flipSided) { if (currentFlipSided !== flipSided) { if (flipSided) { gl.frontFace(2304) } else { gl.frontFace(2305) } currentFlipSided = flipSided } } function setCullFace(cullFace) { if (cullFace !== CullFaceNone) { enable(2884) if (cullFace !== currentCullFace) { if (cullFace === CullFaceBack) { gl.cullFace(1029) } else if (cullFace === CullFaceFront) { gl.cullFace(1028) } else { gl.cullFace(1032) } } } else { disable(2884) } currentCullFace = cullFace } function setLineWidth(width) { if (width !== currentLineWidth) { if (lineWidthAvailable) gl.lineWidth(width) currentLineWidth = width } } function setPolygonOffset(polygonOffset, factor, units) { if (polygonOffset) { enable(32823) if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) { gl.polygonOffset(factor, units) currentPolygonOffsetFactor = factor currentPolygonOffsetUnits = units } } else { disable(32823) } } function setScissorTest(scissorTest) { if (scissorTest) { enable(3089) } else { disable(3089) } } // texture function activeTexture(webglSlot) { if (webglSlot === undefined) webglSlot = 33984 + maxTextures - 1 if (currentTextureSlot !== webglSlot) { gl.activeTexture(webglSlot) currentTextureSlot = webglSlot } } function bindTexture(webglType, webglTexture) { if (currentTextureSlot === null) { activeTexture() } let boundTexture = currentBoundTextures[currentTextureSlot] if (boundTexture === undefined) { boundTexture = { type: undefined, texture: undefined } currentBoundTextures[currentTextureSlot] = boundTexture } if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) { gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]) boundTexture.type = webglType boundTexture.texture = webglTexture } } function unbindTexture() { const boundTexture = currentBoundTextures[currentTextureSlot] if (boundTexture !== undefined && boundTexture.type !== undefined) { gl.bindTexture(boundTexture.type, null) boundTexture.type = undefined boundTexture.texture = undefined } } function compressedTexImage2D() { try { gl.compressedTexImage2D.apply(gl, arguments) } catch (error) { console.error('THREE.WebGLState:', error) } } function texSubImage2D() { try { gl.texSubImage2D.apply(gl, arguments) } catch (error) { console.error('THREE.WebGLState:', error) } } function texSubImage3D() { try { gl.texSubImage3D.apply(gl, arguments) } catch (error) { console.error('THREE.WebGLState:', error) } } function compressedTexSubImage2D() { try { gl.compressedTexSubImage2D.apply(gl, arguments) } catch (error) { console.error('THREE.WebGLState:', error) } } function texStorage2D() { try { gl.texStorage2D.apply(gl, arguments) } catch (error) { console.error('THREE.WebGLState:', error) } } function texStorage3D() { try { gl.texStorage3D.apply(gl, arguments) } catch (error) { console.error('THREE.WebGLState:', error) } } function texImage2D() { try { gl.texImage2D.apply(gl, arguments) } catch (error) { console.error('THREE.WebGLState:', error) } } function texImage3D() { try { gl.texImage3D.apply(gl, arguments) } catch (error) { console.error('THREE.WebGLState:', error) } } // function scissor(scissor) { if (currentScissor.equals(scissor) === false) { gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w) currentScissor.copy(scissor) } } function viewport(viewport) { if (currentViewport.equals(viewport) === false) { gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w) currentViewport.copy(viewport) } } // function reset() { // reset state gl.disable(3042) gl.disable(2884) gl.disable(2929) gl.disable(32823) gl.disable(3089) gl.disable(2960) gl.disable(32926) gl.blendEquation(32774) gl.blendFunc(1, 0) gl.blendFuncSeparate(1, 0, 1, 0) gl.colorMask(true, true, true, true) gl.clearColor(0, 0, 0, 0) gl.depthMask(true) gl.depthFunc(513) gl.clearDepth(1) gl.stencilMask(0xffffffff) gl.stencilFunc(519, 0, 0xffffffff) gl.stencilOp(7680, 7680, 7680) gl.clearStencil(0) gl.cullFace(1029) gl.frontFace(2305) gl.polygonOffset(0, 0) gl.activeTexture(33984) gl.bindFramebuffer(36160, null) if (isWebGL2 === true) { gl.bindFramebuffer(36009, null) gl.bindFramebuffer(36008, null) } gl.useProgram(null) gl.lineWidth(1) gl.scissor(0, 0, gl.canvas.width, gl.canvas.height) gl.viewport(0, 0, gl.canvas.width, gl.canvas.height) // reset internals enabledCapabilities = {} currentTextureSlot = null currentBoundTextures = {} currentBoundFramebuffers = {} currentDrawbuffers = new WeakMap() defaultDrawbuffers = [] currentProgram = null currentBlendingEnabled = false currentBlending = null currentBlendEquation = null currentBlendSrc = null currentBlendDst = null currentBlendEquationAlpha = null currentBlendSrcAlpha = null currentBlendDstAlpha = null currentPremultipledAlpha = false currentFlipSided = null currentCullFace = null currentLineWidth = null currentPolygonOffsetFactor = null currentPolygonOffsetUnits = null currentScissor.set(0, 0, gl.canvas.width, gl.canvas.height) currentViewport.set(0, 0, gl.canvas.width, gl.canvas.height) colorBuffer.reset() depthBuffer.reset() stencilBuffer.reset() } return { buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer }, enable: enable, disable: disable, bindFramebuffer: bindFramebuffer, drawBuffers: drawBuffers, useProgram: useProgram, setBlending: setBlending, setMaterial: setMaterial, setFlipSided: setFlipSided, setCullFace: setCullFace, setLineWidth: setLineWidth, setPolygonOffset: setPolygonOffset, setScissorTest: setScissorTest, activeTexture: activeTexture, bindTexture: bindTexture, unbindTexture: unbindTexture, compressedTexImage2D: compressedTexImage2D, texImage2D: texImage2D, texImage3D: texImage3D, texStorage2D: texStorage2D, texStorage3D: texStorage3D, texSubImage2D: texSubImage2D, texSubImage3D: texSubImage3D, compressedTexSubImage2D: compressedTexSubImage2D, scissor: scissor, viewport: viewport, reset: reset } } function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) { const isWebGL2 = capabilities.isWebGL2 const maxTextures = capabilities.maxTextures const maxCubemapSize = capabilities.maxCubemapSize const maxTextureSize = capabilities.maxTextureSize const maxSamples = capabilities.maxSamples const multisampledRTTExt = extensions.has('WEBGL_multisampled_render_to_texture') ? extensions.get('WEBGL_multisampled_render_to_texture') : null const supportsInvalidateFramebuffer = /OculusBrowser/g.test(navigator.userAgent) const _videoTextures = new WeakMap() let _canvas const _sources = new WeakMap() // maps WebglTexture objects to instances of Source // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas, // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")! // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d). let useOffscreenCanvas = false try { useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && // eslint-disable-next-line compat/compat new OffscreenCanvas(1, 1).getContext('2d') !== null } catch (err) { // Ignore any errors } function createCanvas(width, height) { // Use OffscreenCanvas when available. Specially needed in web workers return useOffscreenCanvas ? // eslint-disable-next-line compat/compat new OffscreenCanvas(width, height) : createElementNS('canvas') } function resizeImage(image, needsPowerOfTwo, needsNewCanvas, maxSize) { let scale = 1 // handle case if texture exceeds max size if (image.width > maxSize || image.height > maxSize) { scale = maxSize / Math.max(image.width, image.height) } // only perform resize if necessary if (scale < 1 || needsPowerOfTwo === true) { // only perform resize for certain image types if ( (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement) || (typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement) || (typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) ) { const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor const width = floor(scale * image.width) const height = floor(scale * image.height) if (_canvas === undefined) _canvas = createCanvas(width, height) // cube textures can't reuse the same canvas const canvas = needsNewCanvas ? createCanvas(width, height) : _canvas canvas.width = width canvas.height = height const context = canvas.getContext('2d') context.drawImage(image, 0, 0, width, height) console.warn('THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').') return canvas } else { if ('data' in image) { console.warn('THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').') } return image } } return image } function isPowerOfTwo$1(image) { return isPowerOfTwo(image.width) && isPowerOfTwo(image.height) } function textureNeedsPowerOfTwo(texture) { if (isWebGL2) return false return texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) } function textureNeedsGenerateMipmaps(texture, supportsMips) { return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter } function generateMipmap(target) { _gl.generateMipmap(target) } function getInternalFormat(internalFormatName, glFormat, glType, encoding, isVideoTexture = false) { if (isWebGL2 === false) return glFormat if (internalFormatName !== null) { if (_gl[internalFormatName] !== undefined) return _gl[internalFormatName] console.warn("THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format '" + internalFormatName + "'") } let internalFormat = glFormat if (glFormat === 6403) { if (glType === 5126) internalFormat = 33326 if (glType === 5131) internalFormat = 33325 if (glType === 5121) internalFormat = 33321 } if (glFormat === 33319) { if (glType === 5126) internalFormat = 33328 if (glType === 5131) internalFormat = 33327 if (glType === 5121) internalFormat = 33323 } if (glFormat === 6408) { if (glType === 5126) internalFormat = 34836 if (glType === 5131) internalFormat = 34842 if (glType === 5121) internalFormat = encoding === sRGBEncoding && isVideoTexture === false ? 35907 : 32856 if (glType === 32819) internalFormat = 32854 if (glType === 32820) internalFormat = 32855 } if (internalFormat === 33325 || internalFormat === 33326 || internalFormat === 33327 || internalFormat === 33328 || internalFormat === 34842 || internalFormat === 34836) { extensions.get('EXT_color_buffer_float') } return internalFormat } function getMipLevels(texture, image, supportsMips) { if (textureNeedsGenerateMipmaps(texture, supportsMips) === true || (texture.isFramebufferTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter)) { return Math.log2(Math.max(image.width, image.height)) + 1 } else if (texture.mipmaps !== undefined && texture.mipmaps.length > 0) { // user-defined mipmaps return texture.mipmaps.length } else if (texture.isCompressedTexture && Array.isArray(texture.image)) { return image.mipmaps.length } else { // texture without mipmaps (only base level) return 1 } } // Fallback filters for non-power-of-2 textures function filterFallback(f) { if (f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter) { return 9728 } return 9729 } // function onTextureDispose(event) { const texture = event.target texture.removeEventListener('dispose', onTextureDispose) deallocateTexture(texture) if (texture.isVideoTexture) { _videoTextures.delete(texture) } } function onRenderTargetDispose(event) { const renderTarget = event.target renderTarget.removeEventListener('dispose', onRenderTargetDispose) deallocateRenderTarget(renderTarget) } // function deallocateTexture(texture) { const textureProperties = properties.get(texture) if (textureProperties.__webglInit === undefined) return // check if it's necessary to remove the WebGLTexture object const source = texture.source const webglTextures = _sources.get(source) if (webglTextures) { const webglTexture = webglTextures[textureProperties.__cacheKey] webglTexture.usedTimes-- // the WebGLTexture object is not used anymore, remove it if (webglTexture.usedTimes === 0) { deleteTexture(texture) } // remove the weak map entry if no WebGLTexture uses the source anymore if (Object.keys(webglTextures).length === 0) { _sources.delete(source) } } properties.remove(texture) } function deleteTexture(texture) { const textureProperties = properties.get(texture) _gl.deleteTexture(textureProperties.__webglTexture) const source = texture.source const webglTextures = _sources.get(source) delete webglTextures[textureProperties.__cacheKey] info.memory.textures-- } function deallocateRenderTarget(renderTarget) { const texture = renderTarget.texture const renderTargetProperties = properties.get(renderTarget) const textureProperties = properties.get(texture) if (textureProperties.__webglTexture !== undefined) { _gl.deleteTexture(textureProperties.__webglTexture) info.memory.textures-- } if (renderTarget.depthTexture) { renderTarget.depthTexture.dispose() } if (renderTarget.isWebGLCubeRenderTarget) { for (let i = 0; i < 6; i++) { _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]) if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]) } } else { _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer) if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer) if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer) if (renderTargetProperties.__webglColorRenderbuffer) { for (let i = 0; i < renderTargetProperties.__webglColorRenderbuffer.length; i++) { if (renderTargetProperties.__webglColorRenderbuffer[i]) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer[i]) } } if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer) } if (renderTarget.isWebGLMultipleRenderTargets) { for (let i = 0, il = texture.length; i < il; i++) { const attachmentProperties = properties.get(texture[i]) if (attachmentProperties.__webglTexture) { _gl.deleteTexture(attachmentProperties.__webglTexture) info.memory.textures-- } properties.remove(texture[i]) } } properties.remove(texture) properties.remove(renderTarget) } // let textureUnits = 0 function resetTextureUnits() { textureUnits = 0 } function allocateTextureUnit() { const textureUnit = textureUnits if (textureUnit >= maxTextures) { console.warn('THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures) } textureUnits += 1 return textureUnit } function getTextureCacheKey(texture) { const array = [] array.push(texture.wrapS) array.push(texture.wrapT) array.push(texture.magFilter) array.push(texture.minFilter) array.push(texture.anisotropy) array.push(texture.internalFormat) array.push(texture.format) array.push(texture.type) array.push(texture.generateMipmaps) array.push(texture.premultiplyAlpha) array.push(texture.flipY) array.push(texture.unpackAlignment) array.push(texture.encoding) return array.join() } // function setTexture2D(texture, slot) { const textureProperties = properties.get(texture) if (texture.isVideoTexture) updateVideoTexture(texture) if (texture.isRenderTargetTexture === false && texture.version > 0 && textureProperties.__version !== texture.version) { const image = texture.image if (image === null) { console.warn('THREE.WebGLRenderer: Texture marked for update but no image data found.') } else if (image.complete === false) { console.warn('THREE.WebGLRenderer: Texture marked for update but image is incomplete') } else { uploadTexture(textureProperties, texture, slot) return } } state.activeTexture(33984 + slot) state.bindTexture(3553, textureProperties.__webglTexture) } function setTexture2DArray(texture, slot) { const textureProperties = properties.get(texture) if (texture.version > 0 && textureProperties.__version !== texture.version) { uploadTexture(textureProperties, texture, slot) return } state.activeTexture(33984 + slot) state.bindTexture(35866, textureProperties.__webglTexture) } function setTexture3D(texture, slot) { const textureProperties = properties.get(texture) if (texture.version > 0 && textureProperties.__version !== texture.version) { uploadTexture(textureProperties, texture, slot) return } state.activeTexture(33984 + slot) state.bindTexture(32879, textureProperties.__webglTexture) } function setTextureCube(texture, slot) { const textureProperties = properties.get(texture) if (texture.version > 0 && textureProperties.__version !== texture.version) { uploadCubeTexture(textureProperties, texture, slot) return } state.activeTexture(33984 + slot) state.bindTexture(34067, textureProperties.__webglTexture) } const wrappingToGL = { [RepeatWrapping]: 10497, [ClampToEdgeWrapping]: 33071, [MirroredRepeatWrapping]: 33648 } const filterToGL = { [NearestFilter]: 9728, [NearestMipmapNearestFilter]: 9984, [NearestMipmapLinearFilter]: 9986, [LinearFilter]: 9729, [LinearMipmapNearestFilter]: 9985, [LinearMipmapLinearFilter]: 9987 } function setTextureParameters(textureType, texture, supportsMips) { if (supportsMips) { _gl.texParameteri(textureType, 10242, wrappingToGL[texture.wrapS]) _gl.texParameteri(textureType, 10243, wrappingToGL[texture.wrapT]) if (textureType === 32879 || textureType === 35866) { _gl.texParameteri(textureType, 32882, wrappingToGL[texture.wrapR]) } _gl.texParameteri(textureType, 10240, filterToGL[texture.magFilter]) _gl.texParameteri(textureType, 10241, filterToGL[texture.minFilter]) } else { _gl.texParameteri(textureType, 10242, 33071) _gl.texParameteri(textureType, 10243, 33071) if (textureType === 32879 || textureType === 35866) { _gl.texParameteri(textureType, 32882, 33071) } if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) { console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.') } _gl.texParameteri(textureType, 10240, filterFallback(texture.magFilter)) _gl.texParameteri(textureType, 10241, filterFallback(texture.minFilter)) if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) { console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.') } } if (extensions.has('EXT_texture_filter_anisotropic') === true) { const extension = extensions.get('EXT_texture_filter_anisotropic') if (texture.type === FloatType && extensions.has('OES_texture_float_linear') === false) return // verify extension for WebGL 1 and WebGL 2 if (isWebGL2 === false && texture.type === HalfFloatType && extensions.has('OES_texture_half_float_linear') === false) return // verify extension for WebGL 1 only if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) { _gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy())) properties.get(texture).__currentAnisotropy = texture.anisotropy } } } function initTexture(textureProperties, texture) { let forceUpload = false if (textureProperties.__webglInit === undefined) { textureProperties.__webglInit = true texture.addEventListener('dispose', onTextureDispose) } // create Source <-> WebGLTextures mapping if necessary const source = texture.source let webglTextures = _sources.get(source) if (webglTextures === undefined) { webglTextures = {} _sources.set(source, webglTextures) } // check if there is already a WebGLTexture object for the given texture parameters const textureCacheKey = getTextureCacheKey(texture) if (textureCacheKey !== textureProperties.__cacheKey) { // if not, create a new instance of WebGLTexture if (webglTextures[textureCacheKey] === undefined) { // create new entry webglTextures[textureCacheKey] = { texture: _gl.createTexture(), usedTimes: 0 } info.memory.textures++ // when a new instance of WebGLTexture was created, a texture upload is required // even if the image contents are identical forceUpload = true } webglTextures[textureCacheKey].usedTimes++ // every time the texture cache key changes, it's necessary to check if an instance of // WebGLTexture can be deleted in order to avoid a memory leak. const webglTexture = webglTextures[textureProperties.__cacheKey] if (webglTexture !== undefined) { webglTextures[textureProperties.__cacheKey].usedTimes-- if (webglTexture.usedTimes === 0) { deleteTexture(texture) } } // store references to cache key and WebGLTexture object textureProperties.__cacheKey = textureCacheKey textureProperties.__webglTexture = webglTextures[textureCacheKey].texture } return forceUpload } function uploadTexture(textureProperties, texture, slot) { let textureType = 3553 if (texture.isDataArrayTexture) textureType = 35866 if (texture.isData3DTexture) textureType = 32879 const forceUpload = initTexture(textureProperties, texture) const source = texture.source state.activeTexture(33984 + slot) state.bindTexture(textureType, textureProperties.__webglTexture) if (source.version !== source.__currentVersion || forceUpload === true) { _gl.pixelStorei(37440, texture.flipY) _gl.pixelStorei(37441, texture.premultiplyAlpha) _gl.pixelStorei(3317, texture.unpackAlignment) _gl.pixelStorei(37443, 0) const needsPowerOfTwo = textureNeedsPowerOfTwo(texture) && isPowerOfTwo$1(texture.image) === false let image = resizeImage(texture.image, needsPowerOfTwo, false, maxTextureSize) image = verifyColorSpace(texture, image) const supportsMips = isPowerOfTwo$1(image) || isWebGL2, glFormat = utils.convert(texture.format, texture.encoding) let glType = utils.convert(texture.type), glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding, texture.isVideoTexture) setTextureParameters(textureType, texture, supportsMips) let mipmap const mipmaps = texture.mipmaps const useTexStorage = isWebGL2 && texture.isVideoTexture !== true const allocateMemory = source.__currentVersion === undefined || forceUpload === true const levels = getMipLevels(texture, image, supportsMips) if (texture.isDepthTexture) { // populate depth texture with dummy data glInternalFormat = 6402 if (isWebGL2) { if (texture.type === FloatType) { glInternalFormat = 36012 } else if (texture.type === UnsignedIntType) { glInternalFormat = 33190 } else if (texture.type === UnsignedInt248Type) { glInternalFormat = 35056 } else { glInternalFormat = 33189 // WebGL2 requires sized internalformat for glTexImage2D } } else { if (texture.type === FloatType) { console.error('WebGLRenderer: Floating point depth texture requires WebGL2.') } } // validation checks for WebGL 1 if (texture.format === DepthFormat && glInternalFormat === 6402) { // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) { console.warn('THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.') texture.type = UnsignedIntType glType = utils.convert(texture.type) } } if (texture.format === DepthStencilFormat && glInternalFormat === 6402) { // Depth stencil textures need the DEPTH_STENCIL internal format // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) glInternalFormat = 34041 // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if (texture.type !== UnsignedInt248Type) { console.warn('THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.') texture.type = UnsignedInt248Type glType = utils.convert(texture.type) } } // if (allocateMemory) { if (useTexStorage) { state.texStorage2D(3553, 1, glInternalFormat, image.width, image.height) } else { state.texImage2D(3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null) } } } else if (texture.isDataTexture) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if (mipmaps.length > 0 && supportsMips) { if (useTexStorage && allocateMemory) { state.texStorage2D(3553, levels, glInternalFormat, mipmaps[0].width, mipmaps[0].height) } for (let i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i] if (useTexStorage) { state.texSubImage2D(3553, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data) } else { state.texImage2D(3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data) } } texture.generateMipmaps = false } else { if (useTexStorage) { if (allocateMemory) { state.texStorage2D(3553, levels, glInternalFormat, image.width, image.height) } state.texSubImage2D(3553, 0, 0, 0, image.width, image.height, glFormat, glType, image.data) } else { state.texImage2D(3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data) } } } else if (texture.isCompressedTexture) { if (useTexStorage && allocateMemory) { state.texStorage2D(3553, levels, glInternalFormat, mipmaps[0].width, mipmaps[0].height) } for (let i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i] if (texture.format !== RGBAFormat) { if (glFormat !== null) { if (useTexStorage) { state.compressedTexSubImage2D(3553, i, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data) } else { state.compressedTexImage2D(3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data) } } else { console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()') } } else { if (useTexStorage) { state.texSubImage2D(3553, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data) } else { state.texImage2D(3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data) } } } } else if (texture.isDataArrayTexture) { if (useTexStorage) { if (allocateMemory) { state.texStorage3D(35866, levels, glInternalFormat, image.width, image.height, image.depth) } state.texSubImage3D(35866, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data) } else { state.texImage3D(35866, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data) } } else if (texture.isData3DTexture) { if (useTexStorage) { if (allocateMemory) { state.texStorage3D(32879, levels, glInternalFormat, image.width, image.height, image.depth) } state.texSubImage3D(32879, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data) } else { state.texImage3D(32879, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data) } } else if (texture.isFramebufferTexture) { if (allocateMemory) { if (useTexStorage) { state.texStorage2D(3553, levels, glInternalFormat, image.width, image.height) } else { let width = image.width, height = image.height for (let i = 0; i < levels; i++) { state.texImage2D(3553, i, glInternalFormat, width, height, 0, glFormat, glType, null) width >>= 1 height >>= 1 } } } } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if (mipmaps.length > 0 && supportsMips) { if (useTexStorage && allocateMemory) { state.texStorage2D(3553, levels, glInternalFormat, mipmaps[0].width, mipmaps[0].height) } for (let i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i] if (useTexStorage) { state.texSubImage2D(3553, i, 0, 0, glFormat, glType, mipmap) } else { state.texImage2D(3553, i, glInternalFormat, glFormat, glType, mipmap) } } texture.generateMipmaps = false } else { if (useTexStorage) { if (allocateMemory) { state.texStorage2D(3553, levels, glInternalFormat, image.width, image.height) } state.texSubImage2D(3553, 0, 0, 0, glFormat, glType, image) } else { state.texImage2D(3553, 0, glInternalFormat, glFormat, glType, image) } } } if (textureNeedsGenerateMipmaps(texture, supportsMips)) { generateMipmap(textureType) } source.__currentVersion = source.version if (texture.onUpdate) texture.onUpdate(texture) } textureProperties.__version = texture.version } function uploadCubeTexture(textureProperties, texture, slot) { if (texture.image.length !== 6) return const forceUpload = initTexture(textureProperties, texture) const source = texture.source state.activeTexture(33984 + slot) state.bindTexture(34067, textureProperties.__webglTexture) if (source.version !== source.__currentVersion || forceUpload === true) { _gl.pixelStorei(37440, texture.flipY) _gl.pixelStorei(37441, texture.premultiplyAlpha) _gl.pixelStorei(3317, texture.unpackAlignment) _gl.pixelStorei(37443, 0) const isCompressed = texture.isCompressedTexture || texture.image[0].isCompressedTexture const isDataTexture = texture.image[0] && texture.image[0].isDataTexture const cubeImage = [] for (let i = 0; i < 6; i++) { if (!isCompressed && !isDataTexture) { cubeImage[i] = resizeImage(texture.image[i], false, true, maxCubemapSize) } else { cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i] } cubeImage[i] = verifyColorSpace(texture, cubeImage[i]) } const image = cubeImage[0], supportsMips = isPowerOfTwo$1(image) || isWebGL2, glFormat = utils.convert(texture.format, texture.encoding), glType = utils.convert(texture.type), glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding) const useTexStorage = isWebGL2 && texture.isVideoTexture !== true const allocateMemory = source.__currentVersion === undefined || forceUpload === true let levels = getMipLevels(texture, image, supportsMips) setTextureParameters(34067, texture, supportsMips) let mipmaps if (isCompressed) { if (useTexStorage && allocateMemory) { state.texStorage2D(34067, levels, glInternalFormat, image.width, image.height) } for (let i = 0; i < 6; i++) { mipmaps = cubeImage[i].mipmaps for (let j = 0; j < mipmaps.length; j++) { const mipmap = mipmaps[j] if (texture.format !== RGBAFormat) { if (glFormat !== null) { if (useTexStorage) { state.compressedTexSubImage2D(34069 + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data) } else { state.compressedTexImage2D(34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data) } } else { console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()') } } else { if (useTexStorage) { state.texSubImage2D(34069 + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data) } else { state.texImage2D(34069 + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data) } } } } } else { mipmaps = texture.mipmaps if (useTexStorage && allocateMemory) { // TODO: Uniformly handle mipmap definitions // Normal textures and compressed cube textures define base level + mips with their mipmap array // Uncompressed cube textures use their mipmap array only for mips (no base level) if (mipmaps.length > 0) levels++ state.texStorage2D(34067, levels, glInternalFormat, cubeImage[0].width, cubeImage[0].height) } for (let i = 0; i < 6; i++) { if (isDataTexture) { if (useTexStorage) { state.texSubImage2D(34069 + i, 0, 0, 0, cubeImage[i].width, cubeImage[i].height, glFormat, glType, cubeImage[i].data) } else { state.texImage2D(34069 + i, 0, glInternalFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data) } for (let j = 0; j < mipmaps.length; j++) { const mipmap = mipmaps[j] const mipmapImage = mipmap.image[i].image if (useTexStorage) { state.texSubImage2D(34069 + i, j + 1, 0, 0, mipmapImage.width, mipmapImage.height, glFormat, glType, mipmapImage.data) } else { state.texImage2D(34069 + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data) } } } else { if (useTexStorage) { state.texSubImage2D(34069 + i, 0, 0, 0, glFormat, glType, cubeImage[i]) } else { state.texImage2D(34069 + i, 0, glInternalFormat, glFormat, glType, cubeImage[i]) } for (let j = 0; j < mipmaps.length; j++) { const mipmap = mipmaps[j] if (useTexStorage) { state.texSubImage2D(34069 + i, j + 1, 0, 0, glFormat, glType, mipmap.image[i]) } else { state.texImage2D(34069 + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[i]) } } } } } if (textureNeedsGenerateMipmaps(texture, supportsMips)) { // We assume images for cube map have the same size. generateMipmap(34067) } source.__currentVersion = source.version if (texture.onUpdate) texture.onUpdate(texture) } textureProperties.__version = texture.version } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture(framebuffer, renderTarget, texture, attachment, textureTarget) { const glFormat = utils.convert(texture.format, texture.encoding) const glType = utils.convert(texture.type) const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding) const renderTargetProperties = properties.get(renderTarget) if (!renderTargetProperties.__hasExternalTextures) { if (textureTarget === 32879 || textureTarget === 35866) { state.texImage3D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null) } else { state.texImage2D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null) } } state.bindFramebuffer(36160, framebuffer) if (useMultisampledRTT(renderTarget)) { multisampledRTTExt.framebufferTexture2DMultisampleEXT(36160, attachment, textureTarget, properties.get(texture).__webglTexture, 0, getRenderTargetSamples(renderTarget)) } else { _gl.framebufferTexture2D(36160, attachment, textureTarget, properties.get(texture).__webglTexture, 0) } state.bindFramebuffer(36160, null) } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) { _gl.bindRenderbuffer(36161, renderbuffer) if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) { let glInternalFormat = 33189 if (isMultisample || useMultisampledRTT(renderTarget)) { const depthTexture = renderTarget.depthTexture if (depthTexture && depthTexture.isDepthTexture) { if (depthTexture.type === FloatType) { glInternalFormat = 36012 } else if (depthTexture.type === UnsignedIntType) { glInternalFormat = 33190 } } const samples = getRenderTargetSamples(renderTarget) if (useMultisampledRTT(renderTarget)) { multisampledRTTExt.renderbufferStorageMultisampleEXT(36161, samples, glInternalFormat, renderTarget.width, renderTarget.height) } else { _gl.renderbufferStorageMultisample(36161, samples, glInternalFormat, renderTarget.width, renderTarget.height) } } else { _gl.renderbufferStorage(36161, glInternalFormat, renderTarget.width, renderTarget.height) } _gl.framebufferRenderbuffer(36160, 36096, 36161, renderbuffer) } else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) { const samples = getRenderTargetSamples(renderTarget) if (isMultisample && useMultisampledRTT(renderTarget) === false) { _gl.renderbufferStorageMultisample(36161, samples, 35056, renderTarget.width, renderTarget.height) } else if (useMultisampledRTT(renderTarget)) { multisampledRTTExt.renderbufferStorageMultisampleEXT(36161, samples, 35056, renderTarget.width, renderTarget.height) } else { _gl.renderbufferStorage(36161, 34041, renderTarget.width, renderTarget.height) } _gl.framebufferRenderbuffer(36160, 33306, 36161, renderbuffer) } else { const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [renderTarget.texture] for (let i = 0; i < textures.length; i++) { const texture = textures[i] const glFormat = utils.convert(texture.format, texture.encoding) const glType = utils.convert(texture.type) const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding) const samples = getRenderTargetSamples(renderTarget) if (isMultisample && useMultisampledRTT(renderTarget) === false) { _gl.renderbufferStorageMultisample(36161, samples, glInternalFormat, renderTarget.width, renderTarget.height) } else if (useMultisampledRTT(renderTarget)) { multisampledRTTExt.renderbufferStorageMultisampleEXT(36161, samples, glInternalFormat, renderTarget.width, renderTarget.height) } else { _gl.renderbufferStorage(36161, glInternalFormat, renderTarget.width, renderTarget.height) } } } _gl.bindRenderbuffer(36161, null) } // Setup resources for a Depth Texture for a FBO (needs an extension) function setupDepthTexture(framebuffer, renderTarget) { const isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget if (isCube) throw new Error('Depth Texture with cube render targets is not supported') state.bindFramebuffer(36160, framebuffer) if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) { throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture') } // upload an empty depth texture with framebuffer size if ( !properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height ) { renderTarget.depthTexture.image.width = renderTarget.width renderTarget.depthTexture.image.height = renderTarget.height renderTarget.depthTexture.needsUpdate = true } setTexture2D(renderTarget.depthTexture, 0) const webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture const samples = getRenderTargetSamples(renderTarget) if (renderTarget.depthTexture.format === DepthFormat) { if (useMultisampledRTT(renderTarget)) { multisampledRTTExt.framebufferTexture2DMultisampleEXT(36160, 36096, 3553, webglDepthTexture, 0, samples) } else { _gl.framebufferTexture2D(36160, 36096, 3553, webglDepthTexture, 0) } } else if (renderTarget.depthTexture.format === DepthStencilFormat) { if (useMultisampledRTT(renderTarget)) { multisampledRTTExt.framebufferTexture2DMultisampleEXT(36160, 33306, 3553, webglDepthTexture, 0, samples) } else { _gl.framebufferTexture2D(36160, 33306, 3553, webglDepthTexture, 0) } } else { throw new Error('Unknown depthTexture format') } } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer(renderTarget) { const renderTargetProperties = properties.get(renderTarget) const isCube = renderTarget.isWebGLCubeRenderTarget === true if (renderTarget.depthTexture && !renderTargetProperties.__autoAllocateDepthBuffer) { if (isCube) throw new Error('target.depthTexture not supported in Cube render targets') setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget) } else { if (isCube) { renderTargetProperties.__webglDepthbuffer = [] for (let i = 0; i < 6; i++) { state.bindFramebuffer(36160, renderTargetProperties.__webglFramebuffer[i]) renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer() setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false) } } else { state.bindFramebuffer(36160, renderTargetProperties.__webglFramebuffer) renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer() setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false) } } state.bindFramebuffer(36160, null) } // rebind framebuffer with external textures function rebindTextures(renderTarget, colorTexture, depthTexture) { const renderTargetProperties = properties.get(renderTarget) if (colorTexture !== undefined) { setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, renderTarget.texture, 36064, 3553) } if (depthTexture !== undefined) { setupDepthRenderbuffer(renderTarget) } } // Set up GL resources for the render target function setupRenderTarget(renderTarget) { const texture = renderTarget.texture const renderTargetProperties = properties.get(renderTarget) const textureProperties = properties.get(texture) renderTarget.addEventListener('dispose', onRenderTargetDispose) if (renderTarget.isWebGLMultipleRenderTargets !== true) { if (textureProperties.__webglTexture === undefined) { textureProperties.__webglTexture = _gl.createTexture() } textureProperties.__version = texture.version info.memory.textures++ } const isCube = renderTarget.isWebGLCubeRenderTarget === true const isMultipleRenderTargets = renderTarget.isWebGLMultipleRenderTargets === true const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2 // Setup framebuffer if (isCube) { renderTargetProperties.__webglFramebuffer = [] for (let i = 0; i < 6; i++) { renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer() } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer() if (isMultipleRenderTargets) { if (capabilities.drawBuffers) { const textures = renderTarget.texture for (let i = 0, il = textures.length; i < il; i++) { const attachmentProperties = properties.get(textures[i]) if (attachmentProperties.__webglTexture === undefined) { attachmentProperties.__webglTexture = _gl.createTexture() info.memory.textures++ } } } else { console.warn('THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.') } } if (isWebGL2 && renderTarget.samples > 0 && useMultisampledRTT(renderTarget) === false) { const textures = isMultipleRenderTargets ? texture : [texture] renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer() renderTargetProperties.__webglColorRenderbuffer = [] state.bindFramebuffer(36160, renderTargetProperties.__webglMultisampledFramebuffer) for (let i = 0; i < textures.length; i++) { const texture = textures[i] renderTargetProperties.__webglColorRenderbuffer[i] = _gl.createRenderbuffer() _gl.bindRenderbuffer(36161, renderTargetProperties.__webglColorRenderbuffer[i]) const glFormat = utils.convert(texture.format, texture.encoding) const glType = utils.convert(texture.type) const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding) const samples = getRenderTargetSamples(renderTarget) _gl.renderbufferStorageMultisample(36161, samples, glInternalFormat, renderTarget.width, renderTarget.height) _gl.framebufferRenderbuffer(36160, 36064 + i, 36161, renderTargetProperties.__webglColorRenderbuffer[i]) } _gl.bindRenderbuffer(36161, null) if (renderTarget.depthBuffer) { renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer() setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true) } state.bindFramebuffer(36160, null) } } // Setup color buffer if (isCube) { state.bindTexture(34067, textureProperties.__webglTexture) setTextureParameters(34067, texture, supportsMips) for (let i = 0; i < 6; i++) { setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i], renderTarget, texture, 36064, 34069 + i) } if (textureNeedsGenerateMipmaps(texture, supportsMips)) { generateMipmap(34067) } state.unbindTexture() } else if (isMultipleRenderTargets) { const textures = renderTarget.texture for (let i = 0, il = textures.length; i < il; i++) { const attachment = textures[i] const attachmentProperties = properties.get(attachment) state.bindTexture(3553, attachmentProperties.__webglTexture) setTextureParameters(3553, attachment, supportsMips) setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, attachment, 36064 + i, 3553) if (textureNeedsGenerateMipmaps(attachment, supportsMips)) { generateMipmap(3553) } } state.unbindTexture() } else { let glTextureType = 3553 if (renderTarget.isWebGL3DRenderTarget || renderTarget.isWebGLArrayRenderTarget) { if (isWebGL2) { glTextureType = renderTarget.isWebGL3DRenderTarget ? 32879 : 35866 } else { console.error('THREE.WebGLTextures: THREE.Data3DTexture and THREE.DataArrayTexture only supported with WebGL2.') } } state.bindTexture(glTextureType, textureProperties.__webglTexture) setTextureParameters(glTextureType, texture, supportsMips) setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, texture, 36064, glTextureType) if (textureNeedsGenerateMipmaps(texture, supportsMips)) { generateMipmap(glTextureType) } state.unbindTexture() } // Setup depth and stencil buffers if (renderTarget.depthBuffer) { setupDepthRenderbuffer(renderTarget) } } function updateRenderTargetMipmap(renderTarget) { const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2 const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [renderTarget.texture] for (let i = 0, il = textures.length; i < il; i++) { const texture = textures[i] if (textureNeedsGenerateMipmaps(texture, supportsMips)) { const target = renderTarget.isWebGLCubeRenderTarget ? 34067 : 3553 const webglTexture = properties.get(texture).__webglTexture state.bindTexture(target, webglTexture) generateMipmap(target) state.unbindTexture() } } } function updateMultisampleRenderTarget(renderTarget) { if (isWebGL2 && renderTarget.samples > 0 && useMultisampledRTT(renderTarget) === false) { const textures = renderTarget.isWebGLMultipleRenderTargets ? renderTarget.texture : [renderTarget.texture] const width = renderTarget.width const height = renderTarget.height let mask = 16384 const invalidationArray = [] const depthStyle = renderTarget.stencilBuffer ? 33306 : 36096 const renderTargetProperties = properties.get(renderTarget) const isMultipleRenderTargets = renderTarget.isWebGLMultipleRenderTargets === true // If MRT we need to remove FBO attachments if (isMultipleRenderTargets) { for (let i = 0; i < textures.length; i++) { state.bindFramebuffer(36160, renderTargetProperties.__webglMultisampledFramebuffer) _gl.framebufferRenderbuffer(36160, 36064 + i, 36161, null) state.bindFramebuffer(36160, renderTargetProperties.__webglFramebuffer) _gl.framebufferTexture2D(36009, 36064 + i, 3553, null, 0) } } state.bindFramebuffer(36008, renderTargetProperties.__webglMultisampledFramebuffer) state.bindFramebuffer(36009, renderTargetProperties.__webglFramebuffer) for (let i = 0; i < textures.length; i++) { invalidationArray.push(36064 + i) if (renderTarget.depthBuffer) { invalidationArray.push(depthStyle) } const ignoreDepthValues = renderTargetProperties.__ignoreDepthValues !== undefined ? renderTargetProperties.__ignoreDepthValues : false if (ignoreDepthValues === false) { if (renderTarget.depthBuffer) mask |= 256 if (renderTarget.stencilBuffer) mask |= 1024 } if (isMultipleRenderTargets) { _gl.framebufferRenderbuffer(36008, 36064, 36161, renderTargetProperties.__webglColorRenderbuffer[i]) } if (ignoreDepthValues === true) { _gl.invalidateFramebuffer(36008, [depthStyle]) _gl.invalidateFramebuffer(36009, [depthStyle]) } if (isMultipleRenderTargets) { const webglTexture = properties.get(textures[i]).__webglTexture _gl.framebufferTexture2D(36009, 36064, 3553, webglTexture, 0) } _gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, 9728) if (supportsInvalidateFramebuffer) { _gl.invalidateFramebuffer(36008, invalidationArray) } } state.bindFramebuffer(36008, null) state.bindFramebuffer(36009, null) // If MRT since pre-blit we removed the FBO we need to reconstruct the attachments if (isMultipleRenderTargets) { for (let i = 0; i < textures.length; i++) { state.bindFramebuffer(36160, renderTargetProperties.__webglMultisampledFramebuffer) _gl.framebufferRenderbuffer(36160, 36064 + i, 36161, renderTargetProperties.__webglColorRenderbuffer[i]) const webglTexture = properties.get(textures[i]).__webglTexture state.bindFramebuffer(36160, renderTargetProperties.__webglFramebuffer) _gl.framebufferTexture2D(36009, 36064 + i, 3553, webglTexture, 0) } } state.bindFramebuffer(36009, renderTargetProperties.__webglMultisampledFramebuffer) } } function getRenderTargetSamples(renderTarget) { return Math.min(maxSamples, renderTarget.samples) } function useMultisampledRTT(renderTarget) { const renderTargetProperties = properties.get(renderTarget) return isWebGL2 && renderTarget.samples > 0 && extensions.has('WEBGL_multisampled_render_to_texture') === true && renderTargetProperties.__useRenderToTexture !== false } function updateVideoTexture(texture) { const frame = info.render.frame // Check the last frame we updated the VideoTexture if (_videoTextures.get(texture) !== frame) { _videoTextures.set(texture, frame) texture.update() } } function verifyColorSpace(texture, image) { const encoding = texture.encoding const format = texture.format const type = texture.type if (texture.isCompressedTexture === true || texture.isVideoTexture === true || texture.format === _SRGBAFormat) return image if (encoding !== LinearEncoding) { // sRGB if (encoding === sRGBEncoding) { if (isWebGL2 === false) { // in WebGL 1, try to use EXT_sRGB extension and unsized formats if (extensions.has('EXT_sRGB') === true && format === RGBAFormat) { texture.format = _SRGBAFormat // it's not possible to generate mips in WebGL 1 with this extension texture.minFilter = LinearFilter texture.generateMipmaps = false } else { // slow fallback (CPU decode) image = ImageUtils.sRGBToLinear(image) } } else { // in WebGL 2 uncompressed textures can only be sRGB encoded if they have the RGBA8 format if (format !== RGBAFormat || type !== UnsignedByteType) { console.warn('THREE.WebGLTextures: sRGB encoded textures have to use RGBAFormat and UnsignedByteType.') } } } else { console.error('THREE.WebGLTextures: Unsupported texture encoding:', encoding) } } return image } // this.allocateTextureUnit = allocateTextureUnit this.resetTextureUnits = resetTextureUnits this.setTexture2D = setTexture2D this.setTexture2DArray = setTexture2DArray this.setTexture3D = setTexture3D this.setTextureCube = setTextureCube this.rebindTextures = rebindTextures this.setupRenderTarget = setupRenderTarget this.updateRenderTargetMipmap = updateRenderTargetMipmap this.updateMultisampleRenderTarget = updateMultisampleRenderTarget this.setupDepthRenderbuffer = setupDepthRenderbuffer this.setupFrameBufferTexture = setupFrameBufferTexture this.useMultisampledRTT = useMultisampledRTT } function WebGLUtils(gl, extensions, capabilities) { const isWebGL2 = capabilities.isWebGL2 function convert(p, encoding = null) { let extension if (p === UnsignedByteType) return 5121 if (p === UnsignedShort4444Type) return 32819 if (p === UnsignedShort5551Type) return 32820 if (p === ByteType) return 5120 if (p === ShortType) return 5122 if (p === UnsignedShortType) return 5123 if (p === IntType) return 5124 if (p === UnsignedIntType) return 5125 if (p === FloatType) return 5126 if (p === HalfFloatType) { if (isWebGL2) return 5131 extension = extensions.get('OES_texture_half_float') if (extension !== null) { return extension.HALF_FLOAT_OES } else { return null } } if (p === AlphaFormat) return 6406 if (p === RGBAFormat) return 6408 if (p === LuminanceFormat) return 6409 if (p === LuminanceAlphaFormat) return 6410 if (p === DepthFormat) return 6402 if (p === DepthStencilFormat) return 34041 if (p === RedFormat) return 6403 if (p === RGBFormat) { console.warn('THREE.WebGLRenderer: THREE.RGBFormat has been removed. Use THREE.RGBAFormat instead. https://github.com/mrdoob/three.js/pull/23228') return 6408 } // WebGL 1 sRGB fallback if (p === _SRGBAFormat) { extension = extensions.get('EXT_sRGB') if (extension !== null) { return extension.SRGB_ALPHA_EXT } else { return null } } // WebGL2 formats. if (p === RedIntegerFormat) return 36244 if (p === RGFormat) return 33319 if (p === RGIntegerFormat) return 33320 if (p === RGBAIntegerFormat) return 36249 // S3TC if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) { if (encoding === sRGBEncoding) { extension = extensions.get('WEBGL_compressed_texture_s3tc_srgb') if (extension !== null) { if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_SRGB_S3TC_DXT1_EXT if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT } else { return null } } else { extension = extensions.get('WEBGL_compressed_texture_s3tc') if (extension !== null) { if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT } else { return null } } } // PVRTC if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) { extension = extensions.get('WEBGL_compressed_texture_pvrtc') if (extension !== null) { if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG } else { return null } } // ETC1 if (p === RGB_ETC1_Format) { extension = extensions.get('WEBGL_compressed_texture_etc1') if (extension !== null) { return extension.COMPRESSED_RGB_ETC1_WEBGL } else { return null } } // ETC2 if (p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) { extension = extensions.get('WEBGL_compressed_texture_etc') if (extension !== null) { if (p === RGB_ETC2_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ETC2 : extension.COMPRESSED_RGB8_ETC2 if (p === RGBA_ETC2_EAC_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ETC2_EAC : extension.COMPRESSED_RGBA8_ETC2_EAC } else { return null } } // ASTC if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ) { extension = extensions.get('WEBGL_compressed_texture_astc') if (extension !== null) { if (p === RGBA_ASTC_4x4_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR : extension.COMPRESSED_RGBA_ASTC_4x4_KHR if (p === RGBA_ASTC_5x4_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR : extension.COMPRESSED_RGBA_ASTC_5x4_KHR if (p === RGBA_ASTC_5x5_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR : extension.COMPRESSED_RGBA_ASTC_5x5_KHR if (p === RGBA_ASTC_6x5_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR : extension.COMPRESSED_RGBA_ASTC_6x5_KHR if (p === RGBA_ASTC_6x6_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR : extension.COMPRESSED_RGBA_ASTC_6x6_KHR if (p === RGBA_ASTC_8x5_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR : extension.COMPRESSED_RGBA_ASTC_8x5_KHR if (p === RGBA_ASTC_8x6_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR : extension.COMPRESSED_RGBA_ASTC_8x6_KHR if (p === RGBA_ASTC_8x8_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR : extension.COMPRESSED_RGBA_ASTC_8x8_KHR if (p === RGBA_ASTC_10x5_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR : extension.COMPRESSED_RGBA_ASTC_10x5_KHR if (p === RGBA_ASTC_10x6_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR : extension.COMPRESSED_RGBA_ASTC_10x6_KHR if (p === RGBA_ASTC_10x8_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR : extension.COMPRESSED_RGBA_ASTC_10x8_KHR if (p === RGBA_ASTC_10x10_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR : extension.COMPRESSED_RGBA_ASTC_10x10_KHR if (p === RGBA_ASTC_12x10_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR : extension.COMPRESSED_RGBA_ASTC_12x10_KHR if (p === RGBA_ASTC_12x12_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR : extension.COMPRESSED_RGBA_ASTC_12x12_KHR } else { return null } } // BPTC if (p === RGBA_BPTC_Format) { extension = extensions.get('EXT_texture_compression_bptc') if (extension !== null) { if (p === RGBA_BPTC_Format) return encoding === sRGBEncoding ? extension.COMPRESSED_SRGB_ALPHA_BPTC_UNORM_EXT : extension.COMPRESSED_RGBA_BPTC_UNORM_EXT } else { return null } } // if (p === UnsignedInt248Type) { if (isWebGL2) return 34042 extension = extensions.get('WEBGL_depth_texture') if (extension !== null) { return extension.UNSIGNED_INT_24_8_WEBGL } else { return null } } // if "p" can't be resolved, assume the user defines a WebGL constant as a string (fallback/workaround for packed RGB formats) return gl[p] !== undefined ? gl[p] : null } return { convert: convert } } class ArrayCamera extends PerspectiveCamera { constructor(array = []) { super() this.isArrayCamera = true this.cameras = array } } class Group extends Object3D { constructor() { super() this.isGroup = true this.type = 'Group' } } const _moveEvent = { type: 'move' } class WebXRController { constructor() { this._targetRay = null this._grip = null this._hand = null } getHandSpace() { if (this._hand === null) { this._hand = new Group() this._hand.matrixAutoUpdate = false this._hand.visible = false this._hand.joints = {} this._hand.inputState = { pinching: false } } return this._hand } getTargetRaySpace() { if (this._targetRay === null) { this._targetRay = new Group() this._targetRay.matrixAutoUpdate = false this._targetRay.visible = false this._targetRay.hasLinearVelocity = false this._targetRay.linearVelocity = new Vector3() this._targetRay.hasAngularVelocity = false this._targetRay.angularVelocity = new Vector3() } return this._targetRay } getGripSpace() { if (this._grip === null) { this._grip = new Group() this._grip.matrixAutoUpdate = false this._grip.visible = false this._grip.hasLinearVelocity = false this._grip.linearVelocity = new Vector3() this._grip.hasAngularVelocity = false this._grip.angularVelocity = new Vector3() } return this._grip } dispatchEvent(event) { if (this._targetRay !== null) { this._targetRay.dispatchEvent(event) } if (this._grip !== null) { this._grip.dispatchEvent(event) } if (this._hand !== null) { this._hand.dispatchEvent(event) } return this } disconnect(inputSource) { this.dispatchEvent({ type: 'disconnected', data: inputSource }) if (this._targetRay !== null) { this._targetRay.visible = false } if (this._grip !== null) { this._grip.visible = false } if (this._hand !== null) { this._hand.visible = false } return this } update(inputSource, frame, referenceSpace) { let inputPose = null let gripPose = null let handPose = null const targetRay = this._targetRay const grip = this._grip const hand = this._hand if (inputSource && frame.session.visibilityState !== 'visible-blurred') { if (targetRay !== null) { inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace) if (inputPose !== null) { targetRay.matrix.fromArray(inputPose.transform.matrix) targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale) if (inputPose.linearVelocity) { targetRay.hasLinearVelocity = true targetRay.linearVelocity.copy(inputPose.linearVelocity) } else { targetRay.hasLinearVelocity = false } if (inputPose.angularVelocity) { targetRay.hasAngularVelocity = true targetRay.angularVelocity.copy(inputPose.angularVelocity) } else { targetRay.hasAngularVelocity = false } this.dispatchEvent(_moveEvent) } } if (hand && inputSource.hand) { handPose = true for (const inputjoint of inputSource.hand.values()) { // Update the joints groups with the XRJoint poses const jointPose = frame.getJointPose(inputjoint, referenceSpace) if (hand.joints[inputjoint.jointName] === undefined) { // The transform of this joint will be updated with the joint pose on each frame const joint = new Group() joint.matrixAutoUpdate = false joint.visible = false hand.joints[inputjoint.jointName] = joint // ?? hand.add(joint) } const joint = hand.joints[inputjoint.jointName] if (jointPose !== null) { joint.matrix.fromArray(jointPose.transform.matrix) joint.matrix.decompose(joint.position, joint.rotation, joint.scale) joint.jointRadius = jointPose.radius } joint.visible = jointPose !== null } // Custom events // Check pinchz const indexTip = hand.joints['index-finger-tip'] const thumbTip = hand.joints['thumb-tip'] const distance = indexTip.position.distanceTo(thumbTip.position) const distanceToPinch = 0.02 const threshold = 0.005 if (hand.inputState.pinching && distance > distanceToPinch + threshold) { hand.inputState.pinching = false this.dispatchEvent({ type: 'pinchend', handedness: inputSource.handedness, target: this }) } else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) { hand.inputState.pinching = true this.dispatchEvent({ type: 'pinchstart', handedness: inputSource.handedness, target: this }) } } else { if (grip !== null && inputSource.gripSpace) { gripPose = frame.getPose(inputSource.gripSpace, referenceSpace) if (gripPose !== null) { grip.matrix.fromArray(gripPose.transform.matrix) grip.matrix.decompose(grip.position, grip.rotation, grip.scale) if (gripPose.linearVelocity) { grip.hasLinearVelocity = true grip.linearVelocity.copy(gripPose.linearVelocity) } else { grip.hasLinearVelocity = false } if (gripPose.angularVelocity) { grip.hasAngularVelocity = true grip.angularVelocity.copy(gripPose.angularVelocity) } else { grip.hasAngularVelocity = false } } } } } if (targetRay !== null) { targetRay.visible = inputPose !== null } if (grip !== null) { grip.visible = gripPose !== null } if (hand !== null) { hand.visible = handPose !== null } return this } } class DepthTexture extends Texture { constructor(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format) { format = format !== undefined ? format : DepthFormat if (format !== DepthFormat && format !== DepthStencilFormat) { throw new Error('DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat') } if (type === undefined && format === DepthFormat) type = UnsignedIntType if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) this.isDepthTexture = true this.image = { width: width, height: height } this.magFilter = magFilter !== undefined ? magFilter : NearestFilter this.minFilter = minFilter !