123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896 |
- import when from '../ThirdParty/when.js';
- import Cartesian2 from './Cartesian2.js';
- import Cartesian3 from './Cartesian3.js';
- import Cartesian4 from './Cartesian4.js';
- import Cartographic from './Cartographic.js';
- import Check from './Check.js';
- import defaultValue from './defaultValue.js';
- import defined from './defined.js';
- import DeveloperError from './DeveloperError.js';
- import EarthOrientationParameters from './EarthOrientationParameters.js';
- import EarthOrientationParametersSample from './EarthOrientationParametersSample.js';
- import Ellipsoid from './Ellipsoid.js';
- import HeadingPitchRoll from './HeadingPitchRoll.js';
- import Iau2006XysData from './Iau2006XysData.js';
- import Iau2006XysSample from './Iau2006XysSample.js';
- import JulianDate from './JulianDate.js';
- import CesiumMath from './Math.js';
- import Matrix3 from './Matrix3.js';
- import Matrix4 from './Matrix4.js';
- import Quaternion from './Quaternion.js';
- import TimeConstants from './TimeConstants.js';
- /**
- * Contains functions for transforming positions to various reference frames.
- *
- * @exports Transforms
- * @namespace
- */
- var Transforms = {};
- var vectorProductLocalFrame = {
- up : {
- south : 'east',
- north : 'west',
- west : 'south',
- east : 'north'
- },
- down : {
- south : 'west',
- north : 'east',
- west : 'north',
- east : 'south'
- },
- south : {
- up : 'west',
- down : 'east',
- west : 'down',
- east : 'up'
- },
- north : {
- up : 'east',
- down : 'west',
- west : 'up',
- east : 'down'
- },
- west : {
- up : 'north',
- down : 'south',
- north : 'down',
- south : 'up'
- },
- east : {
- up : 'south',
- down : 'north',
- north : 'up',
- south : 'down'
- }
- };
- var degeneratePositionLocalFrame = {
- north : [-1, 0, 0],
- east : [0, 1, 0],
- up : [0, 0, 1],
- south : [1, 0, 0],
- west : [0, -1, 0],
- down : [0, 0, -1]
- };
- var localFrameToFixedFrameCache = {};
- var scratchCalculateCartesian = {
- east : new Cartesian3(),
- north : new Cartesian3(),
- up : new Cartesian3(),
- west : new Cartesian3(),
- south : new Cartesian3(),
- down : new Cartesian3()
- };
- var scratchFirstCartesian = new Cartesian3();
- var scratchSecondCartesian = new Cartesian3();
- var scratchThirdCartesian = new Cartesian3();
- /**
- * Generates a function that computes a 4x4 transformation matrix from a reference frame
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * @param {String} firstAxis name of the first axis of the local reference frame. Must be
- * 'east', 'north', 'up', 'west', 'south' or 'down'.
- * @param {String} secondAxis name of the second axis of the local reference frame. Must be
- * 'east', 'north', 'up', 'west', 'south' or 'down'.
- * @return {localFrameToFixedFrameGenerator~resultat} The function that will computes a
- * 4x4 transformation matrix from a reference frame, with first axis and second axis compliant with the parameters,
- */
- Transforms.localFrameToFixedFrameGenerator = function (firstAxis, secondAxis) {
- if (!vectorProductLocalFrame.hasOwnProperty(firstAxis) || !vectorProductLocalFrame[firstAxis].hasOwnProperty(secondAxis)) {
- throw new DeveloperError('firstAxis and secondAxis must be east, north, up, west, south or down.');
- }
- var thirdAxis = vectorProductLocalFrame[firstAxis][secondAxis];
- /**
- * Computes a 4x4 transformation matrix from a reference frame
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * @callback Transforms~LocalFrameToFixedFrame
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- */
- var resultat;
- var hashAxis = firstAxis + secondAxis;
- if (defined(localFrameToFixedFrameCache[hashAxis])) {
- resultat = localFrameToFixedFrameCache[hashAxis];
- } else {
- resultat = function (origin, ellipsoid, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(origin)) {
- throw new DeveloperError('origin is required.');
- }
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Matrix4();
- }
- // If x and y are zero, assume origin is at a pole, which is a special case.
