123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530 |
- import Cartesian3 from './Cartesian3.js';
- import defined from './defined.js';
- import DeveloperError from './DeveloperError.js';
- import JulianDate from './JulianDate.js';
- import CesiumMath from './Math.js';
- import Matrix3 from './Matrix3.js';
- import TimeConstants from './TimeConstants.js';
- import TimeStandard from './TimeStandard.js';
- /**
- * Contains functions for finding the Cartesian coordinates of the sun and the moon in the
- * Earth-centered inertial frame.
- *
- * @exports Simon1994PlanetaryPositions
- */
- var Simon1994PlanetaryPositions = {};
- function computeTdbMinusTtSpice(daysSinceJ2000InTerrestrialTime) {
- /* STK Comments ------------------------------------------------------
- * This function uses constants designed to be consistent with
- * the SPICE Toolkit from JPL version N0051 (unitim.c)
- * M0 = 6.239996
- * M0Dot = 1.99096871e-7 rad/s = 0.01720197 rad/d
- * EARTH_ECC = 1.671e-2
- * TDB_AMPL = 1.657e-3 secs
- *--------------------------------------------------------------------*/
- //* Values taken as specified in STK Comments except: 0.01720197 rad/day = 1.99096871e-7 rad/sec
- //* Here we use the more precise value taken from the SPICE value 1.99096871e-7 rad/sec converted to rad/day
- //* All other constants are consistent with the SPICE implementation of the TDB conversion
- //* except where we treat the independent time parameter to be in TT instead of TDB.
- //* This is an approximation made to facilitate performance due to the higher prevalance of
- //* the TT2TDB conversion over TDB2TT in order to avoid having to iterate when converting to TDB for the JPL ephemeris.
- //* Days are used instead of seconds to provide a slight improvement in numerical precision.
- //* For more information see:
- //* http://www.cv.nrao.edu/~rfisher/Ephemerides/times.html#TDB
- //* ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/ExplSupplChap8.pdf
- var g = 6.239996 + (0.0172019696544) * daysSinceJ2000InTerrestrialTime;
- return 1.657e-3 * Math.sin(g + 1.671e-2 * Math.sin(g));
- }
- var TdtMinusTai = 32.184;
- var J2000d = 2451545;
- function taiToTdb(date, result) {
- //Converts TAI to TT
- result = JulianDate.addSeconds(date, TdtMinusTai, result);
- //Converts TT to TDB
- var days = JulianDate.totalDays(result) - J2000d;
- result = JulianDate.addSeconds(result, computeTdbMinusTtSpice(days), result);
- return result;
- }
- var epoch = new JulianDate(2451545, 0, TimeStandard.TAI); //Actually TDB (not TAI)
- var MetersPerKilometer = 1000.0;
- var RadiansPerDegree = CesiumMath.RADIANS_PER_DEGREE;
- var RadiansPerArcSecond = CesiumMath.RADIANS_PER_ARCSECOND;
- var MetersPerAstronomicalUnit = 1.49597870e+11; // IAU 1976 value
- var perifocalToEquatorial = new Matrix3();
- function elementsToCartesian(semimajorAxis, eccentricity, inclination, longitudeOfPerigee, longitudeOfNode, meanLongitude, result) {
- if (inclination < 0.0) {
- inclination = -inclination;
- longitudeOfNode += CesiumMath.PI;
- }
- //>>includeStart('debug', pragmas.debug);
- if (inclination < 0 || inclination > CesiumMath.PI) {
- throw new DeveloperError('The inclination is out of range. Inclination must be greater than or equal to zero and less than or equal to Pi radians.');
- }
- //>>includeEnd('debug')
- var radiusOfPeriapsis = semimajorAxis * (1.0 - eccentricity);
- var argumentOfPeriapsis = longitudeOfPerigee - longitudeOfNode;
- var rightAscensionOfAscendingNode = longitudeOfNode;
- var trueAnomaly = meanAnomalyToTrueAnomaly(meanLongitude - longitudeOfPerigee, eccentricity);
- var type = chooseOrbit(eccentricity, 0.0);
