123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- import CubicRealPolynomial from './CubicRealPolynomial.js';
- import DeveloperError from './DeveloperError.js';
- import CesiumMath from './Math.js';
- import QuadraticRealPolynomial from './QuadraticRealPolynomial.js';
- /**
- * Defines functions for 4th order polynomial functions of one variable with only real coefficients.
- *
- * @exports QuarticRealPolynomial
- */
- var QuarticRealPolynomial = {};
- /**
- * Provides the discriminant of the quartic equation from the supplied coefficients.
- *
- * @param {Number} a The coefficient of the 4th order monomial.
- * @param {Number} b The coefficient of the 3rd order monomial.
- * @param {Number} c The coefficient of the 2nd order monomial.
- * @param {Number} d The coefficient of the 1st order monomial.
- * @param {Number} e The coefficient of the 0th order monomial.
- * @returns {Number} The value of the discriminant.
- */
- QuarticRealPolynomial.computeDiscriminant = function(a, b, c, d, e) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof a !== 'number') {
- throw new DeveloperError('a is a required number.');
- }
- if (typeof b !== 'number') {
- throw new DeveloperError('b is a required number.');
- }
- if (typeof c !== 'number') {
- throw new DeveloperError('c is a required number.');
- }
- if (typeof d !== 'number') {
- throw new DeveloperError('d is a required number.');
- }
- if (typeof e !== 'number') {
- throw new DeveloperError('e is a required number.');
- }
- //>>includeEnd('debug');
- var a2 = a * a;
- var a3 = a2 * a;
- var b2 = b * b;
- var b3 = b2 * b;
- var c2 = c * c;
- var c3 = c2 * c;
- var d2 = d * d;
- var d3 = d2 * d;
- var e2 = e * e;
- var e3 = e2 * e;
- var discriminant = (b2 * c2 * d2 - 4.0 * b3 * d3 - 4.0 * a * c3 * d2 + 18 * a * b * c * d3 - 27.0 * a2 * d2 * d2 + 256.0 * a3 * e3) +
- e * (18.0 * b3 * c * d - 4.0 * b2 * c3 + 16.0 * a * c2 * c2 - 80.0 * a * b * c2 * d - 6.0 * a * b2 * d2 + 144.0 * a2 * c * d2) +
- e2 * (144.0 * a * b2 * c - 27.0 * b2 * b2 - 128.0 * a2 * c2 - 192.0 * a2 * b * d);
- return discriminant;
- };
- function original(a3, a2, a1, a0) {
- var a3Squared = a3 * a3;
- var p = a2 - 3.0 * a3Squared / 8.0;
- var q = a1 - a2 * a3 / 2.0 + a3Squared * a3 / 8.0;
- var r = a0 - a1 * a3 / 4.0 + a2 * a3Squared / 16.0 - 3.0 * a3Squared * a3Squared / 256.0;
- // Find the roots of the cubic equations: h^6 + 2 p h^4 + (p^2 - 4 r) h^2 - q^2 = 0.
- var cubicRoots = CubicRealPolynomial.computeRealRoots(1.0, 2.0 * p, p * p - 4.0 * r, -q * q);
- if (cubicRoots.length > 0) {
- var temp = -a3 / 4.0;
- // Use the largest positive root.
- var hSquared = cubicRoots[cubicRoots.length - 1];
- if (Math.abs(hSquared) < CesiumMath.EPSILON14) {
- // y^4 + p y^2 + r = 0.
- var roots = QuadraticRealPolynomial.computeRealRoots(1.0, p, r);
- if (roots.length === 2) {
- var root0 = roots[0];
- var root1 = roots[1];
- var y;
- if (root0 >= 0.0 && root1 >= 0.0) {
- var y0 = Math.sqrt(root0);
- var y1 = Math.sqrt(root1);
- return [temp - y1, temp - y0, temp + y0, temp + y1];
- } else if (root0 >= 0.0 && root1 < 0.0) {
- y = Math.sqrt(root0);
- return [temp - y, temp + y];
- } else if (root0 < 0.0 && root1 >= 0.0) {
- y = Math.sqrt(root1);
- return [temp - y, temp + y];
- }
- }
- return [];
- } else if (hSquared > 0.0) {
- var h = Math.sqrt(hSquared);
- var m = (p + hSquared - q / h) / 2.0;
- var n = (p + hSquared + q / h) / 2.0;
- // Now solve the two quadratic factors: (y^2 + h y + m)(y^2 - h y + n);
- var roots1 = QuadraticRealPolynomial.computeRealRoots(1.0, h, m);
- var roots2 = QuadraticRealPolynomial.computeRealRoots(1.0, -h, n);
- if (roots1.length !== 0) {
- roots1[0] += temp;
- roots1[1] += temp;
- if (roots2.length !== 0) {
- roots2[0] += temp;
- roots2[1] += temp;
- if (roots1[1] <= roots2[0]) {
- return [roots1[0], roots1[1], roots2[0], roots2[1]];
- } else if (roots2[1] <= roots1[0]) {
- return [roots2[0], roots2[1], roots1[0], roots1[1]];
- } else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) {
- return [roots2[0], roots1[0], roots1[1], roots2[1]];
- } else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) {
- return [roots1[0], roots2[0], roots2[1], roots1[1]];
- } else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) {
- return [roots2[0], roots1[0], roots2[1], roots1[1]];
- }
- return [roots1[0], roots2[0], roots1[1], roots2[1]];
- }
- return roots1;
- }
- if (roots2.length !== 0) {
- roots2[0] += temp;
- roots2[1] += temp;
- return roots2;
- }
- return [];
- }
- }
- return [];
- }
- function neumark(a3, a2, a1, a0) {