- if (CesiumMath.equalsEpsilon(origin.x, 0.0, CesiumMath.EPSILON14) && CesiumMath.equalsEpsilon(origin.y, 0.0, CesiumMath.EPSILON14)) {
- var sign = CesiumMath.sign(origin.z);
- Cartesian3.unpack(degeneratePositionLocalFrame[firstAxis], 0, scratchFirstCartesian);
- if (firstAxis !== 'east' && firstAxis !== 'west') {
- Cartesian3.multiplyByScalar(scratchFirstCartesian, sign, scratchFirstCartesian);
- }
- Cartesian3.unpack(degeneratePositionLocalFrame[secondAxis], 0, scratchSecondCartesian);
- if (secondAxis !== 'east' && secondAxis !== 'west') {
- Cartesian3.multiplyByScalar(scratchSecondCartesian, sign, scratchSecondCartesian);
- }
- Cartesian3.unpack(degeneratePositionLocalFrame[thirdAxis], 0, scratchThirdCartesian);
- if (thirdAxis !== 'east' && thirdAxis !== 'west') {
- Cartesian3.multiplyByScalar(scratchThirdCartesian, sign, scratchThirdCartesian);
- }
- } else {
- ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
- ellipsoid.geodeticSurfaceNormal(origin, scratchCalculateCartesian.up);
- var up = scratchCalculateCartesian.up;
- var east = scratchCalculateCartesian.east;
- east.x = -origin.y;
- east.y = origin.x;
- east.z = 0.0;
- Cartesian3.normalize(east, scratchCalculateCartesian.east);
- Cartesian3.cross(up, east, scratchCalculateCartesian.north);
- Cartesian3.multiplyByScalar(scratchCalculateCartesian.up, -1, scratchCalculateCartesian.down);
- Cartesian3.multiplyByScalar(scratchCalculateCartesian.east, -1, scratchCalculateCartesian.west);
- Cartesian3.multiplyByScalar(scratchCalculateCartesian.north, -1, scratchCalculateCartesian.south);
- scratchFirstCartesian = scratchCalculateCartesian[firstAxis];
- scratchSecondCartesian = scratchCalculateCartesian[secondAxis];
- scratchThirdCartesian = scratchCalculateCartesian[thirdAxis];
- }
- result[0] = scratchFirstCartesian.x;
- result[1] = scratchFirstCartesian.y;
- result[2] = scratchFirstCartesian.z;
- result[3] = 0.0;
- result[4] = scratchSecondCartesian.x;
- result[5] = scratchSecondCartesian.y;
- result[6] = scratchSecondCartesian.z;
- result[7] = 0.0;
- result[8] = scratchThirdCartesian.x;
- result[9] = scratchThirdCartesian.y;
- result[10] = scratchThirdCartesian.z;
- result[11] = 0.0;
- result[12] = origin.x;
- result[13] = origin.y;
- result[14] = origin.z;
- result[15] = 1.0;
- return result;
- };
- localFrameToFixedFrameCache[hashAxis] = resultat;
- }
- return resultat;
- };
- /**
- * Computes a 4x4 transformation matrix from a reference frame with an east-north-up axes
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * The local axes are defined as:
- * <ul>
- * <li>The <code>x</code> axis points in the local east direction.</li>
- * <li>The <code>y</code> axis points in the local north direction.</li>
- * <li>The <code>z</code> axis points in the direction of the ellipsoid surface normal which passes through the position.</li>
- * </ul>
- *
- * @function
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- *
- * @example
- * // Get the transform from local east-north-up at cartographic (0.0, 0.0) to Earth's fixed frame.
- * var center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * var transform = Cesium.Transforms.eastNorthUpToFixedFrame(center);
- */
- Transforms.eastNorthUpToFixedFrame = Transforms.localFrameToFixedFrameGenerator('east','north');
- /**
- * Computes a 4x4 transformation matrix from a reference frame with an north-east-down axes
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * The local axes are defined as:
- * <ul>
- * <li>The <code>x</code> axis points in the local north direction.</li>
- * <li>The <code>y</code> axis points in the local east direction.</li>
- * <li>The <code>z</code> axis points in the opposite direction of the ellipsoid surface normal which passes through the position.</li>
- * </ul>
- *
- * @function
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- *
- * @example
- * // Get the transform from local north-east-down at cartographic (0.0, 0.0) to Earth's fixed frame.
- * var center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * var transform = Cesium.Transforms.northEastDownToFixedFrame(center);
- */
- Transforms.northEastDownToFixedFrame = Transforms.localFrameToFixedFrameGenerator('north','east');
- /**
- * Computes a 4x4 transformation matrix from a reference frame with an north-up-east axes
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * The local axes are defined as:
- * <ul>
- * <li>The <code>x</code> axis points in the local north direction.</li>
- * <li>The <code>y</code> axis points in the direction of the ellipsoid surface normal which passes through the position.</li>
- * <li>The <code>z</code> axis points in the local east direction.</li>
- * </ul>
- *
- * @function
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- *
- * @example
- * // Get the transform from local north-up-east at cartographic (0.0, 0.0) to Earth's fixed frame.
