123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- import BoundingSphere from './BoundingSphere.js';
- import Cartesian3 from './Cartesian3.js';
- import Check from './Check.js';
- import defaultValue from './defaultValue.js';
- import defined from './defined.js';
- import defineProperties from './defineProperties.js';
- import Rectangle from './Rectangle.js';
- /**
- * Determine whether or not other objects are visible or hidden behind the visible horizon defined by
- * an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the
- * origin of the coordinate system. This class uses the algorithm described in the
- * {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post.
- *
- * @alias EllipsoidalOccluder
- *
- * @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder.
- * @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not
- * specified, {@link EllipsoidalOccluder#cameraPosition} must be called before
- * testing visibility.
- *
- * @constructor
- *
- * @example
- * // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9.
- * var cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0);
- * var occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
- * var occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition);
- *
- * @private
- */
- function EllipsoidalOccluder(ellipsoid, cameraPosition) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object('ellipsoid', ellipsoid);
- //>>includeEnd('debug');
- this._ellipsoid = ellipsoid;
- this._cameraPosition = new Cartesian3();
- this._cameraPositionInScaledSpace = new Cartesian3();
- this._distanceToLimbInScaledSpaceSquared = 0.0;
- // cameraPosition fills in the above values
- if (defined(cameraPosition)) {
- this.cameraPosition = cameraPosition;
- }
- }
- defineProperties(EllipsoidalOccluder.prototype, {
- /**
- * Gets the occluding ellipsoid.
- * @memberof EllipsoidalOccluder.prototype
- * @type {Ellipsoid}
- */
- ellipsoid : {
- get: function() {
- return this._ellipsoid;
- }
- },
- /**
- * Gets or sets the position of the camera.
- * @memberof EllipsoidalOccluder.prototype
- * @type {Cartesian3}
- */
- cameraPosition : {
- get : function() {
- return this._cameraPosition;
- },
- set : function(cameraPosition) {
- // See https://cesium.com/blog/2013/04/25/Horizon-culling/
- var ellipsoid = this._ellipsoid;
- var cv = ellipsoid.transformPositionToScaledSpace(cameraPosition, this._cameraPositionInScaledSpace);
- var vhMagnitudeSquared = Cartesian3.magnitudeSquared(cv) - 1.0;
- Cartesian3.clone(cameraPosition, this._cameraPosition);
- this._cameraPositionInScaledSpace = cv;
- this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared;
- }
- }
- });
- var scratchCartesian = new Cartesian3();
- /**
- * Determines whether or not a point, the <code>occludee</code>, is hidden from view by the occluder.
- *
- * @param {Cartesian3} occludee The point to test for visibility.
- * @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
- *
- * @example
- * var cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
- * var ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
- * var occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
- * var point = new Cesium.Cartesian3(0, -3, -3);
- * occluder.isPointVisible(point); //returns true
- */
- EllipsoidalOccluder.prototype.isPointVisible = function(occludee) {
- var ellipsoid = this._ellipsoid;
- var occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace(occludee, scratchCartesian);
- return this.isScaledSpacePointVisible(occludeeScaledSpacePosition);
- };
- /**
- * Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the
- * occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid
- * into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}.
- *
- * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space.
- * @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
- *
- * @example
- * var cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
- * var ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
- * var occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
- * var point = new Cesium.Cartesian3(0, -3, -3);
- * var scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point);
- * occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true
- */
- EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function(occludeeScaledSpacePosition) {
- // See https://cesium.com/blog/2013/04/25/Horizon-culling/
- var cv = this._cameraPositionInScaledSpace;
- var vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared;
- var vt = Cartesian3.subtract(occludeeScaledSpacePosition, cv, scratchCartesian);
- var vtDotVc = -Cartesian3.dot(vt, cv);
- // If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and
- // in this case, set the culling plane to be on V.
- var isOccluded = vhMagnitudeSquared < 0 ? vtDotVc > 0 : (vtDotVc > vhMagnitudeSquared &&
- vtDotVc * vtDotVc / Cartesian3.magnitudeSquared(vt) > vhMagnitudeSquared);
- return !isOccluded;
- };
- /**
- * Computes a point that can be used for horizon culling from a list of positions. If the point is below
- * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
- * is expressed in the ellipsoid-scaled space and is suitable for use with
- * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
- *
- * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
- * A reasonable direction to use is the direction from the center of the ellipsoid to
- * the center of the bounding sphere computed from the positions. The direction need not
- * be normalized.
- * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
- * must be expressed in a reference frame centered at the ellipsoid and aligned with the
- * ellipsoid's axes.