== undefined ? minFilter : NearestFilter this.flipY = false this.generateMipmaps = false } } class WebXRManager extends EventDispatcher { constructor(renderer, gl) { super() const scope = this let session = null let framebufferScaleFactor = 1.0 let referenceSpace = null let referenceSpaceType = 'local-floor' let customReferenceSpace = null let pose = null let glBinding = null let glProjLayer = null let glBaseLayer = null let xrFrame = null const attributes = gl.getContextAttributes() let initialRenderTarget = null let newRenderTarget = null const controllers = [] const inputSourcesMap = new Map() // const cameraL = new PerspectiveCamera() cameraL.layers.enable(1) cameraL.viewport = new Vector4() const cameraR = new PerspectiveCamera() cameraR.layers.enable(2) cameraR.viewport = new Vector4() const cameras = [cameraL, cameraR] const cameraVR = new ArrayCamera() cameraVR.layers.enable(1) cameraVR.layers.enable(2) let _currentDepthNear = null let _currentDepthFar = null // this.cameraAutoUpdate = true this.enabled = false this.isPresenting = false this.getController = function(index) { let controller = controllers[index] if (controller === undefined) { controller = new WebXRController() controllers[index] = controller } return controller.getTargetRaySpace() } this.getControllerGrip = function(index) { let controller = controllers[index] if (controller === undefined) { controller = new WebXRController() controllers[index] = controller } return controller.getGripSpace() } this.getHand = function(index) { let controller = controllers[index] if (controller === undefined) { controller = new WebXRController() controllers[index] = controller } return controller.getHandSpace() } // function onSessionEvent(event) { const controller = inputSourcesMap.get(event.inputSource) if (controller !== undefined) { controller.dispatchEvent({ type: event.type, data: event.inputSource }) } } function onSessionEnd() { session.removeEventListener('select', onSessionEvent) session.removeEventListener('selectstart', onSessionEvent) session.removeEventListener('selectend', onSessionEvent) session.removeEventListener('squeeze', onSessionEvent) session.removeEventListener('squeezestart', onSessionEvent) session.removeEventListener('squeezeend', onSessionEvent) session.removeEventListener('end', onSessionEnd) session.removeEventListener('inputsourceschange', onInputSourcesChange) inputSourcesMap.forEach(function(controller, inputSource) { if (controller !== undefined) { controller.disconnect(inputSource) } }) inputSourcesMap.clear() _currentDepthNear = null _currentDepthFar = null // restore framebuffer/rendering state renderer.setRenderTarget(initialRenderTarget) glBaseLayer = null glProjLayer = null glBinding = null session = null newRenderTarget = null // animation.stop() scope.isPresenting = false scope.dispatchEvent({ type: 'sessionend' }) } this.setFramebufferScaleFactor = function(value) { framebufferScaleFactor = value if (scope.isPresenting === true) { console.warn('THREE.WebXRManager: Cannot change framebuffer scale while presenting.') } } this.setReferenceSpaceType = function(value) { referenceSpaceType = value if (scope.isPresenting === true) { console.warn('THREE.WebXRManager: Cannot change reference space type while presenting.') } } this.getReferenceSpace = function() { return customReferenceSpace || referenceSpace } this.setReferenceSpace = function(space) { customReferenceSpace = space } this.getBaseLayer = function() { return glProjLayer !== null ? glProjLayer : glBaseLayer } this.getBinding = function() { return glBinding } this.getFrame = function() { return xrFrame } this.getSession = function() { return session } this.setSession = async function(value) { session = value if (session !== null) { initialRenderTarget = renderer.getRenderTarget() session.addEventListener('select', onSessionEvent) session.addEventListener('selectstart', onSessionEvent) session.addEventListener('selectend', onSessionEvent) session.addEventListener('squeeze', onSessionEvent) session.addEventListener('squeezestart', onSessionEvent) session.addEventListener('squeezeend', onSessionEvent) session.addEventListener('end', onSessionEnd) session.addEventListener('inputsourceschange', onInputSourcesChange) if (attributes.xrCompatible !== true) { await gl.makeXRCompatible() } if (session.renderState.layers === undefined || renderer.capabilities.isWebGL2 === false) { const layerInit = { antialias: session.renderState.layers === undefined ? attributes.antialias : true, alpha: attributes.alpha, depth: attributes.depth, stencil: attributes.stencil, framebufferScaleFactor: framebufferScaleFactor } glBaseLayer = new XRWebGLLayer(session, gl, layerInit) session.updateRenderState({ baseLayer: glBaseLayer }) newRenderTarget = new WebGLRenderTarget(glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, { format: RGBAFormat, type: UnsignedByteType, encoding: renderer.outputEncoding }) } else { let depthFormat = null let depthType = null let glDepthFormat = null if (attributes.depth) { glDepthFormat = attributes.stencil ? 35056 : 33190 depthFormat = attributes.stencil ? DepthStencilFormat : DepthFormat depthType = attributes.stencil ? UnsignedInt248Type : UnsignedIntType } const projectionlayerInit = { colorFormat: renderer.outputEncoding === sRGBEncoding ? 35907 : 32856, depthFormat: glDepthFormat, scaleFactor: framebufferScaleFactor } glBinding = new XRWebGLBinding(session, gl) glProjLayer = glBinding.createProjectionLayer(projectionlayerInit) session.updateRenderState({ layers: [glProjLayer] }) newRenderTarget = new WebGLRenderTarget(glProjLayer.textureWidth, glProjLayer.textureHeight, { format: RGBAFormat, type: UnsignedByteType, depthTexture: new DepthTexture(glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, undefined, undefined, undefined, undefined, undefined, undefined, depthFormat), stencilBuffer: attributes.stencil, encoding: renderer.outputEncoding, samples: attributes.antialias ? 4 : 0 }) const renderTargetProperties = renderer.properties.get(newRenderTarget) renderTargetProperties.__ignoreDepthValues = glProjLayer.ignoreDepthValues } newRenderTarget.isXRRenderTarget = true // TODO Remove this when possible, see #23278 // Set foveation to maximum. this.setFoveation(1.0) customReferenceSpace = null referenceSpace = await session.requestReferenceSpace(referenceSpaceType) animation.setContext(session) animation.start() scope.isPresenting = true scope.dispatchEvent({ type: 'sessionstart' }) } } function onInputSourcesChange(event) { const inputSources = session.inputSources // Assign controllers to available inputSources for (let i = 0; i < inputSources.length; i++) { const index = inputSources[i].handedness === 'right' ? 1 : 0 inputSourcesMap.set(inputSources[i], controllers[index]) } // Notify disconnected for (let i = 0; i < event.removed.length; i++) { const inputSource = event.removed[i] const controller = inputSourcesMap.get(inputSource) if (controller) { controller.dispatchEvent({ type: 'disconnected', data: inputSource }) inputSourcesMap.delete(inputSource) } } // Notify connected for (let i = 0; i < event.added.length; i++) { const inputSource = event.added[i] const controller = inputSourcesMap.get(inputSource) if (controller) { controller.dispatchEvent({ type: 'connected', data: inputSource }) } } } // const cameraLPos = new Vector3() const cameraRPos = new Vector3() /** * Assumes 2 cameras that are parallel and share an X-axis, and that * the cameras' projection and world matrices have already been set. * And that near and far planes are identical for both cameras. * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 */ function setProjectionFromUnion(camera, cameraL, cameraR) { cameraLPos.setFromMatrixPosition(cameraL.matrixWorld) cameraRPos.setFromMatrixPosition(cameraR.matrixWorld) const ipd = cameraLPos.distanceTo(cameraRPos) const projL = cameraL.projectionMatrix.elements const projR = cameraR.projectionMatrix.elements // VR systems will have identical far and near planes, and // most likely identical top and bottom frustum extents. // Use the left camera for these values. const near = projL[14] / (projL[10] - 1) const far = projL[14] / (projL[10] + 1) const topFov = (projL[9] + 1) / projL[5] const bottomFov = (projL[9] - 1) / projL[5] const leftFov = (projL[8] - 1) / projL[0] const rightFov = (projR[8] + 1) / projR[0] const left = near * leftFov const right = near * rightFov // Calculate the new camera's position offset from the // left camera. xOffset should be roughly half `ipd`. const zOffset = ipd / (-leftFov + rightFov) const xOffset = zOffset * -leftFov // TODO: Better way to apply this offset? cameraL.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale) camera.translateX(xOffset) camera.translateZ(zOffset) camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale) camera.matrixWorldInverse.copy(camera.matrixWorld).invert() // Find the union of the frustum values of the cameras and scale // the values so that the near plane's position does not change in world space, // although must now be relative to the new union camera. const near2 = near + zOffset const far2 = far + zOffset const left2 = left - xOffset const right2 = right + (ipd - xOffset) const top2 = ((topFov * far) / far2) * near2 const bottom2 = ((bottomFov * far) / far2) * near2 camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2) } function updateCamera(camera, parent) { if (parent === null) { camera.matrixWorld.copy(camera.matrix) } else { camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix) } camera.matrixWorldInverse.copy(camera.matrixWorld).invert() } this.updateCamera = function(camera) { if (session === null) return cameraVR.near = cameraR.near = cameraL.near = camera.near cameraVR.far = cameraR.far = cameraL.far = camera.far if (_currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far) { // Note that the new renderState won't apply until the next frame. See #18320 session.updateRenderState({ depthNear: cameraVR.near, depthFar: cameraVR.far }) _currentDepthNear = cameraVR.near _currentDepthFar = cameraVR.far } const parent = camera.parent const cameras = cameraVR.cameras updateCamera(cameraVR, parent) for (let i = 0; i < cameras.length; i++) { updateCamera(cameras[i], parent) } cameraVR.matrixWorld.decompose(cameraVR.position, cameraVR.quaternion, cameraVR.scale) // update user camera and its children camera.position.copy(cameraVR.position) camera.quaternion.copy(cameraVR.quaternion) camera.scale.copy(cameraVR.scale) camera.matrix.copy(cameraVR.matrix) camera.matrixWorld.copy(cameraVR.matrixWorld) const children = camera.children for (let i = 0, l = children.length; i < l; i++) { children[i].updateMatrixWorld(true) } // update projection matrix for proper view frustum culling if (cameras.length === 2) { setProjectionFromUnion(cameraVR, cameraL, cameraR) } else { // assume single camera setup (AR) cameraVR.projectionMatrix.copy(cameraL.projectionMatrix) } } this.getCamera = function() { return cameraVR } this.getFoveation = function() { if (glProjLayer !== null) { return glProjLayer.fixedFoveation } if (glBaseLayer !== null) { return glBaseLayer.fixedFoveation } return undefined } this.setFoveation = function(foveation) { // 0 = no foveation = full resolution // 1 = maximum foveation = the edges render at lower resolution if (glProjLayer !== null) { glProjLayer.fixedFoveation = foveation } if (glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined) { glBaseLayer.fixedFoveation = foveation } } // Animation Loop let onAnimationFrameCallback = null function onAnimationFrame(time, frame) { pose = frame.getViewerPose(customReferenceSpace || referenceSpace) xrFrame = frame if (pose !== null) { const views = pose.views if (glBaseLayer !== null) { renderer.setRenderTargetFramebuffer(newRenderTarget, glBaseLayer.framebuffer) renderer.setRenderTarget(newRenderTarget) } let cameraVRNeedsUpdate = false // check if it's necessary to rebuild cameraVR's camera list if (views.length !== cameraVR.cameras.length) { cameraVR.cameras.length = 0 cameraVRNeedsUpdate = true } for (let i = 0; i < views.length; i++) { const view = views[i] let viewport = null if (glBaseLayer !== null) { viewport = glBaseLayer.getViewport(view) } else { const glSubImage = glBinding.getViewSubImage(glProjLayer, view) viewport = glSubImage.viewport // For side-by-side projection, we only produce a single texture for both eyes. if (i === 0) { renderer.setRenderTargetTextures(newRenderTarget, glSubImage.colorTexture, glProjLayer.ignoreDepthValues ? undefined : glSubImage.depthStencilTexture) renderer.setRenderTarget(newRenderTarget) } } let camera = cameras[i] if (camera === undefined) { camera = new PerspectiveCamera() camera.layers.enable(i) camera.viewport = new Vector4() cameras[i] = camera } camera.matrix.fromArray(view.transform.matrix) camera.projectionMatrix.fromArray(view.projectionMatrix) camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height) if (i === 0) { cameraVR.matrix.copy(camera.matrix) } if (cameraVRNeedsUpdate === true) { cameraVR.cameras.push(camera) } } } // const inputSources = session.inputSources for (let i = 0; i < controllers.length; i++) { const inputSource = inputSources[i] const controller = inputSourcesMap.get(inputSource) if (controller !== undefined) { controller.update(inputSource, frame, customReferenceSpace || referenceSpace) } } if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame) xrFrame = null } const animation = new WebGLAnimation() animation.setAnimationLoop(onAnimationFrame) this.setAnimationLoop = function(callback) { onAnimationFrameCallback = callback } this.dispose = function() {} } } function WebGLMaterials(renderer, properties) { function refreshFogUniforms(uniforms, fog) { uniforms.fogColor.value.copy(fog.color) if (fog.isFog) { uniforms.fogNear.value = fog.near uniforms.fogFar.value = fog.far } else if (fog.isFogExp2) { uniforms.fogDensity.value = fog.density } } function refreshMaterialUniforms(uniforms, material, pixelRatio, height, transmissionRenderTarget) { if (material.isMeshBasicMaterial) { refreshUniformsCommon(uniforms, material) } else if (material.isMeshLambertMaterial) { refreshUniformsCommon(uniforms, material) } else if (material.isMeshToonMaterial) { refreshUniformsCommon(uniforms, material) refreshUniformsToon(uniforms, material) } else if (material.isMeshPhongMaterial) { refreshUniformsCommon(uniforms, material) refreshUniformsPhong(uniforms, material) } else if (material.isMeshStandardMaterial) { refreshUniformsCommon(uniforms, material) refreshUniformsStandard(uniforms, material) if (material.isMeshPhysicalMaterial) { refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) } } else if (material.isMeshMatcapMaterial) { refreshUniformsCommon(uniforms, material) refreshUniformsMatcap(uniforms, material) } else if (material.isMeshDepthMaterial) { refreshUniformsCommon(uniforms, material) } else if (material.isMeshDistanceMaterial) { refreshUniformsCommon(uniforms, material) refreshUniformsDistance(uniforms, material) } else if (material.isMeshNormalMaterial) { refreshUniformsCommon(uniforms, material) } else if (material.isLineBasicMaterial) { refreshUniformsLine(uniforms, material) if (material.isLineDashedMaterial) { refreshUniformsDash(uniforms, material) } } else if (material.isPointsMaterial) { refreshUniformsPoints(uniforms, material, pixelRatio, height) } else if (material.isSpriteMaterial) { refreshUniformsSprites(uniforms, material) } else if (material.isShadowMaterial) { uniforms.color.value.copy(material.color) uniforms.opacity.value = material.opacity } else if (material.isShaderMaterial) { material.uniformsNeedUpdate = false // #15581 } } function refreshUniformsCommon(uniforms, material) { uniforms.opacity.value = material.opacity if (material.color) { uniforms.diffuse.value.copy(material.color) } if (material.emissive) { uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity) } if (material.map) { uniforms.map.value = material.map } if (material.alphaMap) { uniforms.alphaMap.value = material.alphaMap } if (material.bumpMap) { uniforms.bumpMap.value = material.bumpMap uniforms.bumpScale.value = material.bumpScale if (material.side === BackSide) uniforms.bumpScale.value *= -1 } if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap uniforms.displacementScale.value = material.displacementScale uniforms.displacementBias.value = material.displacementBias } if (material.emissiveMap) { uniforms.emissiveMap.value = material.emissiveMap } if (material.normalMap) { uniforms.normalMap.value = material.normalMap uniforms.normalScale.value.copy(material.normalScale) if (material.side === BackSide) uniforms.normalScale.value.negate() } if (material.specularMap) { uniforms.specularMap.value = material.specularMap } if (material.alphaTest > 0) { uniforms.alphaTest.value = material.alphaTest } const envMap = properties.get(material).envMap if (envMap) { uniforms.envMap.value = envMap uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap.isRenderTargetTexture === false ? -1 : 1 uniforms.reflectivity.value = material.reflectivity uniforms.ior.value = material.ior uniforms.refractionRatio.value = material.refractionRatio } if (material.lightMap) { uniforms.lightMap.value = material.lightMap // artist-friendly light intensity scaling factor const scaleFactor = renderer.physicallyCorrectLights !== true ? Math.PI : 1 uniforms.lightMapIntensity.value = material.lightMapIntensity * scaleFactor } if (material.aoMap) { uniforms.aoMap.value = material.aoMap uniforms.aoMapIntensity.value = material.aoMapIntensity } // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. displacementMap map // 4. normal map // 5. bump map // 6. roughnessMap map // 7. metalnessMap map // 8. alphaMap map // 9. emissiveMap map // 10. clearcoat map // 11. clearcoat normal map // 12. clearcoat roughnessMap map // 13. iridescence map // 14. iridescence thickness map // 15. specular intensity map // 16. specular tint map // 17. transmission map // 18. thickness map let uvScaleMap if (material.map) { uvScaleMap = material.map } else if (material.specularMap) { uvScaleMap = material.specularMap } else if (material.displacementMap) { uvScaleMap = material.displacementMap } else if (material.normalMap) { uvScaleMap = material.normalMap } else if (material.bumpMap) { uvScaleMap = material.bumpMap } else if (material.roughnessMap) { uvScaleMap = material.roughnessMap } else if (material.metalnessMap) { uvScaleMap = material.metalnessMap } else if (material.alphaMap) { uvScaleMap = material.alphaMap } else if (material.emissiveMap) { uvScaleMap = material.emissiveMap } else if (material.clearcoatMap) { uvScaleMap = material.clearcoatMap } else if (material.clearcoatNormalMap) { uvScaleMap = material.clearcoatNormalMap } else if (material.clearcoatRoughnessMap) { uvScaleMap = material.clearcoatRoughnessMap } else if (material.iridescenceMap) { uvScaleMap = material.iridescenceMap } else if (material.iridescenceThicknessMap) { uvScaleMap = material.iridescenceThicknessMap } else if (material.specularIntensityMap) { uvScaleMap = material.specularIntensityMap } else if (material.specularColorMap) { uvScaleMap = material.specularColorMap } else if (material.transmissionMap) { uvScaleMap = material.transmissionMap } else if (material.thicknessMap) { uvScaleMap = material.thicknessMap } else if (material.sheenColorMap) { uvScaleMap = material.sheenColorMap } else if (material.sheenRoughnessMap) { uvScaleMap = material.sheenRoughnessMap } if (uvScaleMap !== undefined) { // backwards compatibility if (uvScaleMap.isWebGLRenderTarget) { uvScaleMap = uvScaleMap.texture } if (uvScaleMap.matrixAutoUpdate === true) { uvScaleMap.updateMatrix() } uniforms.uvTransform.value.copy(uvScaleMap.matrix) } // uv repeat and offset setting priorities for uv2 // 1. ao map // 2. light map let uv2ScaleMap if (material.aoMap) { uv2ScaleMap = material.aoMap } else if (material.lightMap) { uv2ScaleMap = material.lightMap } if (uv2ScaleMap !== undefined) { // backwards compatibility if (uv2ScaleMap.isWebGLRenderTarget) { uv2ScaleMap = uv2ScaleMap.texture } if (uv2ScaleMap.matrixAutoUpdate === true) { uv2ScaleMap.updateMatrix() } uniforms.uv2Transform.value.copy(uv2ScaleMap.matrix) } } function refreshUniformsLine(uniforms, material) { uniforms.diffuse.value.copy(material.color) uniforms.opacity.value = material.opacity } function refreshUniformsDash(uniforms, material) { uniforms.dashSize.value = material.dashSize uniforms.totalSize.value = material.dashSize + material.gapSize uniforms.scale.value = material.scale } function refreshUniformsPoints(uniforms, material, pixelRatio, height) { uniforms.diffuse.value.copy(material.color) uniforms.opacity.value = material.opacity uniforms.size.value = material.size * pixelRatio uniforms.scale.value = height * 0.5 if (material.map) { uniforms.map.value = material.map } if (material.alphaMap) { uniforms.alphaMap.value = material.alphaMap } if (material.alphaTest > 0) { uniforms.alphaTest.value = material.alphaTest } // uv repeat and offset setting priorities // 1. color map // 2. alpha map let uvScaleMap if (material.map) { uvScaleMap = material.map } else if (material.alphaMap) { uvScaleMap = material.alphaMap } if (uvScaleMap !== undefined) { if (uvScaleMap.matrixAutoUpdate === true) { uvScaleMap.updateMatrix() } uniforms.uvTransform.value.copy(uvScaleMap.matrix) } } function refreshUniformsSprites(uniforms, material) { uniforms.diffuse.value.copy(material.color) uniforms.opacity.value = material.opacity uniforms.rotation.value = material.rotation if (material.map) { uniforms.map.value = material.map } if (material.alphaMap) { uniforms.alphaMap.value = material.alphaMap } if (material.alphaTest > 0) { uniforms.alphaTest.value = material.alphaTest } // uv repeat and offset setting priorities // 1. color map // 2. alpha map let uvScaleMap if (material.map) { uvScaleMap = material.map } else if (material.alphaMap) { uvScaleMap = material.alphaMap } if (uvScaleMap !== undefined) { if (uvScaleMap.matrixAutoUpdate === true) { uvScaleMap.updateMatrix() } uniforms.uvTransform.value.copy(uvScaleMap.matrix) } } function refreshUniformsPhong(uniforms, material) { uniforms.specular.value.copy(material.specular) uniforms.shininess.value = Math.max(material.shininess, 1e-4) // to prevent pow( 0.0, 0.0 ) } function refreshUniformsToon(uniforms, material) { if (material.gradientMap) { uniforms.gradientMap.value = material.gradientMap } } function refreshUniformsStandard(uniforms, material) { uniforms.roughness.value = material.roughness uniforms.metalness.value = material.metalness if (material.roughnessMap) { uniforms.roughnessMap.value = material.roughnessMap } if (material.metalnessMap) { uniforms.metalnessMap.value = material.metalnessMap } const envMap = properties.get(material).envMap if (envMap) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity } } function refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) { uniforms.ior.value = material.ior // also part of uniforms common if (material.sheen > 0) { uniforms.sheenColor.value.copy(material.sheenColor).multiplyScalar(material.sheen) uniforms.sheenRoughness.value = material.sheenRoughness if (material.sheenColorMap) { uniforms.sheenColorMap.value = material.sheenColorMap } if (material.sheenRoughnessMap) { uniforms.sheenRoughnessMap.value = material.sheenRoughnessMap } } if (material.clearcoat > 0) { uniforms.clearcoat.value = material.clearcoat uniforms.clearcoatRoughness.value = material.clearcoatRoughness if (material.clearcoatMap) { uniforms.clearcoatMap.value = material.clearcoatMap } if (material.clearcoatRoughnessMap) { uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap } if (material.clearcoatNormalMap) { uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale) uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap if (material.side === BackSide) { uniforms.clearcoatNormalScale.value.negate() } } } if (material.iridescence > 0) { uniforms.iridescence.value = material.iridescence uniforms.iridescenceIOR.value = material.iridescenceIOR uniforms.iridescenceThicknessMinimum.value = material.iridescenceThicknessRange[0] uniforms.iridescenceThicknessMaximum.value = material.iridescenceThicknessRange[1] if (material.iridescenceMap) { uniforms.iridescenceMap.value = material.iridescenceMap } if (material.iridescenceThicknessMap) { uniforms.iridescenceThicknessMap.value = material.iridescenceThicknessMap } } if (material.transmission > 0) { uniforms.transmission.value = material.transmission uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture uniforms.transmissionSamplerSize.value.set(transmissionRenderTarget.width, transmissionRenderTarget.height) if (material.transmissionMap) { uniforms.transmissionMap.value = material.transmissionMap } uniforms.thickness.value = material.thickness if (material.thicknessMap) { uniforms.thicknessMap.value = material.thicknessMap } uniforms.attenuationDistance.value = material.attenuationDistance uniforms.attenuationColor.value.copy(material.attenuationColor) } uniforms.specularIntensity.value = material.specularIntensity uniforms.specularColor.value.copy(material.specularColor) if (material.specularIntensityMap) { uniforms.specularIntensityMap.value = material.specularIntensityMap } if (material.specularColorMap) { uniforms.specularColorMap.value = material.specularColorMap } } function refreshUniformsMatcap(uniforms, material) { if (material.matcap) { uniforms.matcap.value = material.matcap } } function refreshUniformsDistance(uniforms, material) { uniforms.referencePosition.value.copy(material.referencePosition) uniforms.nearDistance.value = material.nearDistance uniforms.farDistance.value = material.farDistance } return { refreshFogUniforms: refreshFogUniforms, refreshMaterialUniforms: refreshMaterialUniforms } } function createCanvasElement() { const canvas = createElementNS('canvas') canvas.style.display = 'block' return canvas } function WebGLRenderer(parameters = {}) { this.isWebGLRenderer = true const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(), _context = parameters.context !== undefined ? parameters.context : null, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default', _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false let _alpha if (_context !== null) { _alpha = _context.getContextAttributes().alpha } else { _alpha = parameters.alpha !== undefined ? parameters.alpha : false } let currentRenderList = null let currentRenderState = null // render() can be called from within a callback triggered by another render. // We track this so that the nested render call gets its list and state isolated from the parent render call. const renderListStack = [] const renderStateStack = [] // public properties this.domElement = _canvas // Debug configuration container this.debug = { /** * Enables error checking and reporting when shader programs are being compiled * @type {boolean} */ checkShaderErrors: true } // clearing this.autoClear = true this.autoClearColor = true this.autoClearDepth = true this.autoClearStencil = true // scene graph this.sortObjects = true // user-defined clipping this.clippingPlanes = [] this.localClippingEnabled = false // physically based shading this.outputEncoding = LinearEncoding // physical lights this.physicallyCorrectLights = false // tone mapping this.toneMapping = NoToneMapping this.toneMappingExposure = 1.0 // Object.defineProperties(this, { // @deprecated since r136, 0e21088102b4de7e0a0a33140620b7a3424b9e6d gammaFactor: { get: function() { console.warn('THREE.WebGLRenderer: .gammaFactor has been removed.') return 2 }, set: function() { console.warn('THREE.WebGLRenderer: .gammaFactor has been removed.') } } }) // internal properties const _this = this let _isContextLost = false // internal state cache let _currentActiveCubeFace = 0 let _currentActiveMipmapLevel = 0 let _currentRenderTarget = null let _currentMaterialId = -1 let _currentCamera = null const _currentViewport = new Vector4() const _currentScissor = new Vector4() let _currentScissorTest = null // let _width = _canvas.width let _height = _canvas.height let _pixelRatio = 1 let _opaqueSort = null let _transparentSort = null const _viewport = new Vector4(0, 0, _width, _height) const _scissor = new Vector4(0, 0, _width, _height) let _scissorTest = false // frustum const _frustum = new Frustum() // clipping let _clippingEnabled = false let _localClippingEnabled = false // transmission let _transmissionRenderTarget = null // camera matrices cache const _projScreenMatrix = new Matrix4() const _vector2 = new Vector2() const _vector3 = new Vector3() const _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true } function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1 } // initialize let _gl = _context function getContext(contextNames, contextAttributes) { for (let i = 0; i < contextNames.length; i++) { const contextName = contextNames[i] const context = _canvas.getContext(contextName, contextAttributes) if (context !== null) return context } return null } try { const contextAttributes = { alpha: true, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer, powerPreference: _powerPreference, failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat } // OffscreenCanvas does not have setAttribute, see #22811 if ('setAttribute' in _canvas) _canvas.setAttribute('data-engine', `three.js r${REVISION}`) // event listeners must be registered before WebGL context is created, see #12753 _canvas.addEventListener('webglcontextlost', onContextLost, false) _canvas.addEventListener('webglcontextrestored', onContextRestore, false) _canvas.addEventListener('webglcontextcreationerror', onContextCreationError, false) if (_gl === null) { const contextNames = ['webgl2', 'webgl', 'experimental-webgl'] if (_this.isWebGL1Renderer === true) { contextNames.shift() } _gl = getContext(contextNames, contextAttributes) if (_gl === null) { if (getContext(contextNames)) { throw new Error('Error creating WebGL context with your selected attributes.') } else { throw new Error('Error creating WebGL context.') } } } // Some experimental-webgl implementations do not have getShaderPrecisionFormat if (_gl.getShaderPrecisionFormat === undefined) { _gl.getShaderPrecisionFormat = function() { return { rangeMin: 1, rangeMax: 1, precision: 1 } } } } catch (error) { console.error('THREE.WebGLRenderer: ' + error.message) throw error } let extensions, capabilities, state, info let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects let programCache, materials, renderLists, renderStates, clipping, shadowMap let background, morphtargets, bufferRenderer, indexedBufferRenderer let utils, bindingStates function initGLContext() { extensions = new WebGLExtensions(_gl) capabilities = new WebGLCapabilities(_gl, extensions, parameters) extensions.init(capabilities) utils = new WebGLUtils(_gl, extensions, capabilities) state = new WebGLState(_gl, extensions, capabilities) info = new WebGLInfo(_gl) properties = new WebGLProperties() textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) cubemaps = new WebGLCubeMaps(_this) cubeuvmaps = new WebGLCubeUVMaps(_this) attributes = new WebGLAttributes(_gl, capabilities) bindingStates = new WebGLBindingStates(_gl, extensions, attributes, capabilities) geometries = new WebGLGeometries(_gl, attributes, info, bindingStates) objects = new WebGLObjects(_gl, geometries, attributes, info) morphtargets = new WebGLMorphtargets(_gl, capabilities, textures) clipping = new WebGLClipping(properties) programCache = new WebGLPrograms(_this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping) materials = new WebGLMaterials(_this, properties) renderLists = new WebGLRenderLists() renderStates = new WebGLRenderStates(extensions, capabilities) background = new WebGLBackground(_this, cubemaps, state, objects, _alpha, _premultipliedAlpha) shadowMap = new WebGLShadowMap(_this, objects, capabilities) bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info, capabilities) indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info, capabilities) info.programs = programCache.programs _this.capabilities = capabilities _this.extensions = extensions _this.properties = properties _this.renderLists = renderLists _this.shadowMap = shadowMap _this.state = state _this.info = info } initGLContext() // xr const xr = new WebXRManager(_this, _gl) this.xr = xr // API this.getContext = function() { return _gl } this.getContextAttributes = function() { return _gl.getContextAttributes() } this.forceContextLoss = function() { const extension = extensions.get('WEBGL_lose_context') if (extension) extension.loseContext() } this.forceContextRestore = function() { const extension = extensions.get('WEBGL_lose_context') if (extension) extension.restoreContext() } this.getPixelRatio = function() { return _pixelRatio } this.setPixelRatio = function(value) { if (value === undefined) return _pixelRatio = value this.setSize(_width, _height, false) } this.getSize = function(target) { return target.set(_width, _height) } this.setSize = function(width, height, updateStyle) { if (xr.isPresenting) { console.warn("THREE.WebGLRenderer: Can't change size while VR device is presenting.") return } _width = width _height = height _canvas.width = Math.floor(width * _pixelRatio) _canvas.height = Math.floor(height * _pixelRatio) if (updateStyle !== false) { _canvas.style.width = width + 'px' _canvas.style.height = height + 'px' } this.setViewport(0, 0, width, height) } this.getDrawingBufferSize = function(target) { return target.set(_width * _pixelRatio, _height * _pixelRatio).floor() } this.setDrawingBufferSize = function(width, height, pixelRatio) { _width = width _height = height _pixelRatio = pixelRatio _canvas.width = Math.floor(width * pixelRatio) _canvas.height = Math.floor(height * pixelRatio) this.setViewport(0, 0, width, height) } this.getCurrentViewport = function(target) { return target.copy(_currentViewport) } this.getViewport = function(target) { return target.copy(_viewport) } this.setViewport = function(x, y, width, height) { if (x.isVector4) { _viewport.set(x.x, x.y, x.z, x.w) } else { _viewport.set(x, y, width, height) } state.viewport( _currentViewport .copy(_viewport) .multiplyScalar(_pixelRatio) .floor() ) } this.getScissor = function(target) { return target.copy(_scissor) } this.setScissor = function(x, y, width, height) { if (x.isVector4) { _scissor.set(x.x, x.y, x.z, x.w) } else { _scissor.set(x, y, width, height) } state.scissor( _currentScissor .copy(_scissor) .multiplyScalar(_pixelRatio) .floor() ) } this.getScissorTest = function() { return _scissorTest } this.setScissorTest = function(boolean) { state.setScissorTest((_scissorTest = boolean)) } this.setOpaqueSort = function(method) { _opaqueSort = method } this.setTransparentSort = function(method) { _transparentSort = method } // Clearing this.getClearColor = function(target) { return target.copy(background.getClearColor()) } this.setClearColor = function() { background.setClearColor.apply(background, arguments) } this.getClearAlpha = function() { return background.getClearAlpha() } this.setClearAlpha = function() { background.setClearAlpha.apply(background, arguments) } this.clear = function(color = true, depth = true, stencil = true) { let bits = 0 if (color) bits |= 16384 if (depth) bits |= 256 if (stencil) bits |= 1024 _gl.clear(bits) } this.clearColor = function() { this.clear(true, false, false) } this.clearDepth = function() { this.clear(false, true, false) } this.clearStencil = function() { this.clear(false, false, true) } // this.dispose = function() { _canvas.removeEventListener('webglcontextlost', onContextLost, false) _canvas.removeEventListener('webglcontextrestored', onContextRestore, false) _canvas.removeEventListener('webglcontextcreationerror', onContextCreationError, false) renderLists.dispose() renderStates.dispose() properties.dispose() cubemaps.dispose() cubeuvmaps.dispose() objects.dispose() bindingStates.dispose() programCache.dispose() xr.dispose() xr.removeEventListener('sessionstart', onXRSessionStart) xr.removeEventListener('sessionend', onXRSessionEnd) if (_transmissionRenderTarget) { _transmissionRenderTarget.dispose() _transmissionRenderTarget = null } animation.stop() } // Events function onContextLost(event) { event.preventDefault() console.log('THREE.WebGLRenderer: Context Lost.') _isContextLost = true } function onContextRestore(/* event */) { console.log('THREE.WebGLRenderer: Context Restored.') _isContextLost = false const infoAutoReset = info.autoReset const shadowMapEnabled = shadowMap.enabled const shadowMapAutoUpdate = shadowMap.autoUpdate const shadowMapNeedsUpdate = shadowMap.needsUpdate const shadowMapType = shadowMap.type initGLContext() info.autoReset = infoAutoReset shadowMap.enabled = shadowMapEnabled shadowMap.autoUpdate = shadowMapAutoUpdate shadowMap.needsUpdate = shadowMapNeedsUpdate shadowMap.type = shadowMapType } function onContextCreationError(event) { console.error('THREE.WebGLRenderer: A WebGL context could not be created. Reason: ', event.statusMessage) } function onMaterialDispose(event) { const material = event.target material.removeEventListener('dispose', onMaterialDispose) deallocateMaterial(material) } // Buffer deallocation function deallocateMaterial(material) { releaseMaterialProgramReferences(material) properties.remove(material) } function releaseMaterialProgramReferences(material) { const programs = properties.get(material).programs if (programs !== undefined) { programs.forEach(function(program) { programCache.releaseProgram(program) }) if (material.isShaderMaterial) { programCache.releaseShaderCache(material) } } } // Buffer rendering this.renderBufferDirect = function(camera, scene, geometry, material, object, group) { if (scene === null) scene = _emptyScene // renderBufferDirect second parameter used to be fog (could be null) const frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0 const program = setProgram(camera, scene, geometry, material, object) state.setMaterial(material, frontFaceCW) // let index = geometry.index const position = geometry.attributes.position // if (index === null) { if (position === undefined || position.count === 0) return } else if (index.count === 0) { return } // let rangeFactor = 1 if (material.wireframe === true) { index = geometries.getWireframeAttribute(geometry) rangeFactor = 2 } bindingStates.setup(object, material, program, geometry, index) let attribute let renderer = bufferRenderer if (index !== null) { attribute = attributes.get(index) renderer = indexedBufferRenderer renderer.setIndex(attribute) } // const dataCount = index !== null ? index.count : position.count const rangeStart = geometry.drawRange.start * rangeFactor const rangeCount = geometry.drawRange.count * rangeFactor const groupStart = group !== null ? group.start * rangeFactor : 0 const groupCount = group !== null ? group.count * rangeFactor : Infinity const drawStart = Math.max(rangeStart, groupStart) const drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1 const drawCount = Math.max(0, drawEnd - drawStart + 1) if (drawCount === 0) return // if (object.isMesh) { if (material.wireframe === true) { state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio()) renderer.setMode(1) } else { renderer.setMode(4) } } else if (object.isLine) { let lineWidth = material.linewidth if (lineWidth === undefined) lineWidth = 1 // Not using Line*Material state.setLineWidth(lineWidth * getTargetPixelRatio()) if (object.isLineSegments) { renderer.setMode(1) } else if (object.isLineLoop) { renderer.setMode(2) } else { renderer.setMode(3) } } else if (object.isPoints) { renderer.setMode(0) } else if (object.isSprite) { renderer.setMode(4) } if (object.isInstancedMesh) { renderer.renderInstances(drawStart, drawCount, object.count) } else if (geometry.isInstancedBufferGeometry) { const instanceCount = Math.min(geometry.instanceCount, geometry._maxInstanceCount) renderer.renderInstances(drawStart, drawCount, instanceCount) } else { renderer.render(drawStart, drawCount) } } // Compile this.compile = function(scene, camera) { currentRenderState = renderStates.get(scene) currentRenderState.init() renderStateStack.push(currentRenderState) scene.traverseVisible(function(object) { if (object.isLight && object.layers.test(camera.layers)) { currentRenderState.pushLight(object) if (object.castShadow) { currentRenderState.pushShadow(object) } } }) currentRenderState.setupLights(_this.physicallyCorrectLights) scene.traverse(function(object) { const material = object.material if (material) { if (Array.isArray(material)) { for (let i = 0; i < material.length; i++) { const material2 = material[i] getProgram(material2, scene, object) } } else { getProgram(material, scene, object) } } }) renderStateStack.pop() currentRenderState = null } // Animation Loop let onAnimationFrameCallback = null function onAnimationFrame(time) { if (onAnimationFrameCallback) onAnimationFrameCallback(time) } function onXRSessionStart() { animation.stop() } function onXRSessionEnd() { animation.start() } const animation = new WebGLAnimation() animation.setAnimationLoop(onAnimationFrame) if (typeof self !== 'undefined') animation.setContext(self) this.setAnimationLoop = function(callback) { onAnimationFrameCallback = callback xr.setAnimationLoop(callback) callback === null ? animation.stop() : animation.start() } xr.addEventListener('sessionstart', onXRSessionStart) xr.addEventListener('sessionend', onXRSessionEnd) // Rendering this.render = function(scene, camera) { if (camera !== undefined && camera.isCamera !== true) { console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.') return } if (_isContextLost === true) return // update scene graph if (scene.autoUpdate === true) scene.updateMatrixWorld() // update camera matrices and frustum if (camera.parent === null) camera.updateMatrixWorld() if (xr.enabled === true && xr.isPresenting === true) { if (xr.cameraAutoUpdate === true) xr.updateCamera(camera) camera = xr.getCamera() // use XR camera for rendering } // if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, _currentRenderTarget) currentRenderState = renderStates.get(scene, renderStateStack.length) currentRenderState.init() renderStateStack.push(currentRenderState) _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse) _frustum.setFromProjectionMatrix(_projScreenMatrix) _localClippingEnabled = this.localClippingEnabled _clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled, camera) currentRenderList = renderLists.get(scene, renderListStack.length) currentRenderList.init() renderListStack.push(currentRenderList) projectObject(scene, camera, 0, _this.sortObjects) currentRenderList.finish() if (_this.sortObjects === true) { currentRenderList.sort(_opaqueSort, _transparentSort) } // if (_clippingEnabled === true) clipping.beginShadows() const shadowsArray = currentRenderState.state.shadowsArray shadowMap.render(shadowsArray, scene, camera) if (_clippingEnabled === true) clipping.endShadows() // if (this.info.autoReset === true) this.info.reset() // background.render(currentRenderList, scene) // render scene currentRenderState.setupLights(_this.physicallyCorrectLights) if (camera.isArrayCamera) { const cameras = camera.cameras for (let i = 0, l = cameras.length; i < l; i++) { const camera2 = cameras[i] renderScene(currentRenderList, scene, camera2, camera2.viewport) } } else { renderScene(currentRenderList, scene, camera) } // if (_currentRenderTarget !== null) { // resolve multisample renderbuffers to a single-sample texture if necessary textures.updateMultisampleRenderTarget(_currentRenderTarget) // Generate mipmap if we're using any kind of mipmap filtering textures.updateRenderTargetMipmap(_currentRenderTarget) } // if (scene.isScene === true) scene.onAfterRender(_this, scene, camera) // _gl.finish(); bindingStates.resetDefaultState() _currentMaterialId = -1 _currentCamera = null renderStateStack.pop() if (renderStateStack.length > 0) { currentRenderState = renderStateStack[renderStateStack.length - 1] } else { currentRenderState = null } renderListStack.pop() if (renderListStack.length > 0) { currentRenderList = renderListStack[renderListStack.length - 1] } else { currentRenderList = null } } function projectObject(object, camera, groupOrder, sortObjects) { if (object.visible === false) return const visible = object.layers.test(camera.layers) if (visible) { if (object.isGroup) { groupOrder = object.renderOrder } else if (object.isLOD) { if (object.autoUpdate === true) object.update(camera) } else if (object.isLight) { currentRenderState.pushLight(object) if (object.castShadow) { currentRenderState.pushShadow(object) } } else if (object.isSprite) { if (!object.frustumCulled || _frustum.intersectsSprite(object)) { if (sortObjects) { _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix) } const geometry = objects.update(object) const material = object.material if (material.visible) { currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null) } } } else if (object.isMesh || object.isLine || object.isPoints) { if (object.isSkinnedMesh) { // update skeleton only once in a frame if (object.skeleton.frame !== info.render.frame) { object.skeleton.update() object.skeleton.frame = info.render.frame } } if (!object.frustumCulled || _frustum.intersectsObject(object)) { if (sortObjects) { _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix) } const geometry = objects.update(object) const material = object.material if (Array.isArray(material)) { const groups = geometry.groups for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i] const groupMaterial = material[group.materialIndex] if (groupMaterial && groupMaterial.visible) { currentRenderList.push(object, geometry, groupMaterial, groupOrder, _vector3.z, group) } } } else if (material.visible) { currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null) } } } } const children = object.children for (let i = 0, l = children.length; i < l; i++) { projectObject(children[i], camera, groupOrder, sortObjects) } } function renderScene(currentRenderList, scene, camera, viewport) { const opaqueObjects = currentRenderList.opaque const transmissiveObjects = currentRenderList.transmissive const transparentObjects = currentRenderList.transparent currentRenderState.setupLightsView(camera) if (transmissiveObjects.length > 0) renderTransmissionPass(opaqueObjects, scene, camera) if (viewport) state.viewport(_currentViewport.copy(viewport)) if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera) if (transmissiveObjects.length > 0) renderObjects(transmissiveObjects, scene, camera) if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera) // Ensure depth buffer writing is enabled so it can be cleared on next render state.buffers.depth.setTest(true) state.buffers.depth.setMask(true) state.buffers.color.setMask(true) state.setPolygonOffset(false) } function renderTransmissionPass(opaqueObjects, scene, camera) { const isWebGL2 = capabilities.isWebGL2 if (_transmissionRenderTarget === null) { _transmissionRenderTarget = new WebGLRenderTarget(1, 1, { generateMipmaps: true, type: extensions.has('EXT_color_buffer_half_float') ? HalfFloatType : UnsignedByteType, minFilter: LinearMipmapLinearFilter, samples: isWebGL2 && _antialias === true ? 4 : 0 }) } _this.getDrawingBufferSize(_vector2) if (isWebGL2) { _transmissionRenderTarget.setSize(_vector2.x, _vector2.y) } else { _transmissionRenderTarget.setSize(floorPowerOfTwo(_vector2.x), floorPowerOfTwo(_vector2.y)) } // const currentRenderTarget = _this.getRenderTarget() _this.setRenderTarget(_transmissionRenderTarget) _this.clear() // Turn off the features which can affect the frag color for opaque objects pass. // Otherwise they are applied twice in opaque objects pass and transmission objects pass. const currentToneMapping = _this.toneMapping _this.toneMapping = NoToneMapping renderObjects(opaqueObjects, scene, camera) _this.toneMapping = currentToneMapping textures.updateMultisampleRenderTarget(_transmissionRenderTarget) textures.updateRenderTargetMipmap(_transmissionRenderTarget) _this.setRenderTarget(currentRenderTarget) } function renderObjects(renderList, scene, camera) { const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null for (let i = 0, l = renderList.length; i < l; i++) { const renderItem = renderList[i] const object = renderItem.object const geometry = renderItem.geometry const material = overrideMaterial === null ? renderItem.material : overrideMaterial const group = renderItem.group if (object.layers.test(camera.layers)) { renderObject(object, scene, camera, geometry, material, group) } } } function renderObject(object, scene, camera, geometry, material, group) { object.onBeforeRender(_this, scene, camera, geometry, material, group) object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld) object.normalMatrix.getNormalMatrix(object.modelViewMatrix) material.onBeforeRender(_this, scene, camera, geometry, object, group) if (material.transparent === true && material.side === DoubleSide) { material.side = BackSide material.needsUpdate = true _this.renderBufferDirect(camera, scene, geometry, material, object, group) material.side = FrontSide material.needsUpdate = true _this.renderBufferDirect(camera, scene, geometry, material, object, group) material.side = DoubleSide } else { _this.renderBufferDirect(camera, scene, geometry, material, object, group) } object.onAfterRender(_this, scene, camera, geometry, material, group) } function getProgram(material, scene, object) { if (scene.isScene !== true) scene = _emptyScene // scene could be a Mesh, Line, Points, ... const materialProperties = properties.get(material) const lights = currentRenderState.state.lights const shadowsArray = currentRenderState.state.shadowsArray const lightsStateVersion = lights.state.version const parameters = programCache.getParameters(material, lights.state, shadowsArray, scene, object) const programCacheKey = programCache.getProgramCacheKey(parameters) let programs = materialProperties.programs // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null materialProperties.fog = scene.fog materialProperties.envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || materialProperties.environment) if (programs === undefined) { // new material material.addEventListener('dispose', onMaterialDispose) programs = new Map() materialProperties.programs = programs } let program = programs.get(programCacheKey) if (program !== undefined) { // early out if program and light state is identical if (materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion) { updateCommonMaterialProperties(material, parameters) return program } } else { parameters.uniforms = programCache.getUniforms(material) material.onBuild(object, parameters, _this) material.onBeforeCompile(parameters, _this) program = programCache.acquireProgram(parameters, programCacheKey) programs.set(programCacheKey, program) materialProperties.uniforms = parameters.uniforms } const uniforms = materialProperties.uniforms if ((!material.isShaderMaterial && !material.isRawShaderMaterial) || material.clipping === true) { uniforms.clippingPlanes = clipping.uniform } updateCommonMaterialProperties(material, parameters) // store the light setup it was created for materialProperties.needsLights = materialNeedsLights(material) materialProperties.lightsStateVersion = lightsStateVersion if (materialProperties.needsLights) { // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = lights.state.ambient uniforms.lightProbe.value = lights.state.probe uniforms.directionalLights.value = lights.state.directional uniforms.directionalLightShadows.value = lights.state.directionalShadow uniforms.spotLights.value = lights.state.spot uniforms.spotLightShadows.value = lights.state.spotShadow uniforms.rectAreaLights.value = lights.state.rectArea uniforms.ltc_1.value = lights.state.rectAreaLTC1 uniforms.ltc_2.value = lights.state.rectAreaLTC2 uniforms.pointLights.value = lights.state.point uniforms.pointLightShadows.value = lights.state.pointShadow uniforms.hemisphereLights.value = lights.state.hemi uniforms.directionalShadowMap.value = lights.state.directionalShadowMap uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix uniforms.spotShadowMap.value = lights.state.spotShadowMap uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix uniforms.pointShadowMap.value = lights.state.pointShadowMap uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix // TODO (abelnation): add area lights shadow info to uniforms } const progUniforms = program.getUniforms() const uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, uniforms) materialProperties.currentProgram = program materialProperties.uniformsList = uniformsList return program } function updateCommonMaterialProperties(material, parameters) { const materialProperties = properties.get(material) materialProperties.outputEncoding = parameters.outputEncoding materialProperties.instancing = parameters.instancing materialProperties.skinning = parameters.skinning materialProperties.morphTargets = parameters.morphTargets materialProperties.morphNormals = parameters.morphNormals materialProperties.morphColors = parameters.morphColors materialProperties.morphTargetsCount = parameters.morphTargetsCount materialProperties.numClippingPlanes = parameters.numClippingPlanes materialProperties.numIntersection = parameters.numClipIntersection materialProperties.vertexAlphas = parameters.vertexAlphas materialProperties.vertexTangents = parameters.vertexTangents materialProperties.toneMapping = parameters.toneMapping } function setProgram(camera, scene, geometry, material, object) { if (scene.isScene !== true) scene = _emptyScene // scene could be a Mesh, Line, Points, ... textures.resetTextureUnits() const fog = scene.fog const environment = material.isMeshStandardMaterial ? scene.environment : null const encoding = _currentRenderTarget === null ? _this.outputEncoding : _currentRenderTarget.isXRRenderTarget === true ? _currentRenderTarget.texture.encoding : LinearEncoding const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment) const vertexAlphas = material.vertexColors === true && !!geometry.attributes.color && geometry.attributes.color.itemSize === 4 const vertexTangents = !!material.normalMap && !!geometry.attributes.tangent const morphTargets = !!geometry.morphAttributes.position const morphNormals = !!geometry.morphAttributes.normal const morphColors = !!geometry.morphAttributes.color const toneMapping = material.toneMapped ? _this.toneMapping : NoToneMapping const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color const morphTargetsCount = morphAttribute !== undefined ? morphAttribute.length : 0 const materialProperties = properties.get(material) const lights = currentRenderState.state.lights if (_clippingEnabled === true) { if (_localClippingEnabled === true || camera !== _currentCamera) { const useCache = camera === _currentCamera && material.id === _currentMaterialId // we might want to call this function with some ClippingGroup // object instead of the material, once it becomes feasible // (#8465, #8379) clipping.setState(material, camera, useCache) } } // let needsProgramChange = false if (material.version === materialProperties.__version) { if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) { needsProgramChange = true } else if (materialProperties.outputEncoding !== encoding) { needsProgramChange = true } else if (object.isInstancedMesh && materialProperties.instancing === false) { needsProgramChange = true } else if (!object.isInstancedMesh && materialProperties.instancing === true) { needsProgramChange = true } else if (object.isSkinnedMesh && materialProperties.skinning === false) { needsProgramChange = true } else if (!object.isSkinnedMesh && materialProperties.skinning === true) { needsProgramChange = true } else if (materialProperties.envMap !== envMap) { needsProgramChange = true } else if (material.fog === true && materialProperties.fog !== fog) { needsProgramChange = true } else if ( materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection) ) { needsProgramChange = true } else if (materialProperties.vertexAlphas !== vertexAlphas) { needsProgramChange = true } else if (materialProperties.vertexTangents !== vertexTangents) { needsProgramChange = true } else if (materialProperties.morphTargets !== morphTargets) { needsProgramChange = true } else if (materialProperties.morphNormals !== morphNormals) { needsProgramChange = true } else if (materialProperties.morphColors !== morphColors) { needsProgramChange = true } else if (materialProperties.toneMapping !== toneMapping) { needsProgramChange = true } else if (capabilities.isWebGL2 === true && materialProperties.morphTargetsCount !== morphTargetsCount) { needsProgramChange = true } } else { needsProgramChange = true materialProperties.__version = material.version } // let program = materialProperties.currentProgram if (needsProgramChange === true) { program = getProgram(material, scene, object) } let refreshProgram = false let refreshMaterial = false let refreshLights = false const p_uniforms = program.getUniforms(), m_uniforms = materialProperties.uniforms if (state.useProgram(program.program)) { refreshProgram = true refreshMaterial = true refreshLights = true } if (material.id !== _currentMaterialId) { _currentMaterialId = material.id refreshMaterial = true } if (refreshProgram || _currentCamera !== camera) { p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix) if (capabilities.logarithmicDepthBuffer) { p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2)) } if (_currentCamera !== camera) { _currentCamera = camera // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true // set to true on material change refreshLights = true // remains set until update done } // load material specific uniforms // (shader material also gets them for the sake of genericity) if (material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap) { const uCamPos = p_uniforms.map.cameraPosition if (uCamPos !