import * as THREE from "../libs/three.js/build/three.module.js"; import {ExtendPointCloudMaterial} from "./materials/ExtendPointCloudMaterial.js"; import {PointCloudOctree} from './PointCloudOctree.js' import {PointSizeType } from "./defines.js"; import math from './custom/utils/math.js' export class ExtendPointCloudOctree extends PointCloudOctree{ constructor(geometry, material){ material = material || new ExtendPointCloudMaterial(); super(geometry, material) //xzw move from material 。 adaptive_point_size才使用 /* this.visibleNodesTexture = Utils.generateDataTexture(2048, 1, new THREE.Color(0xffffff)); this.visibleNodesTexture.minFilter = THREE.NearestFilter; this.visibleNodesTexture.magFilter = THREE.NearestFilter; */ this.boundingBox = this.pcoGeometry.tightBoundingBox//this.pcoGeometry.boundingBox; //boundingBox是正方体,所以换掉 this.boundingSphere = this.boundingBox.getBoundingSphere(new THREE.Sphere()); this.nodeMaxLevel = 0;//add this.maxLevel = Infinity; this.temp = { sizeFitToLevel:{}, opacity:{}}//add //add this.panos = [] this.matrixAutoUpdate = false //最好禁止updateMatrix 直接使用matrixWorld this.orientationUser = 0 this.translateUser = new THREE.Vector3; this.rotateMatrix = new THREE.Matrix4; this.transformMatrix = new THREE.Matrix4;// 数据集的变化矩阵 this.transformInvMatrix = new THREE.Matrix4; this.rotateInvMatrix = new THREE.Matrix4; this.nodeMaxLevelPredict = this.predictNodeMaxLevel()//预测maxNodeLevel this.testMaxNodeCount = this.testMaxNodeCount2 = 0 this.material.spacing = this.pcoGeometry.spacing;//初始化一下 以便于设置pointsize this._visible = true; this.pcoGeometry.addEventListener('updateNodeMaxLevel', this.updateNodeMaxLevel.bind(this)) this.isPointcloud = true //add } /* 注释:node的level从最大的box 0开始。 且加载任意一个node必定也会加载它的所有祖先。(如visibleNodes中有一个level为4,则一定有3,2,1,0) visibleNodes就是所有可见的node,比如: 如果相机在0这个位置朝下,这时候的visibleNodes中只有一个level为0的node; 而如果朝上看,上方的几个node如果在视野中占据足够大的位置的话,就会加载。 如果相机在2这个位置朝上,这时候的visibleNodes中所包含的level为: 0,1,2 ________________ | | | | |__2| | | | 1 | 1 | |_______|_______| | | | | | 0 | |_______________| 查看box可在potree中开启 */ updateNodeMaxLevel(e){//目前点云包含node的最高level var level = Math.max(e.level, this.nodeMaxLevel) if(level != this.nodeMaxLevel){ this.nodeMaxLevel = level //viewer.dispatchEvent({type:'updateNodeMaxLevel', pointcloud: this, nodeMaxLevel:level}) console.log('updateNodeMaxLevel ' + this.dataset_id + " : "+ this.nodeMaxLevel) this.setPointLevel()//重新计算 if(!Potree.settings.sizeFitToLevel){ this.changePointSize() } } }//注:在没有加载到真实的 nodeMaxLevel之前,点云会显示得偏大 //panoEdit时比预测值小很多? testMaxNodeLevel(camera){//手动使maxLevel达到最高,从而迫使updateNodeMaxLevel。 因为Potree.settings.pointDensity 不为 'high'时,maxLevel不是所加载的最高,就很容易加载不出下一个层级,导致无法知道nodeMaxLevel if(this.testMaxNodeLevelDone ) return //if(this.nodeMaxLevel > this.nodeMaxLevelPredict.min )return if( this.nodeMaxLevel==0 )return true if(camera.type == "OrthographicCamera"){ if(!Potree.Utils.isInsideFrustum(this.pcoGeometry.tightBoundingBox, camera)){ return true } }else if( !viewer.atDatasets.includes(this))return true //否则老远就count++ let levels = this.visibleNodes.map(e=>e.getLevel()) let actMaxLevel = Math.max.apply(null, levels) //实际加载到的最高的node level if(actMaxLevel < this.maxLevel)return true// 还没加载到能加载到的最高。 但在细节设置较低时,排除作用微弱。 //尝试加载出更高级的level let old = this.maxLevel this.maxLevel = 12; //var visibleNodes1 = this.visibleNodes.map(e=>e.getLevel()) //console.log('visibleNodes1',visibleNodes1) Potree.updatePointClouds([this], viewer.scene.getActiveCamera(), viewer.mainViewport.resolution ); //不在camera可视范围内还是加载不出来。即使临时修改位置 var visibleNodes2 = this.visibleNodes.map(e=>e.getLevel()) //console.log('visibleNodes2',visibleNodes2) this.maxLevel = old; this.testMaxNodeCount ++ viewer.testMaxNodeCount ++ //console.log('testMaxNodeCount', this.testMaxNodeCount) if(this.testMaxNodeCount > 100){ console.log('testMaxNodeLevel次数超出,强制结束:',this.dataset_id, this.nodeMaxLevel, this.nodeMaxLevelPredict.min) this.testMaxNodeLevelDone = 'moreThanMaxCount' return; //在可以看见点云的情况下,超时,有可能是预测的max是错的 } if(this.nodeMaxLevel < this.nodeMaxLevelPredict.min) return true //仍需要继续testMaxNodeLevel this.testMaxNodeCount2 ++; // 已经> this.nodeMaxLevelPredict.min 后,开始计数。因为min可能低于真实nodeMaxLevel所以要再试几次 /* if(this.name == 'SS-t-CWmVgzP4XU'){ console.log('SS-t-CWmVgzP4XU count++') } */ if(this.testMaxNodeCount2 < 50) return true //再试几次 ( 主要是细节调得低时需要多测几次才加载到 this.testMaxNodeLevelDone = true } updateMatrixWorld(force){//add super.updateMatrixWorld(force); this.matrixWorldInverse = this.matrixWorld.clone().invert(); } setPointLevel(){ var pointDensity = Potree.settings.pointDensity var config = Potree.config.pointDensity[pointDensity]; if(!config)return /* if(this.testingMaxLevel){ this.maxLevel = 12;//先加载到最大的直到测试完毕。由于5个level为一组来加载,所以如果写4最高能加载到5,如果写5最高能加载到下一个级别的最高也就是10 //console.log('maxLevel: '+e.maxLevel + ' testingMaxLevel中 ' ) }else{ */ let percent = config.percentByUser && Potree.settings.UserDensityPercent != void 0 ? Potree.settings.UserDensityPercent : config.maxLevelPercent this.maxLevel = Math.round( percent * this.nodeMaxLevel); //console.log('maxLevel: '+e.maxLevel + ', density : '+Potree.settings.pointDensity, ", percent :"+percent); if(Potree.settings.sizeFitToLevel){ this.changePointSize() } this.changePointOpacity() //} viewer.dispatchEvent('content_changed') } //预测可能的nodeMaxLevel: predictNodeMaxLevel(){//预测maxNodeLevel。 可能只适用于我们相机拍的点云 let spacing = {min:0.005, max:0.014};//最小节的两点间的距离 ,获得方法:spacing / Math.pow(2, nodeMaxLevel)。 目前观测的我们自己拍的这个数值的范围大概是这样 let min = Math.log2(this.material.spacing / spacing.max); //有见过最大是0.01368 let max = Math.log2(this.material.spacing / spacing.min); //大部分是 0.006 //console.log('predictNodeMaxLevel:', this.name , min, max ) return {min, max} } getHighestNodeSpacing(){ return this.material.spacing / Math.pow(2, this.nodeMaxLevel) //前提是这个nodeMaxLevel是准确的 } updateMaterial (material, visibleNodes, camera, renderer, resolution) {//改 material.fov = camera.fov * (Math.PI / 180); /* material.screenWidth = renderer.domElement.clientWidth; material.screenHeight = renderer.domElement.clientHeight; */ material.resolution = resolution material.spacing = this.pcoGeometry.spacing; // * Math.max(this.scale.x, this.scale.y, this.scale.z); material.near = camera.near; material.far = camera.far; material.uniforms.octreeSize.value = this.pcoGeometry.boundingBox.getSize(new THREE.Vector3()).x; } pick(viewer, viewport, camera, ray, params = {}){//改 let renderer = viewer.renderer; let pRenderer = viewer.pRenderer; viewer.addTimeMark('pick','start') let getVal = (a, b) => a != void 0 ? a : b; let pickWindowSize_ = THREE.Math.clamp( Math.round((1.1-this.maxLevel/this.nodeMaxLevel)*80), 5, 100) let pickWindowSize = getVal(params.pickWindowSize, pickWindowSize_ ); /* 65 */ //拾取像素边长,越小越精准,但点云稀疏的话可能容易出现识别不到的情况。 