- //>>includeStart('debug', pragmas.debug);
- if (type === 'Hyperbolic' && Math.abs(CesiumMath.negativePiToPi(trueAnomaly)) >= Math.acos(- 1.0 / eccentricity)) {
- throw new DeveloperError('The true anomaly of the hyperbolic orbit lies outside of the bounds of the hyperbola.');
- }
- //>>includeEnd('debug')
- perifocalToCartesianMatrix(argumentOfPeriapsis, inclination, rightAscensionOfAscendingNode, perifocalToEquatorial);
- var semilatus = radiusOfPeriapsis * (1.0 + eccentricity);
- var costheta = Math.cos(trueAnomaly);
- var sintheta = Math.sin(trueAnomaly);
- var denom = (1.0 + eccentricity * costheta);
- //>>includeStart('debug', pragmas.debug);
- if (denom <= CesiumMath.Epsilon10) {
- throw new DeveloperError('elements cannot be converted to cartesian');
- }
- //>>includeEnd('debug')
- var radius = semilatus / denom;
- if (!defined(result)) {
- result = new Cartesian3(radius * costheta, radius * sintheta, 0.0);
- } else {
- result.x = radius * costheta;
- result.y = radius * sintheta;
- result.z = 0.0;
- }
- return Matrix3.multiplyByVector(perifocalToEquatorial, result, result);
- }
- function chooseOrbit(eccentricity, tolerance) {
- //>>includeStart('debug', pragmas.debug);
- if (eccentricity < 0) {
- throw new DeveloperError('eccentricity cannot be negative.');
- }
- //>>includeEnd('debug')
- if (eccentricity <= tolerance) {
- return 'Circular';
- } else if (eccentricity < 1.0 - tolerance) {
- return 'Elliptical';
- } else if (eccentricity <= 1.0 + tolerance) {
- return 'Parabolic';
- }
- return 'Hyperbolic';
- }
- // Calculates the true anomaly given the mean anomaly and the eccentricity.
- function meanAnomalyToTrueAnomaly(meanAnomaly, eccentricity) {
- //>>includeStart('debug', pragmas.debug);
- if (eccentricity < 0.0 || eccentricity >= 1.0) {
- throw new DeveloperError('eccentricity out of range.');
- }
- //>>includeEnd('debug')
- var eccentricAnomaly = meanAnomalyToEccentricAnomaly(meanAnomaly, eccentricity);
- return eccentricAnomalyToTrueAnomaly(eccentricAnomaly, eccentricity);
- }
- var maxIterationCount = 50;
- var keplerEqConvergence = CesiumMath.EPSILON8;
- // Calculates the eccentric anomaly given the mean anomaly and the eccentricity.
- function meanAnomalyToEccentricAnomaly(meanAnomaly, eccentricity) {
- //>>includeStart('debug', pragmas.debug);
- if (eccentricity < 0.0 || eccentricity >= 1.0) {
- throw new DeveloperError('eccentricity out of range.');
- }
- //>>includeEnd('debug')
- var revs = Math.floor(meanAnomaly / CesiumMath.TWO_PI);
- // Find angle in current revolution
- meanAnomaly -= revs * CesiumMath.TWO_PI;
- // calculate starting value for iteration sequence
- var iterationValue = meanAnomaly + (eccentricity * Math.sin(meanAnomaly)) /
- (1.0 - Math.sin(meanAnomaly + eccentricity) + Math.sin(meanAnomaly));
- // Perform Newton-Raphson iteration on Kepler's equation
- var eccentricAnomaly = Number.MAX_VALUE;
- var count;
- for (count = 0;
- count < maxIterationCount && Math.abs(eccentricAnomaly - iterationValue) > keplerEqConvergence;
- ++count)
- {
- eccentricAnomaly = iterationValue;
- var NRfunction = eccentricAnomaly - eccentricity * Math.sin(eccentricAnomaly) - meanAnomaly;
- var dNRfunction = 1 - eccentricity * Math.cos(eccentricAnomaly);
- iterationValue = eccentricAnomaly - NRfunction / dNRfunction;
- }
- //>>includeStart('debug', pragmas.debug);
- if (count >= maxIterationCount) {
- throw new DeveloperError('Kepler equation did not converge');
- // STK Components uses a numerical method to find the eccentric anomaly in the case that Kepler's
- // equation does not converge. We don't expect that to ever be necessary for the reasonable orbits used here.