- * var center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * var transform = Cesium.Transforms.northUpEastToFixedFrame(center);
- */
- Transforms.northUpEastToFixedFrame = Transforms.localFrameToFixedFrameGenerator('north','up');
- /**
- * Computes a 4x4 transformation matrix from a reference frame with an north-west-up axes
- * centered at the provided origin to the provided ellipsoid's fixed reference frame.
- * The local axes are defined as:
- * <ul>
- * <li>The <code>x</code> axis points in the local north direction.</li>
- * <li>The <code>y</code> axis points in the local west direction.</li>
- * <li>The <code>z</code> axis points in the direction of the ellipsoid surface normal which passes through the position.</li>
- * </ul>
- *
- * @function
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- *
- * @example
- * // Get the transform from local north-West-Up at cartographic (0.0, 0.0) to Earth's fixed frame.
- * var center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * var transform = Cesium.Transforms.northWestUpToFixedFrame(center);
- */
- Transforms.northWestUpToFixedFrame = Transforms.localFrameToFixedFrameGenerator('north','west');
- var scratchHPRQuaternion = new Quaternion();
- var scratchScale = new Cartesian3(1.0, 1.0, 1.0);
- var scratchHPRMatrix4 = new Matrix4();
- /**
- * Computes a 4x4 transformation matrix from a reference frame with axes computed from the heading-pitch-roll angles
- * centered at the provided origin to the provided ellipsoid's fixed reference frame. Heading is the rotation from the local north
- * direction where a positive angle is increasing eastward. Pitch is the rotation from the local east-north plane. Positive pitch angles
- * are above the plane. Negative pitch angles are below the plane. Roll is the first rotation applied about the local east axis.
- *
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {HeadingPitchRoll} headingPitchRoll The heading, pitch, and roll.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Transforms~LocalFrameToFixedFrame} [fixedFrameTransform=Transforms.eastNorthUpToFixedFrame] A 4x4 transformation
- * matrix from a reference frame to the provided ellipsoid's fixed reference frame
- * @param {Matrix4} [result] The object onto which to store the result.
- * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if none was provided.
- *
- * @example
- * // Get the transform from local heading-pitch-roll at cartographic (0.0, 0.0) to Earth's fixed frame.
- * var center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * var heading = -Cesium.Math.PI_OVER_TWO;
- * var pitch = Cesium.Math.PI_OVER_FOUR;
- * var roll = 0.0;
- * var hpr = new Cesium.HeadingPitchRoll(heading, pitch, roll);
- * var transform = Cesium.Transforms.headingPitchRollToFixedFrame(center, hpr);
- */
- Transforms.headingPitchRollToFixedFrame = function(origin, headingPitchRoll, ellipsoid, fixedFrameTransform, result) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object( 'HeadingPitchRoll', headingPitchRoll);
- //>>includeEnd('debug');
- fixedFrameTransform = defaultValue(fixedFrameTransform, Transforms.eastNorthUpToFixedFrame);
- var hprQuaternion = Quaternion.fromHeadingPitchRoll(headingPitchRoll, scratchHPRQuaternion);
- var hprMatrix = Matrix4.fromTranslationQuaternionRotationScale(Cartesian3.ZERO, hprQuaternion, scratchScale, scratchHPRMatrix4);
- result = fixedFrameTransform(origin, ellipsoid, result);
- return Matrix4.multiply(result, hprMatrix, result);
- };
- var scratchENUMatrix4 = new Matrix4();
- var scratchHPRMatrix3 = new Matrix3();
- /**
- * Computes a quaternion from a reference frame with axes computed from the heading-pitch-roll angles
- * centered at the provided origin. Heading is the rotation from the local north
- * direction where a positive angle is increasing eastward. Pitch is the rotation from the local east-north plane. Positive pitch angles
- * are above the plane. Negative pitch angles are below the plane. Roll is the first rotation applied about the local east axis.
- *
- * @param {Cartesian3} origin The center point of the local reference frame.
- * @param {HeadingPitchRoll} headingPitchRoll The heading, pitch, and roll.
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Transforms~LocalFrameToFixedFrame} [fixedFrameTransform=Transforms.eastNorthUpToFixedFrame] A 4x4 transformation
- * matrix from a reference frame to the provided ellipsoid's fixed reference frame
- * @param {Quaternion} [result] The object onto which to store the result.
- * @returns {Quaternion} The modified result parameter or a new Quaternion instance if none was provided.
- *
- * @example
- * // Get the quaternion from local heading-pitch-roll at cartographic (0.0, 0.0) to Earth's fixed frame.