== undefined) { uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld)) } } if ( material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial ) { p_uniforms.setValue(_gl, 'isOrthographic', camera.isOrthographicCamera === true) } if ( material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh ) { p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse) } } // skinning and morph target uniforms must be set even if material didn't change // auto-setting of texture unit for bone and morph texture must go before other textures // otherwise textures used for skinning and morphing can take over texture units reserved for other material textures if (object.isSkinnedMesh) { p_uniforms.setOptional(_gl, object, 'bindMatrix') p_uniforms.setOptional(_gl, object, 'bindMatrixInverse') const skeleton = object.skeleton if (skeleton) { if (capabilities.floatVertexTextures) { if (skeleton.boneTexture === null) skeleton.computeBoneTexture() p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture, textures) p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize) } else { console.warn('THREE.WebGLRenderer: SkinnedMesh can only be used with WebGL 2. With WebGL 1 OES_texture_float and vertex textures support is required.') } } } const morphAttributes = geometry.morphAttributes if (morphAttributes.position !== undefined || morphAttributes.normal !== undefined || (morphAttributes.color !== undefined && capabilities.isWebGL2 === true)) { morphtargets.update(object, geometry, material, program) } if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) { materialProperties.receiveShadow = object.receiveShadow p_uniforms.setValue(_gl, 'receiveShadow', object.receiveShadow) } if (refreshMaterial) { p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure) if (materialProperties.needsLights) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate(m_uniforms, refreshLights) } // refresh uniforms common to several materials if (fog && material.fog === true) { materials.refreshFogUniforms(m_uniforms, fog) } materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget) WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures) } if (material.isShaderMaterial && material.uniformsNeedUpdate === true) { WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures) material.uniformsNeedUpdate = false } if (material.isSpriteMaterial) { p_uniforms.setValue(_gl, 'center', object.center) } // common matrices p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix) p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix) p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld) return program } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate(uniforms, value) { uniforms.ambientLightColor.needsUpdate = value uniforms.lightProbe.needsUpdate = value uniforms.directionalLights.needsUpdate = value uniforms.directionalLightShadows.needsUpdate = value uniforms.pointLights.needsUpdate = value uniforms.pointLightShadows.needsUpdate = value uniforms.spotLights.needsUpdate = value uniforms.spotLightShadows.needsUpdate = value uniforms.rectAreaLights.needsUpdate = value uniforms.hemisphereLights.needsUpdate = value } function materialNeedsLights(material) { return ( material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || (material.isShaderMaterial && material.lights === true) ) } this.getActiveCubeFace = function() { return _currentActiveCubeFace } this.getActiveMipmapLevel = function() { return _currentActiveMipmapLevel } this.getRenderTarget = function() { return _currentRenderTarget } this.setRenderTargetTextures = function(renderTarget, colorTexture, depthTexture) { properties.get(renderTarget.texture).__webglTexture = colorTexture properties.get(renderTarget.depthTexture).__webglTexture = depthTexture const renderTargetProperties = properties.get(renderTarget) renderTargetProperties.__hasExternalTextures = true if (renderTargetProperties.__hasExternalTextures) { renderTargetProperties.__autoAllocateDepthBuffer = depthTexture === undefined if (!renderTargetProperties.__autoAllocateDepthBuffer) { // The multisample_render_to_texture extension doesn't work properly if there // are midframe flushes and an external depth buffer. Disable use of the extension. if (extensions.has('WEBGL_multisampled_render_to_texture') === true) { console.warn('THREE.WebGLRenderer: Render-to-texture extension was disabled because an external texture was provided') renderTargetProperties.__useRenderToTexture = false } } } } this.setRenderTargetFramebuffer = function(renderTarget, defaultFramebuffer) { const renderTargetProperties = properties.get(renderTarget) renderTargetProperties.__webglFramebuffer = defaultFramebuffer renderTargetProperties.__useDefaultFramebuffer = defaultFramebuffer === undefined } this.setRenderTarget = function(renderTarget, activeCubeFace = 0, activeMipmapLevel = 0) { _currentRenderTarget = renderTarget _currentActiveCubeFace = activeCubeFace _currentActiveMipmapLevel = activeMipmapLevel let useDefaultFramebuffer = true if (renderTarget) { const renderTargetProperties = properties.get(renderTarget) if (renderTargetProperties.__useDefaultFramebuffer !== undefined) { // We need to make sure to rebind the framebuffer. state.bindFramebuffer(36160, null) useDefaultFramebuffer = false } else if (renderTargetProperties.__webglFramebuffer === undefined) { textures.setupRenderTarget(renderTarget) } else if (renderTargetProperties.__hasExternalTextures) { // Color and depth texture must be rebound in order for the swapchain to update. textures.rebindTextures(renderTarget, properties.get(renderTarget.texture).__webglTexture, properties.get(renderTarget.depthTexture).__webglTexture) } } let framebuffer = null let isCube = false let isRenderTarget3D = false if (renderTarget) { const texture = renderTarget.texture if (texture.isData3DTexture || texture.isDataArrayTexture) { isRenderTarget3D = true } const __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer if (renderTarget.isWebGLCubeRenderTarget) { framebuffer = __webglFramebuffer[activeCubeFace] isCube = true } else if (capabilities.isWebGL2 && renderTarget.samples > 0 && textures.useMultisampledRTT(renderTarget) === false) { framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer } else { framebuffer = __webglFramebuffer } _currentViewport.copy(renderTarget.viewport) _currentScissor.copy(renderTarget.scissor) _currentScissorTest = renderTarget.scissorTest } else { _currentViewport .copy(_viewport) .multiplyScalar(_pixelRatio) .floor() _currentScissor .copy(_scissor) .multiplyScalar(_pixelRatio) .floor() _currentScissorTest = _scissorTest } const framebufferBound = state.bindFramebuffer(36160, framebuffer) if (framebufferBound && capabilities.drawBuffers && useDefaultFramebuffer) { state.drawBuffers(renderTarget, framebuffer) } state.viewport(_currentViewport) state.scissor(_currentScissor) state.setScissorTest(_currentScissorTest) if (isCube) { const textureProperties = properties.get(renderTarget.texture) _gl.framebufferTexture2D(36160, 36064, 34069 + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel) } else if (isRenderTarget3D) { const textureProperties = properties.get(renderTarget.texture) const layer = activeCubeFace || 0 _gl.framebufferTextureLayer(36160, 36064, textureProperties.__webglTexture, activeMipmapLevel || 0, layer) } _currentMaterialId = -1 // reset current material to ensure correct uniform bindings } this.readRenderTargetPixels = function(renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) { if (!(renderTarget && renderTarget.isWebGLRenderTarget)) { console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.') return } let framebuffer = properties.get(renderTarget).__webglFramebuffer if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined) { framebuffer = framebuffer[activeCubeFaceIndex] } if (framebuffer) { state.bindFramebuffer(36160, framebuffer) try { const texture = renderTarget.texture const textureFormat = texture.format const textureType = texture.type if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(35739)) { console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.') return } const halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has('EXT_color_buffer_half_float') || (capabilities.isWebGL2 && extensions.has('EXT_color_buffer_float'))) if ( textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(35738) && // Edge and Chrome Mac < 52 (#9513) !(textureType === FloatType && (capabilities.isWebGL2 || extensions.has('OES_texture_float') || extensions.has('WEBGL_color_buffer_float'))) && // Chrome Mac >= 52 and Firefox !halfFloatSupportedByExt ) { console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.') return } // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) if (x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height) { _gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer) } } finally { // restore framebuffer of current render target if necessary const framebuffer = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null state.bindFramebuffer(36160, framebuffer) } } } this.copyFramebufferToTexture = function(position, texture, level = 0) { const levelScale = Math.pow(2, -level) const width = Math.floor(texture.image.width * levelScale) const height = Math.floor(texture.image.height * levelScale) textures.setTexture2D(texture, 0) _gl.copyTexSubImage2D(3553, level, 0, 0, position.x, position.y, width, height) state.unbindTexture() } this.copyTextureToTexture = function(position, srcTexture, dstTexture, level = 0) { const width = srcTexture.image.width const height = srcTexture.image.height const glFormat = utils.convert(dstTexture.format) const glType = utils.convert(dstTexture.type) textures.setTexture2D(dstTexture, 0) // As another texture upload may have changed pixelStorei // parameters, make sure they are correct for the dstTexture _gl.pixelStorei(37440, dstTexture.flipY) _gl.pixelStorei(37441, dstTexture.premultiplyAlpha) _gl.pixelStorei(3317, dstTexture.unpackAlignment) if (srcTexture.isDataTexture) { _gl.texSubImage2D(3553, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data) } else { if (srcTexture.isCompressedTexture) { _gl.compressedTexSubImage2D(3553, level, position.x, position.y, srcTexture.mipmaps[0].width, srcTexture.mipmaps[0].height, glFormat, srcTexture.mipmaps[0].data) } else { _gl.texSubImage2D(3553, level, position.x, position.y, glFormat, glType, srcTexture.image) } } // Generate mipmaps only when copying level 0 if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(3553) state.unbindTexture() } this.copyTextureToTexture3D = function(sourceBox, position, srcTexture, dstTexture, level = 0) { if (_this.isWebGL1Renderer) { console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.') return } const width = sourceBox.max.x - sourceBox.min.x + 1 const height = sourceBox.max.y - sourceBox.min.y + 1 const depth = sourceBox.max.z - sourceBox.min.z + 1 const glFormat = utils.convert(dstTexture.format) const glType = utils.convert(dstTexture.type) let glTarget if (dstTexture.isData3DTexture) { textures.setTexture3D(dstTexture, 0) glTarget = 32879 } else if (dstTexture.isDataArrayTexture) { textures.setTexture2DArray(dstTexture, 0) glTarget = 35866 } else { console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.') return } _gl.pixelStorei(37440, dstTexture.flipY) _gl.pixelStorei(37441, dstTexture.premultiplyAlpha) _gl.pixelStorei(3317, dstTexture.unpackAlignment) const unpackRowLen = _gl.getParameter(3314) const unpackImageHeight = _gl.getParameter(32878) const unpackSkipPixels = _gl.getParameter(3316) const unpackSkipRows = _gl.getParameter(3315) const unpackSkipImages = _gl.getParameter(32877) const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[0] : srcTexture.image _gl.pixelStorei(3314, image.width) _gl.pixelStorei(32878, image.height) _gl.pixelStorei(3316, sourceBox.min.x) _gl.pixelStorei(3315, sourceBox.min.y) _gl.pixelStorei(32877, sourceBox.min.z) if (srcTexture.isDataTexture || srcTexture.isData3DTexture) { _gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data) } else { if (srcTexture.isCompressedTexture) { console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture.') _gl.compressedTexSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data) } else { _gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image) } } _gl.pixelStorei(3314, unpackRowLen) _gl.pixelStorei(32878, unpackImageHeight) _gl.pixelStorei(3316, unpackSkipPixels) _gl.pixelStorei(3315, unpackSkipRows) _gl.pixelStorei(32877, unpackSkipImages) // Generate mipmaps only when copying level 0 if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(glTarget) state.unbindTexture() } this.initTexture = function(texture) { textures.setTexture2D(texture, 0) state.unbindTexture() } this.resetState = function() { _currentActiveCubeFace = 0 _currentActiveMipmapLevel = 0 _currentRenderTarget = null state.reset() bindingStates.reset() } if (typeof __THREE_DEVTOOLS__ !== 'undefined') { __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', { detail: this })) } } class WebGL1Renderer extends WebGLRenderer {} WebGL1Renderer.prototype.isWebGL1Renderer = true class FogExp2 { constructor(color, density = 0.00025) { this.isFogExp2 = true this.name = '' this.color = new Color(color) this.density = density } clone() { return new FogExp2(this.color, this.density) } toJSON(/* meta */) { return { type: 'FogExp2', color: this.color.getHex(), density: this.density } } } class Fog { constructor(color, near = 1, far = 1000) { this.isFog = true this.name = '' this.color = new Color(color) this.near = near this.far = far } clone() { return new Fog(this.color, this.near, this.far) } toJSON(/* meta */) { return { type: 'Fog', color: this.color.getHex(), near: this.near, far: this.far } } } class Scene extends Object3D { constructor() { super() this.isScene = true this.type = 'Scene' this.background = null this.environment = null this.fog = null this.overrideMaterial = null this.autoUpdate = true // checked by the renderer if (typeof __THREE_DEVTOOLS__ !== 'undefined') { __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', { detail: this })) } } copy(source, recursive) { super.copy(source, recursive) if (source.background !== null) this.background = source.background.clone() if (source.environment !== null) this.environment = source.environment.clone() if (source.fog !== null) this.fog = source.fog.clone() if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone() this.autoUpdate = source.autoUpdate this.matrixAutoUpdate = source.matrixAutoUpdate return this } toJSON(meta) { const data = super.toJSON(meta) if (this.fog !== null) data.object.fog = this.fog.toJSON() return data } } class InterleavedBuffer { constructor(array, stride) { this.isInterleavedBuffer = true this.array = array this.stride = stride this.count = array !== undefined ? array.length / stride : 0 this.usage = StaticDrawUsage this.updateRange = { offset: 0, count: -1 } this.version = 0 this.uuid = generateUUID() } onUploadCallback() {} set needsUpdate(value) { if (value === true) this.version++ } setUsage(value) { this.usage = value return this } copy(source) { this.array = new source.array.constructor(source.array) this.count = source.count this.stride = source.stride this.usage = source.usage return this } copyAt(index1, attribute, index2) { index1 *= this.stride index2 *= attribute.stride for (let i = 0, l = this.stride; i < l; i++) { this.array[index1 + i] = attribute.array[index2 + i] } return this } set(value, offset = 0) { this.array.set(value, offset) return this } clone(data) { if (data.arrayBuffers === undefined) { data.arrayBuffers = {} } if (this.array.buffer._uuid === undefined) { this.array.buffer._uuid = generateUUID() } if (data.arrayBuffers[this.array.buffer._uuid] === undefined) { data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer } const array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]) const ib = new this.constructor(array, this.stride) ib.setUsage(this.usage) return ib } onUpload(callback) { this.onUploadCallback = callback return this } toJSON(data) { if (data.arrayBuffers === undefined) { data.arrayBuffers = {} } // generate UUID for array buffer if necessary if (this.array.buffer._uuid === undefined) { this.array.buffer._uuid = generateUUID() } if (data.arrayBuffers[this.array.buffer._uuid] === undefined) { data.arrayBuffers[this.array.buffer._uuid] = Array.prototype.slice.call(new Uint32Array(this.array.buffer)) } // return { uuid: this.uuid, buffer: this.array.buffer._uuid, type: this.array.constructor.name, stride: this.stride } } } const _vector$6 = /*@__PURE__*/ new Vector3() class InterleavedBufferAttribute { constructor(interleavedBuffer, itemSize, offset, normalized = false) { this.isInterleavedBufferAttribute = true this.name = '' this.data = interleavedBuffer this.itemSize = itemSize this.offset = offset this.normalized = normalized === true } get count() { return this.data.count } get array() { return this.data.array } set needsUpdate(value) { this.data.needsUpdate = value } applyMatrix4(m) { for (let i = 0, l = this.data.count; i < l; i++) { _vector$6.fromBufferAttribute(this, i) _vector$6.applyMatrix4(m) this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z) } return this } applyNormalMatrix(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$6.fromBufferAttribute(this, i) _vector$6.applyNormalMatrix(m) this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z) } return this } transformDirection(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$6.fromBufferAttribute(this, i) _vector$6.transformDirection(m) this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z) } return this } setX(index, x) { this.data.array[index * this.data.stride + this.offset] = x return this } setY(index, y) { this.data.array[index * this.data.stride + this.offset + 1] = y return this } setZ(index, z) { this.data.array[index * this.data.stride + this.offset + 2] = z return this } setW(index, w) { this.data.array[index * this.data.stride + this.offset + 3] = w return this } getX(index) { return this.data.array[index * this.data.stride + this.offset] } getY(index) { return this.data.array[index * this.data.stride + this.offset + 1] } getZ(index) { return this.data.array[index * this.data.stride + this.offset + 2] } getW(index) { return this.data.array[index * this.data.stride + this.offset + 3] } setXY(index, x, y) { index = index * this.data.stride + this.offset this.data.array[index + 0] = x this.data.array[index + 1] = y return this } setXYZ(index, x, y, z) { index = index * this.data.stride + this.offset this.data.array[index + 0] = x this.data.array[index + 1] = y this.data.array[index + 2] = z return this } setXYZW(index, x, y, z, w) { index = index * this.data.stride + this.offset this.data.array[index + 0] = x this.data.array[index + 1] = y this.data.array[index + 2] = z this.data.array[index + 3] = w return this } clone(data) { if (data === undefined) { console.log('THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.') const array = [] for (let i = 0; i < this.count; i++) { const index = i * this.data.stride + this.offset for (let j = 0; j < this.itemSize; j++) { array.push(this.data.array[index + j]) } } return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized) } else { if (data.interleavedBuffers === undefined) { data.interleavedBuffers = {} } if (data.interleavedBuffers[this.data.uuid] === undefined) { data.interleavedBuffers[this.data.uuid] = this.data.clone(data) } return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized) } } toJSON(data) { if (data === undefined) { console.log('THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.') const array = [] for (let i = 0; i < this.count; i++) { const index = i * this.data.stride + this.offset for (let j = 0; j < this.itemSize; j++) { array.push(this.data.array[index + j]) } } // deinterleave data and save it as an ordinary buffer attribute for now return { itemSize: this.itemSize, type: this.array.constructor.name, array: array, normalized: this.normalized } } else { // save as true interlaved attribtue if (data.interleavedBuffers === undefined) { data.interleavedBuffers = {} } if (data.interleavedBuffers[this.data.uuid] === undefined) { data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data) } return { isInterleavedBufferAttribute: true, itemSize: this.itemSize, data: this.data.uuid, offset: this.offset, normalized: this.normalized } } } } class SpriteMaterial extends Material { constructor(parameters) { super() this.isSpriteMaterial = true this.type = 'SpriteMaterial' this.color = new Color(0xffffff) this.map = null this.alphaMap = null this.rotation = 0 this.sizeAttenuation = true this.transparent = true this.fog = true this.setValues(parameters) } copy(source) { super.copy(source) this.color.copy(source.color) this.map = source.map this.alphaMap = source.alphaMap this.rotation = source.rotation this.sizeAttenuation = source.sizeAttenuation this.fog = source.fog return this } } let _geometry const _intersectPoint = /*@__PURE__*/ new Vector3() const _worldScale = /*@__PURE__*/ new Vector3() const _mvPosition = /*@__PURE__*/ new Vector3() const _alignedPosition = /*@__PURE__*/ new Vector2() const _rotatedPosition = /*@__PURE__*/ new Vector2() const _viewWorldMatrix = /*@__PURE__*/ new Matrix4() const _vA = /*@__PURE__*/ new Vector3() const _vB = /*@__PURE__*/ new Vector3() const _vC = /*@__PURE__*/ new Vector3() const _uvA = /*@__PURE__*/ new Vector2() const _uvB = /*@__PURE__*/ new Vector2() const _uvC = /*@__PURE__*/ new Vector2() class Sprite extends Object3D { constructor(material) { super() this.isSprite = true this.type = 'Sprite' if (_geometry === undefined) { _geometry = new BufferGeometry() const float32Array = new Float32Array([-0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1]) const interleavedBuffer = new InterleavedBuffer(float32Array, 5) _geometry.setIndex([0, 1, 2, 0, 2, 3]) _geometry.setAttribute('position', new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false)) _geometry.setAttribute('uv', new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false)) } this.geometry = _geometry this.material = material !== undefined ? material : new SpriteMaterial() this.center = new Vector2(0.5, 0.5) } raycast(raycaster, intersects) { if (raycaster.camera === null) { console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.') } _worldScale.setFromMatrixScale(this.matrixWorld) _viewWorldMatrix.copy(raycaster.camera.matrixWorld) this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld) _mvPosition.setFromMatrixPosition(this.modelViewMatrix) if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) { _worldScale.multiplyScalar(-_mvPosition.z) } const rotation = this.material.rotation let sin, cos if (rotation !== 0) { cos = Math.cos(rotation) sin = Math.sin(rotation) } const center = this.center transformVertex(_vA.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos) transformVertex(_vB.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos) transformVertex(_vC.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos) _uvA.set(0, 0) _uvB.set(1, 0) _uvC.set(1, 1) // check first triangle let intersect = raycaster.ray.intersectTriangle(_vA, _vB, _vC, false, _intersectPoint) if (intersect === null) { // check second triangle transformVertex(_vB.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos) _uvB.set(0, 1) intersect = raycaster.ray.intersectTriangle(_vA, _vC, _vB, false, _intersectPoint) if (intersect === null) { return } } const distance = raycaster.ray.origin.distanceTo(_intersectPoint) if (distance < raycaster.near || distance > raycaster.far) return intersects.push({ distance: distance, point: _intersectPoint.clone(), uv: Triangle.getUV(_intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2()), face: null, object: this }) } copy(source, recursive) { super.copy(source, recursive) if (source.center !== undefined) this.center.copy(source.center) this.material = source.material return this } } function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) { // compute position in camera space _alignedPosition .subVectors(vertexPosition, center) .addScalar(0.5) .multiply(scale) // to check if rotation is not zero if (sin !== undefined) { _rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y _rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y } else { _rotatedPosition.copy(_alignedPosition) } vertexPosition.copy(mvPosition) vertexPosition.x += _rotatedPosition.x vertexPosition.y += _rotatedPosition.y // transform to world space vertexPosition.applyMatrix4(_viewWorldMatrix) } const _v1$2 = /*@__PURE__*/ new Vector3() const _v2$1 = /*@__PURE__*/ new Vector3() class LOD extends Object3D { constructor() { super() this._currentLevel = 0 this.type = 'LOD' Object.defineProperties(this, { levels: { enumerable: true, value: [] }, isLOD: { value: true } }) this.autoUpdate = true } copy(source) { super.copy(source, false) const levels = source.levels for (let i = 0, l = levels.length; i < l; i++) { const level = levels[i] this.addLevel(level.object.clone(), level.distance) } this.autoUpdate = source.autoUpdate return this } addLevel(object, distance = 0) { distance = Math.abs(distance) const levels = this.levels let l for (l = 0; l < levels.length; l++) { if (distance < levels[l].distance) { break } } levels.splice(l, 0, { distance: distance, object: object }) this.add(object) return this } getCurrentLevel() { return this._currentLevel } getObjectForDistance(distance) { const levels = this.levels if (levels.length > 0) { let i, l for (i = 1, l = levels.length; i < l; i++) { if (distance < levels[i].distance) { break } } return levels[i - 1].object } return null } raycast(raycaster, intersects) { const levels = this.levels if (levels.length > 0) { _v1$2.setFromMatrixPosition(this.matrixWorld) const distance = raycaster.ray.origin.distanceTo(_v1$2) this.getObjectForDistance(distance).raycast(raycaster, intersects) } } update(camera) { const levels = this.levels if (levels.length > 1) { _v1$2.setFromMatrixPosition(camera.matrixWorld) _v2$1.setFromMatrixPosition(this.matrixWorld) const distance = _v1$2.distanceTo(_v2$1) / camera.zoom levels[0].object.visible = true let i, l for (i = 1, l = levels.length; i < l; i++) { if (distance >= levels[i].distance) { levels[i - 1].object.visible = false levels[i].object.visible = true } else { break } } this._currentLevel = i - 1 for (; i < l; i++) { levels[i].object.visible = false } } } toJSON(meta) { const data = super.toJSON(meta) if (this.autoUpdate === false) data.object.autoUpdate = false data.object.levels = [] const levels = this.levels for (let i = 0, l = levels.length; i < l; i++) { const level = levels[i] data.object.levels.push({ object: level.object.uuid, distance: level.distance }) } return data } } const _basePosition = /*@__PURE__*/ new Vector3() const _skinIndex = /*@__PURE__*/ new Vector4() const _skinWeight = /*@__PURE__*/ new Vector4() const _vector$5 = /*@__PURE__*/ new Vector3() const _matrix = /*@__PURE__*/ new Matrix4() class SkinnedMesh extends Mesh { constructor(geometry, material) { super(geometry, material) this.isSkinnedMesh = true this.type = 'SkinnedMesh' this.bindMode = 'attached' this.bindMatrix = new Matrix4() this.bindMatrixInverse = new Matrix4() } copy(source, recursive) { super.copy(source, recursive) this.bindMode = source.bindMode this.bindMatrix.copy(source.bindMatrix) this.bindMatrixInverse.copy(source.bindMatrixInverse) this.skeleton = source.skeleton return this } bind(skeleton, bindMatrix) { this.skeleton = skeleton if (bindMatrix === undefined) { this.updateMatrixWorld(true) this.skeleton.calculateInverses() bindMatrix = this.matrixWorld } this.bindMatrix.copy(bindMatrix) this.bindMatrixInverse.copy(bindMatrix).invert() } pose() { this.skeleton.pose() } normalizeSkinWeights() { const vector = new Vector4() const skinWeight = this.geometry.attributes.skinWeight for (let i = 0, l = skinWeight.count; i < l; i++) { vector.fromBufferAttribute(skinWeight, i) const scale = 1.0 / vector.manhattanLength() if (scale !== Infinity) { vector.multiplyScalar(scale) } else { vector.set(1, 0, 0, 0) // do something reasonable } skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w) } } updateMatrixWorld(force) { super.updateMatrixWorld(force) if (this.bindMode === 'attached') { this.bindMatrixInverse.copy(this.matrixWorld).invert() } else if (this.bindMode === 'detached') { this.bindMatrixInverse.copy(this.bindMatrix).invert() } else { console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode) } } boneTransform(index, target) { const skeleton = this.skeleton const geometry = this.geometry _skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index) _skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index) _basePosition.copy(target).applyMatrix4(this.bindMatrix) target.set(0, 0, 0) for (let i = 0; i < 4; i++) { const weight = _skinWeight.getComponent(i) if (weight !== 0) { const boneIndex = _skinIndex.getComponent(i) _matrix.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]) target.addScaledVector(_vector$5.copy(_basePosition).applyMatrix4(_matrix), weight) } } return target.applyMatrix4(this.bindMatrixInverse) } } class Bone extends Object3D { constructor() { super() this.isBone = true this.type = 'Bone' } } class DataTexture extends Texture { constructor(data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, encoding) { super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) this.isDataTexture = true this.image = { data: data, width: width, height: height } this.generateMipmaps = false this.flipY = false this.unpackAlignment = 1 } } const _offsetMatrix = /*@__PURE__*/ new Matrix4() const _identityMatrix = /*@__PURE__*/ new Matrix4() class Skeleton { constructor(bones = [], boneInverses = []) { this.uuid = generateUUID() this.bones = bones.slice(0) this.boneInverses = boneInverses this.boneMatrices = null this.boneTexture = null this.boneTextureSize = 0 this.frame = -1 this.init() } init() { const bones = this.bones const boneInverses = this.boneInverses this.boneMatrices = new Float32Array(bones.length * 16) // calculate inverse bone matrices if necessary if (boneInverses.length === 0) { this.calculateInverses() } else { // handle special case if (bones.length !== boneInverses.length) { console.warn('THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.') this.boneInverses = [] for (let i = 0, il = this.bones.length; i < il; i++) { this.boneInverses.push(new Matrix4()) } } } } calculateInverses() { this.boneInverses.length = 0 for (let i = 0, il = this.bones.length; i < il; i++) { const inverse = new Matrix4() if (this.bones[i]) { inverse.copy(this.bones[i].matrixWorld).invert() } this.boneInverses.push(inverse) } } pose() { // recover the bind-time world matrices for (let i = 0, il = this.bones.length; i < il; i++) { const bone = this.bones[i] if (bone) { bone.matrixWorld.copy(this.boneInverses[i]).invert() } } // compute the local matrices, positions, rotations and scales for (let i = 0, il = this.bones.length; i < il; i++) { const bone = this.bones[i] if (bone) { if (bone.parent && bone.parent.isBone) { bone.matrix.copy(bone.parent.matrixWorld).invert() bone.matrix.multiply(bone.matrixWorld) } else { bone.matrix.copy(bone.matrixWorld) } bone.matrix.decompose(bone.position, bone.quaternion, bone.scale) } } } update() { const bones = this.bones const boneInverses = this.boneInverses const boneMatrices = this.boneMatrices const boneTexture = this.boneTexture // flatten bone matrices to array for (let i = 0, il = bones.length; i < il; i++) { // compute the offset between the current and the original transform const matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix _offsetMatrix.multiplyMatrices(matrix, boneInverses[i]) _offsetMatrix.toArray(boneMatrices, i * 16) } if (boneTexture !== null) { boneTexture.needsUpdate = true } } clone() { return new Skeleton(this.bones, this.boneInverses) } computeBoneTexture() { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) let size = Math.sqrt(this.bones.length * 4) // 4 pixels needed for 1 matrix size = ceilPowerOfTwo(size) size = Math.max(size, 4) const boneMatrices = new Float32Array(size * size * 4) // 4 floats per RGBA pixel boneMatrices.set(this.boneMatrices) // copy current values const boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType) boneTexture.needsUpdate = true this.boneMatrices = boneMatrices this.boneTexture = boneTexture this.boneTextureSize = size return this } getBoneByName(name) { for (let i = 0, il = this.bones.length; i < il; i++) { const bone = this.bones[i] if (bone.name === name) { return bone } } return undefined } dispose() { if (this.boneTexture !== null) { this.boneTexture.dispose() this.boneTexture = null } } fromJSON(json, bones) { this.uuid = json.uuid for (let i = 0, l = json.bones.length; i < l; i++) { const uuid = json.bones[i] let bone = bones[uuid] if (bone === undefined) { console.warn('THREE.Skeleton: No bone found with UUID:', uuid) bone = new Bone() } this.bones.push(bone) this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i])) } this.init() return this } toJSON() { const data = { metadata: { version: 4.5, type: 'Skeleton', generator: 'Skeleton.toJSON' }, bones: [], boneInverses: [] } data.uuid = this.uuid const bones = this.bones const boneInverses = this.boneInverses for (let i = 0, l = bones.length; i < l; i++) { const bone = bones[i] data.bones.push(bone.uuid) const boneInverse = boneInverses[i] data.boneInverses.push(boneInverse.toArray()) } return data } } class InstancedBufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized, meshPerAttribute = 1) { if (typeof normalized === 'number') { meshPerAttribute = normalized normalized = false console.error('THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.') } super(array, itemSize, normalized) this.isInstancedBufferAttribute = true this.meshPerAttribute = meshPerAttribute } copy(source) { super.copy(source) this.meshPerAttribute = source.meshPerAttribute return this } toJSON() { const data = super.toJSON() data.meshPerAttribute = this.meshPerAttribute data.isInstancedBufferAttribute = true return data } } const _instanceLocalMatrix = /*@__PURE__*/ new Matrix4() const _instanceWorldMatrix = /*@__PURE__*/ new Matrix4() const _instanceIntersects = [] const _mesh = /*@__PURE__*/ new Mesh() class InstancedMesh extends Mesh { constructor(geometry, material, count) { super(geometry, material) this.isInstancedMesh = true this.instanceMatrix = new InstancedBufferAttribute(new Float32Array(count * 16), 16) this.instanceColor = null this.count = count this.frustumCulled = false } copy(source, recursive) { super.copy(source, recursive) this.instanceMatrix.copy(source.instanceMatrix) if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone() this.count = source.count return this } getColorAt(index, color) { color.fromArray(this.instanceColor.array, index * 3) } getMatrixAt(index, matrix) { matrix.fromArray(this.instanceMatrix.array, index * 16) } raycast(raycaster, intersects) { const matrixWorld = this.matrixWorld const raycastTimes = this.count _mesh.geometry = this.geometry _mesh.material = this.material if (_mesh.material === undefined) return for (let instanceId = 0; instanceId < raycastTimes; instanceId++) { // calculate the world matrix for each instance this.getMatrixAt(instanceId, _instanceLocalMatrix) _instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix) // the mesh represents this single instance _mesh.matrixWorld = _instanceWorldMatrix _mesh.raycast(raycaster, _instanceIntersects) // process the result of raycast for (let i = 0, l = _instanceIntersects.length; i < l; i++) { const intersect = _instanceIntersects[i] intersect.instanceId = instanceId intersect.object = this intersects.push(intersect) } _instanceIntersects.length = 0 } } setColorAt(index, color) { if (this.instanceColor === null) { this.instanceColor = new InstancedBufferAttribute(new Float32Array(this.instanceMatrix.count * 3), 3) } color.toArray(this.instanceColor.array, index * 3) } setMatrixAt(index, matrix) { matrix.toArray(this.instanceMatrix.array, index * 16) } updateMorphTargets() {} dispose() { this.dispatchEvent({ type: 'dispose' }) } } class LineBasicMaterial extends Material { constructor(parameters) { super() this.isLineBasicMaterial = true this.type = 'LineBasicMaterial' this.color = new Color(0xffffff) this.linewidth = 1 this.linecap = 'round' this.linejoin = 'round' this.fog = true this.setValues(parameters) } copy(source) { super.copy(source) this.color.copy(source.color) this.linewidth = source.linewidth this.linecap = source.linecap this.linejoin = source.linejoin this.fog = source.fog return this } } const _start$1 = /*@__PURE__*/ new Vector3() const _end$1 = /*@__PURE__*/ new Vector3() const _inverseMatrix$1 = /*@__PURE__*/ new Matrix4() const _ray$1 = /*@__PURE__*/ new Ray() const _sphere$1 = /*@__PURE__*/ new Sphere() class Line extends Object3D { constructor(geometry = new BufferGeometry(), material = new LineBasicMaterial()) { super() this.isLine = true this.type = 'Line' this.geometry = geometry this.material = material this.updateMorphTargets() } copy(source, recursive) { super.copy(source, recursive) this.material = source.material this.geometry = source.geometry return this } computeLineDistances() { const geometry = this.geometry // we assume non-indexed geometry if (geometry.index === null) { const positionAttribute = geometry.attributes.position const lineDistances = [0] for (let i = 1, l = positionAttribute.count; i < l; i++) { _start$1.fromBufferAttribute(positionAttribute, i - 1) _end$1.fromBufferAttribute(positionAttribute, i) lineDistances[i] = lineDistances[i - 1] lineDistances[i] += _start$1.distanceTo(_end$1) } geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1)) } else { console.warn('THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.') } return this } raycast(raycaster, intersects) { const geometry = this.geometry const matrixWorld = this.matrixWorld const threshold = raycaster.params.Line.threshold const drawRange = geometry.drawRange // Checking boundingSphere distance to ray if (geometry.boundingSphere === null) geometry.computeBoundingSphere() _sphere$1.copy(geometry.boundingSphere) _sphere$1.applyMatrix4(matrixWorld) _sphere$1.radius += threshold if (raycaster.ray.intersectsSphere(_sphere$1) === false) return // _inverseMatrix$1.copy(matrixWorld).invert() _ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1) const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3) const localThresholdSq = localThreshold * localThreshold const vStart = new Vector3() const vEnd = new Vector3() const interSegment = new Vector3() const interRay = new Vector3() const step = this.isLineSegments ? 2 : 1 const index = geometry.index const attributes = geometry.attributes const positionAttribute = attributes.position if (index !== null) { const start = Math.max(0, drawRange.start) const end = Math.min(index.count, drawRange.start + drawRange.count) for (let i = start, l = end - 1; i < l; i += step) { const a = index.getX(i) const b = index.getX(i + 1) vStart.fromBufferAttribute(positionAttribute, a) vEnd.fromBufferAttribute(positionAttribute, b) const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment) if (distSq > localThresholdSq) continue interRay.applyMatrix4(this.matrixWorld) //Move back to world space for distance calculation const distance = raycaster.ray.origin.distanceTo(interRay) if (distance < raycaster.near || distance > raycaster.far) continue intersects.push({ distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4(this.matrixWorld), index: i, face: null, faceIndex: null, object: this }) } } else { const start = Math.max(0, drawRange.start) const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count) for (let i = start, l = end - 1; i < l; i += step) { vStart.fromBufferAttribute(positionAttribute, i) vEnd.fromBufferAttribute(positionAttribute, i + 1) const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment) if (distSq > localThresholdSq) continue interRay.applyMatrix4(this.matrixWorld) //Move back to world space for distance calculation const distance = raycaster.ray.origin.distanceTo(interRay) if (distance < raycaster.near || distance > raycaster.far) continue intersects.push({ distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4(this.matrixWorld), index: i, face: null, faceIndex: null, object: this }) } } } updateMorphTargets() { const geometry = this.geometry const morphAttributes = geometry.morphAttributes const keys = Object.keys(morphAttributes) if (keys.length > 0) { const morphAttribute = morphAttributes[keys[0]] if (morphAttribute !== undefined) { this.morphTargetInfluences = [] this.morphTargetDictionary = {} for (let m = 0, ml = morphAttribute.length; m < ml; m++) { const name = morphAttribute[m].name || String(m) this.morphTargetInfluences.push(0) this.morphTargetDictionary[name] = m } } } } } const _start = /*@__PURE__*/ new Vector3() const _end = /*@__PURE__*/ new Vector3() class LineSegments extends Line { constructor(geometry, material) { super(geometry, material) this.isLineSegments = true this.type = 'LineSegments' } computeLineDistances() { const geometry = this.geometry // we assume non-indexed geometry if (geometry.index === null) { const positionAttribute = geometry.attributes.position const lineDistances = [] for (let i = 0, l = positionAttribute.count; i < l; i += 2) { _start.fromBufferAttribute(positionAttribute, i) _end.fromBufferAttribute(positionAttribute, i + 1) lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1] lineDistances[i + 1] = lineDistances[i] + _start.distanceTo(_end) } geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1)) } else { console.warn('THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.') } return this } } class LineLoop extends Line { constructor(geometry, material) { super(geometry, material) this.isLineLoop = true this.type = 'LineLoop' } } class PointsMaterial extends Material { constructor(parameters) { super() this.isPointsMaterial = true this.type = 'PointsMaterial' this.color = new Color(0xffffff) this.map = null this.alphaMap = null this.size = 1 this.sizeAttenuation = true this.fog = true this.setValues(parameters) } copy(source) { super.copy(source) this.color.copy(source.color) this.map = source.map this.alphaMap = source.alphaMap this.size = source.size this.sizeAttenuation = source.sizeAttenuation this.fog = source.fog return this } } const _inverseMatrix = /*@__PURE__*/ new Matrix4() const _ray = /*@__PURE__*/ new Ray() const _sphere = /*@__PURE__*/ new Sphere() const _position$2 = /*@__PURE__*/ new Vector3() class Points extends Object3D { constructor(geometry = new BufferGeometry(), material = new PointsMaterial()) { super() this.isPoints = true this.type = 'Points' this.geometry = geometry this.material = material this.updateMorphTargets() } copy(source, recursive) { super.copy(source, recursive) this.material = source.material this.geometry = source.geometry return this } raycast(raycaster, intersects) { const geometry = this.geometry const matrixWorld = this.matrixWorld const threshold = raycaster.params.Points.threshold const drawRange = geometry.drawRange // Checking boundingSphere distance to ray if (geometry.boundingSphere === null) geometry.computeBoundingSphere() _sphere.copy(geometry.boundingSphere) _sphere.applyMatrix4(matrixWorld) _sphere.radius += threshold if (raycaster.ray.intersectsSphere(_sphere) === false) return // _inverseMatrix.copy(matrixWorld).invert() _ray.copy(raycaster.ray).applyMatrix4(_inverseMatrix) const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3) const localThresholdSq = localThreshold * localThreshold const index = geometry.index const attributes = geometry.attributes const positionAttribute = attributes.position if (index !== null) { const start = Math.max(0, drawRange.start) const end = Math.min(index.count, drawRange.start + drawRange.count) for (let i = start, il = end; i < il; i++) { const a = index.getX(i) _position$2.fromBufferAttribute(positionAttribute, a) testPoint(_position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this) } } else { const start = Math.max(0, drawRange.start) const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count) for (let i = start, l = end; i < l; i++) { _position$2.fromBufferAttribute(positionAttribute, i) testPoint(_position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this) } } } updateMorphTargets() { const geometry = this.geometry const morphAttributes = geometry.morphAttributes const keys = Object.keys(morphAttributes) if (keys.length > 0) { const morphAttribute = morphAttributes[keys[0]] if (morphAttribute !== undefined) { this.morphTargetInfluences = [] this.morphTargetDictionary = {} for (let m = 0, ml = morphAttribute.length; m < ml; m++) { const name = morphAttribute[m].name || String(m) this.morphTargetInfluences.push(0) this.morphTargetDictionary[name] = m } } } } } function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects, object) { const rayPointDistanceSq = _ray.distanceSqToPoint(point) if (rayPointDistanceSq < localThresholdSq) { const intersectPoint = new Vector3() _ray.closestPointToPoint(point, intersectPoint) intersectPoint.applyMatrix4(matrixWorld) const distance = raycaster.ray.origin.distanceTo(intersectPoint) if (distance < raycaster.near || distance > raycaster.far) return intersects.push({ distance: distance, distanceToRay: Math.sqrt(rayPointDistanceSq), point: intersectPoint, index: index, face: null, object: object }) } } class VideoTexture extends Texture { constructor(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) { super(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) this.isVideoTexture = true this.minFilter = minFilter !== undefined ? minFilter : LinearFilter this.magFilter = magFilter !== undefined ? magFilter : LinearFilter this.generateMipmaps = false const scope = this function updateVideo() { scope.needsUpdate = true video.requestVideoFrameCallback(updateVideo) } if ('requestVideoFrameCallback' in video) { video.requestVideoFrameCallback(updateVideo) } } clone() { return new this.constructor(this.image).copy(this) } update() { const video = this.image const hasVideoFrameCallback = 'requestVideoFrameCallback' in video if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) { this.needsUpdate = true } } } class FramebufferTexture extends Texture { constructor(width, height, format) { super({ width, height }) this.isFramebufferTexture = true this.format = format this.magFilter = NearestFilter this.minFilter = NearestFilter this.generateMipmaps = false this.needsUpdate = true } } class CompressedTexture extends Texture { constructor(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) { super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) this.isCompressedTexture = true this.image = { width: width, height: height } this.mipmaps = mipmaps // no flipping for cube textures // (also flipping doesn't work for compressed textures ) this.flipY = false // can't generate mipmaps for compressed textures // mips must be embedded in DDS files this.generateMipmaps = false } } class CanvasTexture extends Texture { constructor(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) { super(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) this.isCanvasTexture = true this.needsUpdate = true } } /** * Extensible curve object. * * Some common of curve methods: * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget ) * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget ) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following curves inherit from THREE.Curve: * * -- 2D curves -- * THREE.ArcCurve * THREE.CubicBezierCurve * THREE.EllipseCurve * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.SplineCurve * * -- 3D curves -- * THREE.CatmullRomCurve3 * THREE.CubicBezierCurve3 * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * * A series of curves can be represented as a THREE.CurvePath. * **/ class Curve { constructor() { this.type = 'Curve' this.arcLengthDivisions = 200 } // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint(/* t, optionalTarget */) { console.warn('THREE.Curve: .getPoint() not implemented.') return null } // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt(u, optionalTarget) { const t = this.getUtoTmapping(u) return this.getPoint(t, optionalTarget) } // Get sequence of points using getPoint( t ) getPoints(divisions = 5) { const points = [] for (let d = 0; d <= divisions; d++) { points.push(this.getPoint(d / divisions)) } return points } // Get sequence of points using getPointAt( u ) getSpacedPoints(divisions = 5) { const points = [] for (let d = 0; d <= divisions; d++) { points.push(this.getPointAt(d / divisions)) } return points } // Get total curve arc length getLength() { const lengths = this.getLengths() return lengths[lengths.length - 1] } // Get list of cumulative segment lengths getLengths(divisions = this.arcLengthDivisions) { if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) { return this.cacheArcLengths } this.needsUpdate = false const cache = [] let current, last = this.getPoint(0) let sum = 0 cache.push(0) for (let p = 1; p <= divisions; p++) { current = this.getPoint(p / divisions) sum += current.distanceTo(last) cache.push(sum) last = current } this.cacheArcLengths = cache return cache // { sums: cache, sum: sum }; Sum is in the last element. } updateArcLengths() { this.needsUpdate = true this.getLengths() } // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping(u, distance) { const arcLengths = this.getLengths() let i = 0 const il = arcLengths.length let targetArcLength // The targeted u distance value to get if (distance) { targetArcLength = distance } else { targetArcLength = u * arcLengths[il - 1] } // binary search for the index with largest value smaller than target u distance let low = 0, high = il - 1, comparison while (low <= high) { i = Math.floor(low + (high - low) / 2) // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[i] - targetArcLength if (comparison < 0) { low = i + 1 } else if (comparison > 0) { high = i - 1 } else { high = i break // DONE } } i = high if (arcLengths[i] === targetArcLength) { return i / (il - 1) } // we could get finer grain at lengths, or use simple interpolation between two points const lengthBefore = arcLengths[i] const lengthAfter = arcLengths[i + 1] const segmentLength = lengthAfter - lengthBefore // determine where we are between the 'before' and 'after' points const segmentFraction = (targetArcLength - lengthBefore) / segmentLength // add that fractional amount to t const t = (i + segmentFraction) / (il - 1) return t } // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent(t, optionalTarget) { const delta = 0.0001 let t1 = t - delta let t2 = t + delta // Capping in case of danger if (t1 < 0) t1 = 0 if (t2 > 1) t2 = 1 const pt1 = this.getPoint(t1) const pt2 = this.getPoint(t2) const tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3()) tangent .copy(pt2) .sub(pt1) .normalize() return tangent } getTangentAt(u, optionalTarget) { const t = this.getUtoTmapping(u) return this.getTangent(t, optionalTarget) } computeFrenetFrames(segments, closed) { // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf const normal = new Vector3() const tangents = [] const normals = [] const binormals = [] const vec = new Vector3() const mat = new Matrix4() // compute the tangent vectors for each segment on the curve for (let i = 0; i <= segments; i++) { const u = i / segments tangents[i] = this.getTangentAt(u, new Vector3()) } // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component normals[0] = new Vector3() binormals[0] = new Vector3() let min = Number.MAX_VALUE const tx = Math.abs(tangents[0].x) const ty = Math.abs(tangents[0].y) const tz = Math.abs(tangents[0].z) if (tx <= min) { min = tx normal.set(1, 0, 0) } if (ty <= min) { min = ty normal.set(0, 1, 0) } if (tz <= min) { normal.set(0, 0, 1) } vec.crossVectors(tangents[0], normal).normalize() normals[0].crossVectors(tangents[0], vec) binormals[0].crossVectors(tangents[0], normals[0]) // compute the slowly-varying normal and binormal vectors for each segment on the curve for (let i = 1; i <= segments; i++) { normals[i] = normals[i - 1].clone() binormals[i] = binormals[i - 1].clone() vec.crossVectors(tangents[i - 1], tangents[i]) if (vec.length() > Number.EPSILON) { vec.normalize() const theta = Math.acos(clamp(tangents[i - 1].dot(tangents[i]), -1, 1)) // clamp for floating pt errors normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta)) } binormals[i].crossVectors(tangents[i], normals[i]) } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if (closed === true) { let theta = Math.acos(clamp(normals[0].dot(normals[segments]), -1, 1)) theta /= segments if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) { theta = -theta } for (let i = 1; i <= segments; i++) { // twist a little... normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i)) binormals[i].crossVectors(tangents[i], normals[i]) } } return { tangents: tangents, normals: normals, binormals: binormals } } clone() { return new this.constructor().copy(this) } copy(source) { this.arcLengthDivisions = source.arcLengthDivisions return this } toJSON() { const data = { metadata: { version: 4.5, type: 'Curve', generator: 'Curve.toJSON' } } data.arcLengthDivisions = this.arcLengthDivisions data.type = this.type return data } fromJSON(json) { this.arcLengthDivisions = json.arcLengthDivisions return this } } class EllipseCurve extends Curve { constructor(aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0) { super() this.isEllipseCurve = true this.type = 'EllipseCurve' this.aX = aX this.aY = aY this.xRadius = xRadius this.yRadius = yRadius this.aStartAngle = aStartAngle this.aEndAngle = aEndAngle this.aClockwise = aClockwise this.aRotation = aRotation } getPoint(t, optionalTarget) { const point = optionalTarget || new Vector2() const twoPi = Math.PI * 2 let deltaAngle = this.aEndAngle - this.aStartAngle const samePoints = Math.abs(deltaAngle) < Number.EPSILON // ensures that deltaAngle is 0 .. 2 PI while (deltaAngle < 0) deltaAngle += twoPi while (deltaAngle > twoPi) deltaAngle -= twoPi if (deltaAngle < Number.EPSILON) { if (samePoints) { deltaAngle = 0 } else { deltaAngle = twoPi } } if (this.aClockwise === true && !samePoints) { if (deltaAngle === twoPi) { deltaAngle = -twoPi } else { deltaAngle = deltaAngle - twoPi } } const angle = this.aStartAngle + t * deltaAngle let x = this.aX + this.xRadius * Math.cos(angle) let y = this.aY + this.yRadius * Math.sin(angle) if (this.aRotation !== 0) { const cos = Math.cos(this.aRotation) const sin = Math.sin(this.aRotation) const tx = x - this.aX const ty = y - this.aY // Rotate the point about the center of the ellipse. x = tx * cos - ty * sin + this.aX y = tx * sin + ty * cos + this.aY } return point.set(x, y) } copy(source) { super.copy(source) this.aX = source.aX this.aY = source.aY this.xRadius = source.xRadius this.yRadius = source.yRadius this.aStartAngle = source.aStartAngle this.aEndAngle = source.aEndAngle this.aClockwise = source.aClockwise this.aRotation = source.aRotation return this } toJSON() { const data = super.toJSON() data.aX = this.aX data.aY = this.aY data.xRadius = this.xRadius data.yRadius = this.yRadius data.aStartAngle = this.aStartAngle data.aEndAngle = this.aEndAngle data.aClockwise = this.aClockwise data.aRotation = this.aRotation return data } fromJSON(json) { super.fromJSON(json) this.aX = json.aX this.aY = json.aY this.xRadius = json.xRadius this.yRadius = json.yRadius this.aStartAngle = json.aStartAngle this.aEndAngle = json.aEndAngle this.aClockwise = json.aClockwise this.aRotation = json.aRotation return this } } class ArcCurve extends EllipseCurve { constructor(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { super(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise) this.isArcCurve = true this.type = 'ArcCurve' } } /** * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() { let c0 = 0, c1 = 0, c2 = 0, c3 = 0 /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ function init(x0, x1, t0, t1) { c0 = x0 c1 = t0 c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1 c3 = 2 * x0 - 2 * x1 + t0 + t1 } return { initCatmullRom: function(x0, x1, x2, x3, tension) { init(x1, x2, tension * (x2 - x0), tension * (x3 - x1)) }, initNonuniformCatmullRom: function(x0, x1, x2, x3, dt0, dt1, dt2) { // compute tangents when parameterized in [t1,t2] let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1 let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2 // rescale tangents for parametrization in [0,1] t1 *= dt1 t2 *= dt1 init(x1, x2, t1, t2) }, calc: function(t) { const t2 = t * t const t3 = t2 * t return c0 + c1 * t + c2 * t2 + c3 * t3 } } } // const tmp = new Vector3() const px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly() class CatmullRomCurve3 extends Curve { constructor(points = [], closed = false, curveType = 'centripetal', tension = 0.5) { super() this.isCatmullRomCurve3 = true this.type = 'CatmullRomCurve3' this.points = points this.closed = closed this.curveType = curveType this.tension = tension } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget const points = this.points const l = points.length const p = (l - (this.closed ? 0 : 1)) * t let intPoint = Math.floor(p) let weight = p - intPoint if (this.closed) { intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l } else if (weight === 0 && intPoint === l - 1) { intPoint = l - 2 weight = 1 } let p0, p3 // 4 points (p1 & p2 defined below) if (this.closed || intPoint > 0) { p0 = points[(intPoint - 1) % l] } else { // extrapolate first point tmp.subVectors(points[0], points[1]).add(points[0]) p0 = tmp } const p1 = points[intPoint % l] const p2 = points[(intPoint + 1) % l] if (this.closed || intPoint + 2 < l) { p3 = points[(intPoint + 2) % l] } else { // extrapolate last point tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]) p3 = tmp } if (this.curveType === 'centripetal' || this.curveType === 'chordal') { // init Centripetal / Chordal Catmull-Rom const pow = this.curveType === 'chordal' ? 