- }
- //>>includeEnd('debug')
- eccentricAnomaly = iterationValue + revs * CesiumMath.TWO_PI;
- return eccentricAnomaly;
- }
- // Calculates the true anomaly given the eccentric anomaly and the eccentricity.
- function eccentricAnomalyToTrueAnomaly(eccentricAnomaly, eccentricity) {
- //>>includeStart('debug', pragmas.debug);
- if (eccentricity < 0.0 || eccentricity >= 1.0) {
- throw new DeveloperError('eccentricity out of range.');
- }
- //>>includeEnd('debug')
- // Calculate the number of previous revolutions
- var revs = Math.floor(eccentricAnomaly / CesiumMath.TWO_PI);
- // Find angle in current revolution
- eccentricAnomaly -= revs * CesiumMath.TWO_PI;
- // Calculate true anomaly from eccentric anomaly
- var trueAnomalyX = Math.cos(eccentricAnomaly) - eccentricity;
- var trueAnomalyY = Math.sin(eccentricAnomaly) * Math.sqrt(1 - eccentricity * eccentricity);
- var trueAnomaly = Math.atan2(trueAnomalyY, trueAnomalyX);
- // Ensure the correct quadrant
- trueAnomaly = CesiumMath.zeroToTwoPi(trueAnomaly);
- if (eccentricAnomaly < 0)
- {
- trueAnomaly -= CesiumMath.TWO_PI;
- }
- // Add on previous revolutions
- trueAnomaly += revs * CesiumMath.TWO_PI;
- return trueAnomaly;
- }
- // Calculates the transformation matrix to convert from the perifocal (PQW) coordinate
- // system to inertial cartesian coordinates.
- function perifocalToCartesianMatrix(argumentOfPeriapsis, inclination, rightAscension, result) {
- //>>includeStart('debug', pragmas.debug);
- if (inclination < 0 || inclination > CesiumMath.PI) {
- throw new DeveloperError('inclination out of range');
- }
- //>>includeEnd('debug')
- var cosap = Math.cos(argumentOfPeriapsis);
- var sinap = Math.sin(argumentOfPeriapsis);
- var cosi = Math.cos(inclination);
- var sini = Math.sin(inclination);
- var cosraan = Math.cos(rightAscension);
- var sinraan = Math.sin(rightAscension);
- if (!defined(result)) {
- result = new Matrix3(
- cosraan * cosap - sinraan * sinap * cosi,
- -cosraan * sinap - sinraan * cosap * cosi,
- sinraan * sini,
- sinraan * cosap + cosraan * sinap * cosi,
- -sinraan * sinap + cosraan * cosap * cosi,
- -cosraan * sini,
- sinap * sini,
- cosap * sini,
- cosi);
- } else {
- result[0] = cosraan * cosap - sinraan * sinap * cosi;
- result[1] = sinraan * cosap + cosraan * sinap * cosi;
- result[2] = sinap * sini;
- result[3] = -cosraan * sinap - sinraan * cosap * cosi;
- result[4] = -sinraan * sinap + cosraan * cosap * cosi;
- result[5] = cosap * sini;
- result[6] = sinraan * sini;
- result[7] = -cosraan * sini;
- result[8] = cosi;
- }
- return result;
- }
- // From section 5.8
- var semiMajorAxis0 = 1.0000010178 * MetersPerAstronomicalUnit;
- var meanLongitude0 = 100.46645683 * RadiansPerDegree;
- var meanLongitude1 = 1295977422.83429 * RadiansPerArcSecond;
- // From table 6
- var p1u = 16002;
- var p2u = 21863;
- var p3u = 32004;
- var p4u = 10931;
- var p5u = 14529;
- var p6u = 16368;