- * var center = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * var heading = -Cesium.Math.PI_OVER_TWO;
- * var pitch = Cesium.Math.PI_OVER_FOUR;
- * var roll = 0.0;
- * var hpr = new HeadingPitchRoll(heading, pitch, roll);
- * var quaternion = Cesium.Transforms.headingPitchRollQuaternion(center, hpr);
- */
- Transforms.headingPitchRollQuaternion = function(origin, headingPitchRoll, ellipsoid, fixedFrameTransform, result) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object( 'HeadingPitchRoll', headingPitchRoll);
- //>>includeEnd('debug');
- var transform = Transforms.headingPitchRollToFixedFrame(origin, headingPitchRoll, ellipsoid, fixedFrameTransform, scratchENUMatrix4);
- var rotation = Matrix4.getMatrix3(transform, scratchHPRMatrix3);
- return Quaternion.fromRotationMatrix(rotation, result);
- };
- var noScale = new Cartesian3(1.0, 1.0, 1.0);
- var hprCenterScratch = new Cartesian3();
- var ffScratch = new Matrix4();
- var hprTransformScratch = new Matrix4();
- var hprRotationScratch = new Matrix3();
- var hprQuaternionScratch = new Quaternion();
- /**
- * Computes heading-pitch-roll angles from a transform in a particular reference frame. Heading is the rotation from the local north
- * direction where a positive angle is increasing eastward. Pitch is the rotation from the local east-north plane. Positive pitch angles
- * are above the plane. Negative pitch angles are below the plane. Roll is the first rotation applied about the local east axis.
- *
- * @param {Matrix4} transform The transform
- * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid whose fixed frame is used in the transformation.
- * @param {Transforms~LocalFrameToFixedFrame} [fixedFrameTransform=Transforms.eastNorthUpToFixedFrame] A 4x4 transformation
- * matrix from a reference frame to the provided ellipsoid's fixed reference frame
- * @param {HeadingPitchRoll} [result] The object onto which to store the result.
- * @returns {HeadingPitchRoll} The modified result parameter or a new HeadingPitchRoll instance if none was provided.
- */
- Transforms.fixedFrameToHeadingPitchRoll = function(transform, ellipsoid, fixedFrameTransform, result) {
- //>>includeStart('debug', pragmas.debug);
- Check.defined('transform', transform);
- //>>includeEnd('debug');
- ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
- fixedFrameTransform = defaultValue(fixedFrameTransform, Transforms.eastNorthUpToFixedFrame);
- if (!defined(result)) {
- result = new HeadingPitchRoll();
- }
- var center = Matrix4.getTranslation(transform, hprCenterScratch);
- if (Cartesian3.equals(center, Cartesian3.ZERO)) {
- result.heading = 0;
- result.pitch = 0;
- result.roll = 0;
- return result;
- }
- var toFixedFrame = Matrix4.inverseTransformation(fixedFrameTransform(center, ellipsoid, ffScratch), ffScratch);
- var transformCopy = Matrix4.setScale(transform, noScale, hprTransformScratch);
- transformCopy = Matrix4.setTranslation(transformCopy, Cartesian3.ZERO, transformCopy);
- toFixedFrame = Matrix4.multiply(toFixedFrame, transformCopy, toFixedFrame);
- var quaternionRotation = Quaternion.fromRotationMatrix(Matrix4.getMatrix3(toFixedFrame, hprRotationScratch), hprQuaternionScratch);
- quaternionRotation = Quaternion.normalize(quaternionRotation, quaternionRotation);
- return HeadingPitchRoll.fromQuaternion(quaternionRotation, result);
- };
- var gmstConstant0 = 6 * 3600 + 41 * 60 + 50.54841;
- var gmstConstant1 = 8640184.812866;
- var gmstConstant2 = 0.093104;
- var gmstConstant3 = -6.2E-6;
- var rateCoef = 1.1772758384668e-19;
- var wgs84WRPrecessing = 7.2921158553E-5;
- var twoPiOverSecondsInDay = CesiumMath.TWO_PI / 86400.0;
- var dateInUtc = new JulianDate();
- /**
- * Computes a rotation matrix to transform a point or vector from True Equator Mean Equinox (TEME) axes to the
- * pseudo-fixed axes at a given time. This method treats the UT1 time standard as equivalent to UTC.
- *
- * @param {JulianDate} date The time at which to compute the rotation matrix.
- * @param {Matrix3} [result] The object onto which to store the result.
- * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if none was provided.
- *
- * @example
- * //Set the view to the inertial frame.
- * scene.postUpdate.addEventListener(function(scene, time) {
- * var now = Cesium.JulianDate.now();
- * var offset = Cesium.Matrix4.multiplyByPoint(camera.transform, camera.position, new Cesium.Cartesian3());
- * var transform = Cesium.Matrix4.fromRotationTranslation(Cesium.Transforms.computeTemeToPseudoFixedMatrix(now));
- * var inverseTransform = Cesium.Matrix4.inverseTransformation(transform, new Cesium.Matrix4());
- * Cesium.Matrix4.multiplyByPoint(inverseTransform, offset, offset);
- * camera.lookAtTransform(transform, offset);
- * });
- */
- Transforms.computeTemeToPseudoFixedMatrix = function (date, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(date)) {
- throw new DeveloperError('date is required.');
- }
- //>>includeEnd('debug');
- // GMST is actually computed using UT1. We're using UTC as an approximation of UT1.