- var a1Squared = a1 * a1;
- var a2Squared = a2 * a2;
- var a3Squared = a3 * a3;
- var p = -2.0 * a2;
- var q = a1 * a3 + a2Squared - 4.0 * a0;
- var r = a3Squared * a0 - a1 * a2 * a3 + a1Squared;
- var cubicRoots = CubicRealPolynomial.computeRealRoots(1.0, p, q, r);
- if (cubicRoots.length > 0) {
- // Use the most positive root
- var y = cubicRoots[0];
- var temp = (a2 - y);
- var tempSquared = temp * temp;
- var g1 = a3 / 2.0;
- var h1 = temp / 2.0;
- var m = tempSquared - 4.0 * a0;
- var mError = tempSquared + 4.0 * Math.abs(a0);
- var n = a3Squared - 4.0 * y;
- var nError = a3Squared + 4.0 * Math.abs(y);
- var g2;
- var h2;
- if (y < 0.0 || (m * nError < n * mError)) {
- var squareRootOfN = Math.sqrt(n);
- g2 = squareRootOfN / 2.0;
- h2 = squareRootOfN === 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfN;
- } else {
- var squareRootOfM = Math.sqrt(m);
- g2 = squareRootOfM === 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfM;
- h2 = squareRootOfM / 2.0;
- }
- var G;
- var g;
- if (g1 === 0.0 && g2 === 0.0) {
- G = 0.0;
- g = 0.0;
- } else if (CesiumMath.sign(g1) === CesiumMath.sign(g2)) {
- G = g1 + g2;
- g = y / G;
- } else {
- g = g1 - g2;
- G = y / g;
- }
- var H;
- var h;
- if (h1 === 0.0 && h2 === 0.0) {
- H = 0.0;
- h = 0.0;
- } else if (CesiumMath.sign(h1) === CesiumMath.sign(h2)) {
- H = h1 + h2;
- h = a0 / H;
- } else {
- h = h1 - h2;
- H = a0 / h;
- }
- // Now solve the two quadratic factors: (y^2 + G y + H)(y^2 + g y + h);
- var roots1 = QuadraticRealPolynomial.computeRealRoots(1.0, G, H);
- var roots2 = QuadraticRealPolynomial.computeRealRoots(1.0, g, h);
- if (roots1.length !== 0) {
- if (roots2.length !== 0) {
- if (roots1[1] <= roots2[0]) {
- return [roots1[0], roots1[1], roots2[0], roots2[1]];
- } else if (roots2[1] <= roots1[0]) {
- return [roots2[0], roots2[1], roots1[0], roots1[1]];
- } else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) {
- return [roots2[0], roots1[0], roots1[1], roots2[1]];
- } else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) {
- return [roots1[0], roots2[0], roots2[1], roots1[1]];
- } else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) {
- return [roots2[0], roots1[0], roots2[1], roots1[1]];
- }
- return [roots1[0], roots2[0], roots1[1], roots2[1]];
- }
- return roots1;
- }
- if (roots2.length !== 0) {
- return roots2;
- }
- }
- return [];
- }
- /**
- * Provides the real valued roots of the quartic polynomial with the provided coefficients.
- *
- * @param {Number} a The coefficient of the 4th order monomial.
- * @param {Number} b The coefficient of the 3rd order monomial.
- * @param {Number} c The coefficient of the 2nd order monomial.
- * @param {Number} d The coefficient of the 1st order monomial.
- * @param {Number} e The coefficient of the 0th order monomial.
- * @returns {Number[]} The real valued roots.
- */
- QuarticRealPolynomial.computeRealRoots = function(a, b, c, d, e) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof a !== 'number') {
- throw new DeveloperError('a is a required number.');
- }
- if (typeof b !== 'number') {
- throw new DeveloperError('b is a required number.');
- }
- if (typeof c !== 'number') {
- throw new DeveloperError('c is a required number.');
- }
- if (typeof d !== 'number') {
- throw new DeveloperError('d is a required number.');
- }
- if (typeof e !== 'number') {
- throw new DeveloperError('e is a required number.');
- }
- //>>includeEnd('debug');
- if (Math.abs(a) < CesiumMath.EPSILON15) {
- return CubicRealPolynomial.computeRealRoots(b, c, d, e);
- }
- var a3 = b / a;
- var a2 = c / a;
- var a1 = d / a;
- var a0 = e / a;
- var k = (a3 < 0.0) ? 1 : 0;
- k += (a2 < 0.0) ? k + 1 : k;
- k += (a1 < 0.0) ? k + 1 : k;
- k += (a0 < 0.0) ? k + 1 : k;
- switch (k) {
- case 0:
- return original(a3, a2, a1, a0);
- case 1:
- return neumark(a3, a2, a1, a0);
- case 2:
- return neumark(a3, a2, a1, a0);
- case 3:
- return original(a3, a2, a1, a0);
- case 4:
- return original(a3, a2, a1, a0);
- case 5:
- return neumark(a3, a2, a1, a0);
- case 6:
- return original(a3, a2, a1, a0);
- case 7:
- return original(a3, a2, a1, a0);
- case 8:
- return neumark(a3, a2, a1, a0);
- case 9:
- return original(a3, a2, a1, a0);
- case 10:
- return original(a3, a2, a1, a0);
- case 11:
- return neumark(a3, a2, a1, a0);
- case 12:
- return original(a3, a2, a1, a0);
- case 13:
- return original(a3, a2, a1, a0);
- case 14:
- return original(a3, a2, a1, a0);
- case 15:
- return original(a3, a2, a1, a0);
- default:
- return undefined;
- }
- };
- export default QuarticRealPolynomial;
|