0.5 : 0.25 let dt0 = Math.pow(p0.distanceToSquared(p1), pow) let dt1 = Math.pow(p1.distanceToSquared(p2), pow) let dt2 = Math.pow(p2.distanceToSquared(p3), pow) // safety check for repeated points if (dt1 < 1e-4) dt1 = 1.0 if (dt0 < 1e-4) dt0 = dt1 if (dt2 < 1e-4) dt2 = dt1 px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2) py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2) pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2) } else if (this.curveType === 'catmullrom') { px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension) py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension) pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension) } point.set(px.calc(weight), py.calc(weight), pz.calc(weight)) return point } copy(source) { super.copy(source) this.points = [] for (let i = 0, l = source.points.length; i < l; i++) { const point = source.points[i] this.points.push(point.clone()) } this.closed = source.closed this.curveType = source.curveType this.tension = source.tension return this } toJSON() { const data = super.toJSON() data.points = [] for (let i = 0, l = this.points.length; i < l; i++) { const point = this.points[i] data.points.push(point.toArray()) } data.closed = this.closed data.curveType = this.curveType data.tension = this.tension return data } fromJSON(json) { super.fromJSON(json) this.points = [] for (let i = 0, l = json.points.length; i < l; i++) { const point = json.points[i] this.points.push(new Vector3().fromArray(point)) } this.closed = json.closed this.curveType = json.curveType this.tension = json.tension return this } } /** * Bezier Curves formulas obtained from * https://en.wikipedia.org/wiki/B%C3%A9zier_curve */ function CatmullRom(t, p0, p1, p2, p3) { const v0 = (p2 - p0) * 0.5 const v1 = (p3 - p1) * 0.5 const t2 = t * t const t3 = t * t2 return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1 } // function QuadraticBezierP0(t, p) { const k = 1 - t return k * k * p } function QuadraticBezierP1(t, p) { return 2 * (1 - t) * t * p } function QuadraticBezierP2(t, p) { return t * t * p } function QuadraticBezier(t, p0, p1, p2) { return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2) } // function CubicBezierP0(t, p) { const k = 1 - t return k * k * k * p } function CubicBezierP1(t, p) { const k = 1 - t return 3 * k * k * t * p } function CubicBezierP2(t, p) { return 3 * (1 - t) * t * t * p } function CubicBezierP3(t, p) { return t * t * t * p } function CubicBezier(t, p0, p1, p2, p3) { return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3) } class CubicBezierCurve extends Curve { constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2()) { super() this.isCubicBezierCurve = true this.type = 'CubicBezierCurve' this.v0 = v0 this.v1 = v1 this.v2 = v2 this.v3 = v3 } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3 point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y)) return point } copy(source) { super.copy(source) this.v0.copy(source.v0) this.v1.copy(source.v1) this.v2.copy(source.v2) this.v3.copy(source.v3) return this } toJSON() { const data = super.toJSON() data.v0 = this.v0.toArray() data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() data.v3 = this.v3.toArray() return data } fromJSON(json) { super.fromJSON(json) this.v0.fromArray(json.v0) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) this.v3.fromArray(json.v3) return this } } class CubicBezierCurve3 extends Curve { constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3()) { super() this.isCubicBezierCurve3 = true this.type = 'CubicBezierCurve3' this.v0 = v0 this.v1 = v1 this.v2 = v2 this.v3 = v3 } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3 point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z)) return point } copy(source) { super.copy(source) this.v0.copy(source.v0) this.v1.copy(source.v1) this.v2.copy(source.v2) this.v3.copy(source.v3) return this } toJSON() { const data = super.toJSON() data.v0 = this.v0.toArray() data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() data.v3 = this.v3.toArray() return data } fromJSON(json) { super.fromJSON(json) this.v0.fromArray(json.v0) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) this.v3.fromArray(json.v3) return this } } class LineCurve extends Curve { constructor(v1 = new Vector2(), v2 = new Vector2()) { super() this.isLineCurve = true this.type = 'LineCurve' this.v1 = v1 this.v2 = v2 } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget if (t === 1) { point.copy(this.v2) } else { point.copy(this.v2).sub(this.v1) point.multiplyScalar(t).add(this.v1) } return point } // Line curve is linear, so we can overwrite default getPointAt getPointAt(u, optionalTarget) { return this.getPoint(u, optionalTarget) } getTangent(t, optionalTarget) { const tangent = optionalTarget || new Vector2() tangent .copy(this.v2) .sub(this.v1) .normalize() return tangent } copy(source) { super.copy(source) this.v1.copy(source.v1) this.v2.copy(source.v2) return this } toJSON() { const data = super.toJSON() data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() return data } fromJSON(json) { super.fromJSON(json) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) return this } } class LineCurve3 extends Curve { constructor(v1 = new Vector3(), v2 = new Vector3()) { super() this.isLineCurve3 = true this.type = 'LineCurve3' this.v1 = v1 this.v2 = v2 } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget if (t === 1) { point.copy(this.v2) } else { point.copy(this.v2).sub(this.v1) point.multiplyScalar(t).add(this.v1) } return point } // Line curve is linear, so we can overwrite default getPointAt getPointAt(u, optionalTarget) { return this.getPoint(u, optionalTarget) } copy(source) { super.copy(source) this.v1.copy(source.v1) this.v2.copy(source.v2) return this } toJSON() { const data = super.toJSON() data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() return data } fromJSON(json) { super.fromJSON(json) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) return this } } class QuadraticBezierCurve extends Curve { constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2()) { super() this.isQuadraticBezierCurve = true this.type = 'QuadraticBezierCurve' this.v0 = v0 this.v1 = v1 this.v2 = v2 } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget const v0 = this.v0, v1 = this.v1, v2 = this.v2 point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y)) return point } copy(source) { super.copy(source) this.v0.copy(source.v0) this.v1.copy(source.v1) this.v2.copy(source.v2) return this } toJSON() { const data = super.toJSON() data.v0 = this.v0.toArray() data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() return data } fromJSON(json) { super.fromJSON(json) this.v0.fromArray(json.v0) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) return this } } class QuadraticBezierCurve3 extends Curve { constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3()) { super() this.isQuadraticBezierCurve3 = true this.type = 'QuadraticBezierCurve3' this.v0 = v0 this.v1 = v1 this.v2 = v2 } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget const v0 = this.v0, v1 = this.v1, v2 = this.v2 point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z)) return point } copy(source) { super.copy(source) this.v0.copy(source.v0) this.v1.copy(source.v1) this.v2.copy(source.v2) return this } toJSON() { const data = super.toJSON() data.v0 = this.v0.toArray() data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() return data } fromJSON(json) { super.fromJSON(json) this.v0.fromArray(json.v0) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) return this } } class SplineCurve extends Curve { constructor(points = []) { super() this.isSplineCurve = true this.type = 'SplineCurve' this.points = points } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget const points = this.points const p = (points.length - 1) * t const intPoint = Math.floor(p) const weight = p - intPoint const p0 = points[intPoint === 0 ? intPoint : intPoint - 1] const p1 = points[intPoint] const p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1] const p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2] point.set(CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y)) return point } copy(source) { super.copy(source) this.points = [] for (let i = 0, l = source.points.length; i < l; i++) { const point = source.points[i] this.points.push(point.clone()) } return this } toJSON() { const data = super.toJSON() data.points = [] for (let i = 0, l = this.points.length; i < l; i++) { const point = this.points[i] data.points.push(point.toArray()) } return data } fromJSON(json) { super.fromJSON(json) this.points = [] for (let i = 0, l = json.points.length; i < l; i++) { const point = json.points[i] this.points.push(new Vector2().fromArray(point)) } return this } } var Curves = /*#__PURE__*/ Object.freeze({ __proto__: null, ArcCurve: ArcCurve, CatmullRomCurve3: CatmullRomCurve3, CubicBezierCurve: CubicBezierCurve, CubicBezierCurve3: CubicBezierCurve3, EllipseCurve: EllipseCurve, LineCurve: LineCurve, LineCurve3: LineCurve3, QuadraticBezierCurve: QuadraticBezierCurve, QuadraticBezierCurve3: QuadraticBezierCurve3, SplineCurve: SplineCurve }) /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ class CurvePath extends Curve { constructor() { super() this.type = 'CurvePath' this.curves = [] this.autoClose = false // Automatically closes the path } add(curve) { this.curves.push(curve) } closePath() { // Add a line curve if start and end of lines are not connected const startPoint = this.curves[0].getPoint(0) const endPoint = this.curves[this.curves.length - 1].getPoint(1) if (!startPoint.equals(endPoint)) { this.curves.push(new LineCurve(endPoint, startPoint)) } } // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') getPoint(t, optionalTarget) { const d = t * this.getLength() const curveLengths = this.getCurveLengths() let i = 0 // To think about boundaries points. while (i < curveLengths.length) { if (curveLengths[i] >= d) { const diff = curveLengths[i] - d const curve = this.curves[i] const segmentLength = curve.getLength() const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength return curve.getPointAt(u, optionalTarget) } i++ } return null // loop where sum != 0, sum > d , sum+1 1 && !points[points.length - 1].equals(points[0])) { points.push(points[0]) } return points } copy(source) { super.copy(source) this.curves = [] for (let i = 0, l = source.curves.length; i < l; i++) { const curve = source.curves[i] this.curves.push(curve.clone()) } this.autoClose = source.autoClose return this } toJSON() { const data = super.toJSON() data.autoClose = this.autoClose data.curves = [] for (let i = 0, l = this.curves.length; i < l; i++) { const curve = this.curves[i] data.curves.push(curve.toJSON()) } return data } fromJSON(json) { super.fromJSON(json) this.autoClose = json.autoClose this.curves = [] for (let i = 0, l = json.curves.length; i < l; i++) { const curve = json.curves[i] this.curves.push(new Curves[curve.type]().fromJSON(curve)) } return this } } class Path extends CurvePath { constructor(points) { super() this.type = 'Path' this.currentPoint = new Vector2() if (points) { this.setFromPoints(points) } } setFromPoints(points) { this.moveTo(points[0].x, points[0].y) for (let i = 1, l = points.length; i < l; i++) { this.lineTo(points[i].x, points[i].y) } return this } moveTo(x, y) { this.currentPoint.set(x, y) // TODO consider referencing vectors instead of copying? return this } lineTo(x, y) { const curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y)) this.curves.push(curve) this.currentPoint.set(x, y) return this } quadraticCurveTo(aCPx, aCPy, aX, aY) { const curve = new QuadraticBezierCurve(this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY)) this.curves.push(curve) this.currentPoint.set(aX, aY) return this } bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { const curve = new CubicBezierCurve(this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY)) this.curves.push(curve) this.currentPoint.set(aX, aY) return this } splineThru(pts /*Array of Vector*/) { const npts = [this.currentPoint.clone()].concat(pts) const curve = new SplineCurve(npts) this.curves.push(curve) this.currentPoint.copy(pts[pts.length - 1]) return this } arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { const x0 = this.currentPoint.x const y0 = this.currentPoint.y this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise) return this } absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise) return this } ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { const x0 = this.currentPoint.x const y0 = this.currentPoint.y this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) return this } absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { const curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) if (this.curves.length > 0) { // if a previous curve is present, attempt to join const firstPoint = curve.getPoint(0) if (!firstPoint.equals(this.currentPoint)) { this.lineTo(firstPoint.x, firstPoint.y) } } this.curves.push(curve) const lastPoint = curve.getPoint(1) this.currentPoint.copy(lastPoint) return this } copy(source) { super.copy(source) this.currentPoint.copy(source.currentPoint) return this } toJSON() { const data = super.toJSON() data.currentPoint = this.currentPoint.toArray() return data } fromJSON(json) { super.fromJSON(json) this.currentPoint.fromArray(json.currentPoint) return this } } class LatheGeometry extends BufferGeometry { constructor(points = [new Vector2(0, 0.5), new Vector2(0.5, 0), new Vector2(0, -0.5)], segments = 12, phiStart = 0, phiLength = Math.PI * 2) { super() this.type = 'LatheGeometry' this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength } segments = Math.floor(segments) // clamp phiLength so it's in range of [ 0, 2PI ] phiLength = clamp(phiLength, 0, Math.PI * 2) // buffers const indices = [] const vertices = [] const uvs = [] const initNormals = [] const normals = [] // helper variables const inverseSegments = 1.0 / segments const vertex = new Vector3() const uv = new Vector2() const normal = new Vector3() const curNormal = new Vector3() const prevNormal = new Vector3() let dx = 0 let dy = 0 // pre-compute normals for initial "meridian" for (let j = 0; j <= points.length - 1; j++) { switch (j) { case 0: // special handling for 1st vertex on path dx = points[j + 1].x - points[j].x dy = points[j + 1].y - points[j].y normal.x = dy * 1.0 normal.y = -dx normal.z = dy * 0.0 prevNormal.copy(normal) normal.normalize() initNormals.push(normal.x, normal.y, normal.z) break case points.length - 1: // special handling for last Vertex on path initNormals.push(prevNormal.x, prevNormal.y, prevNormal.z) break default: // default handling for all vertices in between dx = points[j + 1].x - points[j].x dy = points[j + 1].y - points[j].y normal.x = dy * 1.0 normal.y = -dx normal.z = dy * 0.0 curNormal.copy(normal) normal.x += prevNormal.x normal.y += prevNormal.y normal.z += prevNormal.z normal.normalize() initNormals.push(normal.x, normal.y, normal.z) prevNormal.copy(curNormal) } } // generate vertices, uvs and normals for (let i = 0; i <= segments; i++) { const phi = phiStart + i * inverseSegments * phiLength const sin = Math.sin(phi) const cos = Math.cos(phi) for (let j = 0; j <= points.length - 1; j++) { // vertex vertex.x = points[j].x * sin vertex.y = points[j].y vertex.z = points[j].x * cos vertices.push(vertex.x, vertex.y, vertex.z) // uv uv.x = i / segments uv.y = j / (points.length - 1) uvs.push(uv.x, uv.y) // normal const x = initNormals[3 * j + 0] * sin const y = initNormals[3 * j + 1] const z = initNormals[3 * j + 0] * cos normals.push(x, y, z) } } // indices for (let i = 0; i < segments; i++) { for (let j = 0; j < points.length - 1; j++) { const base = j + i * points.length const a = base const b = base + points.length const c = base + points.length + 1 const d = base + 1 // faces indices.push(a, b, d) indices.push(c, d, b) } } // build geometry this.setIndex(indices) this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)) this.setAttribute('normal', new Float32BufferAttribute(normals, 3)) } static fromJSON(data) { return new LatheGeometry(data.points, data.segments, data.phiStart, data.phiLength) } } class CapsuleGeometry extends LatheGeometry { constructor(radius = 1, length = 1, capSegments = 4, radialSegments = 8) { const path = new Path() path.absarc(0, -length / 2, radius, Math.PI * 1.5, 0) path.absarc(0, length / 2, radius, 0, Math.PI * 0.5) super(path.getPoints(capSegments), radialSegments) this.type = 'CapsuleGeometry' this.parameters = { radius: radius, height: length, capSegments: capSegments, radialSegments: radialSegments } } static fromJSON(data) { return new CapsuleGeometry(data.radius, data.length, data.capSegments, data.radialSegments) } } class CircleGeometry extends BufferGeometry { constructor(radius = 1, segments = 8, thetaStart = 0, thetaLength = Math.PI * 2) { super() this.type = 'CircleGeometry' this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength } segments = Math.max(3, segments) // buffers const indices = [] const vertices = [] const normals = [] const uvs = [] // helper variables const vertex = new Vector3() const uv = new Vector2() // center point vertices.push(0, 0, 0) normals.push(0, 0, 1) uvs.push(0.5, 0.5) for (let s = 0, i = 3; s <= segments; s++, i += 3) { const segment = thetaStart + (s / segments) * thetaLength // vertex vertex.x = radius * Math.cos(segment) vertex.y = radius * Math.sin(segment) vertices.push(vertex.x, vertex.y, vertex.z) // normal normals.push(0, 0, 1) // uvs uv.x = (vertices[i] / radius + 1) / 2 uv.y = (vertices[i + 1] / radius + 1) / 2 uvs.push(uv.x, uv.y) } // indices for (let i = 1; i <= segments; i++) { indices.push(i, i + 1, 0) } // build geometry this.setIndex(indices) this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) this.setAttribute('normal', new Float32BufferAttribute(normals, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)) } static fromJSON(data) { return new CircleGeometry(data.radius, data.segments, data.thetaStart, data.thetaLength) } } class CylinderGeometry extends BufferGeometry { constructor(radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) { super() this.type = 'CylinderGeometry' this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength } const scope = this radialSegments = Math.floor(radialSegments) heightSegments = Math.floor(heightSegments) // buffers const indices = [] const vertices = [] const normals = [] const uvs = [] // helper variables let index = 0 const indexArray = [] const halfHeight = height / 2 let groupStart = 0 // generate geometry generateTorso() if (openEnded === false) { if (radiusTop > 0) generateCap(true) if (radiusBottom > 0) generateCap(false) } // build geometry this.setIndex(indices) this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) this.setAttribute('normal', new Float32BufferAttribute(normals, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)) function generateTorso() { const normal = new Vector3() const vertex = new Vector3() let groupCount = 0 // this will be used to calculate the normal const slope = (radiusBottom - radiusTop) / height // generate vertices, normals and uvs for (let y = 0; y <= heightSegments; y++) { const indexRow = [] const v = y / heightSegments // calculate the radius of the current row const radius = v * (radiusBottom - radiusTop) + radiusTop for (let x = 0; x <= radialSegments; x++) { const u = x / radialSegments const theta = u * thetaLength + thetaStart const sinTheta = Math.sin(theta) const cosTheta = Math.cos(theta) // vertex vertex.x = radius * sinTheta vertex.y = -v * height + halfHeight vertex.z = radius * cosTheta vertices.push(vertex.x, vertex.y, vertex.z) // normal normal.set(sinTheta, slope, cosTheta).normalize() normals.push(normal.x, normal.y, normal.z) // uv uvs.push(u, 1 - v) // save index of vertex in respective row indexRow.push(index++) } // now save vertices of the row in our index array indexArray.push(indexRow) } // generate indices for (let x = 0; x < radialSegments; x++) { for (let y = 0; y < heightSegments; y++) { // we use the index array to access the correct indices const a = indexArray[y][x] const b = indexArray[y + 1][x] const c = indexArray[y + 1][x + 1] const d = indexArray[y][x + 1] // faces indices.push(a, b, d) indices.push(b, c, d) // update group counter groupCount += 6 } } // add a group to the geometry. this will ensure multi material support scope.addGroup(groupStart, groupCount, 0) // calculate new start value for groups groupStart += groupCount } function generateCap(top) { // save the index of the first center vertex const centerIndexStart = index const uv = new Vector2() const vertex = new Vector3() let groupCount = 0 const radius = top === true ? radiusTop : radiusBottom const sign = top === true ? 1 : -1 // first we generate the center vertex data of the cap. // because the geometry needs one set of uvs per face, // we must generate a center vertex per face/segment for (let x = 1; x <= radialSegments; x++) { // vertex vertices.push(0, halfHeight * sign, 0) // normal normals.push(0, sign, 0) // uv uvs.push(0.5, 0.5) // increase index index++ } // save the index of the last center vertex const centerIndexEnd = index // now we generate the surrounding vertices, normals and uvs for (let x = 0; x <= radialSegments; x++) { const u = x / radialSegments const theta = u * thetaLength + thetaStart const cosTheta = Math.cos(theta) const sinTheta = Math.sin(theta) // vertex vertex.x = radius * sinTheta vertex.y = halfHeight * sign vertex.z = radius * cosTheta vertices.push(vertex.x, vertex.y, vertex.z) // normal normals.push(0, sign, 0) // uv uv.x = cosTheta * 0.5 + 0.5 uv.y = sinTheta * 0.5 * sign + 0.5 uvs.push(uv.x, uv.y) // increase index index++ } // generate indices for (let x = 0; x < radialSegments; x++) { const c = centerIndexStart + x const i = centerIndexEnd + x if (top === true) { // face top indices.push(i, i + 1, c) } else { // face bottom indices.push(i + 1, i, c) } groupCount += 3 } // add a group to the geometry. this will ensure multi material support scope.addGroup(groupStart, groupCount, top === true ? 1 : 2) // calculate new start value for groups groupStart += groupCount } } static fromJSON(data) { return new CylinderGeometry(data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength) } } class ConeGeometry extends CylinderGeometry { constructor(radius = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) { super(0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength) this.type = 'ConeGeometry' this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength } } static fromJSON(data) { return new ConeGeometry(data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength) } } class PolyhedronGeometry extends BufferGeometry { constructor(vertices = [], indices = [], radius = 1, detail = 0) { super() this.type = 'PolyhedronGeometry' this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail } // default buffer data const vertexBuffer = [] const uvBuffer = [] // the subdivision creates the vertex buffer data subdivide(detail) // all vertices should lie on a conceptual sphere with a given radius applyRadius(radius) // finally, create the uv data generateUVs() // build non-indexed geometry this.setAttribute('position', new Float32BufferAttribute(vertexBuffer, 3)) this.setAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3)) this.setAttribute('uv', new Float32BufferAttribute(uvBuffer, 2)) if (detail === 0) { this.computeVertexNormals() // flat normals } else { this.normalizeNormals() // smooth normals } // helper functions function subdivide(detail) { const a = new Vector3() const b = new Vector3() const c = new Vector3() // iterate over all faces and apply a subdivison with the given detail value for (let i = 0; i < indices.length; i += 3) { // get the vertices of the face getVertexByIndex(indices[i + 0], a) getVertexByIndex(indices[i + 1], b) getVertexByIndex(indices[i + 2], c) // perform subdivision subdivideFace(a, b, c, detail) } } function subdivideFace(a, b, c, detail) { const cols = detail + 1 // we use this multidimensional array as a data structure for creating the subdivision const v = [] // construct all of the vertices for this subdivision for (let i = 0; i <= cols; i++) { v[i] = [] const aj = a.clone().lerp(c, i / cols) const bj = b.clone().lerp(c, i / cols) const rows = cols - i for (let j = 0; j <= rows; j++) { if (j === 0 && i === cols) { v[i][j] = aj } else { v[i][j] = aj.clone().lerp(bj, j / rows) } } } // construct all of the faces for (let i = 0; i < cols; i++) { for (let j = 0; j < 2 * (cols - i) - 1; j++) { const k = Math.floor(j / 2) if (j % 2 === 0) { pushVertex(v[i][k + 1]) pushVertex(v[i + 1][k]) pushVertex(v[i][k]) } else { pushVertex(v[i][k + 1]) pushVertex(v[i + 1][k + 1]) pushVertex(v[i + 1][k]) } } } } function applyRadius(radius) { const vertex = new Vector3() // iterate over the entire buffer and apply the radius to each vertex for (let i = 0; i < vertexBuffer.length; i += 3) { vertex.x = vertexBuffer[i + 0] vertex.y = vertexBuffer[i + 1] vertex.z = vertexBuffer[i + 2] vertex.normalize().multiplyScalar(radius) vertexBuffer[i + 0] = vertex.x vertexBuffer[i + 1] = vertex.y vertexBuffer[i + 2] = vertex.z } } function generateUVs() { const vertex = new Vector3() for (let i = 0; i < vertexBuffer.length; i += 3) { vertex.x = vertexBuffer[i + 0] vertex.y = vertexBuffer[i + 1] vertex.z = vertexBuffer[i + 2] const u = azimuth(vertex) / 2 / Math.PI + 0.5 const v = inclination(vertex) / Math.PI + 0.5 uvBuffer.push(u, 1 - v) } correctUVs() correctSeam() } function correctSeam() { // handle case when face straddles the seam, see #3269 for (let i = 0; i < uvBuffer.length; i += 6) { // uv data of a single face const x0 = uvBuffer[i + 0] const x1 = uvBuffer[i + 2] const x2 = uvBuffer[i + 4] const max = Math.max(x0, x1, x2) const min = Math.min(x0, x1, x2) // 0.9 is somewhat arbitrary if (max > 0.9 && min < 0.1) { if (x0 < 0.2) uvBuffer[i + 0] += 1 if (x1 < 0.2) uvBuffer[i + 2] += 1 if (x2 < 0.2) uvBuffer[i + 4] += 1 } } } function pushVertex(vertex) { vertexBuffer.push(vertex.x, vertex.y, vertex.z) } function getVertexByIndex(index, vertex) { const stride = index * 3 vertex.x = vertices[stride + 0] vertex.y = vertices[stride + 1] vertex.z = vertices[stride + 2] } function correctUVs() { const a = new Vector3() const b = new Vector3() const c = new Vector3() const centroid = new Vector3() const uvA = new Vector2() const uvB = new Vector2() const uvC = new Vector2() for (let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) { a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]) b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]) c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]) uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]) uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]) uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]) centroid .copy(a) .add(b) .add(c) .divideScalar(3) const azi = azimuth(centroid) correctUV(uvA, j + 0, a, azi) correctUV(uvB, j + 2, b, azi) correctUV(uvC, j + 4, c, azi) } } function correctUV(uv, stride, vector, azimuth) { if (azimuth < 0 && uv.x === 1) { uvBuffer[stride] = uv.x - 1 } if (vector.x === 0 && vector.z === 0) { uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5 } } // Angle around the Y axis, counter-clockwise when looking from above. function azimuth(vector) { return Math.atan2(vector.z, -vector.x) } // Angle above the XZ plane. function inclination(vector) { return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z)) } } static fromJSON(data) { return new PolyhedronGeometry(data.vertices, data.indices, data.radius, data.details) } } class DodecahedronGeometry extends PolyhedronGeometry { constructor(radius = 1, detail = 0) { const t = (1 + Math.sqrt(5)) / 2 const r = 1 / t const vertices = [ // (±1, ±1, ±1) -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ) 0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0) -r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ) -t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r ] const indices = [ 3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9 ] super(vertices, indices, radius, detail) this.type = 'DodecahedronGeometry' this.parameters = { radius: radius, detail: detail } } static fromJSON(data) { return new DodecahedronGeometry(data.radius, data.detail) } } const _v0 = new Vector3() const _v1$1 = new Vector3() const _normal = new Vector3() const _triangle = new Triangle() class EdgesGeometry extends BufferGeometry { constructor(geometry = null, thresholdAngle = 1) { super() this.type = 'EdgesGeometry' this.parameters = { geometry: geometry, thresholdAngle: thresholdAngle } if (geometry !== null) { const precisionPoints = 4 const precision = Math.pow(10, precisionPoints) const thresholdDot = Math.cos(DEG2RAD * thresholdAngle) const indexAttr = geometry.getIndex() const positionAttr = geometry.getAttribute('position') const indexCount = indexAttr ? indexAttr.count : positionAttr.count const indexArr = [0, 0, 0] const vertKeys = ['a', 'b', 'c'] const hashes = new Array(3) const edgeData = {} const vertices = [] for (let i = 0; i < indexCount; i += 3) { if (indexAttr) { indexArr[0] = indexAttr.getX(i) indexArr[1] = indexAttr.getX(i + 1) indexArr[2] = indexAttr.getX(i + 2) } else { indexArr[0] = i indexArr[1] = i + 1 indexArr[2] = i + 2 } const { a, b, c } = _triangle a.fromBufferAttribute(positionAttr, indexArr[0]) b.fromBufferAttribute(positionAttr, indexArr[1]) c.fromBufferAttribute(positionAttr, indexArr[2]) _triangle.getNormal(_normal) // create hashes for the edge from the vertices hashes[0] = `${Math.round(a.x * precision)},${Math.round(a.y * precision)},${Math.round(a.z * precision)}` hashes[1] = `${Math.round(b.x * precision)},${Math.round(b.y * precision)},${Math.round(b.z * precision)}` hashes[2] = `${Math.round(c.x * precision)},${Math.round(c.y * precision)},${Math.round(c.z * precision)}` // skip degenerate triangles if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) { continue } // iterate over every edge for (let j = 0; j < 3; j++) { // get the first and next vertex making up the edge const jNext = (j + 1) % 3 const vecHash0 = hashes[j] const vecHash1 = hashes[jNext] const v0 = _triangle[vertKeys[j]] const v1 = _triangle[vertKeys[jNext]] const hash = `${vecHash0}_${vecHash1}` const reverseHash = `${vecHash1}_${vecHash0}` if (reverseHash in edgeData && edgeData[reverseHash]) { // if we found a sibling edge add it into the vertex array if // it meets the angle threshold and delete the edge from the map. if (_normal.dot(edgeData[reverseHash].normal) <= thresholdDot) { vertices.push(v0.x, v0.y, v0.z) vertices.push(v1.x, v1.y, v1.z) } edgeData[reverseHash] = null } else if (!(hash in edgeData)) { // if we've already got an edge here then skip adding a new one edgeData[hash] = { index0: indexArr[j], index1: indexArr[jNext], normal: _normal.clone() } } } } // iterate over all remaining, unmatched edges and add them to the vertex array for (const key in edgeData) { if (edgeData[key]) { const { index0, index1 } = edgeData[key] _v0.fromBufferAttribute(positionAttr, index0) _v1$1.fromBufferAttribute(positionAttr, index1) vertices.push(_v0.x, _v0.y, _v0.z) vertices.push(_v1$1.x, _v1$1.y, _v1$1.z) } } this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) } } } class Shape extends Path { constructor(points) { super(points) this.uuid = generateUUID() this.type = 'Shape' this.holes = [] } getPointsHoles(divisions) { const holesPts = [] for (let i = 0, l = this.holes.length; i < l; i++) { holesPts[i] = this.holes[i].getPoints(divisions) } return holesPts } // get points of shape and holes (keypoints based on segments parameter) extractPoints(divisions) { return { shape: this.getPoints(divisions), holes: this.getPointsHoles(divisions) } } copy(source) { super.copy(source) this.holes = [] for (let i = 0, l = source.holes.length; i < l; i++) { const hole = source.holes[i] this.holes.push(hole.clone()) } return this } toJSON() { const data = super.toJSON() data.uuid = this.uuid data.holes = [] for (let i = 0, l = this.holes.length; i < l; i++) { const hole = this.holes[i] data.holes.push(hole.toJSON()) } return data } fromJSON(json) { super.fromJSON(json) this.uuid = json.uuid this.holes = [] for (let i = 0, l = json.holes.length; i < l; i++) { const hole = json.holes[i] this.holes.push(new Path().fromJSON(hole)) } return this } } /** * Port from https://github.com/mapbox/earcut (v2.2.2) */ const Earcut = { triangulate: function(data, holeIndices, dim = 2) { const hasHoles = holeIndices && holeIndices.length const outerLen = hasHoles ? holeIndices[0] * dim : data.length let outerNode = linkedList(data, 0, outerLen, dim, true) const triangles = [] if (!outerNode || outerNode.next === outerNode.prev) return triangles let minX, minY, maxX, maxY, x, y, invSize if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim) // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox if (data.length > 80 * dim) { minX = maxX = data[0] minY = maxY = data[1] for (let i = dim; i < outerLen; i += dim) { x = data[i] y = data[i + 1] if (x < minX) minX = x if (y < minY) minY = y if (x > maxX) maxX = x if (y > maxY) maxY = y } // minX, minY and invSize are later used to transform coords into integers for z-order calculation invSize = Math.max(maxX - minX, maxY - minY) invSize = invSize !== 0 ? 1 / invSize : 0 } earcutLinked(outerNode, triangles, dim, minX, minY, invSize) return triangles } } // create a circular doubly linked list from polygon points in the specified winding order function linkedList(data, start, end, dim, clockwise) { let i, last if (clockwise === signedArea(data, start, end, dim) > 0) { for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last) } else { for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last) } if (last && equals(last, last.next)) { removeNode(last) last = last.next } return last } // eliminate colinear or duplicate points function filterPoints(start, end) { if (!start) return start if (!end) end = start let p = start, again do { again = false if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) { removeNode(p) p = end = p.prev if (p === p.next) break again = true } else { p = p.next } } while (again || p !== end) return end } // main ear slicing loop which triangulates a polygon (given as a linked list) function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) { if (!ear) return // interlink polygon nodes in z-order if (!pass && invSize) indexCurve(ear, minX, minY, invSize) let stop = ear, prev, next // iterate through ears, slicing them one by one while (ear.prev !== ear.next) { prev = ear.prev next = ear.next if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { // cut off the triangle triangles.push(prev.i / dim) triangles.push(ear.i / dim) triangles.push(next.i / dim) removeNode(ear) // skipping the next vertex leads to less sliver triangles ear = next.next stop = next.next continue } ear = next // if we looped through the whole remaining polygon and can't find any more ears if (ear === stop) { // try filtering points and slicing again if (!pass) { earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1) // if this didn't work, try curing all small self-intersections locally } else if (pass === 1) { ear = cureLocalIntersections(filterPoints(ear), triangles, dim) earcutLinked(ear, triangles, dim, minX, minY, invSize, 2) // as a last resort, try splitting the remaining polygon into two } else if (pass === 2) { splitEarcut(ear, triangles, dim, minX, minY, invSize) } break } } } // check whether a polygon node forms a valid ear with adjacent nodes function isEar(ear) { const a = ear.prev, b = ear, c = ear.next if (area(a, b, c) >= 0) return false // reflex, can't be an ear // now make sure we don't have other points inside the potential ear let p = ear.next.next while (p !== ear.prev) { if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false p = p.next } return true } function isEarHashed(ear, minX, minY, invSize) { const a = ear.prev, b = ear, c = ear.next if (area(a, b, c) >= 0) return false // reflex, can't be an ear // triangle bbox; min & max are calculated like this for speed const minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : b.x < c.x ? b.x : c.x, minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : b.y < c.y ? b.y : c.y, maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : b.x > c.x ? b.x : c.x, maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : b.y > c.y ? b.y : c.y // z-order range for the current triangle bbox; const minZ = zOrder(minTX, minTY, minX, minY, invSize), maxZ = zOrder(maxTX, maxTY, minX, minY, invSize) let p = ear.prevZ, n = ear.nextZ // look for points inside the triangle in both directions while (p && p.z >= minZ && n && n.z <= maxZ) { if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false p = p.prevZ if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false n = n.nextZ } // look for remaining points in decreasing z-order while (p && p.z >= minZ) { if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false p = p.prevZ } // look for remaining points in increasing z-order while (n && n.z <= maxZ) { if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false n = n.nextZ } return true } // go through all polygon nodes and cure small local self-intersections function cureLocalIntersections(start, triangles, dim) { let p = start do { const a = p.prev, b = p.next.next if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) { triangles.push(a.i / dim) triangles.push(p.i / dim) triangles.push(b.i / dim) // remove two nodes involved removeNode(p) removeNode(p.next) p = start = b } p = p.next } while (p !== start) return filterPoints(p) } // try splitting polygon into two and triangulate them independently function splitEarcut(start, triangles, dim, minX, minY, invSize) { // look for a valid diagonal that divides the polygon into two let a = start do { let b = a.next.next while (b !== a.prev) { if (a.i !== b.i && isValidDiagonal(a, b)) { // split the polygon in two by the diagonal let c = splitPolygon(a, b) // filter colinear points around the cuts a = filterPoints(a, a.next) c = filterPoints(c, c.next) // run earcut on each half earcutLinked(a, triangles, dim, minX, minY, invSize) earcutLinked(c, triangles, dim, minX, minY, invSize) return } b = b.next } a = a.next } while (a !== start) } // link every hole into the outer loop, producing a single-ring polygon without holes function eliminateHoles(data, holeIndices, outerNode, dim) { const queue = [] let i, len, start, end, list for (i = 0, len = holeIndices.length; i < len; i++) { start = holeIndices[i] * dim end = i < len - 1 ? holeIndices[i + 1] * dim : data.length list = linkedList(data, start, end, dim, false) if (list === list.next) list.steiner = true queue.push(getLeftmost(list)) } queue.sort(compareX) // process holes from left to right for (i = 0; i < queue.length; i++) { eliminateHole(queue[i], outerNode) outerNode = filterPoints(outerNode, outerNode.next) } return outerNode } function compareX(a, b) { return a.x - b.x } // find a bridge between vertices that connects hole with an outer ring and link it function eliminateHole(hole, outerNode) { outerNode = findHoleBridge(hole, outerNode) if (outerNode) { const b = splitPolygon(outerNode, hole) // filter collinear points around the cuts filterPoints(outerNode, outerNode.next) filterPoints(b, b.next) } } // David Eberly's algorithm for finding a bridge between hole and outer polygon function findHoleBridge(hole, outerNode) { let p = outerNode const hx = hole.x const hy = hole.y let qx = -Infinity, m // find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point do { if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { const x = p.x + ((hy - p.y) * (p.next.x - p.x)) / (p.next.y - p.y) if (x <= hx && x > qx) { qx = x if (x === hx) { if (hy === p.y) return p if (hy === p.next.y) return p.next } m = p.x < p.next.x ? p : p.next } } p = p.next } while (p !== outerNode) if (!m) return null if (hx === qx) return m // hole touches outer segment; pick leftmost endpoint // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point const stop = m, mx = m.x, my = m.y let tanMin = Infinity, tan p = m do { if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) { tan = Math.abs(hy - p.y) / (hx - p.x) // tangential if (locallyInside(p, hole) && (tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p)))))) { m = p tanMin = tan } } p = p.next } while (p !== stop) return m } // whether sector in vertex m contains sector in vertex p in the same coordinates function sectorContainsSector(m, p) { return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0 } // interlink polygon nodes in z-order function indexCurve(start, minX, minY, invSize) { let p = start do { if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize) p.prevZ = p.prev p.nextZ = p.next p = p.next } while (p !== start) p.prevZ.nextZ = null p.prevZ = null sortLinked(p) } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html function sortLinked(list) { let i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1 do { p = list list = null tail = null numMerges = 0 while (p) { numMerges++ q = p pSize = 0 for (i = 0; i < inSize; i++) { pSize++ q = q.nextZ if (!q) break } qSize = inSize while (pSize > 0 || (qSize > 0 && q)) { if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) { e = p p = p.nextZ pSize-- } else { e = q q = q.nextZ qSize-- } if (tail) tail.nextZ = e else list = e e.prevZ = tail tail = e } p = q } tail.nextZ = null inSize *= 2 } while (numMerges > 1) return list } // z-order of a point given coords and inverse of the longer side of data bbox function zOrder(x, y, minX, minY, invSize) { // coords are transformed into non-negative 15-bit integer range x = 32767 * (x - minX) * invSize y = 32767 * (y - minY) * invSize x = (x | (x << 8)) & 0x00ff00ff x = (x | (x << 4)) & 0x0f0f0f0f x = (x | (x << 2)) & 0x33333333 x = (x | (x << 1)) & 0x55555555 y = (y | (y << 8)) & 0x00ff00ff y = (y | (y << 4)) & 0x0f0f0f0f y = (y | (y << 2)) & 0x33333333 y = (y | (y << 1)) & 0x55555555 return x | (y << 1) } // find the leftmost node of a polygon ring function getLeftmost(start) { let p = start, leftmost = start do { if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p p = p.next } while (p !== start) return leftmost } // check if a point lies within a convex triangle function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) { return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0 } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) function isValidDiagonal(a, b) { return ( a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && // doesn't intersect other edges ((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible (area(a.prev, a, b.prev) || area(a, b.prev, b))) || // does not create opposite-facing sectors (equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0)) ) // special zero-length case } // signed area of a triangle function area(p, q, r) { return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y) } // check if two points are equal function equals(p1, p2) { return p1.x === p2.x && p1.y === p2.y } // check if two segments intersect function intersects(p1, q1, p2, q2) { const o1 = sign(area(p1, q1, p2)) const o2 = sign(area(p1, q1, q2)) const o3 = sign(area(p2, q2, p1)) const o4 = sign(area(p2, q2, q1)) if (o1 !== o2 && o3 !== o4) return true // general case if (o1 === 0 && onSegment(p1, p2, q1)) return true // p1, q1 and p2 are collinear and p2 lies on p1q1 if (o2 === 0 && onSegment(p1, q2, q1)) return true // p1, q1 and q2 are collinear and q2 lies on p1q1 if (o3 === 0 && onSegment(p2, p1, q2)) return true // p2, q2 and p1 are collinear and p1 lies on p2q2 if (o4 === 0 && onSegment(p2, q1, q2)) return true // p2, q2 and q1 are collinear and q1 lies on p2q2 return false } // for collinear points p, q, r, check if point q lies on segment pr function onSegment(p, q, r) { return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y) } function sign(num) { return num > 0 ? 1 : num < 0 ? -1 : 0 } // check if a polygon diagonal intersects any polygon segments function intersectsPolygon(a, b) { let p = a do { if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true p = p.next } while (p !== a) return false } // check if a polygon diagonal is locally inside the polygon function locallyInside(a, b) { return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0 } // check if the middle point of a polygon diagonal is inside the polygon function middleInside(a, b) { let p = a, inside = false const px = (a.x + b.x) / 2, py = (a.y + b.y) / 2 do { if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < ((p.next.x - p.x) * (py - p.y)) / (p.next.y - p.y) + p.x) inside = !inside p = p.next } while (p !== a) return inside } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring function splitPolygon(a, b) { const a2 = new Node(a.i, a.x, a.y), b2 = new Node(b.i, b.x, b.y), an = a.next, bp = b.prev a.next = b b.prev = a a2.next = an an.prev = a2 b2.next = a2 a2.prev = b2 bp.next = b2 b2.prev = bp return b2 } // create a node and optionally link it with previous one (in a circular doubly linked list) function insertNode(i, x, y, last) { const p = new Node(i, x, y) if (!last) { p.prev = p p.next = p } else { p.next = last.next p.prev = last last.next.prev = p last.next = p } return p } function removeNode(p) { p.next.prev = p.prev p.prev.next = p.next if (p.prevZ) p.prevZ.nextZ = p.nextZ if (p.nextZ) p.nextZ.prevZ = p.prevZ } function Node(i, x, y) { // vertex index in coordinates array this.i = i // vertex coordinates this.x = x this.y = y // previous and next vertex nodes in a polygon ring this.prev = null this.next = null // z-order curve value this.z = null // previous and next nodes in z-order this.prevZ = null this.nextZ = null // indicates whether this is a steiner point this.steiner = false } function signedArea(data, start, end, dim) { let sum = 0 for (let i = start, j = end - dim; i < end; i += dim) { sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]) j = i } return sum } class ShapeUtils { // calculate area of the contour polygon static area(contour) { const n = contour.length let a = 0.0 for (let p = n - 1, q = 0; q < n; p = q++) { a += contour[p].x * contour[q].y - contour[q].x * contour[p].y } return a * 0.5 } static isClockWise(pts) { return ShapeUtils.area(pts) < 0 } static triangulateShape(contour, holes) { const vertices = [] // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] const holeIndices = [] // array of hole indices const faces = [] // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ] removeDupEndPts(contour) addContour(vertices, contour) // let holeIndex = contour.length holes.forEach(removeDupEndPts) for (let i = 0; i < holes.length; i++) { holeIndices.push(holeIndex) holeIndex += holes[i].length addContour(vertices, holes[i]) } // const triangles = Earcut.triangulate(vertices, holeIndices) // for (let i = 0; i < triangles.length; i += 3) { faces.push(triangles.slice(i, i + 3)) } return faces } } function removeDupEndPts(points) { const l = points.length if (l > 2 && points[l - 1].equals(points[0])) { points.pop() } } function addContour(vertices, contour) { for (let i = 0; i < contour.length; i++) { vertices.push(contour[i].x) vertices.push(contour[i].y) } } /** * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * depth: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline (including bevelOffset) is bevel * bevelOffset: , // how far from shape outline does bevel start * bevelSegments: , // number of bevel layers * * extrudePath: // curve to extrude shape along * * UVGenerator: // object that provides UV generator functions * * } */ class ExtrudeGeometry extends BufferGeometry { constructor(shapes = new Shape([new Vector2(0.5, 0.5), new Vector2(-0.5, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), options = {}) { super() this.type = 'ExtrudeGeometry' this.parameters = { shapes: shapes, options: options } shapes = Array.isArray(shapes) ? shapes : [shapes] const scope = this const verticesArray = [] const uvArray = [] for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i] addShape(shape) } // build geometry this.setAttribute('position', new Float32BufferAttribute(verticesArray, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvArray, 2)) this.computeVertexNormals() // functions function addShape(shape) { const placeholder = [] // options const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12 const steps = options.steps !== undefined ? options.steps : 1 let depth = options.depth !== undefined ? options.depth : 1 let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2 let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1 let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0 let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3 const extrudePath = options.extrudePath const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator // deprecated options if (options.amount !== undefined) { console.warn('THREE.ExtrudeBufferGeometry: amount has been renamed to depth.') depth = options.amount } // let extrudePts, extrudeByPath = false let splineTube, binormal, normal, position2 if (extrudePath) { extrudePts = extrudePath.getSpacedPoints(steps) extrudeByPath = true bevelEnabled = false // bevels not supported for path extrusion // SETUP TNB variables // TODO1 - have a .isClosed in spline? splineTube = extrudePath.computeFrenetFrames(steps, false) // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new Vector3() normal = new Vector3() position2 = new Vector3() } // Safeguards if bevels are not enabled if (!bevelEnabled) { bevelSegments = 0 bevelThickness = 0 bevelSize = 0 bevelOffset = 0 } // Variables initialization const shapePoints = shape.extractPoints(curveSegments) let vertices = shapePoints.shape const holes = shapePoints.holes const reverse = !ShapeUtils.isClockWise(vertices) if (reverse) { vertices = vertices.reverse() // Maybe we should also check if holes are in the opposite direction, just to be safe ... for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h] if (ShapeUtils.isClockWise(ahole)) { holes[h] = ahole.reverse() } } } const faces = ShapeUtils.triangulateShape(vertices, holes) /* Vertices */ const contour = vertices // vertices has all points but contour has only points of circumference for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h] vertices = vertices.concat(ahole) } function scalePt2(pt, vec, size) { if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist') return vec .clone() .multiplyScalar(size) .add(pt) } const vlen = vertices.length, flen = faces.length // Find directions for point movement function getBevelVec(inPt, inPrev, inNext) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. let v_trans_x, v_trans_y, shrink_by // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html const v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y const v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y const v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y // check for collinear edges const collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x if (Math.abs(collinear0) > Number.EPSILON) { // not collinear // length of vectors for normalizing const v_prev_len = Math.sqrt(v_prev_lensq) const v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y) // shift adjacent points by unit vectors to the left const ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len const ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len const ptNextShift_x = inNext.x - v_next_y / v_next_len const ptNextShift_y = inNext.y + v_next_x / v_next_len // scaling factor for v_prev to intersection point const sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x) // vector from inPt to intersection point v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes const v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y if (v_trans_lensq <= 2) { return new Vector2(v_trans_x, v_trans_y) } else { shrink_by = Math.sqrt(v_trans_lensq / 2) } } else { // handle special case of collinear edges let direction_eq = false // assumes: opposite if (v_prev_x > Number.EPSILON) { if (v_next_x > Number.EPSILON) { direction_eq = true } } else { if (v_prev_x < -Number.EPSILON) { if (v_next_x < -Number.EPSILON) { direction_eq = true } } else { if (Math.sign(v_prev_y) === Math.sign(v_next_y)) { direction_eq = true } } } if (direction_eq) { // console.log("Warning: lines are a straight sequence"); v_trans_x = -v_prev_y v_trans_y = v_prev_x shrink_by = Math.sqrt(v_prev_lensq) } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x v_trans_y = v_prev_y shrink_by = Math.sqrt(v_prev_lensq / 2) } } return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by) } const contourMovements = [] for (let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { if (j === il) j = 0 if (k === il) k = 0 // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]) } const holesMovements = [] let oneHoleMovements, verticesMovements = contourMovements.concat() for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h] oneHoleMovements = [] for (let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { if (j === il) j = 0 if (k === il) k = 0 // (j)---(i)---(k) oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]) } holesMovements.push(oneHoleMovements) verticesMovements = verticesMovements.concat(oneHoleMovements) } // Loop bevelSegments, 1 for the front, 1 for the back for (let b = 0; b < bevelSegments; b++) { //for ( b = bevelSegments; b > 0; b -- ) { const t = b / bevelSegments const z = bevelThickness * Math.cos((t * Math.PI) / 2) const bs = bevelSize * Math.sin((t * Math.PI) / 2) + bevelOffset // contract shape for (let i = 0, il = contour.length; i < il; i++) { const vert = scalePt2(contour[i], contourMovements[i], bs) v(vert.x, vert.y, -z) } // expand holes for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h] oneHoleMovements = holesMovements[h] for (let i = 0, il = ahole.length; i < il; i++) { const vert = scalePt2(ahole[i], oneHoleMovements[i], bs) v(vert.x, vert.y, -z) } } } const bs = bevelSize + bevelOffset // Back facing vertices for (let i = 0; i < vlen; i++) { const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i] if (!extrudeByPath) { v(vert.x, vert.y, 0) } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy(splineTube.normals[0]).multiplyScalar(vert.x) binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y) position2 .copy(extrudePts[0]) .add(normal) .add(binormal) v(position2.x, position2.y, position2.z) } } // Add stepped vertices... // Including front facing vertices for (let s = 1; s <= steps; s++) { for (let i = 0; i < vlen; i++) { const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i] if (!extrudeByPath) { v(vert.x, vert.y, (depth / steps) * s) } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy(splineTube.normals[s]).multiplyScalar(vert.x) binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y) position2 .copy(extrudePts[s]) .add(normal) .add(binormal) v(position2.x, position2.y, position2.z) } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for (let b = bevelSegments - 1; b >= 0; b--) { const t = b / bevelSegments const z = bevelThickness * Math.cos((t * Math.PI) / 2) const bs = bevelSize * Math.sin((t * Math.PI) / 2) + bevelOffset // contract shape for (let i = 0, il = contour.length; i < il; i++) { const vert = scalePt2(contour[i], contourMovements[i], bs) v(vert.x, vert.y, depth + z) } // expand holes for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h] oneHoleMovements = holesMovements[h] for (let i = 0, il = ahole.length; i < il; i++) { const vert = scalePt2(ahole[i], oneHoleMovements[i], bs) if (!extrudeByPath) { v(vert.x, vert.y, depth + z) } else { v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z) } } } } /* Faces */ // Top and bottom faces buildLidFaces() // Sides faces buildSideFaces() ///// Internal functions function buildLidFaces() { const start = verticesArray.length / 3 if (bevelEnabled) { let layer = 0 // steps + 1 let offset = vlen * layer // Bottom faces for (let i = 0; i < flen; i++) { const face = faces[i] f3(face[2] + offset, face[1] + offset, face[0] + offset) } layer = steps + bevelSegments * 2 offset = vlen * layer // Top faces for (let i = 0; i < flen; i++) { const face = faces[i] f3(face[0] + offset, face[1] + offset, face[2] + offset) } } else { // Bottom faces for (let i = 0; i < flen; i++) { const face = faces[i] f3(face[2], face[1], face[0]) } // Top faces for (let i = 0; i < flen; i++) { const face = faces[i] f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps) } } scope.addGroup(start, verticesArray.length / 3 - start, 0) } // Create faces for the z-sides of the shape function buildSideFaces() { const start = verticesArray.length / 3 let layeroffset = 0 sidewalls(contour, layeroffset) layeroffset += contour.length for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h] sidewalls(ahole, layeroffset) //, true layeroffset += ahole.length } scope.addGroup(start, verticesArray.length / 3 - start, 1) } function sidewalls(contour, layeroffset) { let i = contour.length while (--i >= 0) { const j = i let k = i - 1 if (k < 0) k = contour.length - 1 //console.log('b', i,j, i-1, k,vertices.length); for (let s = 0, sl = steps + bevelSegments * 2; s < sl; s++) { const slen1 = vlen * s const slen2 = vlen * (s + 1) const a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2 f4(a, b, c, d) } } } function v(x, y, z) { placeholder.push(x) placeholder.push(y) placeholder.push(z) } function f3(a, b, c) { addVertex(a) addVertex(b) addVertex(c) const nextIndex = verticesArray.length / 3 const uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1) addUV(uvs[0]) addUV(uvs[1]) addUV(uvs[2]) } function f4(a, b, c, d) { addVertex(a) addVertex(b) addVertex(d) addVertex(b) addVertex(c) addVertex(d) const nextIndex = verticesArray.length / 3 const uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1) addUV(uvs[0]) addUV(uvs[1]) addUV(uvs[3]) addUV(uvs[1]) addUV(uvs[2]) addUV(uvs[3]) } function addVertex(index) { verticesArray.push(placeholder[index * 3 + 0]) verticesArray.push(placeholder[index * 3 + 1]) verticesArray.push(placeholder[index * 3 + 2]) } function addUV(vector2) { uvArray.push(vector2.x) uvArray.push(vector2.y) } } } toJSON() { const data = super.toJSON() const shapes = this.parameters.shapes const options = this.parameters.options return toJSON$1(shapes, options, data) } static fromJSON(data, shapes) { const geometryShapes = [] for (let j = 0, jl = data.shapes.length; j < jl; j++) { const shape = shapes[data.shapes[j]] geometryShapes.push(shape) } const extrudePath = data.options.extrudePath if (extrudePath !