123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602 |
- import arrayFill from './arrayFill.js';
- import BoundingSphere from './BoundingSphere.js';
- import Cartesian2 from './Cartesian2.js';
- import Cartesian3 from './Cartesian3.js';
- import ComponentDatatype from './ComponentDatatype.js';
- import defaultValue from './defaultValue.js';
- import defined from './defined.js';
- import DeveloperError from './DeveloperError.js';
- import Ellipsoid from './Ellipsoid.js';
- import Geometry from './Geometry.js';
- import GeometryAttribute from './GeometryAttribute.js';
- import GeometryAttributes from './GeometryAttributes.js';
- import GeometryOffsetAttribute from './GeometryOffsetAttribute.js';
- import IndexDatatype from './IndexDatatype.js';
- import CesiumMath from './Math.js';
- import PrimitiveType from './PrimitiveType.js';
- import VertexFormat from './VertexFormat.js';
- var scratchPosition = new Cartesian3();
- var scratchNormal = new Cartesian3();
- var scratchTangent = new Cartesian3();
- var scratchBitangent = new Cartesian3();
- var scratchNormalST = new Cartesian3();
- var defaultRadii = new Cartesian3(1.0, 1.0, 1.0);
- var cos = Math.cos;
- var sin = Math.sin;
- /**
- * A description of an ellipsoid centered at the origin.
- *
- * @alias EllipsoidGeometry
- * @constructor
- *
- * @param {Object} [options] Object with the following properties:
- * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
- * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
- * @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
- * @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
- * @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
- * @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
- * @param {Number} [options.stackPartitions=64] The number of times to partition the ellipsoid into stacks.
- * @param {Number} [options.slicePartitions=64] The number of times to partition the ellipsoid into radial slices.
- * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
- *
- * @exception {DeveloperError} options.slicePartitions cannot be less than three.
- * @exception {DeveloperError} options.stackPartitions cannot be less than three.
- *
- * @see EllipsoidGeometry#createGeometry
- *
- * @example
- * var ellipsoid = new Cesium.EllipsoidGeometry({
- * vertexFormat : Cesium.VertexFormat.POSITION_ONLY,
- * radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0)
- * });
- * var geometry = Cesium.EllipsoidGeometry.createGeometry(ellipsoid);
- */
- function EllipsoidGeometry(options) {
- options = defaultValue(options, defaultValue.EMPTY_OBJECT);
- var radii = defaultValue(options.radii, defaultRadii);
- var innerRadii = defaultValue(options.innerRadii, radii);
- var minimumClock = defaultValue(options.minimumClock, 0.0);
- var maximumClock = defaultValue(options.maximumClock, CesiumMath.TWO_PI);
- var minimumCone = defaultValue(options.minimumCone, 0.0);
- var maximumCone = defaultValue(options.maximumCone, CesiumMath.PI);
- var stackPartitions = Math.round(defaultValue(options.stackPartitions, 64));
- var slicePartitions = Math.round(defaultValue(options.slicePartitions, 64));
- var vertexFormat = defaultValue(options.vertexFormat, VertexFormat.DEFAULT);
- //>>includeStart('debug', pragmas.debug);
- if (slicePartitions < 3) {
- throw new DeveloperError('options.slicePartitions cannot be less than three.');
- }
- if (stackPartitions < 3) {
- throw new DeveloperError('options.stackPartitions cannot be less than three.');
- }
- //>>includeEnd('debug');
- this._radii = Cartesian3.clone(radii);
- this._innerRadii = Cartesian3.clone(innerRadii);
- this._minimumClock = minimumClock;
- this._maximumClock = maximumClock;
- this._minimumCone = minimumCone;
- this._maximumCone = maximumCone;
- this._stackPartitions = stackPartitions;
- this._slicePartitions = slicePartitions;
- this._vertexFormat = VertexFormat.clone(vertexFormat);
- this._offsetAttribute = options.offsetAttribute;
- this._workerName = 'createEllipsoidGeometry';
- }
- /**
- * The number of elements used to pack the object into an array.
- * @type {Number}
- */
- EllipsoidGeometry.packedLength = 2 * (Cartesian3.packedLength) + VertexFormat.packedLength + 7;
- /**
- * Stores the provided instance into the provided array.
- *
- * @param {EllipsoidGeometry} value The value to pack.
- * @param {Number[]} array The array to pack into.
- * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
- *
- * @returns {Number[]} The array that was packed into
- */
- EllipsoidGeometry.pack = function(value, array, startingIndex) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(value)) {
- throw new DeveloperError('value is required');
- }
- if (!defined(array)) {
- throw new DeveloperError('array is required');
- }
- //>>includeEnd('debug');
- startingIndex = defaultValue(startingIndex, 0);
- Cartesian3.pack(value._radii, array, startingIndex);
- startingIndex += Cartesian3.packedLength;
- Cartesian3.pack(value._innerRadii, array, startingIndex);
- startingIndex += Cartesian3.packedLength;
- VertexFormat.pack(value._vertexFormat, array, startingIndex);
- startingIndex += VertexFormat.packedLength;
- array[startingIndex++] = value._minimumClock;
- array[startingIndex++] = value._maximumClock;
- array[startingIndex++] = value._minimumCone;
- array[startingIndex++] = value._maximumCone;
- array[startingIndex++] = value._stackPartitions;
- array[startingIndex++] = value._slicePartitions;
- array[startingIndex] = defaultValue(value._offsetAttribute, -1);
- return array;
- };
- var scratchRadii = new Cartesian3();
- var scratchInnerRadii = new Cartesian3();
- var scratchVertexFormat = new VertexFormat();
- var scratchOptions = {
- radii : scratchRadii,
- innerRadii : scratchInnerRadii,
- vertexFormat : scratchVertexFormat,
- minimumClock : undefined,
- maximumClock : undefined,
- minimumCone : undefined,
- maximumCone : undefined,
- stackPartitions : undefined,
- slicePartitions : undefined,
- offsetAttribute : undefined
- };
- /**
- * Retrieves an instance from a packed array.
- *
- * @param {Number[]} array The packed array.
- * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
- * @param {EllipsoidGeometry} [result] The object into which to store the result.
- * @returns {EllipsoidGeometry} The modified result parameter or a new EllipsoidGeometry instance if one was not provided.
- */
- EllipsoidGeometry.unpack = function(array, startingIndex, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined(array)) {
- throw new DeveloperError('array is required');
- }
- //>>includeEnd('debug');
- startingIndex = defaultValue(startingIndex, 0);
- var radii = Cartesian3.unpack(array, startingIndex, scratchRadii);
- startingIndex += Cartesian3.packedLength;
- var innerRadii = Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
- startingIndex += Cartesian3.packedLength;
- var vertexFormat = VertexFormat.unpack(array, startingIndex, scratchVertexFormat);
- startingIndex += VertexFormat.packedLength;
- var minimumClock = array[startingIndex++];
- var maximumClock = array[startingIndex++];
- var minimumCone = array[startingIndex++];
- var maximumCone = array[startingIndex++];
- var stackPartitions = array[startingIndex++];
- var slicePartitions = array[startingIndex++];
- var offsetAttribute = array[startingIndex];
- if (!defined(result)) {
- scratchOptions.minimumClock = minimumClock;
- scratchOptions.maximumClock = maximumClock;
- scratchOptions.minimumCone = minimumCone;
- scratchOptions.maximumCone = maximumCone;
- scratchOptions.stackPartitions = stackPartitions;
- scratchOptions.slicePartitions = slicePartitions;
- scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute;
- return new EllipsoidGeometry(scratchOptions);
- }
- result._radii = Cartesian3.clone(radii, result._radii);
- result._innerRadii = Cartesian3.clone(innerRadii, result._innerRadii);
- result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);
- result._minimumClock = minimumClock;
- result._maximumClock = maximumClock;
- result._minimumCone = minimumCone;
- result._maximumCone = maximumCone;
- result._stackPartitions = stackPartitions;
- result._slicePartitions = slicePartitions;
- result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute;
- return result;
- };
- /**
- * Computes the geometric representation of an ellipsoid, including its vertices, indices, and a bounding sphere.
- *
- * @param {EllipsoidGeometry} ellipsoidGeometry A description of the ellipsoid.
- * @returns {Geometry|undefined} The computed vertices and indices.