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function(directionToPoint, positions, result) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object('directionToPoint', directionToPoint);
- Check.defined('positions', positions);
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Cartesian3();
- }
- var ellipsoid = this._ellipsoid;
- var scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint);
- var resultMagnitude = 0.0;
- for (var i = 0, len = positions.length; i < len; ++i) {
- var position = positions[i];
- var candidateMagnitude = computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint);
- resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
- }
- return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
- };
- var positionScratch = new Cartesian3();
- /**
- * Computes a point that can be used for horizon culling from a list of positions. If the point is below
- * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
- * is expressed in the ellipsoid-scaled space and is suitable for use with
- * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
- *
- * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
- * A reasonable direction to use is the direction from the center of the ellipsoid to
- * the center of the bounding sphere computed from the positions. The direction need not
- * be normalized.
- * @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions
- * must be expressed in a reference frame centered at the ellipsoid and aligned with the
- * ellipsoid's axes.
- * @param {Number} [stride=3]
- * @param {Cartesian3} [center=Cartesian3.ZERO]
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices = function(directionToPoint, vertices, stride, center, result) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object('directionToPoint', directionToPoint);
- Check.defined('vertices', vertices);
- Check.typeOf.number('stride', stride);
- //>>includeEnd('debug');
- if (!defined(result)) {
- result = new Cartesian3();
- }
- center = defaultValue(center, Cartesian3.ZERO);
- var ellipsoid = this._ellipsoid;
- var scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint);
- var resultMagnitude = 0.0;
- for (var i = 0, len = vertices.length; i < len; i += stride) {
- positionScratch.x = vertices[i] + center.x;
- positionScratch.y = vertices[i + 1] + center.y;
- positionScratch.z = vertices[i + 2] + center.z;
- var candidateMagnitude = computeMagnitude(ellipsoid, positionScratch, scaledSpaceDirectionToPoint);
- resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
- }
- return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
- };
- var subsampleScratch = [];
- /**
- * Computes a point that can be used for horizon culling of a rectangle. If the point is below
- * the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well.
- * The returned point is expressed in the ellipsoid-scaled space and is suitable for use with
- * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
- *
- * @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point.
- * @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from
- * the ellipsoid used by this instance for occlusion testing.
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle = function(rectangle, ellipsoid, result) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object('rectangle', rectangle);
- //>>includeEnd('debug');
- var positions = Rectangle.subsample(rectangle, ellipsoid, 0.0, subsampleScratch);
- var bs = BoundingSphere.fromPoints(positions);
- // If the bounding sphere center is too close to the center of the occluder, it doesn't make
- // sense to try to horizon cull it.
- if (Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) {
- return undefined;
- }
- return this.computeHorizonCullingPoint(bs.center, positions, result);
- };
- var scaledSpaceScratch = new Cartesian3();
- var directionScratch = new Cartesian3();
- function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) {
- var scaledSpacePosition = ellipsoid.transformPositionToScaledSpace(position, scaledSpaceScratch);
- var magnitudeSquared = Cartesian3.magnitudeSquared(scaledSpacePosition);
- var magnitude = Math.sqrt(magnitudeSquared);
- var direction = Cartesian3.divideByScalar(scaledSpacePosition, magnitude, directionScratch);
- // For the purpose of this computation, points below the ellipsoid are consider to be on it instead.
- magnitudeSquared = Math.max(1.0, magnitudeSquared);
- magnitude = Math.max(1.0, magnitude);
- var cosAlpha = Cartesian3.dot(direction, scaledSpaceDirectionToPoint);
- var sinAlpha = Cartesian3.magnitude(Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction));
- var cosBeta = 1.0 / magnitude;
- var sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta;
- return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta);
- }
- function magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result) {
- // The horizon culling point is undefined if there were no positions from which to compute it,
- // the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity.
- if (resultMagnitude <= 0.0 || resultMagnitude === 1.0 / 0.0 || resultMagnitude !== resultMagnitude) {
- return undefined;
- }
- return Cartesian3.multiplyByScalar(scaledSpaceDirectionToPoint, resultMagnitude, result);
- }
- var directionToPointScratch = new Cartesian3();
- function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) {
- if (Cartesian3.equals(directionToPoint, Cartesian3.ZERO)) {
- return directionToPoint;
- }
- ellipsoid.transformPositionToScaledSpace(directionToPoint, directionToPointScratch);
- return Cartesian3.normalize(directionToPointScratch, directionToPointScratch);
- }
- export default EllipsoidalOccluder;
|