- var p7u = 15318;
- var p8u = 32794;
- var Ca1 = 64 * 1e-7 * MetersPerAstronomicalUnit;
- var Ca2 = -152 * 1e-7 * MetersPerAstronomicalUnit;
- var Ca3 = 62 * 1e-7 * MetersPerAstronomicalUnit;
- var Ca4 = -8 * 1e-7 * MetersPerAstronomicalUnit;
- var Ca5 = 32 * 1e-7 * MetersPerAstronomicalUnit;
- var Ca6 = -41 * 1e-7 * MetersPerAstronomicalUnit;
- var Ca7 = 19 * 1e-7 * MetersPerAstronomicalUnit;
- var Ca8 = -11 * 1e-7 * MetersPerAstronomicalUnit;
- var Sa1 = -150 * 1e-7 * MetersPerAstronomicalUnit;
- var Sa2 = -46 * 1e-7 * MetersPerAstronomicalUnit;
- var Sa3 = 68 * 1e-7 * MetersPerAstronomicalUnit;
- var Sa4 = 54 * 1e-7 * MetersPerAstronomicalUnit;
- var Sa5 = 14 * 1e-7 * MetersPerAstronomicalUnit;
- var Sa6 = 24 * 1e-7 * MetersPerAstronomicalUnit;
- var Sa7 = -28 * 1e-7 * MetersPerAstronomicalUnit;
- var Sa8 = 22 * 1e-7 * MetersPerAstronomicalUnit;
- var q1u = 10;
- var q2u = 16002;
- var q3u = 21863;
- var q4u = 10931;
- var q5u = 1473;
- var q6u = 32004;
- var q7u = 4387;
- var q8u = 73;
- var Cl1 = -325 * 1e-7;
- var Cl2 = -322 * 1e-7;
- var Cl3 = -79 * 1e-7;
- var Cl4 = 232 * 1e-7;
- var Cl5 = -52 * 1e-7;
- var Cl6 = 97 * 1e-7;
- var Cl7 = 55 * 1e-7;
- var Cl8 = -41 * 1e-7;
- var Sl1 = -105 * 1e-7;
- var Sl2 = -137 * 1e-7;
- var Sl3 = 258 * 1e-7;
- var Sl4 = 35 * 1e-7;
- var Sl5 = -116 * 1e-7;
- var Sl6 = -88 * 1e-7;
- var Sl7 = -112 * 1e-7;
- var Sl8 = -80 * 1e-7;
- var scratchDate = new JulianDate(0, 0.0, TimeStandard.TAI);
- // Gets a point describing the motion of the Earth-Moon barycenter according to the equations described in section 6.
- function computeSimonEarthMoonBarycenter(date, result) {
- // t is thousands of years from J2000 TDB
- taiToTdb(date, scratchDate);
- var x = (scratchDate.dayNumber - epoch.dayNumber) + ((scratchDate.secondsOfDay - epoch.secondsOfDay)/TimeConstants.SECONDS_PER_DAY);
- var t = x / (TimeConstants.DAYS_PER_JULIAN_CENTURY * 10.0);
- var u = 0.35953620 * t;
- var semimajorAxis = semiMajorAxis0 +
- Ca1 * Math.cos(p1u * u) + Sa1 * Math.sin(p1u * u) +
- Ca2 * Math.cos(p2u * u) + Sa2 * Math.sin(p2u * u) +
- Ca3 * Math.cos(p3u * u) + Sa3 * Math.sin(p3u * u) +
- Ca4 * Math.cos(p4u * u) + Sa4 * Math.sin(p4u * u) +
- Ca5 * Math.cos(p5u * u) + Sa5 * Math.sin(p5u * u) +
- Ca6 * Math.cos(p6u * u) + Sa6 * Math.sin(p6u * u) +
- Ca7 * Math.cos(p7u * u) + Sa7 * Math.sin(p7u * u) +
- Ca8 * Math.cos(p8u * u) + Sa8 * Math.sin(p8u * u);
- var meanLongitude = meanLongitude0 + meanLongitude1 * t +
- Cl1 * Math.cos(q1u * u) + Sl1 * Math.sin(q1u * u) +
- Cl2 * Math.cos(q2u * u) + Sl2 * Math.sin(q2u * u) +
- Cl3 * Math.cos(q3u * u) + Sl3 * Math.sin(q3u * u) +
- Cl4 * Math.cos(q4u * u) + Sl4 * Math.sin(q4u * u) +
- Cl5 * Math.cos(q5u * u) + Sl5 * Math.sin(q5u * u) +
- Cl6 * Math.cos(q6u * u) + Sl6 * Math.sin(q6u * u) +
- Cl7 * Math.cos(q7u * u) + Sl7 * Math.sin(q7u * u) +
- Cl8 * Math.cos(q8u * u) + Sl8 * Math.sin(q8u * u);