另外左下侧会有缝隙无法识别到,缝隙大小和这个值有关//突然发现pickWindowSize在一百以内的变化对pick费时影响甚微,1和100差1毫秒不到,但400时会多4毫秒 let pickOutsideClipRegion = getVal(params.pickOutsideClipRegion, false); let size = viewport ? viewport.resolution : renderer.getSize(new THREE.Vector2()); let width = Math.ceil(getVal(params.width, size.width)); //renderTarget大小。影响识别精度 let height = Math.ceil(getVal(params.height, size.height)); let screenshot = ()=>{ if(window.testScreen){ let dataUrl = Potree.Utils.renderTargetToDataUrl(pickState.renderTarget, width, height, renderer) Common.downloadFile(dataUrl, 'screenshot.jpg') //为什么图片上不是只有pickWindowSize区域有颜色?? window.testScreen = 0 } } let pointSizeType = getVal(params.pointSizeType, this.material.pointSizeType); let pointSize = getVal(params.pointSize, this.material.size); let nodes = this.nodesOnRay(this.visibleNodes, ray); if (nodes.length === 0) { return null; } //console.log('nodes.length != 0', this.name) if (!this.pickState) { let scene = new THREE.Scene(); let material = new ExtendPointCloudMaterial(); material.activeAttributeName = "indices"; let renderTarget = new THREE.WebGLRenderTarget( 1, 1, { minFilter: THREE.LinearFilter, magFilter: THREE.NearestFilter, format: THREE.RGBAFormat } ); this.pickState = { renderTarget: renderTarget, material: material, scene: scene }; }; let pickState = this.pickState; let pickMaterial = pickState.material; { // update pick material pickMaterial.pointSizeType = pointSizeType; //pickMaterial.shape = this.material.shape; pickMaterial.shape = Potree.PointShape.PARABOLOID; pickMaterial.uniforms.uFilterReturnNumberRange.value = this.material.uniforms.uFilterReturnNumberRange.value; pickMaterial.uniforms.uFilterNumberOfReturnsRange.value = this.material.uniforms.uFilterNumberOfReturnsRange.value; pickMaterial.uniforms.uFilterGPSTimeClipRange.value = this.material.uniforms.uFilterGPSTimeClipRange.value; pickMaterial.uniforms.uFilterPointSourceIDClipRange.value = this.material.uniforms.uFilterPointSourceIDClipRange.value; pickMaterial.activeAttributeName = "indices"; pickMaterial.size = pointSize; pickMaterial.uniforms.minSize.value = this.material.uniforms.minSize.value; pickMaterial.uniforms.maxSize.value = this.material.uniforms.maxSize.value; pickMaterial.classification = this.material.classification; pickMaterial.recomputeClassification(); //pickClipped判断转移到上一层函数 let {bigClipInBox,clipBoxes_in,clipBoxes_out} = this.material pickMaterial.setClipBoxes(bigClipInBox, clipBoxes_in, clipBoxes_out, []) this.updateMaterial(pickMaterial, nodes, camera, renderer, new THREE.Vector2(width, height)); } pickState.renderTarget.setSize(width, height); //仅绘制屏幕大小的,而不乘以devicePixelRatio let pixelPos = new THREE.Vector2(params.x, params.y); let gl = renderer.getContext(); gl.enable(gl.SCISSOR_TEST); gl.scissor( //规定渲染范围,只渲染一小块 parseInt(pixelPos.x - (pickWindowSize - 1) / 2), parseInt(pixelPos.y - (pickWindowSize - 1) / 2), parseInt(pickWindowSize), parseInt(pickWindowSize)); renderer.state.buffers.depth.setTest(pickMaterial.depthTest); renderer.state.buffers.depth.setMask(pickMaterial.depthWrite); renderer.state.setBlending(THREE.NoBlending); { // RENDER renderer.setRenderTarget(pickState.renderTarget); gl.clearColor(0, 0, 0, 0); renderer.clear(true, true, true); let tmp = this.material; this.material = pickMaterial; pRenderer.renderOctree(this, nodes, camera, pickState.renderTarget); screenshot(); this.material = tmp; } let clamp = (number, min, max) => Math.min(Math.max(min, number), max); let x = parseInt(clamp(pixelPos.x - (pickWindowSize - 1) / 2, 0, width)); let y = parseInt(clamp(pixelPos.y - (pickWindowSize - 1) / 2, 0, height)); /* let w = parseInt(Math.min(x + pickWindowSize, width) - x); let h = parseInt(Math.min(y + pickWindowSize, height) - y); */ let pixelCount = pickWindowSize * pickWindowSize//w * h; let buffer = new Uint8Array(4 * pixelCount); //w 0){//最后选取的是最靠近鼠标的那个pick if(distance < hits[0].distanceToCenter){ hits[0] = hit; } }else{ hits.push(hit); } if(distance < rSquare) hits2.push(hit); //add } } } } if(!params.all){ if(hits2.length){//add hits = hits2 } } // { // DEBUG: show panel with pick image // let img = Utils.pixelsArrayToImage(buffer, w, h); // let screenshot = img.src; // if(!this.debugDIV){ // this.debugDIV = $(` //
`); // $(document.body).append(this.debugDIV); // } // this.debugDIV.empty(); // this.debugDIV.append($(``)); // //$(this.debugWindow.document).append($(``)); // //this.debugWindow.document.write(''); // } for(let hit of hits){ let point = {}; if (!nodes[hit.pcIndex]) { return null; } let node = nodes[hit.pcIndex]; let pc = node.sceneNode; let geometry = node.geometryNode.geometry; for(let attributeName in geometry.attributes){ let attribute = geometry.attributes[attributeName]; if (attributeName === 'position') { let x = attribute.array[3 * hit.pIndex + 0]; let y = attribute.array[3 * hit.pIndex + 1]; let z = attribute.array[3 * hit.pIndex + 2]; let position = new THREE.Vector3(x, y, z); position.applyMatrix4( pc.matrixWorld ); point[attributeName] = position; //add if(!params.all){ hit.disSquare = camera.position.distanceToSquared(position) } } else if (attributeName === 'indices') { } else { let values = attribute.array.slice(attribute.itemSize * hit.pIndex, attribute.itemSize * (hit.pIndex + 1)) ; if(attribute.potree){ const {scale, offset} = attribute.potree; values = values.map(v => v / scale + offset); } point[attributeName] = values; //debugger; //if (values.itemSize === 1) { // point[attribute.name] = values.array[hit.pIndex]; //} else { // let value = []; // for (let j = 0; j < values.itemSize; j++) { // value.push(values.array[values.itemSize * hit.pIndex + j]); // } // point[attribute.name] = value; //} } } hit.point = point; } viewer.addTimeMark('pick','end') if(params.all){ return hits.map(hit => hit.point); }else{ if(hits.length === 0){ return null; }else{ //为了防止透过点云缝隙,选到后排的点云,将选取的位置离相机的距离考虑进去。倾向选择离相机近、且离鼠标位置近的点。(否则按照原方案只选离鼠标位置最近的,可能从高楼不小心走到下层,导航选点也是) let sorted1 = hits.sort( (a, b) => a.disSquare - b.disSquare ); let nearest = sorted1[0] //return nearest.point; //直接用最近点 在点云稀疏时不太跟手,如地面上,最近点往往在鼠标下方 let ratio = 0.1 //系数越大越不跟手,但更容易pick近处的。 (当pick的点较远时,获取框内的点距离可能差别很大,就要所以除以disSquare) let r = rSquare/Math.max(nearest.disSquare,0.001) * ratio hits.forEach( hit=>{ let disDiff = hit.disSquare - nearest.disSquare //和最近点的偏差 hit.disDiff = disDiff hit.score = -hit.distanceToCenter - disDiff * r }) let sorted2 = hits.sort( (a, b) => b.score - a.score ); //console.log(sorted2, 'nearest',nearest) return sorted2[0].point; //return hits[0].point; } } } // 设置点大小 changePointSize(num, sizeFitToLevel) { let size, nodeMaxLevel if(this.material.pointSizeType != PointSizeType.ATTENUATED){ num && (size = num / Potree.config.material.realPointSize / 1.3) }else{ let num_ = num if (num_ == void 0) { num_ = this.temp.pointSize } else { this.temp.pointSize = num_ } num_ = num_ / (Potree.config.material.realPointSize / Potree.config.material.pointSize) //兼容 num_ = Math.pow(num_, 1.05) * 6 nodeMaxLevel = this.testMaxNodeCount > Potree.config.testNodeCount1 ? this.nodeMaxLevel : this.nodeMaxLevelPredict.max //防止刚开始因nodeMaxLevel没涨完,导致过大的点云突然出现 if(sizeFitToLevel || Potree.settings.sizeFitToLevel){//按照点云质量来调整的版本: 近似将pointSizeType换成ADAPTIVE let str = this.temp.pointSize+':'+this.maxLevel+':'+ nodeMaxLevel let value = this.temp.sizeFitToLevel[str] //储存。防止每次渲染(反复切换density)都要算。 if(value){ size = value }else{ let base = this.material.spacing / Math.pow(2, this.maxLevel) //点云大小在level为0时设置为spacing,每长一级,大小就除以2. (不同场景还是会有偏差) base *= nodeMaxLevel > 0 ? Math.max(0.1, Math.pow(this.maxLevel / nodeMaxLevel, 1.4)) : 0.1 //低质量的缩小点,因为视觉上看太大了。navvis是不铺满的,我们也留一点缝隙(但是ortho是不用缩小的,如果能分开判断就好了) size = base * 5 * num_/* * window.devicePixelRatio */ //在t-8BCqxQAr93 会议室 和 t-e2Kb2iU 隧道 两个场景里调节,因为它们的spacing相差较大,观察会议室墙壁的龟裂程度 this.temp.sizeFitToLevel[str] = size } }else{ /* let base = 0.007; */ let base = this.material.spacing / Math.pow(2, nodeMaxLevel) //点云大小在level为0时设置为spacing,每长一级,大小就除以2 //base的数值理论上应该是右侧算出来的,但发现有的场景nodeMaxLevel和nodeMaxLevelPredict差别较大的点云显示也过大,而直接换成固定值反而可以适应所有场景。该固定值来源于 getHighestNodeSpacing 最小值,修改了下。(会不会是我们的相机其实该值是固定的,根据该值算出的spacing才是有误差的? 如果换了相机是否要改值?) //2022-12-21又换回非固定值。因为有的场景如SS-t-t01myDqnfE的两个数据集密集程度差别很大,应该将稀疏点云的大小设置的大些。 但是这样的缺点是两个数据集因相接处有大有小无法融合。 size = base * 5 * num_ /* * window.devicePixelRatio */ } } //console.log('changePointSize:' + this.dataset_id + ' , num: ' + (num && num.toPrecision(3)) + ' , size: ' + size.toPrecision(3), 'nodeMaxLevel', nodeMaxLevel.toPrecision(3), 'testMaxNodeCount',viewer.testMaxNodeCount /* this.material.spacing */) if(size){ if(Potree.settings.sortCloudMat){//被废弃,不给material分组了 this.size = size;this.material.size = size }else{ this.material.size = size } } viewer.dispatchEvent('content_changed') } // 设置点透明度 changePointOpacity(num, canMoreThanOne) { //num:0-1 navvis用的是亮度 if (num == void 0) { num = this.temp.pointOpacity } else { this.temp.pointOpacity = num } if(Potree.settings.notAdditiveBlending){ return this.material.opacity = num } let opacity if (num == 1) { opacity = 1 } else { let str = (Potree.settings.sizeFitToLevel?'sizeFit:':'')+ (canMoreThanOne ? 'canMoreThanOne:':'') +this.temp.pointOpacity+':'+this.maxLevel+':'+this.nodeMaxLevel let value = this.temp.opacity[str] //储存。防止每次渲染(反复切换density)都要算。 if(value){ opacity = value }else{ if(Potree.settings.sizeFitToLevel){//按照点云质量来调整的版本: let base = this.material.spacing / Math.pow(1.5, this.maxLevel) //随着level提高,点云重叠几率增多 let minBase = this.material.spacing / Math.pow(1.5, this.nodeMaxLevel) let ratio = Math.min(1 / base, 1 / minBase / 3) //ratio为一个能使opacity不大于1 的 乘量,minBase要除以一个数,该数调越大减弱效果越强。level越低opacity和面板越接,level越高效果越弱,以减免过度重叠后的亮度。 opacity = base * ratio * num if(!canMoreThanOne){ opacity = THREE.Math.clamp(opacity, 0, 0.999) //到1就不透明了(可能出现一段一样) } }else{ let base = this.material.spacing / Math.pow(1.8, this.maxLevel) let minBase = this.material.spacing / Math.pow(1.8, this.nodeMaxLevel) //console.log(1 / base, 1 / minBase / 6) let ratio = Math.min(1 / base, 1 / minBase / 6) //ratio为一个能使opacity不大于1 的 乘量,minBase要除以一个数,该数调越大减弱效果越强。level越低opacity和面板越接,level越高效果越弱,以减免过度重叠后的亮度。 