== undefined) { data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath) } return new ExtrudeGeometry(geometryShapes, data.options) } } const WorldUVGenerator = { generateTopUV: function(geometry, vertices, indexA, indexB, indexC) { const a_x = vertices[indexA * 3] const a_y = vertices[indexA * 3 + 1] const b_x = vertices[indexB * 3] const b_y = vertices[indexB * 3 + 1] const c_x = vertices[indexC * 3] const c_y = vertices[indexC * 3 + 1] return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)] }, generateSideWallUV: function(geometry, vertices, indexA, indexB, indexC, indexD) { const a_x = vertices[indexA * 3] const a_y = vertices[indexA * 3 + 1] const a_z = vertices[indexA * 3 + 2] const b_x = vertices[indexB * 3] const b_y = vertices[indexB * 3 + 1] const b_z = vertices[indexB * 3 + 2] const c_x = vertices[indexC * 3] const c_y = vertices[indexC * 3 + 1] const c_z = vertices[indexC * 3 + 2] const d_x = vertices[indexD * 3] const d_y = vertices[indexD * 3 + 1] const d_z = vertices[indexD * 3 + 2] if (Math.abs(a_y - b_y) < Math.abs(a_x - b_x)) { return [new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z)] } else { return [new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z)] } } } function toJSON$1(shapes, options, data) { data.shapes = [] if (Array.isArray(shapes)) { for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i] data.shapes.push(shape.uuid) } } else { data.shapes.push(shapes.uuid) } data.options = Object.assign({}, options) if (options.extrudePath !== undefined) data.options.extrudePath = options.extrudePath.toJSON() return data } class IcosahedronGeometry extends PolyhedronGeometry { constructor(radius = 1, detail = 0) { const t = (1 + Math.sqrt(5)) / 2 const vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1] const indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ] super(vertices, indices, radius, detail) this.type = 'IcosahedronGeometry' this.parameters = { radius: radius, detail: detail } } static fromJSON(data) { return new IcosahedronGeometry(data.radius, data.detail) } } class OctahedronGeometry extends PolyhedronGeometry { constructor(radius = 1, detail = 0) { const vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1] const indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2] super(vertices, indices, radius, detail) this.type = 'OctahedronGeometry' this.parameters = { radius: radius, detail: detail } } static fromJSON(data) { return new OctahedronGeometry(data.radius, data.detail) } } class RingGeometry extends BufferGeometry { constructor(innerRadius = 0.5, outerRadius = 1, thetaSegments = 8, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2) { super() this.type = 'RingGeometry' this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength } thetaSegments = Math.max(3, thetaSegments) phiSegments = Math.max(1, phiSegments) // buffers const indices = [] const vertices = [] const normals = [] const uvs = [] // some helper variables let radius = innerRadius const radiusStep = (outerRadius - innerRadius) / phiSegments const vertex = new Vector3() const uv = new Vector2() // generate vertices, normals and uvs for (let j = 0; j <= phiSegments; j++) { for (let i = 0; i <= thetaSegments; i++) { // values are generate from the inside of the ring to the outside const segment = thetaStart + (i / thetaSegments) * thetaLength // vertex vertex.x = radius * Math.cos(segment) vertex.y = radius * Math.sin(segment) vertices.push(vertex.x, vertex.y, vertex.z) // normal normals.push(0, 0, 1) // uv uv.x = (vertex.x / outerRadius + 1) / 2 uv.y = (vertex.y / outerRadius + 1) / 2 uvs.push(uv.x, uv.y) } // increase the radius for next row of vertices radius += radiusStep } // indices for (let j = 0; j < phiSegments; j++) { const thetaSegmentLevel = j * (thetaSegments + 1) for (let i = 0; i < thetaSegments; i++) { const segment = i + thetaSegmentLevel const a = segment const b = segment + thetaSegments + 1 const c = segment + thetaSegments + 2 const d = segment + 1 // faces indices.push(a, b, d) indices.push(b, c, d) } } // build geometry this.setIndex(indices) this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) this.setAttribute('normal', new Float32BufferAttribute(normals, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)) } static fromJSON(data) { return new RingGeometry(data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength) } } class ShapeGeometry extends BufferGeometry { constructor(shapes = new Shape([new Vector2(0, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), curveSegments = 12) { super() this.type = 'ShapeGeometry' this.parameters = { shapes: shapes, curveSegments: curveSegments } // buffers const indices = [] const vertices = [] const normals = [] const uvs = [] // helper variables let groupStart = 0 let groupCount = 0 // allow single and array values for "shapes" parameter if (Array.isArray(shapes) === false) { addShape(shapes) } else { for (let i = 0; i < shapes.length; i++) { addShape(shapes[i]) this.addGroup(groupStart, groupCount, i) // enables MultiMaterial support groupStart += groupCount groupCount = 0 } } // build geometry this.setIndex(indices) this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) this.setAttribute('normal', new Float32BufferAttribute(normals, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)) // helper functions function addShape(shape) { const indexOffset = vertices.length / 3 const points = shape.extractPoints(curveSegments) let shapeVertices = points.shape const shapeHoles = points.holes // check direction of vertices if (ShapeUtils.isClockWise(shapeVertices) === false) { shapeVertices = shapeVertices.reverse() } for (let i = 0, l = shapeHoles.length; i < l; i++) { const shapeHole = shapeHoles[i] if (ShapeUtils.isClockWise(shapeHole) === true) { shapeHoles[i] = shapeHole.reverse() } } const faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles) // join vertices of inner and outer paths to a single array for (let i = 0, l = shapeHoles.length; i < l; i++) { const shapeHole = shapeHoles[i] shapeVertices = shapeVertices.concat(shapeHole) } // vertices, normals, uvs for (let i = 0, l = shapeVertices.length; i < l; i++) { const vertex = shapeVertices[i] vertices.push(vertex.x, vertex.y, 0) normals.push(0, 0, 1) uvs.push(vertex.x, vertex.y) // world uvs } // incides for (let i = 0, l = faces.length; i < l; i++) { const face = faces[i] const a = face[0] + indexOffset const b = face[1] + indexOffset const c = face[2] + indexOffset indices.push(a, b, c) groupCount += 3 } } } toJSON() { const data = super.toJSON() const shapes = this.parameters.shapes return toJSON(shapes, data) } static fromJSON(data, shapes) { const geometryShapes = [] for (let j = 0, jl = data.shapes.length; j < jl; j++) { const shape = shapes[data.shapes[j]] geometryShapes.push(shape) } return new ShapeGeometry(geometryShapes, data.curveSegments) } } function toJSON(shapes, data) { data.shapes = [] if (Array.isArray(shapes)) { for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i] data.shapes.push(shape.uuid) } } else { data.shapes.push(shapes.uuid) } return data } class SphereGeometry extends BufferGeometry { constructor(radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI) { super() this.type = 'SphereGeometry' this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength } widthSegments = Math.max(3, Math.floor(widthSegments)) heightSegments = Math.max(2, Math.floor(heightSegments)) const thetaEnd = Math.min(thetaStart + thetaLength, Math.PI) let index = 0 const grid = [] const vertex = new Vector3() const normal = new Vector3() // buffers const indices = [] const vertices = [] const normals = [] const uvs = [] // generate vertices, normals and uvs for (let iy = 0; iy <= heightSegments; iy++) { const verticesRow = [] const v = iy / heightSegments // special case for the poles let uOffset = 0 if (iy == 0 && thetaStart == 0) { uOffset = 0.5 / widthSegments } else if (iy == heightSegments && thetaEnd == Math.PI) { uOffset = -0.5 / widthSegments } for (let ix = 0; ix <= widthSegments; ix++) { const u = ix / widthSegments // vertex vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength) vertex.y = radius * Math.cos(thetaStart + v * thetaLength) vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength) vertices.push(vertex.x, vertex.y, vertex.z) // normal normal.copy(vertex).normalize() normals.push(normal.x, normal.y, normal.z) // uv uvs.push(u + uOffset, 1 - v) verticesRow.push(index++) } grid.push(verticesRow) } // indices for (let iy = 0; iy < heightSegments; iy++) { for (let ix = 0; ix < widthSegments; ix++) { const a = grid[iy][ix + 1] const b = grid[iy][ix] const c = grid[iy + 1][ix] const d = grid[iy + 1][ix + 1] if (iy !== 0 || thetaStart > 0) indices.push(a, b, d) if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d) } } // build geometry this.setIndex(indices) this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) this.setAttribute('normal', new Float32BufferAttribute(normals, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)) } static fromJSON(data) { return new SphereGeometry(data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength) } } class TetrahedronGeometry extends PolyhedronGeometry { constructor(radius = 1, detail = 0) { const vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1] const indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1] super(vertices, indices, radius, detail) this.type = 'TetrahedronGeometry' this.parameters = { radius: radius, detail: detail } } static fromJSON(data) { return new TetrahedronGeometry(data.radius, data.detail) } } class TorusGeometry extends BufferGeometry { constructor(radius = 1, tube = 0.4, radialSegments = 8, tubularSegments = 6, arc = Math.PI * 2) { super() this.type = 'TorusGeometry' this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc } radialSegments = Math.floor(radialSegments) tubularSegments = Math.floor(tubularSegments) // buffers const indices = [] const vertices = [] const normals = [] const uvs = [] // helper variables const center = new Vector3() const vertex = new Vector3() const normal = new Vector3() // generate vertices, normals and uvs for (let j = 0; j <= radialSegments; j++) { for (let i = 0; i <= tubularSegments; i++) { const u = (i / tubularSegments) * arc const v = (j / radialSegments) * Math.PI * 2 // vertex vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u) vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u) vertex.z = tube * Math.sin(v) vertices.push(vertex.x, vertex.y, vertex.z) // normal center.x = radius * Math.cos(u) center.y = radius * Math.sin(u) normal.subVectors(vertex, center).normalize() normals.push(normal.x, normal.y, normal.z) // uv uvs.push(i / tubularSegments) uvs.push(j / radialSegments) } } // generate indices for (let j = 1; j <= radialSegments; j++) { for (let i = 1; i <= tubularSegments; i++) { // indices const a = (tubularSegments + 1) * j + i - 1 const b = (tubularSegments + 1) * (j - 1) + i - 1 const c = (tubularSegments + 1) * (j - 1) + i const d = (tubularSegments + 1) * j + i // faces indices.push(a, b, d) indices.push(b, c, d) } } // build geometry this.setIndex(indices) this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) this.setAttribute('normal', new Float32BufferAttribute(normals, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)) } static fromJSON(data) { return new TorusGeometry(data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc) } } class TorusKnotGeometry extends BufferGeometry { constructor(radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3) { super() this.type = 'TorusKnotGeometry' this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q } tubularSegments = Math.floor(tubularSegments) radialSegments = Math.floor(radialSegments) // buffers const indices = [] const vertices = [] const normals = [] const uvs = [] // helper variables const vertex = new Vector3() const normal = new Vector3() const P1 = new Vector3() const P2 = new Vector3() const B = new Vector3() const T = new Vector3() const N = new Vector3() // generate vertices, normals and uvs for (let i = 0; i <= tubularSegments; ++i) { // the radian "u" is used to calculate the position on the torus curve of the current tubular segment const u = (i / tubularSegments) * p * Math.PI * 2 // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions calculatePositionOnCurve(u, p, q, radius, P1) calculatePositionOnCurve(u + 0.01, p, q, radius, P2) // calculate orthonormal basis T.subVectors(P2, P1) N.addVectors(P2, P1) B.crossVectors(T, N) N.crossVectors(B, T) // normalize B, N. T can be ignored, we don't use it B.normalize() N.normalize() for (let j = 0; j <= radialSegments; ++j) { // now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. const v = (j / radialSegments) * Math.PI * 2 const cx = -tube * Math.cos(v) const cy = tube * Math.sin(v) // now calculate the final vertex position. // first we orient the extrusion with our basis vectors, then we add it to the current position on the curve vertex.x = P1.x + (cx * N.x + cy * B.x) vertex.y = P1.y + (cx * N.y + cy * B.y) vertex.z = P1.z + (cx * N.z + cy * B.z) vertices.push(vertex.x, vertex.y, vertex.z) // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) normal.subVectors(vertex, P1).normalize() normals.push(normal.x, normal.y, normal.z) // uv uvs.push(i / tubularSegments) uvs.push(j / radialSegments) } } // generate indices for (let j = 1; j <= tubularSegments; j++) { for (let i = 1; i <= radialSegments; i++) { // indices const a = (radialSegments + 1) * (j - 1) + (i - 1) const b = (radialSegments + 1) * j + (i - 1) const c = (radialSegments + 1) * j + i const d = (radialSegments + 1) * (j - 1) + i // faces indices.push(a, b, d) indices.push(b, c, d) } } // build geometry this.setIndex(indices) this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) this.setAttribute('normal', new Float32BufferAttribute(normals, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)) // this function calculates the current position on the torus curve function calculatePositionOnCurve(u, p, q, radius, position) { const cu = Math.cos(u) const su = Math.sin(u) const quOverP = (q / p) * u const cs = Math.cos(quOverP) position.x = radius * (2 + cs) * 0.5 * cu position.y = radius * (2 + cs) * su * 0.5 position.z = radius * Math.sin(quOverP) * 0.5 } } static fromJSON(data) { return new TorusKnotGeometry(data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q) } } class TubeGeometry extends BufferGeometry { constructor(path = new QuadraticBezierCurve3(new Vector3(-1, -1, 0), new Vector3(-1, 1, 0), new Vector3(1, 1, 0)), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false) { super() this.type = 'TubeGeometry' this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed } const frames = path.computeFrenetFrames(tubularSegments, closed) // expose internals this.tangents = frames.tangents this.normals = frames.normals this.binormals = frames.binormals // helper variables const vertex = new Vector3() const normal = new Vector3() const uv = new Vector2() let P = new Vector3() // buffer const vertices = [] const normals = [] const uvs = [] const indices = [] // create buffer data generateBufferData() // build geometry this.setIndex(indices) this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) this.setAttribute('normal', new Float32BufferAttribute(normals, 3)) this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)) // functions function generateBufferData() { for (let i = 0; i < tubularSegments; i++) { generateSegment(i) } // if the geometry is not closed, generate the last row of vertices and normals // at the regular position on the given path // // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) generateSegment(closed === false ? tubularSegments : 0) // uvs are generated in a separate function. // this makes it easy compute correct values for closed geometries generateUVs() // finally create faces generateIndices() } function generateSegment(i) { // we use getPointAt to sample evenly distributed points from the given path P = path.getPointAt(i / tubularSegments, P) // retrieve corresponding normal and binormal const N = frames.normals[i] const B = frames.binormals[i] // generate normals and vertices for the current segment for (let j = 0; j <= radialSegments; j++) { const v = (j / radialSegments) * Math.PI * 2 const sin = Math.sin(v) const cos = -Math.cos(v) // normal normal.x = cos * N.x + sin * B.x normal.y = cos * N.y + sin * B.y normal.z = cos * N.z + sin * B.z normal.normalize() normals.push(normal.x, normal.y, normal.z) // vertex vertex.x = P.x + radius * normal.x vertex.y = P.y + radius * normal.y vertex.z = P.z + radius * normal.z vertices.push(vertex.x, vertex.y, vertex.z) } } function generateIndices() { for (let j = 1; j <= tubularSegments; j++) { for (let i = 1; i <= radialSegments; i++) { const a = (radialSegments + 1) * (j - 1) + (i - 1) const b = (radialSegments + 1) * j + (i - 1) const c = (radialSegments + 1) * j + i const d = (radialSegments + 1) * (j - 1) + i // faces indices.push(a, b, d) indices.push(b, c, d) } } } function generateUVs() { for (let i = 0; i <= tubularSegments; i++) { for (let j = 0; j <= radialSegments; j++) { uv.x = i / tubularSegments uv.y = j / radialSegments uvs.push(uv.x, uv.y) } } } } toJSON() { const data = super.toJSON() data.path = this.parameters.path.toJSON() return data } static fromJSON(data) { // This only works for built-in curves (e.g. CatmullRomCurve3). // User defined curves or instances of CurvePath will not be deserialized. return new TubeGeometry(new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed) } } class WireframeGeometry extends BufferGeometry { constructor(geometry = null) { super() this.type = 'WireframeGeometry' this.parameters = { geometry: geometry } if (geometry !== null) { // buffer const vertices = [] const edges = new Set() // helper variables const start = new Vector3() const end = new Vector3() if (geometry.index !== null) { // indexed BufferGeometry const position = geometry.attributes.position const indices = geometry.index let groups = geometry.groups if (groups.length === 0) { groups = [{ start: 0, count: indices.count, materialIndex: 0 }] } // create a data structure that contains all edges without duplicates for (let o = 0, ol = groups.length; o < ol; ++o) { const group = groups[o] const groupStart = group.start const groupCount = group.count for (let i = groupStart, l = groupStart + groupCount; i < l; i += 3) { for (let j = 0; j < 3; j++) { const index1 = indices.getX(i + j) const index2 = indices.getX(i + ((j + 1) % 3)) start.fromBufferAttribute(position, index1) end.fromBufferAttribute(position, index2) if (isUniqueEdge(start, end, edges) === true) { vertices.push(start.x, start.y, start.z) vertices.push(end.x, end.y, end.z) } } } } } else { // non-indexed BufferGeometry const position = geometry.attributes.position for (let i = 0, l = position.count / 3; i < l; i++) { for (let j = 0; j < 3; j++) { // three edges per triangle, an edge is represented as (index1, index2) // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0) const index1 = 3 * i + j const index2 = 3 * i + ((j + 1) % 3) start.fromBufferAttribute(position, index1) end.fromBufferAttribute(position, index2) if (isUniqueEdge(start, end, edges) === true) { vertices.push(start.x, start.y, start.z) vertices.push(end.x, end.y, end.z) } } } } // build geometry this.setAttribute('position', new Float32BufferAttribute(vertices, 3)) } } } function isUniqueEdge(start, end, edges) { const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}` const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}` // coincident edge if (edges.has(hash1) === true || edges.has(hash2) === true) { return false } else { edges.add(hash1) edges.add(hash2) return true } } var Geometries = /*#__PURE__*/ Object.freeze({ __proto__: null, BoxGeometry: BoxGeometry, BoxBufferGeometry: BoxGeometry, CapsuleGeometry: CapsuleGeometry, CapsuleBufferGeometry: CapsuleGeometry, CircleGeometry: CircleGeometry, CircleBufferGeometry: CircleGeometry, ConeGeometry: ConeGeometry, ConeBufferGeometry: ConeGeometry, CylinderGeometry: CylinderGeometry, CylinderBufferGeometry: CylinderGeometry, DodecahedronGeometry: DodecahedronGeometry, DodecahedronBufferGeometry: DodecahedronGeometry, EdgesGeometry: EdgesGeometry, ExtrudeGeometry: ExtrudeGeometry, ExtrudeBufferGeometry: ExtrudeGeometry, IcosahedronGeometry: IcosahedronGeometry, IcosahedronBufferGeometry: IcosahedronGeometry, LatheGeometry: LatheGeometry, LatheBufferGeometry: LatheGeometry, OctahedronGeometry: OctahedronGeometry, OctahedronBufferGeometry: OctahedronGeometry, PlaneGeometry: PlaneGeometry, PlaneBufferGeometry: PlaneGeometry, PolyhedronGeometry: PolyhedronGeometry, PolyhedronBufferGeometry: PolyhedronGeometry, RingGeometry: RingGeometry, RingBufferGeometry: RingGeometry, ShapeGeometry: ShapeGeometry, ShapeBufferGeometry: ShapeGeometry, SphereGeometry: SphereGeometry, SphereBufferGeometry: SphereGeometry, TetrahedronGeometry: TetrahedronGeometry, TetrahedronBufferGeometry: TetrahedronGeometry, TorusGeometry: TorusGeometry, TorusBufferGeometry: TorusGeometry, TorusKnotGeometry: TorusKnotGeometry, TorusKnotBufferGeometry: TorusKnotGeometry, TubeGeometry: TubeGeometry, TubeBufferGeometry: TubeGeometry, WireframeGeometry: WireframeGeometry }) class ShadowMaterial extends Material { constructor(parameters) { super() this.isShadowMaterial = true this.type = 'ShadowMaterial' this.color = new Color(0x000000) this.transparent = true this.fog = true this.setValues(parameters) } copy(source) { super.copy(source) this.color.copy(source.color) this.fog = source.fog return this } } class RawShaderMaterial extends ShaderMaterial { constructor(parameters) { super(parameters) this.isRawShaderMaterial = true this.type = 'RawShaderMaterial' } } class MeshStandardMaterial extends Material { constructor(parameters) { super() this.isMeshStandardMaterial = true this.defines = { STANDARD: '' } this.type = 'MeshStandardMaterial' this.color = new Color(0xffffff) // diffuse this.roughness = 1.0 this.metalness = 0.0 this.map = null this.lightMap = null this.lightMapIntensity = 1.0 this.aoMap = null this.aoMapIntensity = 1.0 this.emissive = new Color(0x000000) this.emissiveIntensity = 1.0 this.emissiveMap = null this.bumpMap = null this.bumpScale = 1 this.normalMap = null this.normalMapType = TangentSpaceNormalMap this.normalScale = new Vector2(1, 1) this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.roughnessMap = null this.metalnessMap = null this.alphaMap = null this.envMap = null this.envMapIntensity = 1.0 this.wireframe = false this.wireframeLinewidth = 1 this.wireframeLinecap = 'round' this.wireframeLinejoin = 'round' this.flatShading = false this.fog = true this.setValues(parameters) } copy(source) { super.copy(source) this.defines = { STANDARD: '' } this.color.copy(source.color) this.roughness = source.roughness this.metalness = source.metalness this.map = source.map this.lightMap = source.lightMap this.lightMapIntensity = source.lightMapIntensity this.aoMap = source.aoMap this.aoMapIntensity = source.aoMapIntensity this.emissive.copy(source.emissive) this.emissiveMap = source.emissiveMap this.emissiveIntensity = source.emissiveIntensity this.bumpMap = source.bumpMap this.bumpScale = source.bumpScale this.normalMap = source.normalMap this.normalMapType = source.normalMapType this.normalScale.copy(source.normalScale) this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias this.roughnessMap = source.roughnessMap this.metalnessMap = source.metalnessMap this.alphaMap = source.alphaMap this.envMap = source.envMap this.envMapIntensity = source.envMapIntensity this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.wireframeLinecap = source.wireframeLinecap this.wireframeLinejoin = source.wireframeLinejoin this.flatShading = source.flatShading this.fog = source.fog return this } } class MeshPhysicalMaterial extends MeshStandardMaterial { constructor(parameters) { super() this.isMeshPhysicalMaterial = true this.defines = { STANDARD: '', PHYSICAL: '' } this.type = 'MeshPhysicalMaterial' this.clearcoatMap = null this.clearcoatRoughness = 0.0 this.clearcoatRoughnessMap = null this.clearcoatNormalScale = new Vector2(1, 1) this.clearcoatNormalMap = null this.ior = 1.5 Object.defineProperty(this, 'reflectivity', { get: function() { return clamp((2.5 * (this.ior - 1)) / (this.ior + 1), 0, 1) }, set: function(reflectivity) { this.ior = (1 + 0.4 * reflectivity) / (1 - 0.4 * reflectivity) } }) this.iridescenceMap = null this.iridescenceIOR = 1.3 this.iridescenceThicknessRange = [100, 400] this.iridescenceThicknessMap = null this.sheenColor = new Color(0x000000) this.sheenColorMap = null this.sheenRoughness = 1.0 this.sheenRoughnessMap = null this.transmissionMap = null this.thickness = 0 this.thicknessMap = null this.attenuationDistance = 0.0 this.attenuationColor = new Color(1, 1, 1) this.specularIntensity = 1.0 this.specularIntensityMap = null this.specularColor = new Color(1, 1, 1) this.specularColorMap = null this._sheen = 0.0 this._clearcoat = 0 this._iridescence = 0 this._transmission = 0 this.setValues(parameters) } get sheen() { return this._sheen } set sheen(value) { if (this._sheen > 0 !== value > 0) { this.version++ } this._sheen = value } get clearcoat() { return this._clearcoat } set clearcoat(value) { if (this._clearcoat > 0 !== value > 0) { this.version++ } this._clearcoat = value } get iridescence() { return this._iridescence } set iridescence(value) { if (this._iridescence > 0 !== value > 0) { this.version++ } this._iridescence = value } get transmission() { return this._transmission } set transmission(value) { if (this._transmission > 0 !== value > 0) { this.version++ } this._transmission = value } copy(source) { super.copy(source) this.defines = { STANDARD: '', PHYSICAL: '' } this.clearcoat = source.clearcoat this.clearcoatMap = source.clearcoatMap this.clearcoatRoughness = source.clearcoatRoughness this.clearcoatRoughnessMap = source.clearcoatRoughnessMap this.clearcoatNormalMap = source.clearcoatNormalMap this.clearcoatNormalScale.copy(source.clearcoatNormalScale) this.ior = source.ior this.iridescence = source.iridescence this.iridescenceMap = source.iridescenceMap this.iridescenceIOR = source.iridescenceIOR this.iridescenceThicknessRange = [...source.iridescenceThicknessRange] this.iridescenceThicknessMap = source.iridescenceThicknessMap this.sheen = source.sheen this.sheenColor.copy(source.sheenColor) this.sheenColorMap = source.sheenColorMap this.sheenRoughness = source.sheenRoughness this.sheenRoughnessMap = source.sheenRoughnessMap this.transmission = source.transmission this.transmissionMap = source.transmissionMap this.thickness = source.thickness this.thicknessMap = source.thicknessMap this.attenuationDistance = source.attenuationDistance this.attenuationColor.copy(source.attenuationColor) this.specularIntensity = source.specularIntensity this.specularIntensityMap = source.specularIntensityMap this.specularColor.copy(source.specularColor) this.specularColorMap = source.specularColorMap return this } } class MeshPhongMaterial extends Material { constructor(parameters) { super() this.isMeshPhongMaterial = true this.type = 'MeshPhongMaterial' this.color = new Color(0xffffff) // diffuse this.specular = new Color(0x111111) this.shininess = 30 this.map = null this.lightMap = null this.lightMapIntensity = 1.0 this.aoMap = null this.aoMapIntensity = 1.0 this.emissive = new Color(0x000000) this.emissiveIntensity = 1.0 this.emissiveMap = null this.bumpMap = null this.bumpScale = 1 this.normalMap = null this.normalMapType = TangentSpaceNormalMap this.normalScale = new Vector2(1, 1) this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.specularMap = null this.alphaMap = null this.envMap = null this.combine = MultiplyOperation this.reflectivity = 1 this.refractionRatio = 0.98 this.wireframe = false this.wireframeLinewidth = 1 this.wireframeLinecap = 'round' this.wireframeLinejoin = 'round' this.flatShading = false this.fog = true this.setValues(parameters) } copy(source) { super.copy(source) this.color.copy(source.color) this.specular.copy(source.specular) this.shininess = source.shininess this.map = source.map this.lightMap = source.lightMap this.lightMapIntensity = source.lightMapIntensity this.aoMap = source.aoMap this.aoMapIntensity = source.aoMapIntensity this.emissive.copy(source.emissive) this.emissiveMap = source.emissiveMap this.emissiveIntensity = source.emissiveIntensity this.bumpMap = source.bumpMap this.bumpScale = source.bumpScale this.normalMap = source.normalMap this.normalMapType = source.normalMapType this.normalScale.copy(source.normalScale) this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias this.specularMap = source.specularMap this.alphaMap = source.alphaMap this.envMap = source.envMap this.combine = source.combine this.reflectivity = source.reflectivity this.refractionRatio = source.refractionRatio this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.wireframeLinecap = source.wireframeLinecap this.wireframeLinejoin = source.wireframeLinejoin this.flatShading = source.flatShading this.fog = source.fog return this } } class MeshToonMaterial extends Material { constructor(parameters) { super() this.isMeshToonMaterial = true this.defines = { TOON: '' } this.type = 'MeshToonMaterial' this.color = new Color(0xffffff) this.map = null this.gradientMap = null this.lightMap = null this.lightMapIntensity = 1.0 this.aoMap = null this.aoMapIntensity = 1.0 this.emissive = new Color(0x000000) this.emissiveIntensity = 1.0 this.emissiveMap = null this.bumpMap = null this.bumpScale = 1 this.normalMap = null this.normalMapType = TangentSpaceNormalMap this.normalScale = new Vector2(1, 1) this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.alphaMap = null this.wireframe = false this.wireframeLinewidth = 1 this.wireframeLinecap = 'round' this.wireframeLinejoin = 'round' this.fog = true this.setValues(parameters) } copy(source) { super.copy(source) this.color.copy(source.color) this.map = source.map this.gradientMap = source.gradientMap this.lightMap = source.lightMap this.lightMapIntensity = source.lightMapIntensity this.aoMap = source.aoMap this.aoMapIntensity = source.aoMapIntensity this.emissive.copy(source.emissive) this.emissiveMap = source.emissiveMap this.emissiveIntensity = source.emissiveIntensity this.bumpMap = source.bumpMap this.bumpScale = source.bumpScale this.normalMap = source.normalMap this.normalMapType = source.normalMapType this.normalScale.copy(source.normalScale) this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias this.alphaMap = source.alphaMap this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.wireframeLinecap = source.wireframeLinecap this.wireframeLinejoin = source.wireframeLinejoin this.fog = source.fog return this } } class MeshNormalMaterial extends Material { constructor(parameters) { super() this.isMeshNormalMaterial = true this.type = 'MeshNormalMaterial' this.bumpMap = null this.bumpScale = 1 this.normalMap = null this.normalMapType = TangentSpaceNormalMap this.normalScale = new Vector2(1, 1) this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.wireframe = false this.wireframeLinewidth = 1 this.flatShading = false this.setValues(parameters) } copy(source) { super.copy(source) this.bumpMap = source.bumpMap this.bumpScale = source.bumpScale this.normalMap = source.normalMap this.normalMapType = source.normalMapType this.normalScale.copy(source.normalScale) this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.flatShading = source.flatShading return this } } class MeshLambertMaterial extends Material { constructor(parameters) { super() this.isMeshLambertMaterial = true this.type = 'MeshLambertMaterial' this.color = new Color(0xffffff) // diffuse this.map = null this.lightMap = null this.lightMapIntensity = 1.0 this.aoMap = null this.aoMapIntensity = 1.0 this.emissive = new Color(0x000000) this.emissiveIntensity = 1.0 this.emissiveMap = null this.specularMap = null this.alphaMap = null this.envMap = null this.combine = MultiplyOperation this.reflectivity = 1 this.refractionRatio = 0.98 this.wireframe = false this.wireframeLinewidth = 1 this.wireframeLinecap = 'round' this.wireframeLinejoin = 'round' this.fog = true this.setValues(parameters) } copy(source) { super.copy(source) this.color.copy(source.color) this.map = source.map this.lightMap = source.lightMap this.lightMapIntensity = source.lightMapIntensity this.aoMap = source.aoMap this.aoMapIntensity = source.aoMapIntensity this.emissive.copy(source.emissive) this.emissiveMap = source.emissiveMap this.emissiveIntensity = source.emissiveIntensity this.specularMap = source.specularMap this.alphaMap = source.alphaMap this.envMap = source.envMap this.combine = source.combine this.reflectivity = source.reflectivity this.refractionRatio = source.refractionRatio this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.wireframeLinecap = source.wireframeLinecap this.wireframeLinejoin = source.wireframeLinejoin this.fog = source.fog return this } } class MeshMatcapMaterial extends Material { constructor(parameters) { super() this.isMeshMatcapMaterial = true this.defines = { MATCAP: '' } this.type = 'MeshMatcapMaterial' this.color = new Color(0xffffff) // diffuse this.matcap = null this.map = null this.bumpMap = null this.bumpScale = 1 this.normalMap = null this.normalMapType = TangentSpaceNormalMap this.normalScale = new Vector2(1, 1) this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.alphaMap = null this.flatShading = false this.fog = true this.setValues(parameters) } copy(source) { super.copy(source) this.defines = { MATCAP: '' } this.color.copy(source.color) this.matcap = source.matcap this.map = source.map this.bumpMap = source.bumpMap this.bumpScale = source.bumpScale this.normalMap = source.normalMap this.normalMapType = source.normalMapType this.normalScale.copy(source.normalScale) this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias this.alphaMap = source.alphaMap this.flatShading = source.flatShading this.fog = source.fog return this } } class LineDashedMaterial extends LineBasicMaterial { constructor(parameters) { super() this.isLineDashedMaterial = true this.type = 'LineDashedMaterial' this.scale = 1 this.dashSize = 3 this.gapSize = 1 this.setValues(parameters) } copy(source) { super.copy(source) this.scale = source.scale this.dashSize = source.dashSize this.gapSize = source.gapSize return this } } const materialLib = { ShadowMaterial, SpriteMaterial, RawShaderMaterial, ShaderMaterial, PointsMaterial, MeshPhysicalMaterial, MeshStandardMaterial, MeshPhongMaterial, MeshToonMaterial, MeshNormalMaterial, MeshLambertMaterial, MeshDepthMaterial, MeshDistanceMaterial, MeshBasicMaterial, MeshMatcapMaterial, LineDashedMaterial, LineBasicMaterial, Material } Material.fromType = function(type) { return new materialLib[type]() } const AnimationUtils = { // same as Array.prototype.slice, but also works on typed arrays arraySlice: function(array, from, to) { if (AnimationUtils.isTypedArray(array)) { // in ios9 array.subarray(from, undefined) will return empty array // but array.subarray(from) or array.subarray(from, len) is correct return new array.constructor(array.subarray(from, to !== undefined ? to : array.length)) } return array.slice(from, to) }, // converts an array to a specific type convertArray: function(array, type, forceClone) { if ( !array || // let 'undefined' and 'null' pass (!forceClone && array.constructor === type) ) return array if (typeof type.BYTES_PER_ELEMENT === 'number') { return new type(array) // create typed array } return Array.prototype.slice.call(array) // create Array }, isTypedArray: function(object) { return ArrayBuffer.isView(object) && !(object instanceof DataView) }, // returns an array by which times and values can be sorted getKeyframeOrder: function(times) { function compareTime(i, j) { return times[i] - times[j] } const n = times.length const result = new Array(n) for (let i = 0; i !== n; ++i) result[i] = i result.sort(compareTime) return result }, // uses the array previously returned by 'getKeyframeOrder' to sort data sortedArray: function(values, stride, order) { const nValues = values.length const result = new values.constructor(nValues) for (let i = 0, dstOffset = 0; dstOffset !== nValues; ++i) { const srcOffset = order[i] * stride for (let j = 0; j !== stride; ++j) { result[dstOffset++] = values[srcOffset + j] } } return result }, // function for parsing AOS keyframe formats flattenJSON: function(jsonKeys, times, values, valuePropertyName) { let i = 1, key = jsonKeys[0] while (key !== undefined && key[valuePropertyName] === undefined) { key = jsonKeys[i++] } if (key === undefined) return // no data let value = key[valuePropertyName] if (value === undefined) return // no data if (Array.isArray(value)) { do { value = key[valuePropertyName] if (value !== undefined) { times.push(key.time) values.push.apply(values, value) // push all elements } key = jsonKeys[i++] } while (key !== undefined) } else if (value.toArray !== undefined) { // ...assume THREE.Math-ish do { value = key[valuePropertyName] if (value !== undefined) { times.push(key.time) value.toArray(values, values.length) } key = jsonKeys[i++] } while (key !== undefined) } else { // otherwise push as-is do { value = key[valuePropertyName] if (value !== undefined) { times.push(key.time) values.push(value) } key = jsonKeys[i++] } while (key !== undefined) } }, subclip: function(sourceClip, name, startFrame, endFrame, fps = 30) { const clip = sourceClip.clone() clip.name = name const tracks = [] for (let i = 0; i < clip.tracks.length; ++i) { const track = clip.tracks[i] const valueSize = track.getValueSize() const times = [] const values = [] for (let j = 0; j < track.times.length; ++j) { const frame = track.times[j] * fps if (frame < startFrame || frame >= endFrame) continue times.push(track.times[j]) for (let k = 0; k < valueSize; ++k) { values.push(track.values[j * valueSize + k]) } } if (times.length === 0) continue track.times = AnimationUtils.convertArray(times, track.times.constructor) track.values = AnimationUtils.convertArray(values, track.values.constructor) tracks.push(track) } clip.tracks = tracks // find minimum .times value across all tracks in the trimmed clip let minStartTime = Infinity for (let i = 0; i < clip.tracks.length; ++i) { if (minStartTime > clip.tracks[i].times[0]) { minStartTime = clip.tracks[i].times[0] } } // shift all tracks such that clip begins at t=0 for (let i = 0; i < clip.tracks.length; ++i) { clip.tracks[i].shift(-1 * minStartTime) } clip.resetDuration() return clip }, makeClipAdditive: function(targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30) { if (fps <= 0) fps = 30 const numTracks = referenceClip.tracks.length const referenceTime = referenceFrame / fps // Make each track's values relative to the values at the reference frame for (let i = 0; i < numTracks; ++i) { const referenceTrack = referenceClip.tracks[i] const referenceTrackType = referenceTrack.ValueTypeName // Skip this track if it's non-numeric if (referenceTrackType === 'bool' || referenceTrackType === 'string') continue // Find the track in the target clip whose name and type matches the reference track const targetTrack = targetClip.tracks.find(function(track) { return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType }) if (targetTrack === undefined) continue let referenceOffset = 0 const referenceValueSize = referenceTrack.getValueSize() if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) { referenceOffset = referenceValueSize / 3 } let targetOffset = 0 const targetValueSize = targetTrack.getValueSize() if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) { targetOffset = targetValueSize / 3 } const lastIndex = referenceTrack.times.length - 1 let referenceValue // Find the value to subtract out of the track if (referenceTime <= referenceTrack.times[0]) { // Reference frame is earlier than the first keyframe, so just use the first keyframe const startIndex = referenceOffset const endIndex = referenceValueSize - referenceOffset referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex) } else if (referenceTime >= referenceTrack.times[lastIndex]) { // Reference frame is after the last keyframe, so just use the last keyframe const startIndex = lastIndex * referenceValueSize + referenceOffset const endIndex = startIndex + referenceValueSize - referenceOffset referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex) } else { // Interpolate to the reference value const interpolant = referenceTrack.createInterpolant() const startIndex = referenceOffset const endIndex = referenceValueSize - referenceOffset interpolant.evaluate(referenceTime) referenceValue = AnimationUtils.arraySlice(interpolant.resultBuffer, startIndex, endIndex) } // Conjugate the quaternion if (referenceTrackType === 'quaternion') { const referenceQuat = new Quaternion() .fromArray(referenceValue) .normalize() .conjugate() referenceQuat.toArray(referenceValue) } // Subtract the reference value from all of the track values const numTimes = targetTrack.times.length for (let j = 0; j < numTimes; ++j) { const valueStart = j * targetValueSize + targetOffset if (referenceTrackType === 'quaternion') { // Multiply the conjugate for quaternion track types Quaternion.multiplyQuaternionsFlat(targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart) } else { const valueEnd = targetValueSize - targetOffset * 2 // Subtract each value for all other numeric track types for (let k = 0; k < valueEnd; ++k) { targetTrack.values[valueStart + k] -= referenceValue[k] } } } } targetClip.blendMode = AdditiveAnimationBlendMode return targetClip } } /** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * */ class Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { this.parameterPositions = parameterPositions this._cachedIndex = 0 this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize) this.sampleValues = sampleValues this.valueSize = sampleSize this.settings = null this.DefaultSettings_ = {} } evaluate(t) { const pp = this.parameterPositions let i1 = this._cachedIndex, t1 = pp[i1], t0 = pp[i1 - 1] validate_interval: { seek: { let right linear_scan: { //- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if (!(t < t1)) { for (let giveUpAt = i1 + 2; ; ) { if (t1 === undefined) { if (t < t0) break forward_scan // after end i1 = pp.length this._cachedIndex = i1 return this.copySampleValue_(i1 - 1) } if (i1 === giveUpAt) break // this loop t0 = t1 t1 = pp[++i1] if (t < t1) { // we have arrived at the sought interval break seek } } // prepare binary search on the right side of the index right = pp.length break linear_scan } //- slower code: //- if ( t < t0 || t0 === undefined ) { if (!(t >= t0)) { // looping? const t1global = pp[1] if (t < t1global) { i1 = 2 // + 1, using the scan for the details t0 = t1global } // linear reverse scan for (let giveUpAt = i1 - 2; ; ) { if (t0 === undefined) { // before start this._cachedIndex = 0 return this.copySampleValue_(0) } if (i1 === giveUpAt) break // this loop t1 = t0 t0 = pp[--i1 - 1] if (t >= t0) { // we have arrived at the sought interval break seek } } // prepare binary search on the left side of the index right = i1 i1 = 0 break linear_scan } // the interval is valid break validate_interval } // linear scan // binary search while (i1 < right) { const mid = (i1 + right) >>> 1 if (t < pp[mid]) { right = mid } else { i1 = mid + 1 } } t1 = pp[i1] t0 = pp[i1 - 1] // check boundary cases, again if (t0 === undefined) { this._cachedIndex = 0 return this.copySampleValue_(0) } if (t1 === undefined) { i1 = pp.length this._cachedIndex = i1 return this.copySampleValue_(i1 - 1) } } // seek this._cachedIndex = i1 this.intervalChanged_(i1, t0, t1) } // validate_interval return this.interpolate_(i1, t0, t, t1) } getSettings_() { return this.settings || this.DefaultSettings_ } copySampleValue_(index) { // copies a sample value to the result buffer const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride for (let i = 0; i !== stride; ++i) { result[i] = values[offset + i] } return result } // Template methods for derived classes: interpolate_(/* i1, t0, t, t1 */) { throw new Error('call to abstract method') // implementations shall return this.resultBuffer } intervalChanged_(/* i1, t0, t1 */) { // empty } } /** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. */ class CubicInterpolant extends Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer) this._weightPrev = -0 this._offsetPrev = -0 this._weightNext = -0 this._offsetNext = -0 this.DefaultSettings_ = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding } } intervalChanged_(i1, t0, t1) { const pp = this.parameterPositions let iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[iPrev], tNext = pp[iNext] if (tPrev === undefined) { switch (this.getSettings_().endingStart) { case ZeroSlopeEnding: // f'(t0) = 0 iPrev = i1 tPrev = 2 * t0 - t1 break case WrapAroundEnding: // use the other end of the curve iPrev = pp.length - 2 tPrev = t0 + pp[iPrev] - pp[iPrev + 1] break default: // ZeroCurvatureEnding // f''(t0) = 0 a.k.a. Natural Spline iPrev = i1 tPrev = t1 } } if (tNext === undefined) { switch (this.getSettings_().endingEnd) { case ZeroSlopeEnding: // f'(tN) = 0 iNext = i1 tNext = 2 * t1 - t0 break case WrapAroundEnding: // use the other end of the curve iNext = 1 tNext = t1 + pp[1] - pp[0] break default: // ZeroCurvatureEnding // f''(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1 tNext = t0 } } const halfDt = (t1 - t0) * 0.5, stride = this.valueSize this._weightPrev = halfDt / (t0 - tPrev) this._weightNext = halfDt / (tNext - t1) this._offsetPrev = iPrev * stride this._offsetNext = iNext * stride } interpolate_(i1, t0, t, t1) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = (t - t0) / (t1 - t0), pp = p * p, ppp = pp * p // evaluate polynomials const sP = -wP * ppp + 2 * wP * pp - wP * p const s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1 const s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p const sN = wN * ppp - wN * pp // combine data linearly for (let i = 0; i !== stride; ++i) { result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i] } return result } } class LinearInterpolant extends Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer) } interpolate_(i1, t0, t, t1) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = (t - t0) / (t1 - t0), weight0 = 1 - weight1 for (let i = 0; i !== stride; ++i) { result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1 } return result } } /** * * Interpolant that evaluates to the sample value at the position preceding * the parameter. */ class DiscreteInterpolant extends Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer) } interpolate_(i1 /*, t0, t, t1 */) { return this.copySampleValue_(i1 - 1) } } class KeyframeTrack { constructor(name, times, values, interpolation) { if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined') if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name) this.name = name this.times = AnimationUtils.convertArray(times, this.TimeBufferType) this.values = AnimationUtils.convertArray(values, this.ValueBufferType) this.setInterpolation(interpolation || this.DefaultInterpolation) } // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): static toJSON(track) { const trackType = track.constructor let json // derived classes can define a static toJSON method if (trackType.toJSON !== this.toJSON) { json = trackType.toJSON(track) } else { // by default, we assume the data can be serialized as-is json = { name: track.name, times: AnimationUtils.convertArray(track.times, Array), values: AnimationUtils.convertArray(track.values, Array) } const interpolation = track.getInterpolation() if (interpolation !== track.DefaultInterpolation) { json.interpolation = interpolation } } json.type = track.ValueTypeName // mandatory return json } InterpolantFactoryMethodDiscrete(result) { return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result) } InterpolantFactoryMethodLinear(result) { return new LinearInterpolant(this.times, this.values, this.getValueSize(), result) } InterpolantFactoryMethodSmooth(result) { return new CubicInterpolant(this.times, this.values, this.getValueSize(), result) } setInterpolation(interpolation) { let factoryMethod switch (interpolation) { case InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete break case InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear break case InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth break } if (factoryMethod === undefined) { const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name if (this.createInterpolant === undefined) { // fall back to default, unless the default itself is messed up if (interpolation !== this.DefaultInterpolation) { this.setInterpolation(this.DefaultInterpolation) } else { throw new Error(message) // fatal, in this case } } console.warn('THREE.KeyframeTrack:', message) return this } this.createInterpolant = factoryMethod return this } getInterpolation() { switch (this.createInterpolant) { case this.InterpolantFactoryMethodDiscrete: return InterpolateDiscrete case this.InterpolantFactoryMethodLinear: return InterpolateLinear case this.InterpolantFactoryMethodSmooth: return InterpolateSmooth } } getValueSize() { return this.values.length / this.times.length } // move all keyframes either forwards or backwards in time shift(timeOffset) { if (timeOffset !== 0.0) { const times = this.times for (let i = 0, n = times.length; i !== n; ++i) { times[i] += timeOffset } } return this } // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale(timeScale) { if (timeScale !== 1.0) { const times = this.times for (let i = 0, n = times.length; i !== n; ++i) { times[i] *= timeScale } } return this } // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim(startTime, endTime) { const times = this.times, nKeys = times.length let from = 0, to = nKeys - 1 while (from !== nKeys && times[from] < startTime) { ++from } while (to !== -1 && times[to] > endTime) { --to } ++to // inclusive -> exclusive bound if (from !== 0 || to !== nKeys) { // empty tracks are forbidden, so keep at least one keyframe if (from >= to) { to = Math.max(to, 1) from = to - 1 } const stride = this.getValueSize() this.times = AnimationUtils.arraySlice(times, from, to) this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride) } return this } // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate() { let valid = true const valueSize = this.getValueSize() if (valueSize - Math.floor(valueSize) !== 0) { console.error('THREE.KeyframeTrack: Invalid value size in track.', this) valid = false } const times = this.times, values = this.values, nKeys = times.length if (nKeys === 0) { console.error('THREE.KeyframeTrack: Track is empty.', this) valid = false } let prevTime = null for (let i = 0; i !== nKeys; i++) { const currTime = times[i] if (typeof currTime === 'number' && isNaN(currTime)) { console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime) valid = false break } if (prevTime !== null && prevTime > currTime) { console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime) valid = false break } prevTime = currTime } if (values !== undefined) { if (AnimationUtils.isTypedArray(values)) { for (let i = 0, n = values.length; i !== n; ++i) { const value = values[i] if (isNaN(value)) { console.error('THREE.KeyframeTrack: Value is not a valid number.', this, i, value) valid = false break } } } } return valid } // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize() { // times or values may be shared with other tracks, so overwriting is unsafe const times = AnimationUtils.arraySlice(this.times), values = AnimationUtils.arraySlice(this.values), stride = this.getValueSize(), smoothInterpolation = this.getInterpolation() === InterpolateSmooth, lastIndex = times.length - 1 let writeIndex = 1 for (let i = 1; i < lastIndex; ++i) { let keep = false const time = times[i] const timeNext = times[i + 1] // remove adjacent keyframes scheduled at the same time if (time !== timeNext && (i !== 1 || time !== times[0])) { if (!smoothInterpolation) { // remove unnecessary keyframes same as their neighbors const offset = i * stride, offsetP = offset - stride, offsetN = offset + stride for (let j = 0; j !== stride; ++j) { const value = values[offset + j] if (value !== values[offsetP + j] || value !== values[offsetN + j]) { keep = true break } } } else { keep = true } } // in-place compaction if (keep) { if (i !== writeIndex) { times[writeIndex] = times[i] const readOffset = i * stride, writeOffset = writeIndex * stride for (let j = 0; j !== stride; ++j) { values[writeOffset + j] = values[readOffset + j] } } ++writeIndex } } // flush last keyframe (compaction looks ahead) if (lastIndex > 0) { times[writeIndex] = times[lastIndex] for (let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j) { values[writeOffset + j] = values[readOffset + j] } ++writeIndex } if (writeIndex !== times.length) { this.times = AnimationUtils.arraySlice(times, 0, writeIndex) this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride) } else { this.times = times this.values = values } return this } clone() { const times = AnimationUtils.arraySlice(this.times, 0) const values = AnimationUtils.arraySlice(this.values, 0) const TypedKeyframeTrack = this.constructor const track = new TypedKeyframeTrack(this.name, times, values) // Interpolant argument to constructor is not saved, so copy the factory method directly. track.createInterpolant = this.createInterpolant return track } } KeyframeTrack.prototype.TimeBufferType = Float32Array KeyframeTrack.prototype.ValueBufferType = Float32Array KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear /** * A Track of Boolean keyframe values. */ class BooleanKeyframeTrack extends KeyframeTrack {} BooleanKeyframeTrack.prototype.ValueTypeName = 'bool' BooleanKeyframeTrack.prototype.ValueBufferType = Array BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined /** * A Track of keyframe values that represent color. */ class ColorKeyframeTrack extends KeyframeTrack {} ColorKeyframeTrack.prototype.ValueTypeName = 'color' /** * A Track of numeric keyframe values. */ class NumberKeyframeTrack extends KeyframeTrack {} NumberKeyframeTrack.prototype.ValueTypeName = 'number' /** * Spherical linear unit quaternion interpolant. */ class QuaternionLinearInterpolant extends Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer) } interpolate_(i1, t0, t, t1) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, alpha = (t - t0) / (t1 - t0) let offset = i1 * stride for (let end = offset + stride; offset !== end; offset += 4) { Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha) } return result } } /** * A Track of quaternion keyframe values. */ class QuaternionKeyframeTrack extends KeyframeTrack { InterpolantFactoryMethodLinear(result) { return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result) } } QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion' // ValueBufferType is inherited QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined /** * A Track that interpolates Strings */ class StringKeyframeTrack extends KeyframeTrack {} StringKeyframeTrack.prototype.ValueTypeName = 'string' StringKeyframeTrack.prototype.ValueBufferType = Array StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined /** * A Track of vectored keyframe values. */ class VectorKeyframeTrack extends KeyframeTrack {} VectorKeyframeTrack.prototype.ValueTypeName = 'vector' class AnimationClip { constructor(name, duration = -1, tracks, blendMode = NormalAnimationBlendMode) { this.name = name this.tracks = tracks this.duration = duration this.blendMode = blendMode this.uuid = generateUUID() // this means it should figure out its duration by scanning the tracks if (this.duration < 0) { this.resetDuration() } } static parse(json) { const tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / (json.fps || 1.0) for (let i = 0, n = jsonTracks.length; i !== n; ++i) { tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime)) } const clip = new this(json.name, json.duration, tracks, json.blendMode) clip.uuid = json.uuid return clip } static toJSON(clip) { const tracks = [], clipTracks = clip.tracks const json = { name: clip.name, duration: clip.duration, tracks: tracks, uuid: clip.uuid, blendMode: clip.blendMode } for (let i = 0, n = clipTracks.length; i !