- // We do not want to use the function like convertTaiToUtc in JulianDate because
- // we explicitly do not want to fail when inside the leap second.
- dateInUtc = JulianDate.addSeconds(date, -JulianDate.computeTaiMinusUtc(date), dateInUtc);
- var utcDayNumber = dateInUtc.dayNumber;
- var utcSecondsIntoDay = dateInUtc.secondsOfDay;
- var t;
- var diffDays = utcDayNumber - 2451545;
- if (utcSecondsIntoDay >= 43200.0) {
- t = (diffDays + 0.5) / TimeConstants.DAYS_PER_JULIAN_CENTURY;
- } else {
- t = (diffDays - 0.5) / TimeConstants.DAYS_PER_JULIAN_CENTURY;
- }
- var gmst0 = gmstConstant0 + t * (gmstConstant1 + t * (gmstConstant2 + t * gmstConstant3));
- var angle = (gmst0 * twoPiOverSecondsInDay) % CesiumMath.TWO_PI;
- var ratio = wgs84WRPrecessing + rateCoef * (utcDayNumber - 2451545.5);
- var secondsSinceMidnight = (utcSecondsIntoDay + TimeConstants.SECONDS_PER_DAY * 0.5) % TimeConstants.SECONDS_PER_DAY;
- var gha = angle + (ratio * secondsSinceMidnight);
- var cosGha = Math.cos(gha);
- var sinGha = Math.sin(gha);
- if (!defined(result)) {
- return new Matrix3(cosGha, sinGha, 0.0,
- -sinGha, cosGha, 0.0,
- 0.0, 0.0, 1.0);
- }
- result[0] = cosGha;
- result[1] = -sinGha;
- result[2] = 0.0;
- result[3] = sinGha;
- result[4] = cosGha;
- result[5] = 0.0;
- result[6] = 0.0;
- result[7] = 0.0;
- result[8] = 1.0;
- return result;
- };
- /**
- * The source of IAU 2006 XYS data, used for computing the transformation between the
- * Fixed and ICRF axes.
- * @type {Iau2006XysData}
- *
- * @see Transforms.computeIcrfToFixedMatrix
- * @see Transforms.computeFixedToIcrfMatrix
- *
- * @private
- */
- Transforms.iau2006XysData = new Iau2006XysData();
- /**
- * The source of Earth Orientation Parameters (EOP) data, used for computing the transformation
- * between the Fixed and ICRF axes. By default, zero values are used for all EOP values,
- * yielding a reasonable but not completely accurate representation of the ICRF axes.
- * @type {EarthOrientationParameters}
- *
- * @see Transforms.computeIcrfToFixedMatrix
- * @see Transforms.computeFixedToIcrfMatrix
- *
- * @private
- */
- Transforms.earthOrientationParameters = EarthOrientationParameters.NONE;
- var ttMinusTai = 32.184;
- var j2000ttDays = 2451545.0;
- /**
- * Preloads the data necessary to transform between the ICRF and Fixed axes, in either
- * direction, over a given interval. This function returns a promise that, when resolved,
- * indicates that the preload has completed.
- *
- * @param {TimeInterval} timeInterval The interval to preload.
- * @returns {Promise} A promise that, when resolved, indicates that the preload has completed
- * and evaluation of the transformation between the fixed and ICRF axes will
- * no longer return undefined for a time inside the interval.
- *
- *
- * @example
- * var interval = new Cesium.TimeInterval(...);
- * when(Cesium.Transforms.preloadIcrfFixed(interval), function() {
- * // the data is now loaded
- * });
- *
- * @see Transforms.computeIcrfToFixedMatrix
- * @see Transforms.computeFixedToIcrfMatrix
- * @see when
- */
- Transforms.preloadIcrfFixed = function(timeInterval) {
- var startDayTT = timeInterval.start.dayNumber;
- var startSecondTT = timeInterval.start.secondsOfDay + ttMinusTai;
- var stopDayTT = timeInterval.stop.dayNumber;
- var stopSecondTT = timeInterval.stop.secondsOfDay + ttMinusTai;
- var xysPromise = Transforms.iau2006XysData.preload(startDayTT, startSecondTT, stopDayTT, stopSecondTT);
- var eopPromise = Transforms.earthOrientationParameters.getPromiseToLoad();
- return when.all([xysPromise, eopPromise]);
- };
- /**
- * Computes a rotation matrix to transform a point or vector from the International Celestial
- * Reference Frame (GCRF/ICRF) inertial frame axes to the Earth-Fixed frame axes (ITRF)
- * at a given time. This function may return undefined if the data necessary to
- * do the transformation is not yet loaded.