opacity = base * ratio * num if(!canMoreThanOne){ opacity = THREE.Math.clamp(opacity, 0, 0.999) //到1就不透明了(可能出现一段一样) } } this.temp.opacity[str] = opacity } //缺点:防止颜色过亮主要是相机离远时,当在漫游点处由于离点云太近,可能会导致高质量点云看起来很暗。 } //console.log('changePointOpacity ' + this.dataset_id + ', num : ' + num + ' , opacity : ' + this.material.opacity) //检查是否做到了低质量时num==opacity,中质量opacity稍小于num,高质量更小 if(Potree.settings.sortCloudMat){ this.opacity = opacity; this.material.opacity = opacity }else{ this.material.opacity = opacity } viewer.dispatchEvent('content_changed') } updateBound(){ var boundingBox_ = this.pcoGeometry.tightBoundingBox.clone().applyMatrix4(this.matrixWorld)//tightBoundingBox是点云原始的bound,但经过(绕z)旋转后bound有所改变,比之前体积更大。 this.bound = boundingBox_ this.bound2 = this.getBoundWithPanos() } getBoundWithPanos(){//确保panoBound在内的bound let bound = this.bound.clone() this.panos.forEach(pano=>{ let panoBound = new THREE.Box3 panoBound.expandByPoint(pano.position) panoBound.expandByVector(new THREE.Vector3(1,1,1));//give pano a margin bound.union(panoBound) }) return bound } getPanosBound(){//仅由所有pano构成的bound if(this.panos.length > 0){ let minSize = new THREE.Vector3(1,1,1) this.panosBound = math.getBoundByPoints(this.panos.map(e=>e.position), minSize) }else{ this.panosBound = null } } getUnrotBoundPoint(type){//获取没有旋转的tightBounding的水平四个点 //如果alighment支持任意轴旋转,水平面上看到的可能就是六边形了,失去意义,到时候不能用这个。也可以若只绕z旋转, 使用tightBoundingBox,否则bound let bound = this.pcoGeometry.tightBoundingBox if(type == 'all'){ return [new THREE.Vector3(bound.min.x, bound.min.y, bound.min.z), new THREE.Vector3(bound.max.x, bound.min.y, bound.min.z), new THREE.Vector3(bound.max.x, bound.max.y,bound.min.z), new THREE.Vector3(bound.min.x, bound.max.y,bound.min.z), new THREE.Vector3(bound.min.x, bound.min.y, bound.max.z), new THREE.Vector3(bound.max.x, bound.min.y, bound.max.z), new THREE.Vector3(bound.max.x, bound.max.y,bound.max.z), new THREE.Vector3(bound.min.x, bound.max.y,bound.max.z), ].map(e=>e.applyMatrix4(this.matrixWorld)) }else return [new THREE.Vector3(bound.min.x, bound.min.y,0), new THREE.Vector3(bound.max.x, bound.min.y,0), new THREE.Vector3(bound.max.x, bound.max.y,0), new THREE.Vector3(bound.min.x, bound.max.y,0), ].map(e=>e.applyMatrix4(this.matrixWorld)) } getVolume(){ /* var points = this.getUnrotBoundPoint() -----在只绕z轴旋转时这么写也行 var area = Math.abs(math.getArea(points)) return area * (this.bound.max.z - this.bound.min.z) */ let bound = this.pcoGeometry.tightBoundingBox.clone() let size = bound.getSize(new THREE.Vector3) return size.x * size.y * size.z } ifContainsPoint(pos){//pos是否坐落于tightBound内 /* if(!this.bound || !this.bound.containsPoint(pos))return ---这样写也行 var points = this.getUnrotBoundPoint() return math.isPointInArea(points, null, pos) */ //要把tightBoundingBox想象成一个volumeBox let box = this.pcoGeometry.tightBoundingBox let center = box.getCenter(new THREE.Vector3) let size = box.getSize(new THREE.Vector3) let boxMatrix = new THREE.Matrix4().setPosition(center.x,center.y,center.z); boxMatrix.scale(size); boxMatrix.premultiply(this.matrixWorld) return Potree.Utils.isIntersectBox(pos, boxMatrix) } intersectBox(boxWorldMatrix){ let boxM = boxWorldMatrix.clone().premultiply(this.matrixWorld.clone().invert()); //box乘上点云逆矩阵 (因为点云的忽略掉其matrixWorld, 为了保持相对位置不变,box要左乘matrixWorld的逆)(因第一个参数bound不好变形,第二个参数box可以) return Potree.Utils.isIntersectBox(this.pcoGeometry.tightBoundingBox, boxM) } }