== n; ++i) { tracks.push(KeyframeTrack.toJSON(clipTracks[i])) } return json } static CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) { const numMorphTargets = morphTargetSequence.length const tracks = [] for (let i = 0; i < numMorphTargets; i++) { let times = [] let values = [] times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets) values.push(0, 1, 0) const order = AnimationUtils.getKeyframeOrder(times) times = AnimationUtils.sortedArray(times, 1, order) values = AnimationUtils.sortedArray(values, 1, order) // if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if (!noLoop && times[0] === 0) { times.push(numMorphTargets) values.push(values[0]) } tracks.push(new NumberKeyframeTrack('.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values).scale(1.0 / fps)) } return new this(name, -1, tracks) } static findByName(objectOrClipArray, name) { let clipArray = objectOrClipArray if (!Array.isArray(objectOrClipArray)) { const o = objectOrClipArray clipArray = (o.geometry && o.geometry.animations) || o.animations } for (let i = 0; i < clipArray.length; i++) { if (clipArray[i].name === name) { return clipArray[i] } } return null } static CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) { const animationToMorphTargets = {} // tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 const pattern = /^([\w-]*?)([\d]+)$/ // sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for (let i = 0, il = morphTargets.length; i < il; i++) { const morphTarget = morphTargets[i] const parts = morphTarget.name.match(pattern) if (parts && parts.length > 1) { const name = parts[1] let animationMorphTargets = animationToMorphTargets[name] if (!animationMorphTargets) { animationToMorphTargets[name] = animationMorphTargets = [] } animationMorphTargets.push(morphTarget) } } const clips = [] for (const name in animationToMorphTargets) { clips.push(this.CreateFromMorphTargetSequence(name, animationToMorphTargets[name], fps, noLoop)) } return clips } // parse the animation.hierarchy format static parseAnimation(animation, bones) { if (!animation) { console.error('THREE.AnimationClip: No animation in JSONLoader data.') return null } const addNonemptyTrack = function(trackType, trackName, animationKeys, propertyName, destTracks) { // only return track if there are actually keys. if (animationKeys.length !== 0) { const times = [] const values = [] AnimationUtils.flattenJSON(animationKeys, times, values, propertyName) // empty keys are filtered out, so check again if (times.length !== 0) { destTracks.push(new trackType(trackName, times, values)) } } } const tracks = [] const clipName = animation.name || 'default' const fps = animation.fps || 30 const blendMode = animation.blendMode // automatic length determination in AnimationClip. let duration = animation.length || -1 const hierarchyTracks = animation.hierarchy || [] for (let h = 0; h < hierarchyTracks.length; h++) { const animationKeys = hierarchyTracks[h].keys // skip empty tracks if (!animationKeys || animationKeys.length === 0) continue // process morph targets if (animationKeys[0].morphTargets) { // figure out all morph targets used in this track const morphTargetNames = {} let k for (k = 0; k < animationKeys.length; k++) { if (animationKeys[k].morphTargets) { for (let m = 0; m < animationKeys[k].morphTargets.length; m++) { morphTargetNames[animationKeys[k].morphTargets[m]] = -1 } } } // create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for (const morphTargetName in morphTargetNames) { const times = [] const values = [] for (let m = 0; m !== animationKeys[k].morphTargets.length; ++m) { const animationKey = animationKeys[k] times.push(animationKey.time) values.push(animationKey.morphTarget === morphTargetName ? 1 : 0) } tracks.push(new NumberKeyframeTrack('.morphTargetInfluence[' + morphTargetName + ']', times, values)) } duration = morphTargetNames.length * fps } else { // ...assume skeletal animation const boneName = '.bones[' + bones[h].name + ']' addNonemptyTrack(VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks) addNonemptyTrack(QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks) addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks) } } if (tracks.length === 0) { return null } const clip = new this(clipName, duration, tracks, blendMode) return clip } resetDuration() { const tracks = this.tracks let duration = 0 for (let i = 0, n = tracks.length; i !== n; ++i) { const track = this.tracks[i] duration = Math.max(duration, track.times[track.times.length - 1]) } this.duration = duration return this } trim() { for (let i = 0; i < this.tracks.length; i++) { this.tracks[i].trim(0, this.duration) } return this } validate() { let valid = true for (let i = 0; i < this.tracks.length; i++) { valid = valid && this.tracks[i].validate() } return valid } optimize() { for (let i = 0; i < this.tracks.length; i++) { this.tracks[i].optimize() } return this } clone() { const tracks = [] for (let i = 0; i < this.tracks.length; i++) { tracks.push(this.tracks[i].clone()) } return new this.constructor(this.name, this.duration, tracks, this.blendMode) } toJSON() { return this.constructor.toJSON(this) } } function getTrackTypeForValueTypeName(typeName) { switch (typeName.toLowerCase()) { case 'scalar': case 'double': case 'float': case 'number': case 'integer': return NumberKeyframeTrack case 'vector': case 'vector2': case 'vector3': case 'vector4': return VectorKeyframeTrack case 'color': return ColorKeyframeTrack case 'quaternion': return QuaternionKeyframeTrack case 'bool': case 'boolean': return BooleanKeyframeTrack case 'string': return StringKeyframeTrack } throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName) } function parseKeyframeTrack(json) { if (json.type === undefined) { throw new Error('THREE.KeyframeTrack: track type undefined, can not parse') } const trackType = getTrackTypeForValueTypeName(json.type) if (json.times === undefined) { const times = [], values = [] AnimationUtils.flattenJSON(json.keys, times, values, 'value') json.times = times json.values = values } // derived classes can define a static parse method if (trackType.parse !== undefined) { return trackType.parse(json) } else { // by default, we assume a constructor compatible with the base return new trackType(json.name, json.times, json.values, json.interpolation) } } const Cache = { enabled: false, files: {}, add: function(key, file) { if (this.enabled === false) return // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[key] = file }, get: function(key) { if (this.enabled === false) return // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[key] }, remove: function(key) { delete this.files[key] }, clear: function() { this.files = {} } } class LoadingManager { constructor(onLoad, onProgress, onError) { const scope = this let isLoading = false let itemsLoaded = 0 let itemsTotal = 0 let urlModifier = undefined const handlers = [] // Refer to #5689 for the reason why we don't set .onStart // in the constructor this.onStart = undefined this.onLoad = onLoad this.onProgress = onProgress this.onError = onError this.itemStart = function(url) { itemsTotal++ if (isLoading === false) { if (scope.onStart !== undefined) { scope.onStart(url, itemsLoaded, itemsTotal) } } isLoading = true } this.itemEnd = function(url) { itemsLoaded++ if (scope.onProgress !== undefined) { scope.onProgress(url, itemsLoaded, itemsTotal) } if (itemsLoaded === itemsTotal) { isLoading = false if (scope.onLoad !== undefined) { scope.onLoad() } } } this.itemError = function(url) { if (scope.onError !== undefined) { scope.onError(url) } } this.resolveURL = function(url) { if (urlModifier) { return urlModifier(url) } return url } this.setURLModifier = function(transform) { urlModifier = transform return this } this.addHandler = function(regex, loader) { handlers.push(regex, loader) return this } this.removeHandler = function(regex) { const index = handlers.indexOf(regex) if (index !== -1) { handlers.splice(index, 2) } return this } this.getHandler = function(file) { for (let i = 0, l = handlers.length; i < l; i += 2) { const regex = handlers[i] const loader = handlers[i + 1] if (regex.global) regex.lastIndex = 0 // see #17920 if (regex.test(file)) { return loader } } return null } } } const DefaultLoadingManager = new LoadingManager() class Loader { constructor(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager this.crossOrigin = 'anonymous' this.withCredentials = false this.path = '' this.resourcePath = '' this.requestHeader = {} } load(/* url, onLoad, onProgress, onError */) {} loadAsync(url, onProgress) { const scope = this return new Promise(function(resolve, reject) { scope.load(url, resolve, onProgress, reject) }) } parse(/* data */) {} setCrossOrigin(crossOrigin) { this.crossOrigin = crossOrigin return this } setWithCredentials(value) { this.withCredentials = value return this } setPath(path) { this.path = path return this } setResourcePath(resourcePath) { this.resourcePath = resourcePath return this } setRequestHeader(requestHeader) { this.requestHeader = requestHeader return this } } const loading = {} class FileLoader extends Loader { constructor(manager) { super(manager) } load(url, onLoad, onProgress, onError) { if (url === undefined) url = '' if (this.path !== undefined) url = this.path + url url = this.manager.resolveURL(url) const cached = Cache.get(url) if (cached !== undefined) { this.manager.itemStart(url) setTimeout(() => { if (onLoad) onLoad(cached) this.manager.itemEnd(url) }, 0) return cached } // Check if request is duplicate if (loading[url] !== undefined) { loading[url].push({ onLoad: onLoad, onProgress: onProgress, onError: onError }) return } // Initialise array for duplicate requests loading[url] = [] loading[url].push({ onLoad: onLoad, onProgress: onProgress, onError: onError }) // create request const req = new Request(url, { headers: new Headers(this.requestHeader), credentials: this.withCredentials ? 'include' : 'same-origin' // An abort controller could be added within a future PR }) // record states ( avoid data race ) const mimeType = this.mimeType const responseType = this.responseType // start the fetch fetch(req) .then(response => { if (response.status === 200 || response.status === 0) { // Some browsers return HTTP Status 0 when using non-http protocol // e.g. 'file://' or 'data://'. Handle as success. if (response.status === 0) { console.warn('THREE.FileLoader: HTTP Status 0 received.') } // Workaround: Checking if response.body === undefined for Alipay browser #23548 if (typeof ReadableStream === 'undefined' || response.body === undefined || response.body.getReader === undefined) { return response } const callbacks = loading[url] const reader = response.body.getReader() const contentLength = response.headers.get('Content-Length') const total = contentLength ? parseInt(contentLength) : 0 const lengthComputable = total !== 0 let loaded = 0 // periodically read data into the new stream tracking while download progress const stream = new ReadableStream({ start(controller) { readData() function readData() { reader.read().then(({ done, value }) => { if (done) { controller.close() } else { loaded += value.byteLength const event = new ProgressEvent('progress', { lengthComputable, loaded, total }) for (let i = 0, il = callbacks.length; i < il; i++) { const callback = callbacks[i] if (callback.onProgress) callback.onProgress(event) } controller.enqueue(value) readData() } }) } } }) return new Response(stream) } else { throw Error(`fetch for "${response.url}" responded with ${response.status}: ${response.statusText}`) } }) .then(response => { switch (responseType) { case 'arraybuffer': return response.arrayBuffer() case 'blob': return response.blob() case 'document': return response.text().then(text => { const parser = new DOMParser() return parser.parseFromString(text, mimeType) }) case 'json': return response.json() default: if (mimeType === undefined) { return response.text() } else { // sniff encoding const re = /charset="?([^;"\s]*)"?/i const exec = re.exec(mimeType) const label = exec && exec[1] ? exec[1].toLowerCase() : undefined const decoder = new TextDecoder(label) return response.arrayBuffer().then(ab => decoder.decode(ab)) } } }) .then(data => { // Add to cache only on HTTP success, so that we do not cache // error response bodies as proper responses to requests. Cache.add(url, data) const callbacks = loading[url] delete loading[url] for (let i = 0, il = callbacks.length; i < il; i++) { const callback = callbacks[i] if (callback.onLoad) callback.onLoad(data) } }) .catch(err => { // Abort errors and other errors are handled the same const callbacks = loading[url] if (callbacks === undefined) { // When onLoad was called and url was deleted in `loading` this.manager.itemError(url) throw err } delete loading[url] for (let i = 0, il = callbacks.length; i < il; i++) { const callback = callbacks[i] if (callback.onError) callback.onError(err) } this.manager.itemError(url) }) .finally(() => { this.manager.itemEnd(url) }) this.manager.itemStart(url) } setResponseType(value) { this.responseType = value return this } setMimeType(value) { this.mimeType = value return this } } class AnimationLoader extends Loader { constructor(manager) { super(manager) } load(url, onLoad, onProgress, onError) { const scope = this const loader = new FileLoader(this.manager) loader.setPath(this.path) loader.setRequestHeader(this.requestHeader) loader.setWithCredentials(this.withCredentials) loader.load( url, function(text) { try { onLoad(scope.parse(JSON.parse(text))) } catch (e) { if (onError) { onError(e) } else { console.error(e) } scope.manager.itemError(url) } }, onProgress, onError ) } parse(json) { const animations = [] for (let i = 0; i < json.length; i++) { const clip = AnimationClip.parse(json[i]) animations.push(clip) } return animations } } /** * Abstract Base class to block based textures loader (dds, pvr, ...) * * Sub classes have to implement the parse() method which will be used in load(). */ class CompressedTextureLoader extends Loader { constructor(manager) { super(manager) } load(url, onLoad, onProgress, onError) { const scope = this const images = [] const texture = new CompressedTexture() const loader = new FileLoader(this.manager) loader.setPath(this.path) loader.setResponseType('arraybuffer') loader.setRequestHeader(this.requestHeader) loader.setWithCredentials(scope.withCredentials) let loaded = 0 function loadTexture(i) { loader.load( url[i], function(buffer) { const texDatas = scope.parse(buffer, true) images[i] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps } loaded += 1 if (loaded === 6) { if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter texture.image = images texture.format = texDatas.format texture.needsUpdate = true if (onLoad) onLoad(texture) } }, onProgress, onError ) } if (Array.isArray(url)) { for (let i = 0, il = url.length; i < il; ++i) { loadTexture(i) } } else { // compressed cubemap texture stored in a single DDS file loader.load( url, function(buffer) { const texDatas = scope.parse(buffer, true) if (texDatas.isCubemap) { const faces = texDatas.mipmaps.length / texDatas.mipmapCount for (let f = 0; f < faces; f++) { images[f] = { mipmaps: [] } for (let i = 0; i < texDatas.mipmapCount; i++) { images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]) images[f].format = texDatas.format images[f].width = texDatas.width images[f].height = texDatas.height } } texture.image = images } else { texture.image.width = texDatas.width texture.image.height = texDatas.height texture.mipmaps = texDatas.mipmaps } if (texDatas.mipmapCount === 1) { texture.minFilter = LinearFilter } texture.format = texDatas.format texture.needsUpdate = true if (onLoad) onLoad(texture) }, onProgress, onError ) } return texture } } class ImageLoader extends Loader { constructor(manager) { super(manager) } load(url, onLoad, onProgress, onError) { if (this.path !== undefined) url = this.path + url url = this.manager.resolveURL(url) const scope = this const cached = Cache.get(url) if (cached !== undefined) { scope.manager.itemStart(url) setTimeout(function() { if (onLoad) onLoad(cached) scope.manager.itemEnd(url) }, 0) return cached } const image = createElementNS('img') function onImageLoad() { removeEventListeners() Cache.add(url, this) if (onLoad) onLoad(this) scope.manager.itemEnd(url) } function onImageError(event) { removeEventListeners() if (onError) onError(event) scope.manager.itemError(url) scope.manager.itemEnd(url) } function removeEventListeners() { image.removeEventListener('load', onImageLoad, false) image.removeEventListener('error', onImageError, false) } image.addEventListener('load', onImageLoad, false) image.addEventListener('error', onImageError, false) if (url.slice(0, 5) !== 'data:') { if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin } scope.manager.itemStart(url) image.src = url return image } } class CubeTextureLoader extends Loader { constructor(manager) { super(manager) } load(urls, onLoad, onProgress, onError) { const texture = new CubeTexture() const loader = new ImageLoader(this.manager) loader.setCrossOrigin(this.crossOrigin) loader.setPath(this.path) let loaded = 0 function loadTexture(i) { loader.load( urls[i], function(image) { texture.images[i] = image loaded++ if (loaded === 6) { texture.needsUpdate = true if (onLoad) onLoad(texture) } }, undefined, onError ) } for (let i = 0; i < urls.length; ++i) { loadTexture(i) } return texture } } /** * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) * * Sub classes have to implement the parse() method which will be used in load(). */ class DataTextureLoader extends Loader { constructor(manager) { super(manager) } load(url, onLoad, onProgress, onError) { const scope = this const texture = new DataTexture() const loader = new FileLoader(this.manager) loader.setResponseType('arraybuffer') loader.setRequestHeader(this.requestHeader) loader.setPath(this.path) loader.setWithCredentials(scope.withCredentials) loader.load( url, function(buffer) { const texData = scope.parse(buffer) if (!texData) return if (texData.image !== undefined) { texture.image = texData.image } else if (texData.data !== undefined) { texture.image.width = texData.width texture.image.height = texData.height texture.image.data = texData.data } texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1 if (texData.encoding !== undefined) { texture.encoding = texData.encoding } if (texData.flipY !== undefined) { texture.flipY = texData.flipY } if (texData.format !== undefined) { texture.format = texData.format } if (texData.type !== undefined) { texture.type = texData.type } if (texData.mipmaps !== undefined) { texture.mipmaps = texData.mipmaps texture.minFilter = LinearMipmapLinearFilter // presumably... } if (texData.mipmapCount === 1) { texture.minFilter = LinearFilter } if (texData.generateMipmaps !== undefined) { texture.generateMipmaps = texData.generateMipmaps } texture.needsUpdate = true if (onLoad) onLoad(texture, texData) }, onProgress, onError ) return texture } } class TextureLoader extends Loader { constructor(manager) { super(manager) } load(url, onLoad, onProgress, onError) { const texture = new Texture() const loader = new ImageLoader(this.manager) loader.setCrossOrigin(this.crossOrigin) loader.setPath(this.path) loader.load( url, function(image) { texture.image = image texture.needsUpdate = true if (onLoad !== undefined) { onLoad(texture) } }, onProgress, onError ) return texture } } class Light extends Object3D { constructor(color, intensity = 1) { super() this.isLight = true this.type = 'Light' this.color = new Color(color) this.intensity = intensity } dispose() { // Empty here in base class; some subclasses override. } copy(source, recursive) { super.copy(source, recursive) this.color.copy(source.color) this.intensity = source.intensity return this } toJSON(meta) { const data = super.toJSON(meta) data.object.color = this.color.getHex() data.object.intensity = this.intensity if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex() if (this.distance !== undefined) data.object.distance = this.distance if (this.angle !== undefined) data.object.angle = this.angle if (this.decay !== undefined) data.object.decay = this.decay if (this.penumbra !== undefined) data.object.penumbra = this.penumbra if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON() return data } } class HemisphereLight extends Light { constructor(skyColor, groundColor, intensity) { super(skyColor, intensity) this.isHemisphereLight = true this.type = 'HemisphereLight' this.position.copy(Object3D.DefaultUp) this.updateMatrix() this.groundColor = new Color(groundColor) } copy(source, recursive) { super.copy(source, recursive) this.groundColor.copy(source.groundColor) return this } } const _projScreenMatrix$1 = /*@__PURE__*/ new Matrix4() const _lightPositionWorld$1 = /*@__PURE__*/ new Vector3() const _lookTarget$1 = /*@__PURE__*/ new Vector3() class LightShadow { constructor(camera) { this.camera = camera this.bias = 0 this.normalBias = 0 this.radius = 1 this.blurSamples = 8 this.mapSize = new Vector2(512, 512) this.map = null this.mapPass = null this.matrix = new Matrix4() this.autoUpdate = true this.needsUpdate = false this._frustum = new Frustum() this._frameExtents = new Vector2(1, 1) this._viewportCount = 1 this._viewports = [new Vector4(0, 0, 1, 1)] } getViewportCount() { return this._viewportCount } getFrustum() { return this._frustum } updateMatrices(light) { const shadowCamera = this.camera const shadowMatrix = this.matrix _lightPositionWorld$1.setFromMatrixPosition(light.matrixWorld) shadowCamera.position.copy(_lightPositionWorld$1) _lookTarget$1.setFromMatrixPosition(light.target.matrixWorld) shadowCamera.lookAt(_lookTarget$1) shadowCamera.updateMatrixWorld() _projScreenMatrix$1.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse) this._frustum.setFromProjectionMatrix(_projScreenMatrix$1) shadowMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0) shadowMatrix.multiply(shadowCamera.projectionMatrix) shadowMatrix.multiply(shadowCamera.matrixWorldInverse) } getViewport(viewportIndex) { return this._viewports[viewportIndex] } getFrameExtents() { return this._frameExtents } dispose() { if (this.map) { this.map.dispose() } if (this.mapPass) { this.mapPass.dispose() } } copy(source) { this.camera = source.camera.clone() this.bias = source.bias this.radius = source.radius this.mapSize.copy(source.mapSize) return this } clone() { return new this.constructor().copy(this) } toJSON() { const object = {} if (this.bias !== 0) object.bias = this.bias if (this.normalBias !== 0) object.normalBias = this.normalBias if (this.radius !== 1) object.radius = this.radius if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray() object.camera = this.camera.toJSON(false).object delete object.camera.matrix return object } } class SpotLightShadow extends LightShadow { constructor() { super(new PerspectiveCamera(50, 1, 0.5, 500)) this.isSpotLightShadow = true this.focus = 1 } updateMatrices(light) { const camera = this.camera const fov = RAD2DEG * 2 * light.angle * this.focus const aspect = this.mapSize.width / this.mapSize.height const far = light.distance || camera.far if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) { camera.fov = fov camera.aspect = aspect camera.far = far camera.updateProjectionMatrix() } super.updateMatrices(light) } copy(source) { super.copy(source) this.focus = source.focus return this } } class SpotLight extends Light { constructor(color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1) { super(color, intensity) this.isSpotLight = true this.type = 'SpotLight' this.position.copy(Object3D.DefaultUp) this.updateMatrix() this.target = new Object3D() this.distance = distance this.angle = angle this.penumbra = penumbra this.decay = decay // for physically correct lights, should be 2. this.shadow = new SpotLightShadow() } get power() { // compute the light's luminous power (in lumens) from its intensity (in candela) // by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd) return this.intensity * Math.PI } set power(power) { // set the light's intensity (in candela) from the desired luminous power (in lumens) this.intensity = power / Math.PI } dispose() { this.shadow.dispose() } copy(source, recursive) { super.copy(source, recursive) this.distance = source.distance this.angle = source.angle this.penumbra = source.penumbra this.decay = source.decay this.target = source.target.clone() this.shadow = source.shadow.clone() return this } } const _projScreenMatrix = /*@__PURE__*/ new Matrix4() const _lightPositionWorld = /*@__PURE__*/ new Vector3() const _lookTarget = /*@__PURE__*/ new Vector3() class PointLightShadow extends LightShadow { constructor() { super(new PerspectiveCamera(90, 1, 0.5, 500)) this.isPointLightShadow = true this._frameExtents = new Vector2(4, 2) this._viewportCount = 6 this._viewports = [ // These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X new Vector4(2, 1, 1, 1), // negative X new Vector4(0, 1, 1, 1), // positive Z new Vector4(3, 1, 1, 1), // negative Z new Vector4(1, 1, 1, 1), // positive Y new Vector4(3, 0, 1, 1), // negative Y new Vector4(1, 0, 1, 1) ] this._cubeDirections = [new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0)] this._cubeUps = [new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1)] } updateMatrices(light, viewportIndex = 0) { const camera = this.camera const shadowMatrix = this.matrix const far = light.distance || camera.far if (far !== camera.far) { camera.far = far camera.updateProjectionMatrix() } _lightPositionWorld.setFromMatrixPosition(light.matrixWorld) camera.position.copy(_lightPositionWorld) _lookTarget.copy(camera.position) _lookTarget.add(this._cubeDirections[viewportIndex]) camera.up.copy(this._cubeUps[viewportIndex]) camera.lookAt(_lookTarget) camera.updateMatrixWorld() shadowMatrix.makeTranslation(-_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z) _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse) this._frustum.setFromProjectionMatrix(_projScreenMatrix) } } class PointLight extends Light { constructor(color, intensity, distance = 0, decay = 1) { super(color, intensity) this.isPointLight = true this.type = 'PointLight' this.distance = distance this.decay = decay // for physically correct lights, should be 2. this.shadow = new PointLightShadow() } get power() { // compute the light's luminous power (in lumens) from its intensity (in candela) // for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd) return this.intensity * 4 * Math.PI } set power(power) { // set the light's intensity (in candela) from the desired luminous power (in lumens) this.intensity = power / (4 * Math.PI) } dispose() { this.shadow.dispose() } copy(source, recursive) { super.copy(source, recursive) this.distance = source.distance this.decay = source.decay this.shadow = source.shadow.clone() return this } } class DirectionalLightShadow extends LightShadow { constructor() { super(new OrthographicCamera(-5, 5, 5, -5, 0.5, 500)) this.isDirectionalLightShadow = true } } class DirectionalLight extends Light { constructor(color, intensity) { super(color, intensity) this.isDirectionalLight = true this.type = 'DirectionalLight' this.position.copy(Object3D.DefaultUp) this.updateMatrix() this.target = new Object3D() this.shadow = new DirectionalLightShadow() } dispose() { this.shadow.dispose() } copy(source) { super.copy(source) this.target = source.target.clone() this.shadow = source.shadow.clone() return this } } class AmbientLight extends Light { constructor(color, intensity) { super(color, intensity) this.isAmbientLight = true this.type = 'AmbientLight' } } class RectAreaLight extends Light { constructor(color, intensity, width = 10, height = 10) { super(color, intensity) this.isRectAreaLight = true this.type = 'RectAreaLight' this.width = width this.height = height } get power() { // compute the light's luminous power (in lumens) from its intensity (in nits) return this.intensity * this.width * this.height * Math.PI } set power(power) { // set the light's intensity (in nits) from the desired luminous power (in lumens) this.intensity = power / (this.width * this.height * Math.PI) } copy(source) { super.copy(source) this.width = source.width this.height = source.height return this } toJSON(meta) { const data = super.toJSON(meta) data.object.width = this.width data.object.height = this.height return data } } /** * Primary reference: * https://graphics.stanford.edu/papers/envmap/envmap.pdf * * Secondary reference: * https://www.ppsloan.org/publications/StupidSH36.pdf */ // 3-band SH defined by 9 coefficients class SphericalHarmonics3 { constructor() { this.isSphericalHarmonics3 = true this.coefficients = [] for (let i = 0; i < 9; i++) { this.coefficients.push(new Vector3()) } } set(coefficients) { for (let i = 0; i < 9; i++) { this.coefficients[i].copy(coefficients[i]) } return this } zero() { for (let i = 0; i < 9; i++) { this.coefficients[i].set(0, 0, 0) } return this } // get the radiance in the direction of the normal // target is a Vector3 getAt(normal, target) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z const coeff = this.coefficients // band 0 target.copy(coeff[0]).multiplyScalar(0.282095) // band 1 target.addScaledVector(coeff[1], 0.488603 * y) target.addScaledVector(coeff[2], 0.488603 * z) target.addScaledVector(coeff[3], 0.488603 * x) // band 2 target.addScaledVector(coeff[4], 1.092548 * (x * y)) target.addScaledVector(coeff[5], 1.092548 * (y * z)) target.addScaledVector(coeff[6], 0.315392 * (3.0 * z * z - 1.0)) target.addScaledVector(coeff[7], 1.092548 * (x * z)) target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y)) return target } // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal // target is a Vector3 // https://graphics.stanford.edu/papers/envmap/envmap.pdf getIrradianceAt(normal, target) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z const coeff = this.coefficients // band 0 target.copy(coeff[0]).multiplyScalar(0.886227) // π * 0.282095 // band 1 target.addScaledVector(coeff[1], 2.0 * 0.511664 * y) // ( 2 * π / 3 ) * 0.488603 target.addScaledVector(coeff[2], 2.0 * 0.511664 * z) target.addScaledVector(coeff[3], 2.0 * 0.511664 * x) // band 2 target.addScaledVector(coeff[4], 2.0 * 0.429043 * x * y) // ( π / 4 ) * 1.092548 target.addScaledVector(coeff[5], 2.0 * 0.429043 * y * z) target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708) // ( π / 4 ) * 0.315392 * 3 target.addScaledVector(coeff[7], 2.0 * 0.429043 * x * z) target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)) // ( π / 4 ) * 0.546274 return target } add(sh) { for (let i = 0; i < 9; i++) { this.coefficients[i].add(sh.coefficients[i]) } return this } addScaledSH(sh, s) { for (let i = 0; i < 9; i++) { this.coefficients[i].addScaledVector(sh.coefficients[i], s) } return this } scale(s) { for (let i = 0; i < 9; i++) { this.coefficients[i].multiplyScalar(s) } return this } lerp(sh, alpha) { for (let i = 0; i < 9; i++) { this.coefficients[i].lerp(sh.coefficients[i], alpha) } return this } equals(sh) { for (let i = 0; i < 9; i++) { if (!this.coefficients[i].equals(sh.coefficients[i])) { return false } } return true } copy(sh) { return this.set(sh.coefficients) } clone() { return new this.constructor().copy(this) } fromArray(array, offset = 0) { const coefficients = this.coefficients for (let i = 0; i < 9; i++) { coefficients[i].fromArray(array, offset + i * 3) } return this } toArray(array = [], offset = 0) { const coefficients = this.coefficients for (let i = 0; i < 9; i++) { coefficients[i].toArray(array, offset + i * 3) } return array } // evaluate the basis functions // shBasis is an Array[ 9 ] static getBasisAt(normal, shBasis) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z // band 0 shBasis[0] = 0.282095 // band 1 shBasis[1] = 0.488603 * y shBasis[2] = 0.488603 * z shBasis[3] = 0.488603 * x // band 2 shBasis[4] = 1.092548 * x * y shBasis[5] = 1.092548 * y * z shBasis[6] = 0.315392 * (3 * z * z - 1) shBasis[7] = 1.092548 * x * z shBasis[8] = 0.546274 * (x * x - y * y) } } class LightProbe extends Light { constructor(sh = new SphericalHarmonics3(), intensity = 1) { super(undefined, intensity) this.isLightProbe = true this.sh = sh } copy(source) { super.copy(source) this.sh.copy(source.sh) return this } fromJSON(json) { this.intensity = json.intensity // TODO: Move this bit to Light.fromJSON(); this.sh.fromArray(json.sh) return this } toJSON(meta) { const data = super.toJSON(meta) data.object.sh = this.sh.toArray() return data } } class MaterialLoader extends Loader { constructor(manager) { super(manager) this.textures = {} } load(url, onLoad, onProgress, onError) { const scope = this const loader = new FileLoader(scope.manager) loader.setPath(scope.path) loader.setRequestHeader(scope.requestHeader) loader.setWithCredentials(scope.withCredentials) loader.load( url, function(text) { try { onLoad(scope.parse(JSON.parse(text))) } catch (e) { if (onError) { onError(e) } else { console.error(e) } scope.manager.itemError(url) } }, onProgress, onError ) } parse(json) { const textures = this.textures function getTexture(name) { if (textures[name] === undefined) { console.warn('THREE.MaterialLoader: Undefined texture', name) } return textures[name] } const material = Material.fromType(json.type) if (json.uuid !== undefined) material.uuid = json.uuid if (json.name !== undefined) material.name = json.name if (json.color !== undefined && material.color !== undefined) material.color.setHex(json.color) if (json.roughness !== undefined) material.roughness = json.roughness if (json.metalness !== undefined) material.metalness = json.metalness if (json.sheen !== undefined) material.sheen = json.sheen if (json.sheenColor !== undefined) material.sheenColor = new Color().setHex(json.sheenColor) if (json.sheenRoughness !== undefined) material.sheenRoughness = json.sheenRoughness if (json.emissive !== undefined && material.emissive !== undefined) material.emissive.setHex(json.emissive) if (json.specular !== undefined && material.specular !== undefined) material.specular.setHex(json.specular) if (json.specularIntensity !== undefined) material.specularIntensity = json.specularIntensity if (json.specularColor !== undefined && material.specularColor !== undefined) material.specularColor.setHex(json.specularColor) if (json.shininess !== undefined) material.shininess = json.shininess if (json.clearcoat !== undefined) material.clearcoat = json.clearcoat if (json.clearcoatRoughness !== undefined) material.clearcoatRoughness = json.clearcoatRoughness if (json.iridescence !== undefined) material.iridescence = json.iridescence if (json.iridescenceIOR !== undefined) material.iridescenceIOR = json.iridescenceIOR if (json.iridescenceThicknessRange !== undefined) material.iridescenceThicknessRange = json.iridescenceThicknessRange if (json.transmission !== undefined) material.transmission = json.transmission if (json.thickness !== undefined) material.thickness = json.thickness if (json.attenuationDistance !== undefined) material.attenuationDistance = json.attenuationDistance if (json.attenuationColor !== undefined && material.attenuationColor !== undefined) material.attenuationColor.setHex(json.attenuationColor) if (json.fog !== undefined) material.fog = json.fog if (json.flatShading !== undefined) material.flatShading = json.flatShading if (json.blending !== undefined) material.blending = json.blending if (json.combine !== undefined) material.combine = json.combine if (json.side !== undefined) material.side = json.side if (json.shadowSide !== undefined) material.shadowSide = json.shadowSide if (json.opacity !== undefined) material.opacity = json.opacity if (json.transparent !== undefined) material.transparent = json.transparent if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest if (json.depthTest !== undefined) material.depthTest = json.depthTest if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite if (json.stencilWrite !== undefined) material.stencilWrite = json.stencilWrite if (json.stencilWriteMask !== undefined) material.stencilWriteMask = json.stencilWriteMask if (json.stencilFunc !== undefined) material.stencilFunc = json.stencilFunc if (json.stencilRef !== undefined) material.stencilRef = json.stencilRef if (json.stencilFuncMask !== undefined) material.stencilFuncMask = json.stencilFuncMask if (json.stencilFail !== undefined) material.stencilFail = json.stencilFail if (json.stencilZFail !== undefined) material.stencilZFail = json.stencilZFail if (json.stencilZPass !== undefined) material.stencilZPass = json.stencilZPass if (json.wireframe !== undefined) material.wireframe = json.wireframe if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin if (json.rotation !== undefined) material.rotation = json.rotation if (json.linewidth !== 1) material.linewidth = json.linewidth if (json.dashSize !== undefined) material.dashSize = json.dashSize if (json.gapSize !== undefined) material.gapSize = json.gapSize if (json.scale !== undefined) material.scale = json.scale if (json.polygonOffset !== undefined) material.polygonOffset = json.polygonOffset if (json.polygonOffsetFactor !== undefined) material.polygonOffsetFactor = json.polygonOffsetFactor if (json.polygonOffsetUnits !== undefined) material.polygonOffsetUnits = json.polygonOffsetUnits if (json.dithering !== undefined) material.dithering = json.dithering if (json.alphaToCoverage !== undefined) material.alphaToCoverage = json.alphaToCoverage if (json.premultipliedAlpha !== undefined) material.premultipliedAlpha = json.premultipliedAlpha if (json.visible !== undefined) material.visible = json.visible if (json.toneMapped !== undefined) material.toneMapped = json.toneMapped if (json.userData !== undefined) material.userData = json.userData if (json.vertexColors !== undefined) { if (typeof json.vertexColors === 'number') { material.vertexColors = json.vertexColors > 0 ? true : false } else { material.vertexColors = json.vertexColors } } // Shader Material if (json.uniforms !== undefined) { for (const name in json.uniforms) { const uniform = json.uniforms[name] material.uniforms[name] = {} switch (uniform.type) { case 't': material.uniforms[name].value = getTexture(uniform.value) break case 'c': material.uniforms[name].value = new Color().setHex(uniform.value) break case 'v2': material.uniforms[name].value = new Vector2().fromArray(uniform.value) break case 'v3': material.uniforms[name].value = new Vector3().fromArray(uniform.value) break case 'v4': material.uniforms[name].value = new Vector4().fromArray(uniform.value) break case 'm3': material.uniforms[name].value = new Matrix3().fromArray(uniform.value) break case 'm4': material.uniforms[name].value = new Matrix4().fromArray(uniform.value) break default: material.uniforms[name].value = uniform.value } } } if (json.defines !== undefined) material.defines = json.defines if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader if (json.extensions !== undefined) { for (const key in json.extensions) { material.extensions[key] = json.extensions[key] } } // Deprecated if (json.shading !== undefined) material.flatShading = json.shading === 1 // THREE.FlatShading // for PointsMaterial if (json.size !== undefined) material.size = json.size if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation // maps if (json.map !== undefined) material.map = getTexture(json.map) if (json.matcap !== undefined) material.matcap = getTexture(json.matcap) if (json.alphaMap !== undefined) material.alphaMap = getTexture(json.alphaMap) if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap) if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap) if (json.normalMapType !== undefined) material.normalMapType = json.normalMapType if (json.normalScale !== undefined) { let normalScale = json.normalScale if (Array.isArray(normalScale) === false) { // Blender exporter used to export a scalar. See #7459 normalScale = [normalScale, normalScale] } material.normalScale = new Vector2().fromArray(normalScale) } if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap) if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap) if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap) if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap) if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap) if (json.specularIntensityMap !== undefined) material.specularIntensityMap = getTexture(json.specularIntensityMap) if (json.specularColorMap !== undefined) material.specularColorMap = getTexture(json.specularColorMap) if (json.envMap !== undefined) material.envMap = getTexture(json.envMap) if (json.envMapIntensity !== undefined) material.envMapIntensity = json.envMapIntensity if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity if (json.refractionRatio !== undefined) material.refractionRatio = json.refractionRatio if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap) if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap) if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap) if (json.clearcoatMap !== undefined) material.clearcoatMap = getTexture(json.clearcoatMap) if (json.clearcoatRoughnessMap !== undefined) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap) if (json.clearcoatNormalMap !== undefined) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap) if (json.clearcoatNormalScale !== undefined) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale) if (json.iridescenceMap !== undefined) material.iridescenceMap = getTexture(json.iridescenceMap) if (json.iridescenceThicknessMap !== undefined) material.iridescenceThicknessMap = getTexture(json.iridescenceThicknessMap) if (json.transmissionMap !== undefined) material.transmissionMap = getTexture(json.transmissionMap) if (json.thicknessMap !== undefined) material.thicknessMap = getTexture(json.thicknessMap) if (json.sheenColorMap !== undefined) material.sheenColorMap = getTexture(json.sheenColorMap) if (json.sheenRoughnessMap !== undefined) material.sheenRoughnessMap = getTexture(json.sheenRoughnessMap) return material } setTextures(value) { this.textures = value return this } } class LoaderUtils { static decodeText(array) { if (typeof TextDecoder !== 'undefined') { return new TextDecoder().decode(array) } // Avoid the String.fromCharCode.apply(null, array) shortcut, which // throws a "maximum call stack size exceeded" error for large arrays. let s = '' for (let i = 0, il = array.length; i < il; i++) { // Implicitly assumes little-endian. s += String.fromCharCode(array[i]) } try { // merges multi-byte utf-8 characters. return decodeURIComponent(escape(s)) } catch (e) { // see #16358 return s } } static extractUrlBase(url) { const index = url.lastIndexOf('/') if (index === -1) return './' return url.slice(0, index + 1) } static resolveURL(url, path) { // Invalid URL if (typeof url !== 'string' || url === '') return '' // Host Relative URL if (/^https?:\/\//i.test(path) && /^\//.test(url)) { path = path.replace(/(^https?:\/\/[^\/]+).*/i, '$1') } // Absolute URL http://,https://,// if (/^(https?:)?\/\//i.test(url)) return url // Data URI if (/^data:.*,.*$/i.test(url)) return url // Blob URL if (/^blob:.*$/i.test(url)) return url // Relative URL return path + url } } class InstancedBufferGeometry extends BufferGeometry { constructor() { super() this.isInstancedBufferGeometry = true this.type = 'InstancedBufferGeometry' this.instanceCount = Infinity } copy(source) { super.copy(source) this.instanceCount = source.instanceCount return this } clone() { return new this.constructor().copy(this) } toJSON() { const data = super.toJSON(this) data.instanceCount = this.instanceCount data.isInstancedBufferGeometry = true return data } } class BufferGeometryLoader extends Loader { constructor(manager) { super(manager) } load(url, onLoad, onProgress, onError) { const scope = this const loader = new FileLoader(scope.manager) loader.setPath(scope.path) loader.setRequestHeader(scope.requestHeader) loader.setWithCredentials(scope.withCredentials) loader.load( url, function(text) { try { onLoad(scope.parse(JSON.parse(text))) } catch (e) { if (onError) { onError(e) } else { console.error(e) } scope.manager.itemError(url) } }, onProgress, onError ) } parse(json) { const interleavedBufferMap = {} const arrayBufferMap = {} function getInterleavedBuffer(json, uuid) { if (interleavedBufferMap[uuid] !== undefined) return interleavedBufferMap[uuid] const interleavedBuffers = json.interleavedBuffers const interleavedBuffer = interleavedBuffers[uuid] const buffer = getArrayBuffer(json, interleavedBuffer.buffer) const array = getTypedArray(interleavedBuffer.type, buffer) const ib = new InterleavedBuffer(array, interleavedBuffer.stride) ib.uuid = interleavedBuffer.uuid interleavedBufferMap[uuid] = ib return ib } function getArrayBuffer(json, uuid) { if (arrayBufferMap[uuid] !== undefined) return arrayBufferMap[uuid] const arrayBuffers = json.arrayBuffers const arrayBuffer = arrayBuffers[uuid] const ab = new Uint32Array(arrayBuffer).buffer arrayBufferMap[uuid] = ab return ab } const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry() const index = json.data.index if (index !== undefined) { const typedArray = getTypedArray(index.type, index.array) geometry.setIndex(new BufferAttribute(typedArray, 1)) } const attributes = json.data.attributes for (const key in attributes) { const attribute = attributes[key] let bufferAttribute if (attribute.isInterleavedBufferAttribute) { const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data) bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized) } else { const typedArray = getTypedArray(attribute.type, attribute.array) const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute bufferAttribute = new bufferAttributeConstr(typedArray, attribute.itemSize, attribute.normalized) } if (attribute.name !== undefined) bufferAttribute.name = attribute.name if (attribute.usage !== undefined) bufferAttribute.setUsage(attribute.usage) if (attribute.updateRange !== undefined) { bufferAttribute.updateRange.offset = attribute.updateRange.offset bufferAttribute.updateRange.count = attribute.updateRange.count } geometry.setAttribute(key, bufferAttribute) } const morphAttributes = json.data.morphAttributes if (morphAttributes) { for (const key in morphAttributes) { const attributeArray = morphAttributes[key] const array = [] for (let i = 0, il = attributeArray.length; i < il; i++) { const attribute = attributeArray[i] let bufferAttribute if (attribute.isInterleavedBufferAttribute) { const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data) bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized) } else { const typedArray = getTypedArray(attribute.type, attribute.array) bufferAttribute = new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized) } if (attribute.name !== undefined) bufferAttribute.name = attribute.name array.push(bufferAttribute) } geometry.morphAttributes[key] = array } } const morphTargetsRelative = json.data.morphTargetsRelative if (morphTargetsRelative) { geometry.morphTargetsRelative = true } const groups = json.data.groups || json.data.drawcalls || json.data.offsets if (groups !== undefined) { for (let i = 0, n = groups.length; i !== n; ++i) { const group = groups[i] geometry.addGroup(group.start, group.count, group.materialIndex) } } const boundingSphere = json.data.boundingSphere if (boundingSphere !== undefined) { const center = new Vector3() if (boundingSphere.center !== undefined) { center.fromArray(boundingSphere.center) } geometry.boundingSphere = new Sphere(center, boundingSphere.radius) } if (json.name) geometry.name = json.name if (json.userData) geometry.userData = json.userData return geometry } } class ObjectLoader extends Loader { constructor(manager) { super(manager) } load(url, onLoad, onProgress, onError) { const scope = this const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path this.resourcePath = this.resourcePath || path const loader = new FileLoader(this.manager) loader.setPath(this.path) loader.setRequestHeader(this.requestHeader) loader.setWithCredentials(this.withCredentials) loader.load( url, function(text) { let json = null try { json = JSON.parse(text) } catch (error) { if (onError !== undefined) onError(error) console.error("THREE:ObjectLoader: Can't parse " + url + '.', error.message) return } const metadata = json.metadata if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') { console.error("THREE.ObjectLoader: Can't load " + url) return } scope.parse(json, onLoad) }, onProgress, onError ) } async loadAsync(url, onProgress) { const scope = this const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path this.resourcePath = this.resourcePath || path const loader = new FileLoader(this.manager) loader.setPath(this.path) loader.setRequestHeader(this.requestHeader) loader.setWithCredentials(this.withCredentials) const text = await loader.loadAsync(url, onProgress) const json = JSON.parse(text) const metadata = json.metadata if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') { throw new Error("THREE.ObjectLoader: Can't load " + url) } return await scope.parseAsync(json) } parse(json, onLoad) { const animations = this.parseAnimations(json.animations) const shapes = this.parseShapes(json.shapes) const geometries = this.parseGeometries(json.geometries, shapes) const images = this.parseImages(json.images, function() { if (onLoad !== undefined) onLoad(object) }) const textures = this.parseTextures(json.textures, images) const materials = this.parseMaterials(json.materials, textures) const object = this.parseObject(json.object, geometries, materials, textures, animations) const skeletons = this.parseSkeletons(json.skeletons, object) this.bindSkeletons(object, skeletons) // if (onLoad !== undefined) { let hasImages = false for (const uuid in images) { if (images[uuid].data instanceof HTMLImageElement) { hasImages = true break } } if (hasImages === false) onLoad(object) } return object } async parseAsync(json) { const animations = this.parseAnimations(json.animations) const shapes = this.parseShapes(json.shapes) const geometries = this.parseGeometries(json.geometries, shapes) const images = await this.parseImagesAsync(json.images) const textures = this.parseTextures(json.textures, images) const materials = this.parseMaterials(json.materials, textures) const object = this.parseObject(json.object, geometries, materials, textures, animations) const skeletons = this.parseSkeletons(json.skeletons, object) this.bindSkeletons(object, skeletons) return object } parseShapes(json) { const shapes = {} if (json !== undefined) { for (let i = 0, l = json.length; i < l; i++) { const shape = new Shape().fromJSON(json[i]) shapes[shape.uuid] = shape } } return shapes } parseSkeletons(json, object) { const skeletons = {} const bones = {} // generate bone lookup table object.traverse(function(child) { if (child.isBone) bones[child.uuid] = child }) // create skeletons if (json !== undefined) { for (let i = 0, l = json.length; i < l; i++) { const skeleton = new Skeleton().fromJSON(json[i], bones) skeletons[skeleton.uuid] = skeleton } } return skeletons } parseGeometries(json, shapes) { const geometries = {} if (json !== undefined) { const bufferGeometryLoader = new BufferGeometryLoader() for (let i = 0, l = json.length; i < l; i++) { let geometry const data = json[i] switch (data.type) { case 'BufferGeometry': case 'InstancedBufferGeometry': geometry = bufferGeometryLoader.parse(data) break case 'Geometry': console.error('THREE.ObjectLoader: The legacy Geometry type is no longer supported.') break default: if (data.type in Geometries) { geometry = Geometries[data.type].fromJSON(data, shapes) } else { console.warn(`THREE.ObjectLoader: Unsupported geometry type "${data.type}"`) } } geometry.uuid = data.uuid if (data.name !== undefined) geometry.name = data.name if (geometry.isBufferGeometry === true && data.userData !== undefined) geometry.userData = data.userData geometries[data.uuid] = geometry } } return geometries } parseMaterials(json, textures) { const cache = {} // MultiMaterial const materials = {} if (json !== undefined) { const loader = new MaterialLoader() loader.setTextures(textures) for (let i = 0, l = json.length; i < l; i++) { const data = json[i] if (data.type === 'MultiMaterial') { // Deprecated const array = [] for (let j = 0; j < data.materials.length; j++) { const material = data.materials[j] if (cache[material.uuid] === undefined) { cache[material.uuid] = loader.parse(material) } array.push(cache[material.uuid]) } materials[data.uuid] = array } else { if (cache[data.uuid] === undefined) { cache[data.uuid] = loader.parse(data) } materials[data.uuid] = cache[data.uuid] } } } return materials } parseAnimations(json) { const animations = {} if (json !== undefined) { for (let i = 0; i < json.length; i++) { const data = json[i] const clip = AnimationClip.parse(data) animations[clip.uuid] = clip } } return animations } parseImages(json, onLoad) { const scope = this const images = {} let loader function loadImage(url) { scope.manager.itemStart(url) return loader.load( url, function() { scope.manager.itemEnd(url) }, undefined, function() { scope.manager.itemError(url) scope.manager.itemEnd(url) } ) } function deserializeImage(image) { if (typeof image === 'string') { const url = image const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url return loadImage(path) } else { if (image.data) { return { data: getTypedArray(image.type, image.data), width: image.width, height: image.height } } else { return null } } } if (json !== undefined && json.length > 0) { const manager = new LoadingManager(onLoad) loader = new ImageLoader(manager) loader.setCrossOrigin(this.crossOrigin) for (let i = 0, il = json.length; i < il; i++) { const image = json[i] const url = image.url if (Array.isArray(url)) { // load array of images e.g CubeTexture const imageArray = [] for (let j = 0, jl = url.length; j < jl; j++) { const currentUrl = url[j] const deserializedImage = deserializeImage(currentUrl) if (deserializedImage !== null) { if (deserializedImage instanceof HTMLImageElement) { imageArray.push(deserializedImage) } else { // special case: handle array of data textures for cube textures imageArray.push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height)) } } } images[image.uuid] = new Source(imageArray) } else { // load single image const deserializedImage = deserializeImage(image.url) images[image.uuid] = new Source(deserializedImage) } } } return images } async parseImagesAsync(json) { const scope = this const images = {} let loader async function deserializeImage(image) { if (typeof image === 'string') { const url = image const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url return await loader.loadAsync(path) } else { if (image.data) { return { data: getTypedArray(image.type, image.data), width: image.width, height: image.height } } else { return null } } } if (json !== undefined && json.length > 0) { loader = new ImageLoader(this.manager) loader.setCrossOrigin(this.crossOrigin) for (let i = 0, il = json.length; i < il; i++) { const image = json[i] const url = image.url if (Array.isArray(url)) { // load array of images e.g CubeTexture const imageArray = [] for (let j = 0, jl = url.length; j < jl; j++) { const currentUrl = url[j] const deserializedImage = await deserializeImage(currentUrl) if (deserializedImage !== null) { if (deserializedImage instanceof HTMLImageElement) { imageArray.push(deserializedImage) } else { // special case: handle array of data textures for cube textures imageArray.push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height)) } } } images[image.uuid] = new Source(imageArray) } else { // load single image const deserializedImage = await deserializeImage(image.url) images[image.uuid] = new Source(deserializedImage) } } } return images } parseTextures(json, images) { function parseConstant(value, type) { if (typeof value === 'number') return value console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value) return type[value] } const textures = {} if (json !== undefined) { for (let i = 0, l = json.length; i < l; i++) { const data = json[i] if (data.image === undefined) { console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid) } if (images[data.image] === undefined) { console.warn('THREE.ObjectLoader: Undefined image', data.image) } const source = images[data.image] const image = source.data let texture if (Array.isArray(image)) { texture = new CubeTexture() if (image.length === 6) texture.needsUpdate = true } else { if (image && image.data) { texture = new DataTexture() } else { texture = new Texture() } if (image) texture.needsUpdate = true // textures can have undefined image data } texture.source = source texture.uuid = data.uuid if (data.name !== undefined) texture.name = data.name if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING) if (data.offset !== undefined) texture.offset.fromArray(data.offset) if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat) if (data.center !== undefined) texture.center.fromArray(data.center) if (data.rotation !== undefined) texture.rotation = data.rotation if (data.wrap !== undefined) { texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING) texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING) } if (data.format !== undefined) texture.format = data.format if (data.type !== undefined) texture.type = data.type if (data.encoding !== undefined) texture.encoding = data.encoding if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER) if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER) if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy if (data.flipY !== undefined) texture.flipY = data.flipY if (data.premultiplyAlpha !== undefined) texture.premultiplyAlpha = data.premultiplyAlpha if (data.unpackAlignment !== undefined) texture.unpackAlignment = data.unpackAlignment if (data.userData !