- *
- * @param {JulianDate} date The time at which to compute the rotation matrix.
- * @param {Matrix3} [result] The object onto which to store the result. If this parameter is
- * not specified, a new instance is created and returned.
- * @returns {Matrix3} The rotation matrix, or undefined if the data necessary to do the
- * transformation is not yet loaded.
- *
- *
- * @example
- * scene.postUpdate.addEventListener(function(scene, time) {
- * // View in ICRF.
- * var icrfToFixed = Cesium.Transforms.computeIcrfToFixedMatrix(time);
- * if (Cesium.defined(icrfToFixed)) {
- * var offset = Cesium.Cartesian3.clone(camera.position);
- * var transform = Cesium.Matrix4.fromRotationTranslation(icrfToFixed);
- * camera.lookAtTransform(transform, offset);
- * }
- * });
- *
- * @see Transforms.preloadIcrfFixed
- */
- Transforms.computeIcrfToFixedMatrix = function(date, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(date)) {
- throw new DeveloperError('date is required.');
- }
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Matrix3();
- }
- var fixedToIcrfMtx = Transforms.computeFixedToIcrfMatrix(date, result);
- if (!defined(fixedToIcrfMtx)) {
- return undefined;
- }
- return Matrix3.transpose(fixedToIcrfMtx, result);
- };
- var xysScratch = new Iau2006XysSample(0.0, 0.0, 0.0);
- var eopScratch = new EarthOrientationParametersSample(0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
- var rotation1Scratch = new Matrix3();
- var rotation2Scratch = new Matrix3();
- /**
- * Computes a rotation matrix to transform a point or vector from the Earth-Fixed frame axes (ITRF)
- * to the International Celestial Reference Frame (GCRF/ICRF) inertial frame axes
- * at a given time. This function may return undefined if the data necessary to
- * do the transformation is not yet loaded.
- *
- * @param {JulianDate} date The time at which to compute the rotation matrix.
- * @param {Matrix3} [result] The object onto which to store the result. If this parameter is
- * not specified, a new instance is created and returned.
- * @returns {Matrix3} The rotation matrix, or undefined if the data necessary to do the
- * transformation is not yet loaded.
- *
- *
- * @example
- * // Transform a point from the ICRF axes to the Fixed axes.
- * var now = Cesium.JulianDate.now();
- * var pointInFixed = Cesium.Cartesian3.fromDegrees(0.0, 0.0);
- * var fixedToIcrf = Cesium.Transforms.computeIcrfToFixedMatrix(now);
- * var pointInInertial = new Cesium.Cartesian3();
- * if (Cesium.defined(fixedToIcrf)) {
- * pointInInertial = Cesium.Matrix3.multiplyByVector(fixedToIcrf, pointInFixed, pointInInertial);
- * }
- *
- * @see Transforms.preloadIcrfFixed
- */
- Transforms.computeFixedToIcrfMatrix = function(date, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(date)) {
- throw new DeveloperError('date is required.');
- }
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Matrix3();
- }
- // Compute pole wander
- var eop = Transforms.earthOrientationParameters.compute(date, eopScratch);
- if (!defined(eop)) {
- return undefined;
- }
- // There is no external conversion to Terrestrial Time (TT).
- // So use International Atomic Time (TAI) and convert using offsets.
- // Here we are assuming that dayTT and secondTT are positive
- var dayTT = date.dayNumber;
- // It's possible here that secondTT could roll over 86400
- // This does not seem to affect the precision (unit tests check for this)
- var secondTT = date.secondsOfDay + ttMinusTai;
- var xys = Transforms.iau2006XysData.computeXysRadians(dayTT, secondTT, xysScratch);
- if (!defined(xys)) {
- return undefined;
- }
- var x = xys.x + eop.xPoleOffset;
- var y = xys.y + eop.yPoleOffset;
- // Compute XYS rotation
- var a = 1.0 / (1.0 + Math.sqrt(1.0 - x * x - y * y));
- var rotation1 = rotation1Scratch;
- rotation1[0] = 1.0 - a * x * x;
- rotation1[3] = -a * x * y;
- rotation1[6] = x;
- rotation1[1] = -a * x * y;
- rotation1[4] = 1 - a * y * y;
- rotation1[7] = y;
- rotation1[2] = -x;
- rotation1[5] = -y;
- rotation1[8] = 1 - a * (x * x + y * y);
- var rotation2 = Matrix3.fromRotationZ(-xys.s, rotation2Scratch);
- var matrixQ = Matrix3.multiply(rotation1, rotation2, rotation1Scratch);
- // Similar to TT conversions above
- // It's possible here that secondTT could roll over 86400
- // This does not seem to affect the precision (unit tests check for this)
- var dateUt1day = date.dayNumber;
- var dateUt1sec = date.secondsOfDay - JulianDate.computeTaiMinusUtc(date) + eop.ut1MinusUtc;
- // Compute Earth rotation angle
- // The IERS standard for era is
- // era = 0.7790572732640 + 1.00273781191135448 * Tu
- // where
- // Tu = JulianDateInUt1 - 2451545.0
- // However, you get much more precision if you make the following simplification
- // era = a + (1 + b) * (JulianDayNumber + FractionOfDay - 2451545)
- // era = a + (JulianDayNumber - 2451545) + FractionOfDay + b (JulianDayNumber - 2451545 + FractionOfDay)
- // era = a + FractionOfDay + b (JulianDayNumber - 2451545 + FractionOfDay)
- // since (JulianDayNumber - 2451545) represents an integer number of revolutions which will be discarded anyway.