- // All constants in this part are from section 5.8
- var eccentricity = 0.0167086342 - 0.0004203654 * t;
- var longitudeOfPerigee = 102.93734808 * RadiansPerDegree + 11612.35290 * RadiansPerArcSecond * t;
- var inclination = 469.97289 * RadiansPerArcSecond * t;
- var longitudeOfNode = 174.87317577 * RadiansPerDegree - 8679.27034 * RadiansPerArcSecond * t;
- return elementsToCartesian(semimajorAxis, eccentricity, inclination, longitudeOfPerigee,
- longitudeOfNode, meanLongitude, result);
- }
- // Gets a point describing the position of the moon according to the equations described in section 4.
- function computeSimonMoon(date, result) {
- taiToTdb(date, scratchDate);
- var x = (scratchDate.dayNumber - epoch.dayNumber) + ((scratchDate.secondsOfDay - epoch.secondsOfDay)/TimeConstants.SECONDS_PER_DAY);
- var t = x / (TimeConstants.DAYS_PER_JULIAN_CENTURY);
- var t2 = t * t;
- var t3 = t2 * t;
- var t4 = t3 * t;
- // Terms from section 3.4 (b.1)
- var semimajorAxis = 383397.7725 + 0.0040 * t;
- var eccentricity = 0.055545526 - 0.000000016 * t;
- var inclinationConstant = 5.15668983 * RadiansPerDegree;
- var inclinationSecPart = -0.00008 * t + 0.02966 * t2 -
- 0.000042 * t3 - 0.00000013 * t4;
- var longitudeOfPerigeeConstant = 83.35324312 * RadiansPerDegree;
- var longitudeOfPerigeeSecPart = 14643420.2669 * t - 38.2702 * t2 -
- 0.045047 * t3 + 0.00021301 * t4;
- var longitudeOfNodeConstant = 125.04455501 * RadiansPerDegree;
- var longitudeOfNodeSecPart = -6967919.3631 * t + 6.3602 * t2 +
- 0.007625 * t3 - 0.00003586 * t4;
- var meanLongitudeConstant = 218.31664563 * RadiansPerDegree;
- var meanLongitudeSecPart = 1732559343.48470 * t - 6.3910 * t2 +
- 0.006588 * t3 - 0.00003169 * t4;
- // Delaunay arguments from section 3.5 b
- var D = 297.85019547 * RadiansPerDegree + RadiansPerArcSecond *
- (1602961601.2090 * t - 6.3706 * t2 + 0.006593 * t3 - 0.00003169 * t4);
- var F = 93.27209062 * RadiansPerDegree + RadiansPerArcSecond *
- (1739527262.8478 * t - 12.7512 * t2 - 0.001037 * t3 + 0.00000417 * t4);
- var l = 134.96340251 * RadiansPerDegree + RadiansPerArcSecond *
- (1717915923.2178 * t + 31.8792 * t2 + 0.051635 * t3 - 0.00024470 * t4);
- var lprime = 357.52910918 * RadiansPerDegree + RadiansPerArcSecond *
- (129596581.0481 * t - 0.5532 * t2 + 0.000136 * t3 - 0.00001149 * t4);
- var psi = 310.17137918 * RadiansPerDegree - RadiansPerArcSecond *
- (6967051.4360 * t + 6.2068 * t2 + 0.007618 * t3 - 0.00003219 * t4);
- // Add terms from Table 4
- var twoD = 2.0 * D;
- var fourD = 4.0 * D;
- var sixD = 6.0 * D;
- var twol = 2.0 * l;
- var threel = 3.0 * l;
- var fourl = 4.0 * l;
- var twoF = 2.0 * F;
- semimajorAxis += 3400.4 * Math.cos(twoD) - 635.6 * Math.cos(twoD - l) -
- 235.6 * Math.cos(l) + 218.1 * Math.cos(twoD - lprime) +
- 181.0 * Math.cos(twoD + l);
- eccentricity += 0.014216 * Math.cos(twoD - l) + 0.008551 * Math.cos(twoD - twol) -
- 0.001383 * Math.cos(l) + 0.001356 * Math.cos(twoD + l) -