== undefined) texture.userData = data.userData textures[data.uuid] = texture } } return textures } parseObject(data, geometries, materials, textures, animations) { let object function getGeometry(name) { if (geometries[name] === undefined) { console.warn('THREE.ObjectLoader: Undefined geometry', name) } return geometries[name] } function getMaterial(name) { if (name === undefined) return undefined if (Array.isArray(name)) { const array = [] for (let i = 0, l = name.length; i < l; i++) { const uuid = name[i] if (materials[uuid] === undefined) { console.warn('THREE.ObjectLoader: Undefined material', uuid) } array.push(materials[uuid]) } return array } if (materials[name] === undefined) { console.warn('THREE.ObjectLoader: Undefined material', name) } return materials[name] } function getTexture(uuid) { if (textures[uuid] === undefined) { console.warn('THREE.ObjectLoader: Undefined texture', uuid) } return textures[uuid] } let geometry, material switch (data.type) { case 'Scene': object = new Scene() if (data.background !== undefined) { if (Number.isInteger(data.background)) { object.background = new Color(data.background) } else { object.background = getTexture(data.background) } } if (data.environment !== undefined) { object.environment = getTexture(data.environment) } if (data.fog !== undefined) { if (data.fog.type === 'Fog') { object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far) } else if (data.fog.type === 'FogExp2') { object.fog = new FogExp2(data.fog.color, data.fog.density) } } break case 'PerspectiveCamera': object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far) if (data.focus !== undefined) object.focus = data.focus if (data.zoom !== undefined) object.zoom = data.zoom if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset if (data.view !== undefined) object.view = Object.assign({}, data.view) break case 'OrthographicCamera': object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far) if (data.zoom !== undefined) object.zoom = data.zoom if (data.view !== undefined) object.view = Object.assign({}, data.view) break case 'AmbientLight': object = new AmbientLight(data.color, data.intensity) break case 'DirectionalLight': object = new DirectionalLight(data.color, data.intensity) break case 'PointLight': object = new PointLight(data.color, data.intensity, data.distance, data.decay) break case 'RectAreaLight': object = new RectAreaLight(data.color, data.intensity, data.width, data.height) break case 'SpotLight': object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay) break case 'HemisphereLight': object = new HemisphereLight(data.color, data.groundColor, data.intensity) break case 'LightProbe': object = new LightProbe().fromJSON(data) break case 'SkinnedMesh': geometry = getGeometry(data.geometry) material = getMaterial(data.material) object = new SkinnedMesh(geometry, material) if (data.bindMode !== undefined) object.bindMode = data.bindMode if (data.bindMatrix !== undefined) object.bindMatrix.fromArray(data.bindMatrix) if (data.skeleton !== undefined) object.skeleton = data.skeleton break case 'Mesh': geometry = getGeometry(data.geometry) material = getMaterial(data.material) object = new Mesh(geometry, material) break case 'InstancedMesh': geometry = getGeometry(data.geometry) material = getMaterial(data.material) const count = data.count const instanceMatrix = data.instanceMatrix const instanceColor = data.instanceColor object = new InstancedMesh(geometry, material, count) object.instanceMatrix = new InstancedBufferAttribute(new Float32Array(instanceMatrix.array), 16) if (instanceColor !== undefined) object.instanceColor = new InstancedBufferAttribute(new Float32Array(instanceColor.array), instanceColor.itemSize) break case 'LOD': object = new LOD() break case 'Line': object = new Line(getGeometry(data.geometry), getMaterial(data.material)) break case 'LineLoop': object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material)) break case 'LineSegments': object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material)) break case 'PointCloud': case 'Points': object = new Points(getGeometry(data.geometry), getMaterial(data.material)) break case 'Sprite': object = new Sprite(getMaterial(data.material)) break case 'Group': object = new Group() break case 'Bone': object = new Bone() break default: object = new Object3D() } object.uuid = data.uuid if (data.name !== undefined) object.name = data.name if (data.matrix !== undefined) { object.matrix.fromArray(data.matrix) if (data.matrixAutoUpdate !== undefined) object.matrixAutoUpdate = data.matrixAutoUpdate if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale) } else { if (data.position !== undefined) object.position.fromArray(data.position) if (data.rotation !== undefined) object.rotation.fromArray(data.rotation) if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion) if (data.scale !== undefined) object.scale.fromArray(data.scale) } if (data.castShadow !== undefined) object.castShadow = data.castShadow if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow if (data.shadow) { if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias if (data.shadow.normalBias !== undefined) object.shadow.normalBias = data.shadow.normalBias if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize) if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera) } if (data.visible !== undefined) object.visible = data.visible if (data.frustumCulled !== undefined) object.frustumCulled = data.frustumCulled if (data.renderOrder !== undefined) object.renderOrder = data.renderOrder if (data.userData !== undefined) object.userData = data.userData if (data.layers !== undefined) object.layers.mask = data.layers if (data.children !== undefined) { const children = data.children for (let i = 0; i < children.length; i++) { object.add(this.parseObject(children[i], geometries, materials, textures, animations)) } } if (data.animations !== undefined) { const objectAnimations = data.animations for (let i = 0; i < objectAnimations.length; i++) { const uuid = objectAnimations[i] object.animations.push(animations[uuid]) } } if (data.type === 'LOD') { if (data.autoUpdate !== undefined) object.autoUpdate = data.autoUpdate const levels = data.levels for (let l = 0; l < levels.length; l++) { const level = levels[l] const child = object.getObjectByProperty('uuid', level.object) if (child !== undefined) { object.addLevel(child, level.distance) } } } return object } bindSkeletons(object, skeletons) { if (Object.keys(skeletons).length === 0) return object.traverse(function(child) { if (child.isSkinnedMesh === true && child.skeleton !== undefined) { const skeleton = skeletons[child.skeleton] if (skeleton === undefined) { console.warn('THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton) } else { child.bind(skeleton, child.bindMatrix) } } }) } /* DEPRECATED */ setTexturePath(value) { console.warn('THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().') return this.setResourcePath(value) } } const TEXTURE_MAPPING = { UVMapping: UVMapping, CubeReflectionMapping: CubeReflectionMapping, CubeRefractionMapping: CubeRefractionMapping, EquirectangularReflectionMapping: EquirectangularReflectionMapping, EquirectangularRefractionMapping: EquirectangularRefractionMapping, CubeUVReflectionMapping: CubeUVReflectionMapping } const TEXTURE_WRAPPING = { RepeatWrapping: RepeatWrapping, ClampToEdgeWrapping: ClampToEdgeWrapping, MirroredRepeatWrapping: MirroredRepeatWrapping } const TEXTURE_FILTER = { NearestFilter: NearestFilter, NearestMipmapNearestFilter: NearestMipmapNearestFilter, NearestMipmapLinearFilter: NearestMipmapLinearFilter, LinearFilter: LinearFilter, LinearMipmapNearestFilter: LinearMipmapNearestFilter, LinearMipmapLinearFilter: LinearMipmapLinearFilter } class ImageBitmapLoader extends Loader { constructor(manager) { super(manager) this.isImageBitmapLoader = true if (typeof createImageBitmap === 'undefined') { console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.') } if (typeof fetch === 'undefined') { console.warn('THREE.ImageBitmapLoader: fetch() not supported.') } this.options = { premultiplyAlpha: 'none' } } setOptions(options) { this.options = options return this } load(url, onLoad, onProgress, onError) { if (url === undefined) url = '' if (this.path !== undefined) url = this.path + url url = this.manager.resolveURL(url) const scope = this const cached = Cache.get(url) if (cached !== undefined) { scope.manager.itemStart(url) setTimeout(function() { if (onLoad) onLoad(cached) scope.manager.itemEnd(url) }, 0) return cached } const fetchOptions = {} fetchOptions.credentials = this.crossOrigin === 'anonymous' ? 'same-origin' : 'include' fetchOptions.headers = this.requestHeader fetch(url, fetchOptions) .then(function(res) { return res.blob() }) .then(function(blob) { return createImageBitmap(blob, Object.assign(scope.options, { colorSpaceConversion: 'none' })) }) .then(function(imageBitmap) { Cache.add(url, imageBitmap) if (onLoad) onLoad(imageBitmap) scope.manager.itemEnd(url) }) .catch(function(e) { if (onError) onError(e) scope.manager.itemError(url) scope.manager.itemEnd(url) }) scope.manager.itemStart(url) } } let _context const AudioContext = { getContext: function() { if (_context === undefined) { _context = new (window.AudioContext || window.webkitAudioContext)() } return _context }, setContext: function(value) { _context = value } } class AudioLoader extends Loader { constructor(manager) { super(manager) } load(url, onLoad, onProgress, onError) { const scope = this const loader = new FileLoader(this.manager) loader.setResponseType('arraybuffer') loader.setPath(this.path) loader.setRequestHeader(this.requestHeader) loader.setWithCredentials(this.withCredentials) loader.load( url, function(buffer) { try { // Create a copy of the buffer. The `decodeAudioData` method // detaches the buffer when complete, preventing reuse. const bufferCopy = buffer.slice(0) const context = AudioContext.getContext() context.decodeAudioData(bufferCopy, function(audioBuffer) { onLoad(audioBuffer) }) } catch (e) { if (onError) { onError(e) } else { console.error(e) } scope.manager.itemError(url) } }, onProgress, onError ) } } class HemisphereLightProbe extends LightProbe { constructor(skyColor, groundColor, intensity = 1) { super(undefined, intensity) this.isHemisphereLightProbe = true const color1 = new Color().set(skyColor) const color2 = new Color().set(groundColor) const sky = new Vector3(color1.r, color1.g, color1.b) const ground = new Vector3(color2.r, color2.g, color2.b) // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI ); const c0 = Math.sqrt(Math.PI) const c1 = c0 * Math.sqrt(0.75) this.sh.coefficients[0] .copy(sky) .add(ground) .multiplyScalar(c0) this.sh.coefficients[1] .copy(sky) .sub(ground) .multiplyScalar(c1) } } class AmbientLightProbe extends LightProbe { constructor(color, intensity = 1) { super(undefined, intensity) this.isAmbientLightProbe = true const color1 = new Color().set(color) // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI ); this.sh.coefficients[0].set(color1.r, color1.g, color1.b).multiplyScalar(2 * Math.sqrt(Math.PI)) } } const _eyeRight = /*@__PURE__*/ new Matrix4() const _eyeLeft = /*@__PURE__*/ new Matrix4() const _projectionMatrix = /*@__PURE__*/ new Matrix4() class StereoCamera { constructor() { this.type = 'StereoCamera' this.aspect = 1 this.eyeSep = 0.064 this.cameraL = new PerspectiveCamera() this.cameraL.layers.enable(1) this.cameraL.matrixAutoUpdate = false this.cameraR = new PerspectiveCamera() this.cameraR.layers.enable(2) this.cameraR.matrixAutoUpdate = false this._cache = { focus: null, fov: null, aspect: null, near: null, far: null, zoom: null, eyeSep: null } } update(camera) { const cache = this._cache const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep if (needsUpdate) { cache.focus = camera.focus cache.fov = camera.fov cache.aspect = camera.aspect * this.aspect cache.near = camera.near cache.far = camera.far cache.zoom = camera.zoom cache.eyeSep = this.eyeSep // Off-axis stereoscopic effect based on // http://paulbourke.net/stereographics/stereorender/ _projectionMatrix.copy(camera.projectionMatrix) const eyeSepHalf = cache.eyeSep / 2 const eyeSepOnProjection = (eyeSepHalf * cache.near) / cache.focus const ymax = (cache.near * Math.tan(DEG2RAD * cache.fov * 0.5)) / cache.zoom let xmin, xmax // translate xOffset _eyeLeft.elements[12] = -eyeSepHalf _eyeRight.elements[12] = eyeSepHalf // for left eye xmin = -ymax * cache.aspect + eyeSepOnProjection xmax = ymax * cache.aspect + eyeSepOnProjection _projectionMatrix.elements[0] = (2 * cache.near) / (xmax - xmin) _projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin) this.cameraL.projectionMatrix.copy(_projectionMatrix) // for right eye xmin = -ymax * cache.aspect - eyeSepOnProjection xmax = ymax * cache.aspect - eyeSepOnProjection _projectionMatrix.elements[0] = (2 * cache.near) / (xmax - xmin) _projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin) this.cameraR.projectionMatrix.copy(_projectionMatrix) } this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft) this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight) } } class Clock { constructor(autoStart = true) { this.autoStart = autoStart this.startTime = 0 this.oldTime = 0 this.elapsedTime = 0 this.running = false } start() { this.startTime = now() this.oldTime = this.startTime this.elapsedTime = 0 this.running = true } stop() { this.getElapsedTime() this.running = false this.autoStart = false } getElapsedTime() { this.getDelta() return this.elapsedTime } getDelta() { let diff = 0 if (this.autoStart && !this.running) { this.start() return 0 } if (this.running) { const newTime = now() diff = (newTime - this.oldTime) / 1000 this.oldTime = newTime this.elapsedTime += diff } return diff } } function now() { return (typeof performance === 'undefined' ? Date : performance).now() // see #10732 } const _position$1 = /*@__PURE__*/ new Vector3() const _quaternion$1 = /*@__PURE__*/ new Quaternion() const _scale$1 = /*@__PURE__*/ new Vector3() const _orientation$1 = /*@__PURE__*/ new Vector3() class AudioListener extends Object3D { constructor() { super() this.type = 'AudioListener' this.context = AudioContext.getContext() this.gain = this.context.createGain() this.gain.connect(this.context.destination) this.filter = null this.timeDelta = 0 // private this._clock = new Clock() } getInput() { return this.gain } removeFilter() { if (this.filter !== null) { this.gain.disconnect(this.filter) this.filter.disconnect(this.context.destination) this.gain.connect(this.context.destination) this.filter = null } return this } getFilter() { return this.filter } setFilter(value) { if (this.filter !== null) { this.gain.disconnect(this.filter) this.filter.disconnect(this.context.destination) } else { this.gain.disconnect(this.context.destination) } this.filter = value this.gain.connect(this.filter) this.filter.connect(this.context.destination) return this } getMasterVolume() { return this.gain.gain.value } setMasterVolume(value) { this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01) return this } updateMatrixWorld(force) { super.updateMatrixWorld(force) const listener = this.context.listener const up = this.up this.timeDelta = this._clock.getDelta() this.matrixWorld.decompose(_position$1, _quaternion$1, _scale$1) _orientation$1.set(0, 0, -1).applyQuaternion(_quaternion$1) if (listener.positionX) { // code path for Chrome (see #14393) const endTime = this.context.currentTime + this.timeDelta listener.positionX.linearRampToValueAtTime(_position$1.x, endTime) listener.positionY.linearRampToValueAtTime(_position$1.y, endTime) listener.positionZ.linearRampToValueAtTime(_position$1.z, endTime) listener.forwardX.linearRampToValueAtTime(_orientation$1.x, endTime) listener.forwardY.linearRampToValueAtTime(_orientation$1.y, endTime) listener.forwardZ.linearRampToValueAtTime(_orientation$1.z, endTime) listener.upX.linearRampToValueAtTime(up.x, endTime) listener.upY.linearRampToValueAtTime(up.y, endTime) listener.upZ.linearRampToValueAtTime(up.z, endTime) } else { listener.setPosition(_position$1.x, _position$1.y, _position$1.z) listener.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z) } } } class Audio extends Object3D { constructor(listener) { super() this.type = 'Audio' this.listener = listener this.context = listener.context this.gain = this.context.createGain() this.gain.connect(listener.getInput()) this.autoplay = false this.buffer = null this.detune = 0 this.loop = false this.loopStart = 0 this.loopEnd = 0 this.offset = 0 this.duration = undefined this.playbackRate = 1 this.isPlaying = false this.hasPlaybackControl = true this.source = null this.sourceType = 'empty' this._startedAt = 0 this._progress = 0 this._connected = false this.filters = [] } getOutput() { return this.gain } setNodeSource(audioNode) { this.hasPlaybackControl = false this.sourceType = 'audioNode' this.source = audioNode this.connect() return this } setMediaElementSource(mediaElement) { this.hasPlaybackControl = false this.sourceType = 'mediaNode' this.source = this.context.createMediaElementSource(mediaElement) this.connect() return this } setMediaStreamSource(mediaStream) { this.hasPlaybackControl = false this.sourceType = 'mediaStreamNode' this.source = this.context.createMediaStreamSource(mediaStream) this.connect() return this } setBuffer(audioBuffer) { this.buffer = audioBuffer this.sourceType = 'buffer' if (this.autoplay) this.play() return this } play(delay = 0) { if (this.isPlaying === true) { console.warn('THREE.Audio: Audio is already playing.') return } if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return } this._startedAt = this.context.currentTime + delay const source = this.context.createBufferSource() source.buffer = this.buffer source.loop = this.loop source.loopStart = this.loopStart source.loopEnd = this.loopEnd source.onended = this.onEnded.bind(this) source.start(this._startedAt, this._progress + this.offset, this.duration) this.isPlaying = true this.source = source this.setDetune(this.detune) this.setPlaybackRate(this.playbackRate) return this.connect() } pause() { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return } if (this.isPlaying === true) { // update current progress this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate if (this.loop === true) { // ensure _progress does not exceed duration with looped audios this._progress = this._progress % (this.duration || this.buffer.duration) } this.source.stop() this.source.onended = null this.isPlaying = false } return this } stop() { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return } this._progress = 0 this.source.stop() this.source.onended = null this.isPlaying = false return this } connect() { if (this.filters.length > 0) { this.source.connect(this.filters[0]) for (let i = 1, l = this.filters.length; i < l; i++) { this.filters[i - 1].connect(this.filters[i]) } this.filters[this.filters.length - 1].connect(this.getOutput()) } else { this.source.connect(this.getOutput()) } this._connected = true return this } disconnect() { if (this.filters.length > 0) { this.source.disconnect(this.filters[0]) for (let i = 1, l = this.filters.length; i < l; i++) { this.filters[i - 1].disconnect(this.filters[i]) } this.filters[this.filters.length - 1].disconnect(this.getOutput()) } else { this.source.disconnect(this.getOutput()) } this._connected = false return this } getFilters() { return this.filters } setFilters(value) { if (!value) value = [] if (this._connected === true) { this.disconnect() this.filters = value.slice() this.connect() } else { this.filters = value.slice() } return this } setDetune(value) { this.detune = value if (this.source.detune === undefined) return // only set detune when available if (this.isPlaying === true) { this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01) } return this } getDetune() { return this.detune } getFilter() { return this.getFilters()[0] } setFilter(filter) { return this.setFilters(filter ? [filter] : []) } setPlaybackRate(value) { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return } this.playbackRate = value if (this.isPlaying === true) { this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01) } return this } getPlaybackRate() { return this.playbackRate } onEnded() { this.isPlaying = false } getLoop() { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return false } return this.loop } setLoop(value) { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return } this.loop = value if (this.isPlaying === true) { this.source.loop = this.loop } return this } setLoopStart(value) { this.loopStart = value return this } setLoopEnd(value) { this.loopEnd = value return this } getVolume() { return this.gain.gain.value } setVolume(value) { this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01) return this } } const _position = /*@__PURE__*/ new Vector3() const _quaternion = /*@__PURE__*/ new Quaternion() const _scale = /*@__PURE__*/ new Vector3() const _orientation = /*@__PURE__*/ new Vector3() class PositionalAudio extends Audio { constructor(listener) { super(listener) this.panner = this.context.createPanner() this.panner.panningModel = 'HRTF' this.panner.connect(this.gain) } disconnect() { super.disconnect() this.panner.disconnect(this.gain) } getOutput() { return this.panner } getRefDistance() { return this.panner.refDistance } setRefDistance(value) { this.panner.refDistance = value return this } getRolloffFactor() { return this.panner.rolloffFactor } setRolloffFactor(value) { this.panner.rolloffFactor = value return this } getDistanceModel() { return this.panner.distanceModel } setDistanceModel(value) { this.panner.distanceModel = value return this } getMaxDistance() { return this.panner.maxDistance } setMaxDistance(value) { this.panner.maxDistance = value return this } setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) { this.panner.coneInnerAngle = coneInnerAngle this.panner.coneOuterAngle = coneOuterAngle this.panner.coneOuterGain = coneOuterGain return this } updateMatrixWorld(force) { super.updateMatrixWorld(force) if (this.hasPlaybackControl === true && this.isPlaying === false) return this.matrixWorld.decompose(_position, _quaternion, _scale) _orientation.set(0, 0, 1).applyQuaternion(_quaternion) const panner = this.panner if (panner.positionX) { // code path for Chrome and Firefox (see #14393) const endTime = this.context.currentTime + this.listener.timeDelta panner.positionX.linearRampToValueAtTime(_position.x, endTime) panner.positionY.linearRampToValueAtTime(_position.y, endTime) panner.positionZ.linearRampToValueAtTime(_position.z, endTime) panner.orientationX.linearRampToValueAtTime(_orientation.x, endTime) panner.orientationY.linearRampToValueAtTime(_orientation.y, endTime) panner.orientationZ.linearRampToValueAtTime(_orientation.z, endTime) } else { panner.setPosition(_position.x, _position.y, _position.z) panner.setOrientation(_orientation.x, _orientation.y, _orientation.z) } } } class AudioAnalyser { constructor(audio, fftSize = 2048) { this.analyser = audio.context.createAnalyser() this.analyser.fftSize = fftSize this.data = new Uint8Array(this.analyser.frequencyBinCount) audio.getOutput().connect(this.analyser) } getFrequencyData() { this.analyser.getByteFrequencyData(this.data) return this.data } getAverageFrequency() { let value = 0 const data = this.getFrequencyData() for (let i = 0; i < data.length; i++) { value += data[i] } return value / data.length } } class PropertyMixer { constructor(binding, typeName, valueSize) { this.binding = binding this.valueSize = valueSize let mixFunction, mixFunctionAdditive, setIdentity // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property // // 'add' is used for additive cumulative results // // 'work' is optional and is only present for quaternion types. It is used // to store intermediate quaternion multiplication results switch (typeName) { case 'quaternion': mixFunction = this._slerp mixFunctionAdditive = this._slerpAdditive setIdentity = this._setAdditiveIdentityQuaternion this.buffer = new Float64Array(valueSize * 6) this._workIndex = 5 break case 'string': case 'bool': mixFunction = this._select // Use the regular mix function and for additive on these types, // additive is not relevant for non-numeric types mixFunctionAdditive = this._select setIdentity = this._setAdditiveIdentityOther this.buffer = new Array(valueSize * 5) break default: mixFunction = this._lerp mixFunctionAdditive = this._lerpAdditive setIdentity = this._setAdditiveIdentityNumeric this.buffer = new Float64Array(valueSize * 5) } this._mixBufferRegion = mixFunction this._mixBufferRegionAdditive = mixFunctionAdditive this._setIdentity = setIdentity this._origIndex = 3 this._addIndex = 4 this.cumulativeWeight = 0 this.cumulativeWeightAdditive = 0 this.useCount = 0 this.referenceCount = 0 } // accumulate data in the 'incoming' region into 'accu' accumulate(accuIndex, weight) { // note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place const buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride let currentWeight = this.cumulativeWeight if (currentWeight === 0) { // accuN := incoming * weight for (let i = 0; i !== stride; ++i) { buffer[offset + i] = buffer[i] } currentWeight = weight } else { // accuN := accuN + incoming * weight currentWeight += weight const mix = weight / currentWeight this._mixBufferRegion(buffer, offset, 0, mix, stride) } this.cumulativeWeight = currentWeight } // accumulate data in the 'incoming' region into 'add' accumulateAdditive(weight) { const buffer = this.buffer, stride = this.valueSize, offset = stride * this._addIndex if (this.cumulativeWeightAdditive === 0) { // add = identity this._setIdentity() } // add := add + incoming * weight this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride) this.cumulativeWeightAdditive += weight } // apply the state of 'accu' to the binding when accus differ apply(accuIndex) { const stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, weightAdditive = this.cumulativeWeightAdditive, binding = this.binding this.cumulativeWeight = 0 this.cumulativeWeightAdditive = 0 if (weight < 1) { // accuN := accuN + original * ( 1 - cumulativeWeight ) const originalValueOffset = stride * this._origIndex this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride) } if (weightAdditive > 0) { // accuN := accuN + additive accuN this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride) } for (let i = stride, e = stride + stride; i !== e; ++i) { if (buffer[i] !== buffer[i + stride]) { // value has changed -> update scene graph binding.setValue(buffer, offset) break } } } // remember the state of the bound property and copy it to both accus saveOriginalState() { const binding = this.binding const buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * this._origIndex binding.getValue(buffer, originalValueOffset) // accu[0..1] := orig -- initially detect changes against the original for (let i = stride, e = originalValueOffset; i !== e; ++i) { buffer[i] = buffer[originalValueOffset + (i % stride)] } // Add to identity for additive this._setIdentity() this.cumulativeWeight = 0 this.cumulativeWeightAdditive = 0 } // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState() { const originalValueOffset = this.valueSize * 3 this.binding.setValue(this.buffer, originalValueOffset) } _setAdditiveIdentityNumeric() { const startIndex = this._addIndex * this.valueSize const endIndex = startIndex + this.valueSize for (let i = startIndex; i < endIndex; i++) { this.buffer[i] = 0 } } _setAdditiveIdentityQuaternion() { this._setAdditiveIdentityNumeric() this.buffer[this._addIndex * this.valueSize + 3] = 1 } _setAdditiveIdentityOther() { const startIndex = this._origIndex * this.valueSize const targetIndex = this._addIndex * this.valueSize for (let i = 0; i < this.valueSize; i++) { this.buffer[targetIndex + i] = this.buffer[startIndex + i] } } // mix functions _select(buffer, dstOffset, srcOffset, t, stride) { if (t >= 0.5) { for (let i = 0; i !== stride; ++i) { buffer[dstOffset + i] = buffer[srcOffset + i] } } } _slerp(buffer, dstOffset, srcOffset, t) { Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t) } _slerpAdditive(buffer, dstOffset, srcOffset, t, stride) { const workOffset = this._workIndex * stride // Store result in intermediate buffer offset Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset) // Slerp to the intermediate result Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t) } _lerp(buffer, dstOffset, srcOffset, t, stride) { const s = 1 - t for (let i = 0; i !== stride; ++i) { const j = dstOffset + i buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t } } _lerpAdditive(buffer, dstOffset, srcOffset, t, stride) { for (let i = 0; i !== stride; ++i) { const j = dstOffset + i buffer[j] = buffer[j] + buffer[srcOffset + i] * t } } } // Characters [].:/ are reserved for track binding syntax. const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/' const _reservedRe = new RegExp('[' + _RESERVED_CHARS_RE + ']', 'g') // Attempts to allow node names from any language. ES5's `\w` regexp matches // only latin characters, and the unicode \p{L} is not yet supported. So // instead, we exclude reserved characters and match everything else. const _wordChar = '[^' + _RESERVED_CHARS_RE + ']' const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace('\\.', '') + ']' // Parent directories, delimited by '/' or ':'. Currently unused, but must // be matched to parse the rest of the track name. const _directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', _wordChar) // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. const _nodeRe = /(WCOD+)?/.source.replace('WCOD', _wordCharOrDot) // Object on target node, and accessor. May not contain reserved // characters. Accessor may contain any character except closing bracket. const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', _wordChar) // Property and accessor. May not contain reserved characters. Accessor may // contain any non-bracket characters. const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', _wordChar) const _trackRe = new RegExp('' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$') const _supportedObjectNames = ['material', 'materials', 'bones'] class Composite { constructor(targetGroup, path, optionalParsedPath) { const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path) this._targetGroup = targetGroup this._bindings = targetGroup.subscribe_(path, parsedPath) } getValue(array, offset) { this.bind() // bind all binding const firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[firstValidIndex] // and only call .getValue on the first if (binding !== undefined) binding.getValue(array, offset) } setValue(array, offset) { const bindings = this._bindings for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].setValue(array, offset) } } bind() { const bindings = this._bindings for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].bind() } } unbind() { const bindings = this._bindings for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].unbind() } } } // Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops. class PropertyBinding { constructor(rootNode, path, parsedPath) { this.path = path this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path) this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode this.rootNode = rootNode // initial state of these methods that calls 'bind' this.getValue = this._getValue_unbound this.setValue = this._setValue_unbound } static create(root, path, parsedPath) { if (!(root && root.isAnimationObjectGroup)) { return new PropertyBinding(root, path, parsedPath) } else { return new PropertyBinding.Composite(root, path, parsedPath) } } /** * Replaces spaces with underscores and removes unsupported characters from * node names, to ensure compatibility with parseTrackName(). * * @param {string} name Node name to be sanitized. * @return {string} */ static sanitizeNodeName(name) { return name.replace(/\s/g, '_').replace(_reservedRe, '') } static parseTrackName(trackName) { const matches = _trackRe.exec(trackName) if (matches === null) { throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName) } const results = { // directoryName: matches[ 1 ], // (tschw) currently unused nodeName: matches[2], objectName: matches[3], objectIndex: matches[4], propertyName: matches[5], // required propertyIndex: matches[6] } const lastDot = results.nodeName && results.nodeName.lastIndexOf('.') if (lastDot !== undefined && lastDot !== -1) { const objectName = results.nodeName.substring(lastDot + 1) // Object names must be checked against an allowlist. Otherwise, there // is no way to parse 'foo.bar.baz': 'baz' must be a property, but // 'bar' could be the objectName, or part of a nodeName (which can // include '.' characters). if (_supportedObjectNames.indexOf(objectName) !== -1) { results.nodeName = results.nodeName.substring(0, lastDot) results.objectName = objectName } } if (results.propertyName === null || results.propertyName.length === 0) { throw new Error('PropertyBinding: can not parse propertyName from trackName: ' + trackName) } return results } static findNode(root, nodeName) { if (nodeName === undefined || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) { return root } // search into skeleton bones. if (root.skeleton) { const bone = root.skeleton.getBoneByName(nodeName) if (bone !== undefined) { return bone } } // search into node subtree. if (root.children) { const searchNodeSubtree = function(children) { for (let i = 0; i < children.length; i++) { const childNode = children[i] if (childNode.name === nodeName || childNode.uuid === nodeName) { return childNode } const result = searchNodeSubtree(childNode.children) if (result) return result } return null } const subTreeNode = searchNodeSubtree(root.children) if (subTreeNode) { return subTreeNode } } return null } // these are used to "bind" a nonexistent property _getValue_unavailable() {} _setValue_unavailable() {} // Getters _getValue_direct(buffer, offset) { buffer[offset] = this.targetObject[this.propertyName] } _getValue_array(buffer, offset) { const source = this.resolvedProperty for (let i = 0, n = source.length; i !== n; ++i) { buffer[offset++] = source[i] } } _getValue_arrayElement(buffer, offset) { buffer[offset] = this.resolvedProperty[this.propertyIndex] } _getValue_toArray(buffer, offset) { this.resolvedProperty.toArray(buffer, offset) } // Direct _setValue_direct(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset] } _setValue_direct_setNeedsUpdate(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset] this.targetObject.needsUpdate = true } _setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset] this.targetObject.matrixWorldNeedsUpdate = true } // EntireArray _setValue_array(buffer, offset) { const dest = this.resolvedProperty for (let i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++] } } _setValue_array_setNeedsUpdate(buffer, offset) { const dest = this.resolvedProperty for (let i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++] } this.targetObject.needsUpdate = true } _setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) { const dest = this.resolvedProperty for (let i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++] } this.targetObject.matrixWorldNeedsUpdate = true } // ArrayElement _setValue_arrayElement(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset] } _setValue_arrayElement_setNeedsUpdate(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset] this.targetObject.needsUpdate = true } _setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset] this.targetObject.matrixWorldNeedsUpdate = true } // HasToFromArray _setValue_fromArray(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset) } _setValue_fromArray_setNeedsUpdate(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset) this.targetObject.needsUpdate = true } _setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset) this.targetObject.matrixWorldNeedsUpdate = true } _getValue_unbound(targetArray, offset) { this.bind() this.getValue(targetArray, offset) } _setValue_unbound(sourceArray, offset) { this.bind() this.setValue(sourceArray, offset) } // create getter / setter pair for a property in the scene graph bind() { let targetObject = this.node const parsedPath = this.parsedPath const objectName = parsedPath.objectName const propertyName = parsedPath.propertyName let propertyIndex = parsedPath.propertyIndex if (!targetObject) { targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode this.node = targetObject } // set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable this.setValue = this._setValue_unavailable // ensure there is a value node if (!targetObject) { console.error('THREE.PropertyBinding: Trying to update node for track: ' + this.path + " but it wasn't found.") return } if (objectName) { let objectIndex = parsedPath.objectIndex // special cases were we need to reach deeper into the hierarchy to get the face materials.... switch (objectName) { case 'materials': if (!targetObject.material) { console.error('THREE.PropertyBinding: Can not bind to material as node does not have a material.', this) return } if (!targetObject.material.materials) { console.error('THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this) return } targetObject = targetObject.material.materials break case 'bones': if (!targetObject.skeleton) { console.error('THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this) return } // potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer. targetObject = targetObject.skeleton.bones // support resolving morphTarget names into indices. for (let i = 0; i < targetObject.length; i++) { if (targetObject[i].name === objectIndex) { objectIndex = i break } } break default: if (targetObject[objectName] === undefined) { console.error('THREE.PropertyBinding: Can not bind to objectName of node undefined.', this) return } targetObject = targetObject[objectName] } if (objectIndex !== undefined) { if (targetObject[objectIndex] === undefined) { console.error('THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject) return } targetObject = targetObject[objectIndex] } } // resolve property const nodeProperty = targetObject[propertyName] if (nodeProperty === undefined) { const nodeName = parsedPath.nodeName console.error('THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + " but it wasn't found.", targetObject) return } // determine versioning scheme let versioning = this.Versioning.None this.targetObject = targetObject if (targetObject.needsUpdate !== undefined) { // material versioning = this.Versioning.NeedsUpdate } else if (targetObject.matrixWorldNeedsUpdate !== undefined) { // node transform versioning = this.Versioning.MatrixWorldNeedsUpdate } // determine how the property gets bound let bindingType = this.BindingType.Direct if (propertyIndex !== undefined) { // access a sub element of the property array (only primitives are supported right now) if (propertyName === 'morphTargetInfluences') { // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. // support resolving morphTarget names into indices. if (!targetObject.geometry) { console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this) return } if (!targetObject.geometry.morphAttributes) { console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this) return } if (targetObject.morphTargetDictionary[propertyIndex] !== undefined) { propertyIndex = targetObject.morphTargetDictionary[propertyIndex] } } bindingType = this.BindingType.ArrayElement this.resolvedProperty = nodeProperty this.propertyIndex = propertyIndex } else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) { // must use copy for Object3D.Euler/Quaternion bindingType = this.BindingType.HasFromToArray this.resolvedProperty = nodeProperty } else if (Array.isArray(nodeProperty)) { bindingType = this.BindingType.EntireArray this.resolvedProperty = nodeProperty } else { this.propertyName = propertyName } // select getter / setter this.getValue = this.GetterByBindingType[bindingType] this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning] } unbind() { this.node = null // back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound this.setValue = this._setValue_unbound } } PropertyBinding.Composite = Composite PropertyBinding.prototype.BindingType = { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 } PropertyBinding.prototype.Versioning = { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 } PropertyBinding.prototype.GetterByBindingType = [ PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray ] PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [ [ // Direct PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate ], [ // EntireArray PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate ], [ // ArrayElement PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate ], [ // HasToFromArray PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate ] ] /** * * A group of objects that receives a shared animation state. * * Usage: * * - Add objects you would otherwise pass as 'root' to the * constructor or the .clipAction method of AnimationMixer. * * - Instead pass this object as 'root'. * * - You can also add and remove objects later when the mixer * is running. * * Note: * * Objects of this class appear as one object to the mixer, * so cache control of the individual objects must be done * on the group. * * Limitation: * * - The animated properties must be compatible among the * all objects in the group. * * - A single property can either be controlled through a * target group or directly, but not both. */ class AnimationObjectGroup { constructor() { this.isAnimationObjectGroup = true this.uuid = generateUUID() // cached objects followed by the active ones this._objects = Array.prototype.slice.call(arguments) this.nCachedObjects_ = 0 // threshold // note: read by PropertyBinding.Composite const indices = {} this._indicesByUUID = indices // for bookkeeping for (let i = 0, n = arguments.length; i !== n; ++i) { indices[arguments[i].uuid] = i } this._paths = [] // inside: string this._parsedPaths = [] // inside: { we don't care, here } this._bindings = [] // inside: Array< PropertyBinding > this._bindingsIndicesByPath = {} // inside: indices in these arrays const scope = this this.stats = { objects: { get total() { return scope._objects.length }, get inUse() { return this.total - scope.nCachedObjects_ } }, get bindingsPerObject() { return scope._bindings.length } } } add() { const objects = this._objects, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length let knownObject = undefined, nObjects = objects.length, nCachedObjects = this.nCachedObjects_ for (let i = 0, n = arguments.length; i !== n; ++i) { const object = arguments[i], uuid = object.uuid let index = indicesByUUID[uuid] if (index === undefined) { // unknown object -> add it to the ACTIVE region index = nObjects++ indicesByUUID[uuid] = index objects.push(object) // accounting is done, now do the same for all bindings for (let j = 0, m = nBindings; j !== m; ++j) { bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j])) } } else if (index < nCachedObjects) { knownObject = objects[index] // move existing object to the ACTIVE region const firstActiveIndex = --nCachedObjects, lastCachedObject = objects[firstActiveIndex] indicesByUUID[lastCachedObject.uuid] = index objects[index] = lastCachedObject indicesByUUID[uuid] = firstActiveIndex objects[firstActiveIndex] = object // accounting is done, now do the same for all bindings for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j], lastCached = bindingsForPath[firstActiveIndex] let binding = bindingsForPath[index] bindingsForPath[index] = lastCached if (binding === undefined) { // since we do not bother to create new bindings // for objects that are cached, the binding may // or may not exist binding = new PropertyBinding(object, paths[j], parsedPaths[j]) } bindingsForPath[firstActiveIndex] = binding } } else if (objects[index] !== knownObject) { console.error('THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.') } // else the object is already where we want it to be } // for arguments this.nCachedObjects_ = nCachedObjects } remove() { const objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length let nCachedObjects = this.nCachedObjects_ for (let i = 0, n = arguments.length; i !== n; ++i) { const object = arguments[i], uuid = object.uuid, index = indicesByUUID[uuid] if (index !== undefined && index >= nCachedObjects) { // move existing object into the CACHED region const lastCachedIndex = nCachedObjects++, firstActiveObject = objects[lastCachedIndex] indicesByUUID[firstActiveObject.uuid] = index objects[index] = firstActiveObject indicesByUUID[uuid] = lastCachedIndex objects[lastCachedIndex] = object // accounting is done, now do the same for all bindings for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j], firstActive = bindingsForPath[lastCachedIndex], binding = bindingsForPath[index] bindingsForPath[index] = firstActive bindingsForPath[lastCachedIndex] = binding } } } // for arguments this.nCachedObjects_ = nCachedObjects } // remove & forget uncache() { const objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length let nCachedObjects = this.nCachedObjects_, nObjects = objects.length for (let i = 0, n = arguments.length; i !== n; ++i) { const object = arguments[i], uuid = object.uuid, index = indicesByUUID[uuid] if (index !== undefined) { delete indicesByUUID[uuid] if (index < nCachedObjects) { // object is cached, shrink the CACHED region const firstActiveIndex = --nCachedObjects, lastCachedObject = objects[firstActiveIndex], lastIndex = --nObjects, lastObject = objects[lastIndex] // last cached object takes this object's place indicesByUUID[lastCachedObject.uuid] = index objects[index] = lastCachedObject // last object goes to the activated slot and pop indicesByUUID[lastObject.uuid] = firstActiveIndex objects[firstActiveIndex] = lastObject objects.pop() // accounting is done, now do the same for all bindings for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j], lastCached = bindingsForPath[firstActiveIndex], last = bindingsForPath[lastIndex] bindingsForPath[index] = lastCached bindingsForPath[firstActiveIndex] = last bindingsForPath.pop() } } else { // object is active, just swap with the last and pop const lastIndex = --nObjects, lastObject = objects[lastIndex] if (lastIndex > 0) { indicesByUUID[lastObject.uuid] = index } objects[index] = lastObject objects.pop() // accounting is done, now do the same for all bindings for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j] bindingsForPath[index] = bindingsForPath[lastIndex] bindingsForPath.pop() } } // cached or active } // if object is known } // for arguments this.nCachedObjects_ = nCachedObjects } // Internal interface used by befriended PropertyBinding.Composite: subscribe_(path, parsedPath) { // returns an array of bindings for the given path that is changed // according to the contained objects in the group const indicesByPath = this._bindingsIndicesByPath let index = indicesByPath[path] const bindings = this._bindings if (index !== undefined) return bindings[index] const paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array(nObjects) index = bindings.length indicesByPath[path] = index paths.push(path) parsedPaths.push(parsedPath) bindings.push(bindingsForPath) for (let i = nCachedObjects, n = objects.length; i !== n; ++i) { const object = objects[i] bindingsForPath[i] = new PropertyBinding(object, path, parsedPath) } return bindingsForPath } unsubscribe_(path) { // tells the group to forget about a property path and no longer // update the array previously obtained with 'subscribe_' const indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[path] if (index !== undefined) { const paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[lastBindingsIndex], lastBindingsPath = path[lastBindingsIndex] indicesByPath[lastBindingsPath] = index bindings[index] = lastBindings bindings.pop() parsedPaths[index] = parsedPaths[lastBindingsIndex] parsedPaths.pop() paths[index] = paths[lastBindingsIndex] paths.pop() } } } class AnimationAction { constructor(mixer, clip, localRoot = null, blendMode = clip.blendMode) { this._mixer = mixer this._clip = clip this._localRoot = localRoot this.blendMode = blendMode const tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array(nTracks) const interpolantSettings = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding } for (let i = 0; i !== nTracks; ++i) { const interpolant = tracks[i].createInterpolant(null) interpolants[i] = interpolant interpolant.settings = interpolantSettings } this._interpolantSettings = interpolantSettings this._interpolants = interpolants // bound by the mixer // inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array(nTracks) this._cacheIndex = null // for the memory manager this._byClipCacheIndex = null // for the memory manager this._timeScaleInterpolant = null this._weightInterpolant = null this.loop = LoopRepeat this._loopCount = -1 // global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null // scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0 this.timeScale = 1 this._effectiveTimeScale = 1 this.weight = 1 this._effectiveWeight = 1 this.repetitions = Infinity // no. of repetitions when looping this.paused = false // true -> zero effective time scale this.enabled = true // false -> zero effective weight this.clampWhenFinished = false // keep feeding the last frame? this.zeroSlopeAtStart = true // for smooth interpolation w/o separate this.zeroSlopeAtEnd = true // clips for start, loop and end } // State & Scheduling play() { this._mixer._activateAction(this) return this } stop() { this._mixer._deactivateAction(this) return this.reset() } reset() { this.paused = false this.enabled = true this.time = 0 // restart clip this._loopCount = -1 // forget previous loops this._startTime = null // forget scheduling return this.stopFading().stopWarping() } isRunning() { return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this) } // return true when play has been called isScheduled() { return this._mixer._isActiveAction(this) } startAt(time) { this._startTime = time return this } setLoop(mode, repetitions) { this.loop = mode this.repetitions = repetitions return this } // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight(weight) { this.weight = weight // note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0 return this.stopFading() } // return the weight considering fading and .enabled getEffectiveWeight() { return this._effectiveWeight } fadeIn(duration) { return this._scheduleFading(duration, 0, 1) } fadeOut(duration) { return this._scheduleFading(duration, 1, 0) } crossFadeFrom(fadeOutAction, duration, warp) { fadeOutAction.fadeOut(duration) this.fadeIn(duration) if (warp) { const fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration fadeOutAction.warp(1.0, startEndRatio, duration) this.warp(endStartRatio, 1.0, duration) } return this } crossFadeTo(fadeInAction, duration, warp) { return fadeInAction.crossFadeFrom(this, duration, warp) } stopFading() { const weightInterpolant = this._weightInterpolant if (weightInterpolant !== null) { this._weightInterpolant = null this._mixer._takeBackControlInterpolant(weightInterpolant) } return this } // Time Scale Control // set the time scale stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale(timeScale) { this.timeScale = timeScale this._effectiveTimeScale = this.paused ? 0 : timeScale return this.stopWarping() } // return the time scale considering warping and .paused getEffectiveTimeScale() { return this._effectiveTimeScale } setDuration(duration) { this.timeScale = this._clip.duration / duration return this.stopWarping() } syncWith(action) { this.time = action.time this.timeScale = action.timeScale return this.stopWarping() } halt(duration) { return this.warp(this._effectiveTimeScale, 0, duration) } warp(startTimeScale, endTimeScale, duration) { const mixer = this._mixer, now = mixer.time, timeScale = this.timeScale let interpolant = this._timeScaleInterpolant if (interpolant === null) { interpolant = mixer._lendControlInterpolant() this._timeScaleInterpolant = interpolant } const times = interpolant.parameterPositions, values = interpolant.sampleValues times[0] = now times[1] = now + duration values[0] = startTimeScale / timeScale values[1] = endTimeScale / timeScale return this } stopWarping() { const timeScaleInterpolant = this._timeScaleInterpolant if (timeScaleInterpolant !== null) { this._timeScaleInterpolant = null this._mixer._takeBackControlInterpolant(timeScaleInterpolant) } return this } // Object Accessors getMixer() { return this._mixer } getClip() { return this._clip } getRoot() { return this._localRoot || this._mixer._root } // Interna _update(time, deltaTime, timeDirection, accuIndex) { // called by the mixer if (!this.enabled) { // call ._updateWeight() to update ._effectiveWeight this._updateWeight(time) return } const startTime = this._startTime if (startTime !== null) { // check for scheduled start of action const timeRunning = (time - startTime) * timeDirection if (timeRunning < 0 || timeDirection === 0) { return // yet to come / don't decide when delta = 0 } // start this._startTime = null // unschedule deltaTime = timeDirection * timeRunning } // apply time scale and advance time deltaTime *= this._updateTimeScale(time) const clipTime = this._updateTime(deltaTime) // note: _updateTime may disable the action resulting in // an effective weight of 0 const weight = this._updateWeight(time) if (weight > 0) { const interpolants = this._interpolants const propertyMixers = this._propertyBindings switch (this.blendMode) { case AdditiveAnimationBlendMode: for (let j = 0, m = interpolants.length; j !== m; ++j) { interpolants[j].evaluate(clipTime) propertyMixers[j].accumulateAdditive(weight) } break case NormalAnimationBlendMode: default: for (let j = 0, m = interpolants.length; j !== m; ++j) { interpolants[j].evaluate(clipTime) propertyMixers[j].accumulate(accuIndex, weight) } } } } _updateWeight(time) { let weight = 0 if (this.enabled) { weight = this.weight const interpolant = this._weightInterpolant if (interpolant !== null) { const interpolantValue = interpolant.evaluate(time)[0] weight *= interpolantValue if (time > interpolant.parameterPositions[1]) { this.stopFading() if (interpolantValue === 0) { // faded out, disable this.enabled = false } } } } this._effectiveWeight = weight return weight } _updateTimeScale(time) { let timeScale = 0 if (!this.paused) { timeScale = this.timeScale const interpolant = this._timeScaleInterpolant if (interpolant !== null) { const interpolantValue = interpolant.evaluate(time)[0] timeScale *= interpolantValue if (time > interpolant.parameterPositions[1]) { this.stopWarping() if (timeScale === 0) { // motion has halted, pause this.paused = true } else { // warp done - apply final time scale this.timeScale = timeScale } } } } this._effectiveTimeScale = timeScale return timeScale } _updateTime(deltaTime) { const duration = this._clip.duration const loop = this.loop let time = this.time + deltaTime let loopCount = this._loopCount const pingPong = loop === LoopPingPong if (deltaTime === 0) { if (loopCount === -1) return time return pingPong && (loopCount & 1) === 1 ? duration - time : time } if (loop === LoopOnce) { if (loopCount === -1) { // just started this._loopCount = 0 this._setEndings(true, true, false) } handle_stop: { if (time >= duration) { time = duration } else if (time < 0) { time = 0 } else { this.time = time break handle_stop } if (this.clampWhenFinished) this.paused = true else this.enabled = false this.time = time this._mixer.dispatchEvent({ type: 'finished', action: this, direction: deltaTime < 0 ? -1 : 1 }) } } else { // repetitive Repeat or PingPong if (loopCount === -1) { // just started if (deltaTime >= 0) { loopCount = 0 this._setEndings(true, this.repetitions === 0, pingPong) } else { // when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1 this._setEndings(this.repetitions === 0, true, pingPong) } } if (time >= duration || time < 0) { // wrap around const loopDelta = Math.floor(time / duration) // signed time -= duration * loopDelta loopCount += Math.abs(loopDelta) const pending = this.repetitions - loopCount if (pending <= 0) { // have to stop (switch state, clamp time, fire event) if (this.clampWhenFinished) this.paused = true else this.enabled = false time = deltaTime > 0 ? duration : 0 this.time = time this._mixer.dispatchEvent({ type: 'finished', action: this, direction: deltaTime > 0 ? 1 : -1 }) } else { // keep running if (pending === 1) { // entering the last round const atStart = deltaTime < 0 this._setEndings(atStart, !atStart, pingPong) } else { this._setEndings(false, false, pingPong) } this._loopCount = loopCount this.time = time this._mixer.dispatchEvent({ type: 'loop', action: this, loopDelta: loopDelta }) } } else { this.time = time } if (pingPong && (loopCount & 1) === 1) { // invert time for the "pong round" return duration - time } } return time } _setEndings(atStart, atEnd, pingPong) { const settings = this._interpolantSettings if (pingPong) { settings.endingStart = ZeroSlopeEnding settings.endingEnd = ZeroSlopeEnding } else { // assuming for LoopOnce atStart == atEnd == true if (atStart) { settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding } else { settings.endingStart = WrapAroundEnding } if (atEnd) { settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding } else { settings.endingEnd = WrapAroundEnding } } } _scheduleFading(duration, weightNow, weightThen) { const mixer = this._mixer, now = mixer.time let interpolant = this._weightInterpolant if (interpolant === null) { interpolant = mixer._lendControlInterpolant() this._weightInterpolant = interpolant } const times = interpolant.parameterPositions, values = interpolant.sampleValues times[0] = now values[0] = weightNow times[1] = now + duration values[1] = weightThen return this } } const _controlInterpolantsResultBuffer = /*@__PURE__*/ new Float32Array(1) class AnimationMixer extends EventDispatcher { constructor(root) { super() this._root = root this._initMemoryManager() this._accuIndex = 0 this.time = 0 this.timeScale = 1.0 } _bindAction(action, prototypeAction) { const root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName let bindingsByName = bindingsByRoot[rootUuid] if (bindingsByName === undefined) { bindingsByName = {} bindingsByRoot[rootUuid] = bindingsByName } for (let i = 0; i !