- var daysSinceJ2000 = dateUt1day - 2451545;
- var fractionOfDay = dateUt1sec / TimeConstants.SECONDS_PER_DAY;
- var era = 0.7790572732640 + fractionOfDay + 0.00273781191135448 * (daysSinceJ2000 + fractionOfDay);
- era = (era % 1.0) * CesiumMath.TWO_PI;
- var earthRotation = Matrix3.fromRotationZ(era, rotation2Scratch);
- // pseudoFixed to ICRF
- var pfToIcrf = Matrix3.multiply(matrixQ, earthRotation, rotation1Scratch);
- // Compute pole wander matrix
- var cosxp = Math.cos(eop.xPoleWander);
- var cosyp = Math.cos(eop.yPoleWander);
- var sinxp = Math.sin(eop.xPoleWander);
- var sinyp = Math.sin(eop.yPoleWander);
- var ttt = (dayTT - j2000ttDays) + secondTT / TimeConstants.SECONDS_PER_DAY;
- ttt /= 36525.0;
- // approximate sp value in rad
- var sp = -47.0e-6 * ttt * CesiumMath.RADIANS_PER_DEGREE / 3600.0;
- var cossp = Math.cos(sp);
- var sinsp = Math.sin(sp);
- var fToPfMtx = rotation2Scratch;
- fToPfMtx[0] = cosxp * cossp;
- fToPfMtx[1] = cosxp * sinsp;
- fToPfMtx[2] = sinxp;
- fToPfMtx[3] = -cosyp * sinsp + sinyp * sinxp * cossp;
- fToPfMtx[4] = cosyp * cossp + sinyp * sinxp * sinsp;
- fToPfMtx[5] = -sinyp * cosxp;
- fToPfMtx[6] = -sinyp * sinsp - cosyp * sinxp * cossp;
- fToPfMtx[7] = sinyp * cossp - cosyp * sinxp * sinsp;
- fToPfMtx[8] = cosyp * cosxp;
- return Matrix3.multiply(pfToIcrf, fToPfMtx, result);
- };
- var pointToWindowCoordinatesTemp = new Cartesian4();
- /**
- * Transform a point from model coordinates to window coordinates.
- *
- * @param {Matrix4} modelViewProjectionMatrix The 4x4 model-view-projection matrix.
- * @param {Matrix4} viewportTransformation The 4x4 viewport transformation.
- * @param {Cartesian3} point The point to transform.
- * @param {Cartesian2} [result] The object onto which to store the result.
- * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if none was provided.