- 0.001147 * Math.cos(fourD - threel) - 0.000914 * Math.cos(fourD - twol) +
- 0.000869 * Math.cos(twoD - lprime - l) - 0.000627 * Math.cos(twoD) -
- 0.000394 * Math.cos(fourD - fourl) + 0.000282 * Math.cos(twoD - lprime - twol) -
- 0.000279 * Math.cos(D - l) - 0.000236 * Math.cos(twol) +
- 0.000231 * Math.cos(fourD) + 0.000229 * Math.cos(sixD - fourl) -
- 0.000201 * Math.cos(twol - twoF);
- inclinationSecPart += 486.26 * Math.cos(twoD - twoF) - 40.13 * Math.cos(twoD) +
- 37.51 * Math.cos(twoF) + 25.73 * Math.cos(twol - twoF) +
- 19.97 * Math.cos(twoD - lprime - twoF);
- longitudeOfPerigeeSecPart += -55609 * Math.sin(twoD - l) - 34711 * Math.sin(twoD - twol) -
- 9792 * Math.sin(l) + 9385 * Math.sin(fourD - threel) +
- 7505 * Math.sin(fourD - twol) + 5318 * Math.sin(twoD + l) +
- 3484 * Math.sin(fourD - fourl) - 3417 * Math.sin(twoD - lprime - l) -
- 2530 * Math.sin(sixD - fourl) - 2376 * Math.sin(twoD) -
- 2075 * Math.sin(twoD - threel) - 1883 * Math.sin(twol) -
- 1736 * Math.sin(sixD - 5.0 * l) + 1626 * Math.sin(lprime) -
- 1370 * Math.sin(sixD - threel);
- longitudeOfNodeSecPart += -5392 * Math.sin(twoD - twoF) - 540 * Math.sin(lprime) -
- 441 * Math.sin(twoD) + 423 * Math.sin(twoF) -
- 288 * Math.sin(twol - twoF);
- meanLongitudeSecPart += -3332.9 * Math.sin(twoD) + 1197.4 * Math.sin(twoD - l) -
- 662.5 * Math.sin(lprime) + 396.3 * Math.sin(l) -
- 218.0 * Math.sin(twoD - lprime);
- // Add terms from Table 5
- var twoPsi = 2.0 * psi;
- var threePsi = 3.0 * psi;
- inclinationSecPart += 46.997 * Math.cos(psi) * t - 0.614 * Math.cos(twoD - twoF + psi) * t +
- 0.614 * Math.cos(twoD - twoF - psi) * t - 0.0297 * Math.cos(twoPsi) * t2 -
- 0.0335 * Math.cos(psi) * t2 + 0.0012 * Math.cos(twoD - twoF + twoPsi) * t2 -
- 0.00016 * Math.cos(psi) * t3 + 0.00004 * Math.cos(threePsi) * t3 +
- 0.00004 * Math.cos(twoPsi) * t3;
- var perigeeAndMean = 2.116 * Math.sin(psi) * t - 0.111 * Math.sin(twoD - twoF - psi) * t -
- 0.0015 * Math.sin(psi) * t2;
- longitudeOfPerigeeSecPart += perigeeAndMean;
- meanLongitudeSecPart += perigeeAndMean;
- longitudeOfNodeSecPart += -520.77 * Math.sin(psi) * t + 13.66 * Math.sin(twoD - twoF + psi) * t +
- 1.12 * Math.sin(twoD - psi) * t - 1.06 * Math.sin(twoF - psi) * t +
- 0.660 * Math.sin(twoPsi) * t2 + 0.371 * Math.sin(psi) * t2 -
- 0.035 * Math.sin(twoD - twoF + twoPsi) * t2 - 0.015 * Math.sin(twoD - twoF + psi) * t2 +
- 0.0014 * Math.sin(psi) * t3 - 0.0011 * Math.sin(threePsi) * t3 -
- 0.0009 * Math.sin(twoPsi) * t3;
- // Add constants and convert units
- semimajorAxis *= MetersPerKilometer;
- var inclination = inclinationConstant + inclinationSecPart * RadiansPerArcSecond;
- var longitudeOfPerigee = longitudeOfPerigeeConstant + longitudeOfPerigeeSecPart * RadiansPerArcSecond;
- var meanLongitude = meanLongitudeConstant + meanLongitudeSecPart * RadiansPerArcSecond;