== nTracks; ++i) { const track = tracks[i], trackName = track.name let binding = bindingsByName[trackName] if (binding !== undefined) { ++binding.referenceCount bindings[i] = binding } else { binding = bindings[i] if (binding !== undefined) { // existing binding, make sure the cache knows if (binding._cacheIndex === null) { ++binding.referenceCount this._addInactiveBinding(binding, rootUuid, trackName) } continue } const path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath binding = new PropertyMixer(PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize()) ++binding.referenceCount this._addInactiveBinding(binding, rootUuid, trackName) bindings[i] = binding } interpolants[i].resultBuffer = binding.buffer } } _activateAction(action) { if (!this._isActiveAction(action)) { if (action._cacheIndex === null) { // this action has been forgotten by the cache, but the user // appears to be still using it -> rebind const rootUuid = (action._localRoot || this._root).uuid, clipUuid = action._clip.uuid, actionsForClip = this._actionsByClip[clipUuid] this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]) this._addInactiveAction(action, clipUuid, rootUuid) } const bindings = action._propertyBindings // increment reference counts / sort out state for (let i = 0, n = bindings.length; i !== n; ++i) { const binding = bindings[i] if (binding.useCount++ === 0) { this._lendBinding(binding) binding.saveOriginalState() } } this._lendAction(action) } } _deactivateAction(action) { if (this._isActiveAction(action)) { const bindings = action._propertyBindings // decrement reference counts / sort out state for (let i = 0, n = bindings.length; i !== n; ++i) { const binding = bindings[i] if (--binding.useCount === 0) { binding.restoreOriginalState() this._takeBackBinding(binding) } } this._takeBackAction(action) } } // Memory manager _initMemoryManager() { this._actions = [] // 'nActiveActions' followed by inactive ones this._nActiveActions = 0 this._actionsByClip = {} // inside: // { // knownActions: Array< AnimationAction > - used as prototypes // actionByRoot: AnimationAction - lookup // } this._bindings = [] // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0 this._bindingsByRootAndName = {} // inside: Map< name, PropertyMixer > this._controlInterpolants = [] // same game as above this._nActiveControlInterpolants = 0 const scope = this this.stats = { actions: { get total() { return scope._actions.length }, get inUse() { return scope._nActiveActions } }, bindings: { get total() { return scope._bindings.length }, get inUse() { return scope._nActiveBindings } }, controlInterpolants: { get total() { return scope._controlInterpolants.length }, get inUse() { return scope._nActiveControlInterpolants } } } } // Memory management for AnimationAction objects _isActiveAction(action) { const index = action._cacheIndex return index !== null && index < this._nActiveActions } _addInactiveAction(action, clipUuid, rootUuid) { const actions = this._actions, actionsByClip = this._actionsByClip let actionsForClip = actionsByClip[clipUuid] if (actionsForClip === undefined) { actionsForClip = { knownActions: [action], actionByRoot: {} } action._byClipCacheIndex = 0 actionsByClip[clipUuid] = actionsForClip } else { const knownActions = actionsForClip.knownActions action._byClipCacheIndex = knownActions.length knownActions.push(action) } action._cacheIndex = actions.length actions.push(action) actionsForClip.actionByRoot[rootUuid] = action } _removeInactiveAction(action) { const actions = this._actions, lastInactiveAction = actions[actions.length - 1], cacheIndex = action._cacheIndex lastInactiveAction._cacheIndex = cacheIndex actions[cacheIndex] = lastInactiveAction actions.pop() action._cacheIndex = null const clipUuid = action._clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[clipUuid], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1], byClipCacheIndex = action._byClipCacheIndex lastKnownAction._byClipCacheIndex = byClipCacheIndex knownActionsForClip[byClipCacheIndex] = lastKnownAction knownActionsForClip.pop() action._byClipCacheIndex = null const actionByRoot = actionsForClip.actionByRoot, rootUuid = (action._localRoot || this._root).uuid delete actionByRoot[rootUuid] if (knownActionsForClip.length === 0) { delete actionsByClip[clipUuid] } this._removeInactiveBindingsForAction(action) } _removeInactiveBindingsForAction(action) { const bindings = action._propertyBindings for (let i = 0, n = bindings.length; i !== n; ++i) { const binding = bindings[i] if (--binding.referenceCount === 0) { this._removeInactiveBinding(binding) } } } _lendAction(action) { // [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s const actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions++, firstInactiveAction = actions[lastActiveIndex] action._cacheIndex = lastActiveIndex actions[lastActiveIndex] = action firstInactiveAction._cacheIndex = prevIndex actions[prevIndex] = firstInactiveAction } _takeBackAction(action) { // [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a const actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = --this._nActiveActions, lastActiveAction = actions[firstInactiveIndex] action._cacheIndex = firstInactiveIndex actions[firstInactiveIndex] = action lastActiveAction._cacheIndex = prevIndex actions[prevIndex] = lastActiveAction } // Memory management for PropertyMixer objects _addInactiveBinding(binding, rootUuid, trackName) { const bindingsByRoot = this._bindingsByRootAndName, bindings = this._bindings let bindingByName = bindingsByRoot[rootUuid] if (bindingByName === undefined) { bindingByName = {} bindingsByRoot[rootUuid] = bindingByName } bindingByName[trackName] = binding binding._cacheIndex = bindings.length bindings.push(binding) } _removeInactiveBinding(binding) { const bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[rootUuid], lastInactiveBinding = bindings[bindings.length - 1], cacheIndex = binding._cacheIndex lastInactiveBinding._cacheIndex = cacheIndex bindings[cacheIndex] = lastInactiveBinding bindings.pop() delete bindingByName[trackName] if (Object.keys(bindingByName).length === 0) { delete bindingsByRoot[rootUuid] } } _lendBinding(binding) { const bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings++, firstInactiveBinding = bindings[lastActiveIndex] binding._cacheIndex = lastActiveIndex bindings[lastActiveIndex] = binding firstInactiveBinding._cacheIndex = prevIndex bindings[prevIndex] = firstInactiveBinding } _takeBackBinding(binding) { const bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = --this._nActiveBindings, lastActiveBinding = bindings[firstInactiveIndex] binding._cacheIndex = firstInactiveIndex bindings[firstInactiveIndex] = binding lastActiveBinding._cacheIndex = prevIndex bindings[prevIndex] = lastActiveBinding } // Memory management of Interpolants for weight and time scale _lendControlInterpolant() { const interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants++ let interpolant = interpolants[lastActiveIndex] if (interpolant === undefined) { interpolant = new LinearInterpolant(new Float32Array(2), new Float32Array(2), 1, _controlInterpolantsResultBuffer) interpolant.__cacheIndex = lastActiveIndex interpolants[lastActiveIndex] = interpolant } return interpolant } _takeBackControlInterpolant(interpolant) { const interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = --this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[firstInactiveIndex] interpolant.__cacheIndex = firstInactiveIndex interpolants[firstInactiveIndex] = interpolant lastActiveInterpolant.__cacheIndex = prevIndex interpolants[prevIndex] = lastActiveInterpolant } // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction(clip, optionalRoot, blendMode) { const root = optionalRoot || this._root, rootUuid = root.uuid let clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip const clipUuid = clipObject !== null ? clipObject.uuid : clip const actionsForClip = this._actionsByClip[clipUuid] let prototypeAction = null if (blendMode === undefined) { if (clipObject !== null) { blendMode = clipObject.blendMode } else { blendMode = NormalAnimationBlendMode } } if (actionsForClip !== undefined) { const existingAction = actionsForClip.actionByRoot[rootUuid] if (existingAction !== undefined && existingAction.blendMode === blendMode) { return existingAction } // we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[0] // also, take the clip from the prototype action if (clipObject === null) clipObject = prototypeAction._clip } // clip must be known when specified via string if (clipObject === null) return null // allocate all resources required to run it const newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode) this._bindAction(newAction, prototypeAction) // and make the action known to the memory manager this._addInactiveAction(newAction, clipUuid, rootUuid) return newAction } // get an existing action existingAction(clip, optionalRoot) { const root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip, clipUuid = clipObject ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[clipUuid] if (actionsForClip !== undefined) { return actionsForClip.actionByRoot[rootUuid] || null } return null } // deactivates all previously scheduled actions stopAllAction() { const actions = this._actions, nActions = this._nActiveActions for (let i = nActions - 1; i >= 0; --i) { actions[i].stop() } return this } // advance the time and update apply the animation update(deltaTime) { deltaTime *= this.timeScale const actions = this._actions, nActions = this._nActiveActions, time = (this.time += deltaTime), timeDirection = Math.sign(deltaTime), accuIndex = (this._accuIndex ^= 1) // run active actions for (let i = 0; i !== nActions; ++i) { const action = actions[i] action._update(time, deltaTime, timeDirection, accuIndex) } // update scene graph const bindings = this._bindings, nBindings = this._nActiveBindings for (let i = 0; i !== nBindings; ++i) { bindings[i].apply(accuIndex) } return this } // Allows you to seek to a specific time in an animation. setTime(timeInSeconds) { this.time = 0 // Zero out time attribute for AnimationMixer object; for (let i = 0; i < this._actions.length; i++) { this._actions[i].time = 0 // Zero out time attribute for all associated AnimationAction objects. } return this.update(timeInSeconds) // Update used to set exact time. Returns "this" AnimationMixer object. } // return this mixer's root target object getRoot() { return this._root } // free all resources specific to a particular clip uncacheClip(clip) { const actions = this._actions, clipUuid = clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[clipUuid] if (actionsForClip !== undefined) { // note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away const actionsToRemove = actionsForClip.knownActions for (let i = 0, n = actionsToRemove.length; i !== n; ++i) { const action = actionsToRemove[i] this._deactivateAction(action) const cacheIndex = action._cacheIndex, lastInactiveAction = actions[actions.length - 1] action._cacheIndex = null action._byClipCacheIndex = null lastInactiveAction._cacheIndex = cacheIndex actions[cacheIndex] = lastInactiveAction actions.pop() this._removeInactiveBindingsForAction(action) } delete actionsByClip[clipUuid] } } // free all resources specific to a particular root target object uncacheRoot(root) { const rootUuid = root.uuid, actionsByClip = this._actionsByClip for (const clipUuid in actionsByClip) { const actionByRoot = actionsByClip[clipUuid].actionByRoot, action = actionByRoot[rootUuid] if (action !== undefined) { this._deactivateAction(action) this._removeInactiveAction(action) } } const bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[rootUuid] if (bindingByName !== undefined) { for (const trackName in bindingByName) { const binding = bindingByName[trackName] binding.restoreOriginalState() this._removeInactiveBinding(binding) } } } // remove a targeted clip from the cache uncacheAction(clip, optionalRoot) { const action = this.existingAction(clip, optionalRoot) if (action !== null) { this._deactivateAction(action) this._removeInactiveAction(action) } } } class Uniform { constructor(value) { if (typeof value === 'string') { console.warn('THREE.Uniform: Type parameter is no longer needed.') value = arguments[1] } this.value = value } clone() { return new Uniform(this.value.clone === undefined ? this.value : this.value.clone()) } } class InstancedInterleavedBuffer extends InterleavedBuffer { constructor(array, stride, meshPerAttribute = 1) { super(array, stride) this.isInstancedInterleavedBuffer = true this.meshPerAttribute = meshPerAttribute } copy(source) { super.copy(source) this.meshPerAttribute = source.meshPerAttribute return this } clone(data) { const ib = super.clone(data) ib.meshPerAttribute = this.meshPerAttribute return ib } toJSON(data) { const json = super.toJSON(data) json.isInstancedInterleavedBuffer = true json.meshPerAttribute = this.meshPerAttribute return json } } class GLBufferAttribute { constructor(buffer, type, itemSize, elementSize, count) { this.isGLBufferAttribute = true this.buffer = buffer this.type = type this.itemSize = itemSize this.elementSize = elementSize this.count = count this.version = 0 } set needsUpdate(value) { if (value === true) this.version++ } setBuffer(buffer) { this.buffer = buffer return this } setType(type, elementSize) { this.type = type this.elementSize = elementSize return this } setItemSize(itemSize) { this.itemSize = itemSize return this } setCount(count) { this.count = count return this } } class Raycaster { constructor(origin, direction, near = 0, far = Infinity) { this.ray = new Ray(origin, direction) // direction is assumed to be normalized (for accurate distance calculations) this.near = near this.far = far this.camera = null this.layers = new Layers() this.params = { Mesh: {}, Line: { threshold: 1 }, LOD: {}, Points: { threshold: 1 }, Sprite: {} } } set(origin, direction) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set(origin, direction) } setFromCamera(coords, camera) { if (camera.isPerspectiveCamera) { this.ray.origin.setFromMatrixPosition(camera.matrixWorld) this.ray.direction .set(coords.x, coords.y, 0.5) .unproject(camera) .sub(this.ray.origin) .normalize() this.camera = camera } else if (camera.isOrthographicCamera) { this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera) // set origin in plane of camera this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld) this.camera = camera } else { console.error('THREE.Raycaster: Unsupported camera type: ' + camera.type) } } intersectObject(object, recursive = true, intersects = []) { intersectObject(object, this, intersects, recursive) intersects.sort(ascSort) return intersects } intersectObjects(objects, recursive = true, intersects = []) { for (let i = 0, l = objects.length; i < l; i++) { intersectObject(objects[i], this, intersects, recursive) } intersects.sort(ascSort) return intersects } } function ascSort(a, b) { return a.distance - b.distance } function intersectObject(object, raycaster, intersects, recursive) { if (object.layers.test(raycaster.layers)) { object.raycast(raycaster, intersects) } if (recursive === true) { const children = object.children for (let i = 0, l = children.length; i < l; i++) { intersectObject(children[i], raycaster, intersects, true) } } } /** * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up. * The azimuthal angle (theta) is measured from the positive z-axis. */ class Spherical { constructor(radius = 1, phi = 0, theta = 0) { this.radius = radius this.phi = phi // polar angle this.theta = theta // azimuthal angle return this } set(radius, phi, theta) { this.radius = radius this.phi = phi this.theta = theta return this } copy(other) { this.radius = other.radius this.phi = other.phi this.theta = other.theta return this } // restrict phi to be between EPS and PI-EPS makeSafe() { const EPS = 0.000001 this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi)) return this } setFromVector3(v) { return this.setFromCartesianCoords(v.x, v.y, v.z) } setFromCartesianCoords(x, y, z) { this.radius = Math.sqrt(x * x + y * y + z * z) if (this.radius === 0) { this.theta = 0 this.phi = 0 } else { this.theta = Math.atan2(x, z) this.phi = Math.acos(clamp(y / this.radius, -1, 1)) } return this } clone() { return new this.constructor().copy(this) } } /** * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system */ class Cylindrical { constructor(radius = 1, theta = 0, y = 0) { this.radius = radius // distance from the origin to a point in the x-z plane this.theta = theta // counterclockwise angle in the x-z plane measured in radians from the positive z-axis this.y = y // height above the x-z plane return this } set(radius, theta, y) { this.radius = radius this.theta = theta this.y = y return this } copy(other) { this.radius = other.radius this.theta = other.theta this.y = other.y return this } setFromVector3(v) { return this.setFromCartesianCoords(v.x, v.y, v.z) } setFromCartesianCoords(x, y, z) { this.radius = Math.sqrt(x * x + z * z) this.theta = Math.atan2(x, z) this.y = y return this } clone() { return new this.constructor().copy(this) } } const _vector$4 = /*@__PURE__*/ new Vector2() class Box2 { constructor(min = new Vector2(+Infinity, +Infinity), max = new Vector2(-Infinity, -Infinity)) { this.isBox2 = true this.min = min this.max = max } set(min, max) { this.min.copy(min) this.max.copy(max) return this } setFromPoints(points) { this.makeEmpty() for (let i = 0, il = points.length; i < il; i++) { this.expandByPoint(points[i]) } return this } setFromCenterAndSize(center, size) { const halfSize = _vector$4.copy(size).multiplyScalar(0.5) this.min.copy(center).sub(halfSize) this.max.copy(center).add(halfSize) return this } clone() { return new this.constructor().copy(this) } copy(box) { this.min.copy(box.min) this.max.copy(box.max) return this } makeEmpty() { this.min.x = this.min.y = +Infinity this.max.x = this.max.y = -Infinity return this } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return this.max.x < this.min.x || this.max.y < this.min.y } getCenter(target) { return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5) } getSize(target) { return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min) } expandByPoint(point) { this.min.min(point) this.max.max(point) return this } expandByVector(vector) { this.min.sub(vector) this.max.add(vector) return this } expandByScalar(scalar) { this.min.addScalar(-scalar) this.max.addScalar(scalar) return this } containsPoint(point) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true } containsBox(box) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y } getParameter(point, target) { // This can potentially have a divide by zero if the box // has a size dimension of 0. return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y)) } intersectsBox(box) { // using 4 splitting planes to rule out intersections return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true } clampPoint(point, target) { return target.copy(point).clamp(this.min, this.max) } distanceToPoint(point) { const clampedPoint = _vector$4.copy(point).clamp(this.min, this.max) return clampedPoint.sub(point).length() } intersect(box) { this.min.max(box.min) this.max.min(box.max) return this } union(box) { this.min.min(box.min) this.max.max(box.max) return this } translate(offset) { this.min.add(offset) this.max.add(offset) return this } equals(box) { return box.min.equals(this.min) && box.max.equals(this.max) } } const _startP = /*@__PURE__*/ new Vector3() const _startEnd = /*@__PURE__*/ new Vector3() class Line3 { constructor(start = new Vector3(), end = new Vector3()) { this.start = start this.end = end } set(start, end) { this.start.copy(start) this.end.copy(end) return this } copy(line) { this.start.copy(line.start) this.end.copy(line.end) return this } getCenter(target) { return target.addVectors(this.start, this.end).multiplyScalar(0.5) } delta(target) { return target.subVectors(this.end, this.start) } distanceSq() { return this.start.distanceToSquared(this.end) } distance() { return this.start.distanceTo(this.end) } at(t, target) { return this.delta(target) .multiplyScalar(t) .add(this.start) } closestPointToPointParameter(point, clampToLine) { _startP.subVectors(point, this.start) _startEnd.subVectors(this.end, this.start) const startEnd2 = _startEnd.dot(_startEnd) const startEnd_startP = _startEnd.dot(_startP) let t = startEnd_startP / startEnd2 if (clampToLine) { t = clamp(t, 0, 1) } return t } closestPointToPoint(point, clampToLine, target) { const t = this.closestPointToPointParameter(point, clampToLine) return this.delta(target) .multiplyScalar(t) .add(this.start) } applyMatrix4(matrix) { this.start.applyMatrix4(matrix) this.end.applyMatrix4(matrix) return this } equals(line) { return line.start.equals(this.start) && line.end.equals(this.end) } clone() { return new this.constructor().copy(this) } } const _vector$3 = /*@__PURE__*/ new Vector3() class SpotLightHelper extends Object3D { constructor(light, color) { super() this.light = light this.light.updateMatrixWorld() this.matrix = light.matrixWorld this.matrixAutoUpdate = false this.color = color const geometry = new BufferGeometry() const positions = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1] for (let i = 0, j = 1, l = 32; i < l; i++, j++) { const p1 = (i / l) * Math.PI * 2 const p2 = (j / l) * Math.PI * 2 positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1) } geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)) const material = new LineBasicMaterial({ fog: false, toneMapped: false }) this.cone = new LineSegments(geometry, material) this.add(this.cone) this.update() } dispose() { this.cone.geometry.dispose() this.cone.material.dispose() } update() { this.light.updateMatrixWorld() const coneLength = this.light.distance ? this.light.distance : 1000 const coneWidth = coneLength * Math.tan(this.light.angle) this.cone.scale.set(coneWidth, coneWidth, coneLength) _vector$3.setFromMatrixPosition(this.light.target.matrixWorld) this.cone.lookAt(_vector$3) if (this.color !== undefined) { this.cone.material.color.set(this.color) } else { this.cone.material.color.copy(this.light.color) } } } const _vector$2 = /*@__PURE__*/ new Vector3() const _boneMatrix = /*@__PURE__*/ new Matrix4() const _matrixWorldInv = /*@__PURE__*/ new Matrix4() class SkeletonHelper extends LineSegments { constructor(object) { const bones = getBoneList(object) const geometry = new BufferGeometry() const vertices = [] const colors = [] const color1 = new Color(0, 0, 1) const color2 = new Color(0, 1, 0) for (let i = 0; i < bones.length; i++) { const bone = bones[i] if (bone.parent && bone.parent.isBone) { vertices.push(0, 0, 0) vertices.push(0, 0, 0) colors.push(color1.r, color1.g, color1.b) colors.push(color2.r, color2.g, color2.b) } } geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)) geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)) const material = new LineBasicMaterial({ vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true }) super(geometry, material) this.isSkeletonHelper = true this.type = 'SkeletonHelper' this.root = object this.bones = bones this.matrix = object.matrixWorld this.matrixAutoUpdate = false } updateMatrixWorld(force) { const bones = this.bones const geometry = this.geometry const position = geometry.getAttribute('position') _matrixWorldInv.copy(this.root.matrixWorld).invert() for (let i = 0, j = 0; i < bones.length; i++) { const bone = bones[i] if (bone.parent && bone.parent.isBone) { _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld) _vector$2.setFromMatrixPosition(_boneMatrix) position.setXYZ(j, _vector$2.x, _vector$2.y, _vector$2.z) _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld) _vector$2.setFromMatrixPosition(_boneMatrix) position.setXYZ(j + 1, _vector$2.x, _vector$2.y, _vector$2.z) j += 2 } } geometry.getAttribute('position').needsUpdate = true super.updateMatrixWorld(force) } } function getBoneList(object) { const boneList = [] if (object.isBone === true) { boneList.push(object) } for (let i = 0; i < object.children.length; i++) { boneList.push.apply(boneList, getBoneList(object.children[i])) } return boneList } class PointLightHelper extends Mesh { constructor(light, sphereSize, color) { const geometry = new SphereGeometry(sphereSize, 4, 2) const material = new MeshBasicMaterial({ wireframe: true, fog: false, toneMapped: false }) super(geometry, material) this.light = light this.light.updateMatrixWorld() this.color = color this.type = 'PointLightHelper' this.matrix = this.light.matrixWorld this.matrixAutoUpdate = false this.update() /* // TODO: delete this comment? const distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 ); const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); const d = light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.scale.set( d, d, d ); } this.add( this.lightDistance ); */ } dispose() { this.geometry.dispose() this.material.dispose() } update() { if (this.color !== undefined) { this.material.color.set(this.color) } else { this.material.color.copy(this.light.color) } /* const d = this.light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.visible = true; this.lightDistance.scale.set( d, d, d ); } */ } } const _vector$1 = /*@__PURE__*/ new Vector3() const _color1 = /*@__PURE__*/ new Color() const _color2 = /*@__PURE__*/ new Color() class HemisphereLightHelper extends Object3D { constructor(light, size, color) { super() this.light = light this.light.updateMatrixWorld() this.matrix = light.matrixWorld this.matrixAutoUpdate = false this.color = color const geometry = new OctahedronGeometry(size) geometry.rotateY(Math.PI * 0.5) this.material = new MeshBasicMaterial({ wireframe: true, fog: false, toneMapped: false }) if (this.color === undefined) this.material.vertexColors = true const position = geometry.getAttribute('position') const colors = new Float32Array(position.count * 3) geometry.setAttribute('color', new BufferAttribute(colors, 3)) this.add(new Mesh(geometry, this.material)) this.update() } dispose() { this.children[0].geometry.dispose() this.children[0].material.dispose() } update() { const mesh = this.children[0] if (this.color !== undefined) { this.material.color.set(this.color) } else { const colors = mesh.geometry.getAttribute('color') _color1.copy(this.light.color) _color2.copy(this.light.groundColor) for (let i = 0, l = colors.count; i < l; i++) { const color = i < l / 2 ? _color1 : _color2 colors.setXYZ(i, color.r, color.g, color.b) } colors.needsUpdate = true } mesh.lookAt(_vector$1.setFromMatrixPosition(this.light.matrixWorld).negate()) } } class GridHelper extends LineSegments { constructor(size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888) { color1 = new Color(color1) color2 = new Color(color2) const center = divisions / 2 const step = size / divisions const halfSize = size / 2 const vertices = [], colors = [] for (let i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) { vertices.push(-halfSize, 0, k, halfSize, 0, k) vertices.push(k, 0, -halfSize, k, 0, halfSize) const color = i === center ? color1 : color2 color.toArray(colors, j) j += 3 color.toArray(colors, j) j += 3 color.toArray(colors, j) j += 3 color.toArray(colors, j) j += 3 } const geometry = new BufferGeometry() geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)) geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)) const material = new LineBasicMaterial({ vertexColors: true, toneMapped: false }) super(geometry, material) this.type = 'GridHelper' } } class PolarGridHelper extends LineSegments { constructor(radius = 10, radials = 16, circles = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888) { color1 = new Color(color1) color2 = new Color(color2) const vertices = [] const colors = [] // create the radials for (let i = 0; i <= radials; i++) { const v = (i / radials) * (Math.PI * 2) const x = Math.sin(v) * radius const z = Math.cos(v) * radius vertices.push(0, 0, 0) vertices.push(x, 0, z) const color = i & 1 ? color1 : color2 colors.push(color.r, color.g, color.b) colors.push(color.r, color.g, color.b) } // create the circles for (let i = 0; i <= circles; i++) { const color = i & 1 ? color1 : color2 const r = radius - (radius / circles) * i for (let j = 0; j < divisions; j++) { // first vertex let v = (j / divisions) * (Math.PI * 2) let x = Math.sin(v) * r let z = Math.cos(v) * r vertices.push(x, 0, z) colors.push(color.r, color.g, color.b) // second vertex v = ((j + 1) / divisions) * (Math.PI * 2) x = Math.sin(v) * r z = Math.cos(v) * r vertices.push(x, 0, z) colors.push(color.r, color.g, color.b) } } const geometry = new BufferGeometry() geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)) geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)) const material = new LineBasicMaterial({ vertexColors: true, toneMapped: false }) super(geometry, material) this.type = 'PolarGridHelper' } } const _v1 = /*@__PURE__*/ new Vector3() const _v2 = /*@__PURE__*/ new Vector3() const _v3 = /*@__PURE__*/ new Vector3() class DirectionalLightHelper extends Object3D { constructor(light, size, color) { super() this.light = light this.light.updateMatrixWorld() this.matrix = light.matrixWorld this.matrixAutoUpdate = false this.color = color if (size === undefined) size = 1 let geometry = new BufferGeometry() geometry.setAttribute('position', new Float32BufferAttribute([-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3)) const material = new LineBasicMaterial({ fog: false, toneMapped: false }) this.lightPlane = new Line(geometry, material) this.add(this.lightPlane) geometry = new BufferGeometry() geometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3)) this.targetLine = new Line(geometry, material) this.add(this.targetLine) this.update() } dispose() { this.lightPlane.geometry.dispose() this.lightPlane.material.dispose() this.targetLine.geometry.dispose() this.targetLine.material.dispose() } update() { _v1.setFromMatrixPosition(this.light.matrixWorld) _v2.setFromMatrixPosition(this.light.target.matrixWorld) _v3.subVectors(_v2, _v1) this.lightPlane.lookAt(_v2) if (this.color !== undefined) { this.lightPlane.material.color.set(this.color) this.targetLine.material.color.set(this.color) } else { this.lightPlane.material.color.copy(this.light.color) this.targetLine.material.color.copy(this.light.color) } this.targetLine.lookAt(_v2) this.targetLine.scale.z = _v3.length() } } const _vector = /*@__PURE__*/ new Vector3() const _camera = /*@__PURE__*/ new Camera() /** * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * https://github.com/evanw/lightgl.js/blob/master/tests/shadowmap.html */ class CameraHelper extends LineSegments { constructor(camera) { const geometry = new BufferGeometry() const material = new LineBasicMaterial({ color: 0xffffff, vertexColors: true, toneMapped: false }) const vertices = [] const colors = [] const pointMap = {} // colors const colorFrustum = new Color(0xffaa00) const colorCone = new Color(0xff0000) const colorUp = new Color(0x00aaff) const colorTarget = new Color(0xffffff) const colorCross = new Color(0x333333) // near addLine('n1', 'n2', colorFrustum) addLine('n2', 'n4', colorFrustum) addLine('n4', 'n3', colorFrustum) addLine('n3', 'n1', colorFrustum) // far addLine('f1', 'f2', colorFrustum) addLine('f2', 'f4', colorFrustum) addLine('f4', 'f3', colorFrustum) addLine('f3', 'f1', colorFrustum) // sides addLine('n1', 'f1', colorFrustum) addLine('n2', 'f2', colorFrustum) addLine('n3', 'f3', colorFrustum) addLine('n4', 'f4', colorFrustum) // cone addLine('p', 'n1', colorCone) addLine('p', 'n2', colorCone) addLine('p', 'n3', colorCone) addLine('p', 'n4', colorCone) // up addLine('u1', 'u2', colorUp) addLine('u2', 'u3', colorUp) addLine('u3', 'u1', colorUp) // target addLine('c', 't', colorTarget) addLine('p', 'c', colorCross) // cross addLine('cn1', 'cn2', colorCross) addLine('cn3', 'cn4', colorCross) addLine('cf1', 'cf2', colorCross) addLine('cf3', 'cf4', colorCross) function addLine(a, b, color) { addPoint(a, color) addPoint(b, color) } function addPoint(id, color) { vertices.push(0, 0, 0) colors.push(color.r, color.g, color.b) if (pointMap[id] === undefined) { pointMap[id] = [] } pointMap[id].push(vertices.length / 3 - 1) } geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)) geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)) super(geometry, material) this.type = 'CameraHelper' this.camera = camera if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix() this.matrix = camera.matrixWorld this.matrixAutoUpdate = false this.pointMap = pointMap this.update() } update() { const geometry = this.geometry const pointMap = this.pointMap const w = 1, h = 1 // we need just camera projection matrix inverse // world matrix must be identity _camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse) // center / target setPoint('c', pointMap, geometry, _camera, 0, 0, -1) setPoint('t', pointMap, geometry, _camera, 0, 0, 1) // near setPoint('n1', pointMap, geometry, _camera, -w, -h, -1) setPoint('n2', pointMap, geometry, _camera, w, -h, -1) setPoint('n3', pointMap, geometry, _camera, -w, h, -1) setPoint('n4', pointMap, geometry, _camera, w, h, -1) // far setPoint('f1', pointMap, geometry, _camera, -w, -h, 1) setPoint('f2', pointMap, geometry, _camera, w, -h, 1) setPoint('f3', pointMap, geometry, _camera, -w, h, 1) setPoint('f4', pointMap, geometry, _camera, w, h, 1) // up setPoint('u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, -1) setPoint('u2', pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1) setPoint('u3', pointMap, geometry, _camera, 0, h * 2, -1) // cross setPoint('cf1', pointMap, geometry, _camera, -w, 0, 1) setPoint('cf2', pointMap, geometry, _camera, w, 0, 1) setPoint('cf3', pointMap, geometry, _camera, 0, -h, 1) setPoint('cf4', pointMap, geometry, _camera, 0, h, 1) setPoint('cn1', pointMap, geometry, _camera, -w, 0, -1) setPoint('cn2', pointMap, geometry, _camera, w, 0, -1) setPoint('cn3', pointMap, geometry, _camera, 0, -h, -1) setPoint('cn4', pointMap, geometry, _camera, 0, h, -1) geometry.getAttribute('position').needsUpdate = true } dispose() { this.geometry.dispose() this.material.dispose() } } function setPoint(point, pointMap, geometry, camera, x, y, z) { _vector.set(x, y, z).unproject(camera) const points = pointMap[point] if (points !== undefined) { const position = geometry.getAttribute('position') for (let i = 0, l = points.length; i < l; i++) { position.setXYZ(points[i], _vector.x, _vector.y, _vector.z) } } } const _box = /*@__PURE__*/ new Box3() class BoxHelper extends LineSegments { constructor(object, color = 0xffff00) { const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]) const positions = new Float32Array(8 * 3) const geometry = new BufferGeometry() geometry.setIndex(new BufferAttribute(indices, 1)) geometry.setAttribute('position', new BufferAttribute(positions, 3)) super(geometry, new LineBasicMaterial({ color: color, toneMapped: false })) this.object = object this.type = 'BoxHelper' this.matrixAutoUpdate = false this.update() } update(object) { if (object !== undefined) { console.warn('THREE.BoxHelper: .update() has no longer arguments.') } if (this.object !== undefined) { _box.setFromObject(this.object) } if (_box.isEmpty()) return const min = _box.min const max = _box.max /* 5____4 1/___0/| | 6__|_7 2/___3/ 0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */ const position = this.geometry.attributes.position const array = position.array array[0] = max.x array[1] = max.y array[2] = max.z array[3] = min.x array[4] = max.y array[5] = max.z array[6] = min.x array[7] = min.y array[8] = max.z array[9] = max.x array[10] = min.y array[11] = max.z array[12] = max.x array[13] = max.y array[14] = min.z array[15] = min.x array[16] = max.y array[17] = min.z array[18] = min.x array[19] = min.y array[20] = min.z array[21] = max.x array[22] = min.y array[23] = min.z position.needsUpdate = true this.geometry.computeBoundingSphere() } setFromObject(object) { this.object = object this.update() return this } copy(source, recursive) { super.copy(source, recursive) this.object = source.object return this } } class Box3Helper extends LineSegments { constructor(box, color = 0xffff00) { const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]) const positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1] const geometry = new BufferGeometry() geometry.setIndex(new BufferAttribute(indices, 1)) geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)) super(geometry, new LineBasicMaterial({ color: color, toneMapped: false })) this.box = box this.type = 'Box3Helper' this.geometry.computeBoundingSphere() } updateMatrixWorld(force) { const box = this.box if (box.isEmpty()) return box.getCenter(this.position) box.getSize(this.scale) this.scale.multiplyScalar(0.5) super.updateMatrixWorld(force) } } class PlaneHelper extends Line { constructor(plane, size = 1, hex = 0xffff00) { const color = hex const positions = [1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0] const geometry = new BufferGeometry() geometry.setAttribute('position', new Float32BufferAttribute(positions, 3)) geometry.computeBoundingSphere() super(geometry, new LineBasicMaterial({ color: color, toneMapped: false })) this.type = 'PlaneHelper' this.plane = plane this.size = size const positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1] const geometry2 = new BufferGeometry() geometry2.setAttribute('position', new Float32BufferAttribute(positions2, 3)) geometry2.computeBoundingSphere() this.add(new Mesh(geometry2, new MeshBasicMaterial({ color: color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false }))) } updateMatrixWorld(force) { let scale = -this.plane.constant if (Math.abs(scale) < 1e-8) scale = 1e-8 // sign does not matter this.scale.set(0.5 * this.size, 0.5 * this.size, scale) this.children[0].material.side = scale < 0 ? BackSide : FrontSide // renderer flips side when determinant < 0; flipping not wanted here this.lookAt(this.plane.normal) super.updateMatrixWorld(force) } } const _axis = /*@__PURE__*/ new Vector3() let _lineGeometry, _coneGeometry class ArrowHelper extends Object3D { // dir is assumed to be normalized constructor(dir = new Vector3(0, 0, 1), origin = new Vector3(0, 0, 0), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2) { super() this.type = 'ArrowHelper' if (_lineGeometry === undefined) { _lineGeometry = new BufferGeometry() _lineGeometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3)) _coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1) _coneGeometry.translate(0, -0.5, 0) } this.position.copy(origin) this.line = new Line(_lineGeometry, new LineBasicMaterial({ color: color, toneMapped: false })) this.line.matrixAutoUpdate = false this.add(this.line) this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({ color: color, toneMapped: false })) this.cone.matrixAutoUpdate = false this.add(this.cone) this.setDirection(dir) this.setLength(length, headLength, headWidth) } setDirection(dir) { // dir is assumed to be normalized if (dir.y > 0.99999) { this.quaternion.set(0, 0, 0, 1) } else if (dir.y < -0.99999) { this.quaternion.set(1, 0, 0, 0) } else { _axis.set(dir.z, 0, -dir.x).normalize() const radians = Math.acos(dir.y) this.quaternion.setFromAxisAngle(_axis, radians) } } setLength(length, headLength = length * 0.2, headWidth = headLength * 0.2) { this.line.scale.set(1, Math.max(0.0001, length - headLength), 1) // see #17458 this.line.updateMatrix() this.cone.scale.set(headWidth, headLength, headWidth) this.cone.position.y = length this.cone.updateMatrix() } setColor(color) { this.line.material.color.set(color) this.cone.material.color.set(color) } copy(source) { super.copy(source, false) this.line.copy(source.line) this.cone.copy(source.cone) return this } } class AxesHelper extends LineSegments { constructor(size = 1) { const vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size] const colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1] const geometry = new BufferGeometry() geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3)) geometry.setAttribute('color', new Float32BufferAttribute(colors, 3)) const material = new LineBasicMaterial({ vertexColors: true, toneMapped: false }) super(geometry, material) this.type = 'AxesHelper' } setColors(xAxisColor, yAxisColor, zAxisColor) { const color = new Color() const array = this.geometry.attributes.color.array color.set(xAxisColor) color.toArray(array, 0) color.toArray(array, 3) color.set(yAxisColor) color.toArray(array, 6) color.toArray(array, 9) color.set(zAxisColor) color.toArray(array, 12) color.toArray(array, 15) this.geometry.attributes.color.needsUpdate = true return this } dispose() { this.geometry.dispose() this.material.dispose() } } class ShapePath { constructor() { this.type = 'ShapePath' this.color = new Color() this.subPaths = [] this.currentPath = null } moveTo(x, y) { this.currentPath = new Path() this.subPaths.push(this.currentPath) this.currentPath.moveTo(x, y) return this } lineTo(x, y) { this.currentPath.lineTo(x, y) return this } quadraticCurveTo(aCPx, aCPy, aX, aY) { this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY) return this } bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) return this } splineThru(pts) { this.currentPath.splineThru(pts) return this } toShapes(isCCW, noHoles) { function toShapesNoHoles(inSubpaths) { const shapes = [] for (let i = 0, l = inSubpaths.length; i < l; i++) { const tmpPath = inSubpaths[i] const tmpShape = new Shape() tmpShape.curves = tmpPath.curves shapes.push(tmpShape) } return shapes } function isPointInsidePolygon(inPt, inPolygon) { const polyLen = inPolygon.length // inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line let inside = false for (let p = polyLen - 1, q = 0; q < polyLen; p = q++) { let edgeLowPt = inPolygon[p] let edgeHighPt = inPolygon[q] let edgeDx = edgeHighPt.x - edgeLowPt.x let edgeDy = edgeHighPt.y - edgeLowPt.y if (Math.abs(edgeDy) > Number.EPSILON) { // not parallel if (edgeDy < 0) { edgeLowPt = inPolygon[q] edgeDx = -edgeDx edgeHighPt = inPolygon[p] edgeDy = -edgeDy } if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue if (inPt.y === edgeLowPt.y) { if (inPt.x === edgeLowPt.x) return true // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!! } else { const perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y) if (perpEdge === 0) return true // inPt is on contour ? if (perpEdge < 0) continue inside = !inside // true intersection left of inPt } } else { // parallel or collinear if (inPt.y !== edgeLowPt.y) continue // parallel // edge lies on the same horizontal line as inPt if ((edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x) || (edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x)) return true // inPt: Point on contour ! // continue; } } return inside } const isClockWise = ShapeUtils.isClockWise const subPaths = this.subPaths if (subPaths.length === 0) return [] if (noHoles === true) return toShapesNoHoles(subPaths) let solid, tmpPath, tmpShape const shapes = [] if (subPaths.length === 1) { tmpPath = subPaths[0] tmpShape = new Shape() tmpShape.curves = tmpPath.curves shapes.push(tmpShape) return shapes } let holesFirst = !isClockWise(subPaths[0].getPoints()) holesFirst = isCCW ? !holesFirst : holesFirst // console.log("Holes first", holesFirst); const betterShapeHoles = [] const newShapes = [] let newShapeHoles = [] let mainIdx = 0 let tmpPoints newShapes[mainIdx] = undefined newShapeHoles[mainIdx] = [] for (let i = 0, l = subPaths.length; i < l; i++) { tmpPath = subPaths[i] tmpPoints = tmpPath.getPoints() solid = isClockWise(tmpPoints) solid = isCCW ? !solid : solid if (solid) { if (!holesFirst && newShapes[mainIdx]) mainIdx++ newShapes[mainIdx] = { s: new Shape(), p: tmpPoints } newShapes[mainIdx].s.curves = tmpPath.curves if (holesFirst) mainIdx++ newShapeHoles[mainIdx] = [] //console.log('cw', i); } else { newShapeHoles[mainIdx].push({ h: tmpPath, p: tmpPoints[0] }) //console.log('ccw', i); } } // only Holes? -> probably all Shapes with wrong orientation if (!newShapes[0]) return toShapesNoHoles(subPaths) if (newShapes.length > 1) { let ambiguous = false let toChange = 0 for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { betterShapeHoles[sIdx] = [] } for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { const sho = newShapeHoles[sIdx] for (let hIdx = 0; hIdx < sho.length; hIdx++) { const ho = sho[hIdx] let hole_unassigned = true for (let s2Idx = 0; s2Idx < newShapes.length; s2Idx++) { if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) { if (sIdx !== s2Idx) toChange++ if (hole_unassigned) { hole_unassigned = false betterShapeHoles[s2Idx].push(ho) } else { ambiguous = true } } } if (hole_unassigned) { betterShapeHoles[sIdx].push(ho) } } } if (toChange > 0 && ambiguous === false) { newShapeHoles = betterShapeHoles } } let tmpHoles for (let i = 0, il = newShapes.length; i < il; i++) { tmpShape = newShapes[i].s shapes.push(tmpShape) tmpHoles = newShapeHoles[i] for (let j = 0, jl = tmpHoles.length; j < jl; j++) { tmpShape.holes.push(tmpHoles[j].h) } } //console.log("shape", shapes); return shapes } } // Fast Half Float Conversions, http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf class DataUtils { // float32 to float16 static toHalfFloat(val) { if (Math.abs(val) > 65504) console.warn('THREE.DataUtils.toHalfFloat(): Value out of range.') val = clamp(val, -65504, 65504) _floatView[0] = val const f = _uint32View[0] const e = (f >> 23) & 0x1ff return _baseTable[e] + ((f & 0x007fffff) >> _shiftTable[e]) } // float16 to float32 static fromHalfFloat(val) { const m = val >> 10 _uint32View[0] = _mantissaTable[_offsetTable[m] + (val & 0x3ff)] + _exponentTable[m] return _floatView[0] } } // float32 to float16 helpers const _buffer = new ArrayBuffer(4) const _floatView = new Float32Array(_buffer) const _uint32View = new Uint32Array(_buffer) const _baseTable = new Uint32Array(512) const _shiftTable = new Uint32Array(512) for (let i = 0; i < 256; ++i) { const e = i - 127 // very small number (0, -0) if (e < -27) { _baseTable[i] = 0x0000 _baseTable[i | 0x100] = 0x8000 _shiftTable[i] = 24 _shiftTable[i | 0x100] = 24 // small number (denorm) } else if (e < -14) { _baseTable[i] = 0x0400 >> (-e - 14) _baseTable[i | 0x100] = (0x0400 >> (-e - 14)) | 0x8000 _shiftTable[i] = -e - 1 _shiftTable[i | 0x100] = -e - 1 // normal number } else if (e <= 15) { _baseTable[i] = (e + 15) << 10 _baseTable[i | 0x100] = ((e + 15) << 10) | 0x8000 _shiftTable[i] = 13 _shiftTable[i | 0x100] = 13 // large number (Infinity, -Infinity) } else if (e < 128) { _baseTable[i] = 0x7c00 _baseTable[i | 0x100] = 0xfc00 _shiftTable[i] = 24 _shiftTable[i | 0x100] = 24 // stay (NaN, Infinity, -Infinity) } else { _baseTable[i] = 0x7c00 _baseTable[i | 0x100] = 0xfc00 _shiftTable[i] = 13 _shiftTable[i | 0x100] = 13 } } // float16 to float32 helpers const _mantissaTable = new Uint32Array(2048) const _exponentTable = new Uint32Array(64) const _offsetTable = new Uint32Array(64) for (let i = 1; i < 1024; ++i) { let m = i << 13 // zero pad mantissa bits let e = 0 // zero exponent // normalized while ((m & 0x00800000) === 0) { m <<= 1 e -= 0x00800000 // decrement exponent } m &= ~0x00800000 // clear leading 1 bit e += 0x38800000 // adjust bias _mantissaTable[i] = m | e } for (let i = 1024; i < 2048; ++i) { _mantissaTable[i] = 0x38000000 + ((i - 1024) << 13) } for (let i = 1; i < 31; ++i) { _exponentTable[i] = i << 23 } _exponentTable[31] = 0x47800000 _exponentTable[32] = 0x80000000 for (let i = 33; i < 63; ++i) { _exponentTable[i] = 0x80000000 + ((i - 32) << 23) } _exponentTable[63] = 0xc7800000 for (let i = 1; i < 64; ++i) { if (i !== 32) { _offsetTable[i] = 1024 } } // r133, c5bb5434555a3c3ddd784944a0a124f996fc721b class ParametricGeometry extends BufferGeometry { constructor() { console.error('THREE.ParametricGeometry has been moved to /examples/jsm/geometries/ParametricGeometry.js') super() } } // r133, eb58ff153119090d3bbb24474ea0ffc40c70dc92 class TextGeometry extends BufferGeometry { constructor() { console.error('THREE.TextGeometry has been moved to /examples/jsm/geometries/TextGeometry.js') super() } } // r133, eb58ff153119090d3bbb24474ea0ffc40c70dc92 function FontLoader() { console.error('THREE.FontLoader has been moved to /examples/jsm/loaders/FontLoader.js') } // r133, eb58ff153119090d3bbb24474ea0ffc40c70dc92 function Font() { console.error('THREE.Font has been moved to /examples/jsm/loaders/FontLoader.js') } // r134, d65e0af06644fe5a84a6fc0e372f4318f95a04c0 function ImmediateRenderObject() { console.error('THREE.ImmediateRenderObject has been removed.') } // r138, 48b05d3500acc084df50be9b4c90781ad9b8cb17 class WebGLMultisampleRenderTarget extends WebGLRenderTarget { constructor(width, height, options) { console.error('THREE.WebGLMultisampleRenderTarget has been removed. Use a normal render target and set the "samples" property to greater 0 to enable multisampling.') super(width, height, options) this.samples = 4 } } // r138, f9cd9cab03b7b64244e304900a3a2eeaa3a588ce class DataTexture2DArray extends DataArrayTexture { constructor(data, width, height, depth) { console.warn('THREE.DataTexture2DArray has been renamed to DataArrayTexture.') super(data, width, height, depth) } } // r138, f9cd9cab03b7b64244e304900a3a2eeaa3a588ce class DataTexture3D extends Data3DTexture { constructor(data, width, height, depth) { console.warn('THREE.DataTexture3D has been renamed to Data3DTexture.') super(data, width, height, depth) } } if (typeof __THREE_DEVTOOLS__ !== 'undefined') { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent('register', { detail: { revision: REVISION } }) ) } if (typeof window !== 'undefined') { if (window.__THREE__) { console.warn('WARNING: Multiple instances of Three.js being imported.') } else { window.__THREE__ = REVISION } } export { ACESFilmicToneMapping, AddEquation, AddOperation, AdditiveAnimationBlendMode, AdditiveBlending, AlphaFormat, AlwaysDepth, AlwaysStencilFunc, AmbientLight, AmbientLightProbe, AnimationClip, AnimationLoader, AnimationMixer, AnimationObjectGroup, AnimationUtils, ArcCurve, ArrayCamera, ArrowHelper, Audio, AudioAnalyser, AudioContext, AudioListener, AudioLoader, AxesHelper, BackSide, BasicDepthPacking, BasicShadowMap, Bone, BooleanKeyframeTrack, Box2, Box3, Box3Helper, BoxGeometry as BoxBufferGeometry, BoxGeometry, BoxHelper, BufferAttribute, BufferGeometry, BufferGeometryLoader, ByteType, Cache, Camera, CameraHelper, CanvasTexture, CapsuleGeometry as CapsuleBufferGeometry, CapsuleGeometry, CatmullRomCurve3, CineonToneMapping, CircleGeometry as CircleBufferGeometry, CircleGeometry, ClampToEdgeWrapping, Clock, Color, ColorKeyframeTrack, ColorManagement, CompressedTexture, CompressedTextureLoader, ConeGeometry as ConeBufferGeometry, ConeGeometry, CubeCamera, CubeReflectionMapping, CubeRefractionMapping, CubeTexture, CubeTextureLoader, CubeUVReflectionMapping, CubicBezierCurve, CubicBezierCurve3, CubicInterpolant, CullFaceBack, CullFaceFront, CullFaceFrontBack, CullFaceNone, Curve, CurvePath, CustomBlending, CustomToneMapping, CylinderGeometry as CylinderBufferGeometry, CylinderGeometry, Cylindrical, Data3DTexture, DataArrayTexture, DataTexture, DataTexture2DArray, DataTexture3D, DataTextureLoader, DataUtils, DecrementStencilOp, DecrementWrapStencilOp, DefaultLoadingManager, DepthFormat, DepthStencilFormat, DepthTexture, DirectionalLight, DirectionalLightHelper, DiscreteInterpolant, DodecahedronGeometry as DodecahedronBufferGeometry, DodecahedronGeometry, DoubleSide, DstAlphaFactor, DstColorFactor, DynamicCopyUsage, DynamicDrawUsage, DynamicReadUsage, EdgesGeometry, EllipseCurve, EqualDepth, EqualStencilFunc, EquirectangularReflectionMapping, EquirectangularRefractionMapping, Euler, EventDispatcher, ExtrudeGeometry as ExtrudeBufferGeometry, ExtrudeGeometry, FileLoader, FlatShading, Float16BufferAttribute, Float32BufferAttribute, Float64BufferAttribute, FloatType, Fog, FogExp2, Font, FontLoader, FramebufferTexture, FrontSide, Frustum, GLBufferAttribute, GLSL1, GLSL3, GreaterDepth, GreaterEqualDepth, GreaterEqualStencilFunc, GreaterStencilFunc, GridHelper, Group, HalfFloatType, HemisphereLight, HemisphereLightHelper, HemisphereLightProbe, IcosahedronGeometry as IcosahedronBufferGeometry, IcosahedronGeometry, ImageBitmapLoader, ImageLoader, ImageUtils, ImmediateRenderObject, IncrementStencilOp, IncrementWrapStencilOp, InstancedBufferAttribute, InstancedBufferGeometry, InstancedInterleavedBuffer, InstancedMesh, Int16BufferAttribute, Int32BufferAttribute, Int8BufferAttribute, IntType, InterleavedBuffer, InterleavedBufferAttribute, Interpolant, InterpolateDiscrete, InterpolateLinear, InterpolateSmooth, InvertStencilOp, KeepStencilOp, KeyframeTrack, LOD, LatheGeometry as LatheBufferGeometry, LatheGeometry, Layers, LessDepth, LessEqualDepth, LessEqualStencilFunc, LessStencilFunc, Light, LightProbe, Line, Line3, LineBasicMaterial, LineCurve, LineCurve3, LineDashedMaterial, LineLoop, LineSegments, LinearEncoding, LinearFilter, LinearInterpolant, LinearMipMapLinearFilter, LinearMipMapNearestFilter, LinearMipmapLinearFilter, LinearMipmapNearestFilter, LinearSRGBColorSpace, LinearToneMapping, Loader, LoaderUtils, LoadingManager, LoopOnce, LoopPingPong, LoopRepeat, LuminanceAlphaFormat, LuminanceFormat, MOUSE, Material, MaterialLoader, MathUtils, Matrix3, Matrix4, MaxEquation, Mesh, MeshBasicMaterial, MeshDepthMaterial, MeshDistanceMaterial, MeshLambertMaterial, MeshMatcapMaterial, MeshNormalMaterial, MeshPhongMaterial, MeshPhysicalMaterial, MeshStandardMaterial, MeshToonMaterial, MinEquation, MirroredRepeatWrapping, MixOperation, MultiplyBlending, MultiplyOperation, NearestFilter, NearestMipMapLinearFilter, NearestMipMapNearestFilter, NearestMipmapLinearFilter, NearestMipmapNearestFilter, NeverDepth, NeverStencilFunc, NoBlending, NoColorSpace, NoToneMapping, NormalAnimationBlendMode, NormalBlending, NotEqualDepth, NotEqualStencilFunc, NumberKeyframeTrack, Object3D, ObjectLoader, ObjectSpaceNormalMap, OctahedronGeometry as OctahedronBufferGeometry, OctahedronGeometry, OneFactor, OneMinusDstAlphaFactor, OneMinusDstColorFactor, OneMinusSrcAlphaFactor, OneMinusSrcColorFactor, OrthographicCamera, PCFShadowMap, PCFSoftShadowMap, PMREMGenerator, ParametricGeometry, Path, PerspectiveCamera, Plane, PlaneGeometry as PlaneBufferGeometry, PlaneGeometry, PlaneHelper, PointLight, PointLightHelper, Points, PointsMaterial, PolarGridHelper, PolyhedronGeometry as PolyhedronBufferGeometry, PolyhedronGeometry, PositionalAudio, PropertyBinding, PropertyMixer, QuadraticBezierCurve, QuadraticBezierCurve3, Quaternion, QuaternionKeyframeTrack, QuaternionLinearInterpolant, REVISION, RGBADepthPacking, RGBAFormat, RGBAIntegerFormat, RGBA_ASTC_10x10_Format, RGBA_ASTC_10x5_Format, RGBA_ASTC_10x6_Format, RGBA_ASTC_10x8_Format, RGBA_ASTC_12x10_Format, RGBA_ASTC_12x12_Format, RGBA_ASTC_4x4_Format, RGBA_ASTC_5x4_Format, RGBA_ASTC_5x5_Format, RGBA_ASTC_6x5_Format, RGBA_ASTC_6x6_Format, RGBA_ASTC_8x5_Format, RGBA_ASTC_8x6_Format, RGBA_ASTC_8x8_Format, RGBA_BPTC_Format, RGBA_ETC2_EAC_Format, RGBA_PVRTC_2BPPV1_Format, RGBA_PVRTC_4BPPV1_Format, RGBA_S3TC_DXT1_Format, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGBFormat, RGB_ETC1_Format, RGB_ETC2_Format, RGB_PVRTC_2BPPV1_Format, RGB_PVRTC_4BPPV1_Format, RGB_S3TC_DXT1_Format, RGFormat, RGIntegerFormat, RawShaderMaterial, Ray, Raycaster, RectAreaLight, RedFormat, RedIntegerFormat, ReinhardToneMapping, RepeatWrapping, ReplaceStencilOp, ReverseSubtractEquation, RingGeometry as RingBufferGeometry, RingGeometry, SRGBColorSpace, Scene, ShaderChunk, ShaderLib, ShaderMaterial, ShadowMaterial, Shape, ShapeGeometry as ShapeBufferGeometry, ShapeGeometry, ShapePath, ShapeUtils, ShortType, Skeleton, SkeletonHelper, SkinnedMesh, SmoothShading, Source, Sphere, SphereGeometry as SphereBufferGeometry, SphereGeometry, Spherical, SphericalHarmonics3, SplineCurve, SpotLight, SpotLightHelper, Sprite, SpriteMaterial, SrcAlphaFactor, SrcAlphaSaturateFactor, SrcColorFactor, StaticCopyUsage, StaticDrawUsage, StaticReadUsage, StereoCamera, StreamCopyUsage, StreamDrawUsage, StreamReadUsage, StringKeyframeTrack, SubtractEquation, SubtractiveBlending, TOUCH, TangentSpaceNormalMap, TetrahedronGeometry as TetrahedronBufferGeometry, TetrahedronGeometry, TextGeometry, Texture, TextureLoader, TorusGeometry as TorusBufferGeometry, TorusGeometry, TorusKnotGeometry as TorusKnotBufferGeometry, TorusKnotGeometry, Triangle, TriangleFanDrawMode, TriangleStripDrawMode, TrianglesDrawMode, TubeGeometry as TubeBufferGeometry, TubeGeometry, UVMapping, Uint16BufferAttribute, Uint32BufferAttribute, Uint8BufferAttribute, Uint8ClampedBufferAttribute, Uniform, UniformsLib, UniformsUtils, UnsignedByteType, UnsignedInt248Type, UnsignedIntType, UnsignedShort4444Type, UnsignedShort5551Type, UnsignedShortType, VSMShadowMap, Vector2, Vector3, Vector4, VectorKeyframeTrack, VideoTexture, WebGL1Renderer, WebGL3DRenderTarget, WebGLArrayRenderTarget, WebGLCubeRenderTarget, WebGLMultipleRenderTargets, WebGLMultisampleRenderTarget, WebGLRenderTarget, WebGLRenderer, WebGLUtils, WireframeGeometry, WrapAroundEnding, ZeroCurvatureEnding, ZeroFactor, ZeroSlopeEnding, ZeroStencilOp, _SRGBAFormat, sRGBEncoding }