- */
- Transforms.pointToWindowCoordinates = function (modelViewProjectionMatrix, viewportTransformation, point, result) {
- result = Transforms.pointToGLWindowCoordinates(modelViewProjectionMatrix, viewportTransformation, point, result);
- result.y = 2.0 * viewportTransformation[5] - result.y;
- return result;
- };
- /**
- * @private
- */
- Transforms.pointToGLWindowCoordinates = function(modelViewProjectionMatrix, viewportTransformation, point, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(modelViewProjectionMatrix)) {
- throw new DeveloperError('modelViewProjectionMatrix is required.');
- }
- if (!defined(viewportTransformation)) {
- throw new DeveloperError('viewportTransformation is required.');
- }
- if (!defined(point)) {
- throw new DeveloperError('point is required.');
- }
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Cartesian2();
- }
- var tmp = pointToWindowCoordinatesTemp;
- Matrix4.multiplyByVector(modelViewProjectionMatrix, Cartesian4.fromElements(point.x, point.y, point.z, 1, tmp), tmp);
- Cartesian4.multiplyByScalar(tmp, 1.0 / tmp.w, tmp);
- Matrix4.multiplyByVector(viewportTransformation, tmp, tmp);
- return Cartesian2.fromCartesian4(tmp, result);
- };
- var normalScratch = new Cartesian3();
- var rightScratch = new Cartesian3();
- var upScratch = new Cartesian3();
- /**
- * @private
- */
- Transforms.rotationMatrixFromPositionVelocity = function(position, velocity, ellipsoid, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(position)) {
- throw new DeveloperError('position is required.');
- }
- if (!defined(velocity)) {
- throw new DeveloperError('velocity is required.');
- }
- //>>includeEnd('debug');
- var normal = defaultValue(ellipsoid, Ellipsoid.WGS84).geodeticSurfaceNormal(position, normalScratch);
- var right = Cartesian3.cross(velocity, normal, rightScratch);
- if (Cartesian3.equalsEpsilon(right, Cartesian3.ZERO, CesiumMath.EPSILON6)) {
- right = Cartesian3.clone(Cartesian3.UNIT_X, right);
- }
- var up = Cartesian3.cross(right, velocity, upScratch);
- Cartesian3.normalize(up, up);
- Cartesian3.cross(velocity, up, right);
- Cartesian3.negate(right, right);
- Cartesian3.normalize(right, right);
- if (!defined(result)) {
- result = new Matrix3();
- }
- result[0] = velocity.x;
- result[1] = velocity.y;
- result[2] = velocity.z;
- result[3] = right.x;
- result[4] = right.y;
- result[5] = right.z;
- result[6] = up.x;
- result[7] = up.y;
- result[8] = up.z;
- return result;
- };
- var swizzleMatrix = new Matrix4(
- 0.0, 0.0, 1.0, 0.0,
- 1.0, 0.0, 0.0, 0.0,
- 0.0, 1.0, 0.0, 0.0,
- 0.0, 0.0, 0.0, 1.0
- );
- var scratchCartographic = new Cartographic();
- var scratchCartesian3Projection = new Cartesian3();
- var scratchCenter = new Cartesian3();
- var scratchRotation = new Matrix3();
- var scratchFromENU = new Matrix4();
- var scratchToENU = new Matrix4();
- /**
- * @private
- */
- Transforms.basisTo2D = function(projection, matrix, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(projection)) {
- throw new DeveloperError('projection is required.');
- }
- if (!defined(matrix)) {
- throw new DeveloperError('matrix is required.');
- }
- if (!defined(result)) {
- throw new DeveloperError('result is required.');
- }
- //>>includeEnd('debug');
- var rtcCenter = Matrix4.getTranslation(matrix, scratchCenter);
- var ellipsoid = projection.ellipsoid;
- // Get the 2D Center
- var cartographic = ellipsoid.cartesianToCartographic(rtcCenter, scratchCartographic);
- var projectedPosition = projection.project(cartographic, scratchCartesian3Projection);
- Cartesian3.fromElements(projectedPosition.z, projectedPosition.x, projectedPosition.y, projectedPosition);
- // Assuming the instance are positioned in WGS84, invert the WGS84 transform to get the local transform and then convert to 2D
- var fromENU = Transforms.eastNorthUpToFixedFrame(rtcCenter, ellipsoid, scratchFromENU);
- var toENU = Matrix4.inverseTransformation(fromENU, scratchToENU);
- var rotation = Matrix4.getMatrix3(matrix, scratchRotation);
- var local = Matrix4.multiplyByMatrix3(toENU, rotation, result);
- Matrix4.multiply(swizzleMatrix, local, result); // Swap x, y, z for 2D
- Matrix4.setTranslation(result, projectedPosition, result); // Use the projected center
- return result;
- };
- /**
- * @private
- */
- Transforms.wgs84To2DModelMatrix = function(projection, center, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(projection)) {
- throw new DeveloperError('projection is required.');
- }
- if (!defined(center)) {
- throw new DeveloperError('center is required.');
- }
- if (!defined(result)) {
- throw new DeveloperError('result is required.');
- }
- //>>includeEnd('debug');
- var ellipsoid = projection.ellipsoid;
- var fromENU = Transforms.eastNorthUpToFixedFrame(center, ellipsoid, scratchFromENU);
- var toENU = Matrix4.inverseTransformation(fromENU, scratchToENU);
- var cartographic = ellipsoid.cartesianToCartographic(center, scratchCartographic);
- var projectedPosition = projection.project(cartographic, scratchCartesian3Projection);
- Cartesian3.fromElements(projectedPosition.z, projectedPosition.x, projectedPosition.y, projectedPosition);
- var translation = Matrix4.fromTranslation(projectedPosition, scratchFromENU);
- Matrix4.multiply(swizzleMatrix, toENU, result);
- Matrix4.multiply(translation, result, result);
- return result;
- };
- export default Transforms;
|