- var longitudeOfNode = longitudeOfNodeConstant + longitudeOfNodeSecPart * RadiansPerArcSecond;
- return elementsToCartesian(semimajorAxis, eccentricity, inclination, longitudeOfPerigee,
- longitudeOfNode, meanLongitude, result);
- }
- // Gets a point describing the motion of the Earth. This point uses the Moon point and
- // the 1992 mu value (ratio between Moon and Earth masses) in Table 2 of the paper in order
- // to determine the position of the Earth relative to the Earth-Moon barycenter.
- var moonEarthMassRatio = 0.012300034; // From 1992 mu value in Table 2
- var factor = moonEarthMassRatio / (moonEarthMassRatio + 1.0) * -1;
- function computeSimonEarth(date, result) {
- result = computeSimonMoon(date, result);
- return Cartesian3.multiplyByScalar(result, factor, result);
- }
- // Values for the <code>axesTransformation</code> needed for the rotation were found using the STK Components
- // GreographicTransformer on the position of the sun center of mass point and the earth J2000 frame.
- var axesTransformation = new Matrix3(1.0000000000000002, 5.619723173785822e-16, 4.690511510146299e-19,
- -5.154129427414611e-16, 0.9174820620691819, -0.39777715593191376,
- -2.23970096136568e-16, 0.39777715593191376, 0.9174820620691819);
- var translation = new Cartesian3();
- /**
- * Computes the position of the Sun in the Earth-centered inertial frame
- *
- * @param {JulianDate} [julianDate] The time at which to compute the Sun's position, if not provided the current system time is used.
- * @param {Cartesian3} [result] The object onto which to store the result.
- * @returns {Cartesian3} Calculated sun position
- */
- Simon1994PlanetaryPositions.computeSunPositionInEarthInertialFrame= function(julianDate, result){
- if (!defined(julianDate)) {
- julianDate = JulianDate.now();
- }
- if (!defined(result)) {
- result = new Cartesian3();
- }
- //first forward transformation
- translation = computeSimonEarthMoonBarycenter(julianDate, translation);
- result = Cartesian3.negate(translation, result);
- //second forward transformation
- computeSimonEarth(julianDate, translation);
- Cartesian3.subtract(result, translation, result);
- Matrix3.multiplyByVector(axesTransformation, result, result);
- return result;
- };
- /**
- * Computes the position of the Moon in the Earth-centered inertial frame
- *
- * @param {JulianDate} [julianDate] The time at which to compute the Sun's position, if not provided the current system time is used.
- * @param {Cartesian3} [result] The object onto which to store the result.
- * @returns {Cartesian3} Calculated moon position
- */
- Simon1994PlanetaryPositions.computeMoonPositionInEarthInertialFrame = function(julianDate, result){
- if (!defined(julianDate)) {
- julianDate = JulianDate.now();
- }
- result = computeSimonMoon(julianDate, result);
- Matrix3.multiplyByVector(axesTransformation, result, result);
- return result;
- };
- export default Simon1994PlanetaryPositions;
|