- */
- EllipsoidGeometry.createGeometry = function(ellipsoidGeometry) {
- var radii = ellipsoidGeometry._radii;
- if ((radii.x <= 0) || (radii.y <= 0) || (radii.z <= 0)) {
- return;
- }
- var innerRadii = ellipsoidGeometry._innerRadii;
- if ((innerRadii.x <= 0) || (innerRadii.y <= 0) || innerRadii.z <= 0) {
- return;
- }
- var minimumClock = ellipsoidGeometry._minimumClock;
- var maximumClock = ellipsoidGeometry._maximumClock;
- var minimumCone = ellipsoidGeometry._minimumCone;
- var maximumCone = ellipsoidGeometry._maximumCone;
- var vertexFormat = ellipsoidGeometry._vertexFormat;
- // Add an extra slice and stack so that the number of partitions is the
- // number of surfaces rather than the number of joints
- var slicePartitions = ellipsoidGeometry._slicePartitions + 1;
- var stackPartitions = ellipsoidGeometry._stackPartitions + 1;
- slicePartitions = Math.round(slicePartitions * Math.abs(maximumClock - minimumClock) / CesiumMath.TWO_PI);
- stackPartitions = Math.round(stackPartitions * Math.abs(maximumCone - minimumCone) / CesiumMath.PI);
- if (slicePartitions < 2) {
- slicePartitions = 2;
- }
- if (stackPartitions < 2) {
- stackPartitions = 2;
- }
- var i;
- var j;
- var index = 0;
- // Create arrays for theta and phi. Duplicate first and last angle to
- // allow different normals at the intersections.
- var phis = [minimumCone];
- var thetas = [minimumClock];
- for (i = 0; i < stackPartitions; i++) {
- phis.push(minimumCone + i * (maximumCone - minimumCone) / (stackPartitions - 1));
- }
- phis.push(maximumCone);
- for (j = 0; j < slicePartitions; j++) {
- thetas.push(minimumClock + j * (maximumClock - minimumClock) / (slicePartitions - 1));
- }
- thetas.push(maximumClock);
- var numPhis = phis.length;
- var numThetas = thetas.length;
- // Allow for extra indices if there is an inner surface and if we need
- // to close the sides if the clock range is not a full circle
- var extraIndices = 0;
- var vertexMultiplier = 1.0;
- var hasInnerSurface = ((innerRadii.x !== radii.x) || (innerRadii.y !== radii.y) || innerRadii.z !== radii.z);
- var isTopOpen = false;
- var isBotOpen = false;
- var isClockOpen = false;
- if (hasInnerSurface) {
- vertexMultiplier = 2.0;
- if (minimumCone > 0.0) {
- isTopOpen = true;
- extraIndices += (slicePartitions - 1);
- }
- if (maximumCone < Math.PI) {
- isBotOpen = true;
- extraIndices += (slicePartitions - 1);
- }
- if ((maximumClock - minimumClock) % CesiumMath.TWO_PI) {
- isClockOpen = true;
- extraIndices += ((stackPartitions - 1) * 2) + 1;
- } else {
- extraIndices += 1;
- }
- }
- var vertexCount = numThetas * numPhis * vertexMultiplier;
- var positions = new Float64Array(vertexCount * 3);
- var isInner = arrayFill(new Array(vertexCount), false);
- var negateNormal = arrayFill(new Array(vertexCount), false);
- // Multiply by 6 because there are two triangles per sector
- var indexCount = slicePartitions * stackPartitions * vertexMultiplier;
- var numIndices = 6 * (indexCount + extraIndices + 1 - (slicePartitions + stackPartitions) * vertexMultiplier);
- var indices = IndexDatatype.createTypedArray(indexCount, numIndices);
- var normals = (vertexFormat.normal) ? new Float32Array(vertexCount * 3) : undefined;
- var tangents = (vertexFormat.tangent) ? new Float32Array(vertexCount * 3) : undefined;
- var bitangents = (vertexFormat.bitangent) ? new Float32Array(vertexCount * 3) : undefined;
- var st = (vertexFormat.st) ? new Float32Array(vertexCount * 2) : undefined;
- // Calculate sin/cos phi
- var sinPhi = new Array(numPhis);
- var cosPhi = new Array(numPhis);
- for (i = 0; i < numPhis; i++) {
- sinPhi[i] = sin(phis[i]);
- cosPhi[i] = cos(phis[i]);
- }
- // Calculate sin/cos theta
- var sinTheta = new Array(numThetas);
- var cosTheta = new Array(numThetas);
- for (j = 0; j < numThetas; j++) {
- cosTheta[j] = cos(thetas[j]);
- sinTheta[j] = sin(thetas[j]);
- }
- // Create outer surface
- for (i = 0; i < numPhis; i++) {
- for (j = 0; j < numThetas; j++) {
- positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
- positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
- positions[index++] = radii.z * cosPhi[i];
- }
- }
- // Create inner surface
- var vertexIndex = vertexCount / 2.0;
- if (hasInnerSurface) {
- for (i = 0; i < numPhis; i++) {
- for (j = 0; j < numThetas; j++) {
- positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
- positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
- positions[index++] = innerRadii.z * cosPhi[i];
- // Keep track of which vertices are the inner and which ones
- // need the normal to be negated
- isInner[vertexIndex] = true;
- if (i > 0 && i !== (numPhis - 1) && j !== 0 && j !== (numThetas - 1)) {
- negateNormal[vertexIndex] = true;
- }
- vertexIndex++;
- }
- }
- }
- // Create indices for outer surface
- index = 0;
- var topOffset;
- var bottomOffset;
- for (i = 1; i < (numPhis - 2); i++) {
- topOffset = i * numThetas;
- bottomOffset = (i + 1) * numThetas;
- for (j = 1; j < numThetas - 2; j++) {
- indices[index++] = bottomOffset + j;
- indices[index++] = bottomOffset + j + 1;
- indices[index++] = topOffset + j + 1;
- indices[index++] = bottomOffset + j;
- indices[index++] = topOffset + j + 1;
- indices[index++] = topOffset + j;
- }
- }
- // Create indices for inner surface
- if (hasInnerSurface) {
- var offset = numPhis * numThetas;
- for (i = 1; i < (numPhis - 2); i++) {
- topOffset = offset + i * numThetas;
- bottomOffset = offset + (i + 1) * numThetas;
- for (j = 1; j < numThetas - 2; j++) {
- indices[index++] = bottomOffset + j;
- indices[index++] = topOffset + j;
- indices[index++] = topOffset + j + 1;
- indices[index++] = bottomOffset + j;
- indices[index++] = topOffset + j + 1;
- indices[index++] = bottomOffset + j + 1;
- }
- }
- }
- var outerOffset;
- var innerOffset;
- if (hasInnerSurface) {
- if (isTopOpen) {
- // Connect the top of the inner surface to the top of the outer surface
- innerOffset = numPhis * numThetas;
- for (i = 1; i < numThetas - 2; i++) {
- indices[index++] = i;
- indices[index++] = i + 1;
- indices[index++] = innerOffset + i + 1;
- indices[index++] = i;
- indices[index++] = innerOffset + i + 1;
- indices[index++] = innerOffset + i;
- }
- }
- if (isBotOpen) {
- // Connect the bottom of the inner surface to the bottom of the outer surface
- outerOffset = numPhis * numThetas - numThetas;
- innerOffset = numPhis * numThetas * vertexMultiplier - numThetas;
- for (i = 1; i < numThetas - 2; i++) {
- indices[index++] = outerOffset + i + 1;
- indices[index++] = outerOffset + i;
- indices[index++] = innerOffset + i;
- indices[index++] = outerOffset + i + 1;
- indices[index++] = innerOffset + i;
- indices[index++] = innerOffset + i + 1;
- }
- }
- }
- // Connect the edges if clock is not closed
- if (isClockOpen) {
- for (i = 1; i < numPhis - 2; i++) {
- innerOffset = numThetas * numPhis + (numThetas * i);
- outerOffset = numThetas * i;
- indices[index++] = innerOffset;
- indices[index++] = outerOffset + numThetas;
- indices[index++] = outerOffset;
- indices[index++] = innerOffset;
- indices[index++] = innerOffset + numThetas;
- indices[index++] = outerOffset + numThetas;
- }
- for (i = 1; i < numPhis - 2; i++) {
- innerOffset = numThetas * numPhis + (numThetas * (i + 1)) - 1;
- outerOffset = numThetas * (i + 1) - 1;
- indices[index++] = outerOffset + numThetas;
- indices[index++] = innerOffset;
- indices[index++] = outerOffset;
- indices[index++] = outerOffset + numThetas;
- indices[index++] = innerOffset + numThetas;
- indices[index++] = innerOffset;
- }
- }
- var attributes = new GeometryAttributes();
- if (vertexFormat.position) {
- attributes.position = new GeometryAttribute({
- componentDatatype : ComponentDatatype.DOUBLE,
- componentsPerAttribute : 3,
- values : positions
- });
- }
- var stIndex = 0;
- var normalIndex = 0;
- var tangentIndex = 0;
- var bitangentIndex = 0;
- var vertexCountHalf = vertexCount / 2.0;
- var ellipsoid;
- var ellipsoidOuter = Ellipsoid.fromCartesian3(radii);
- var ellipsoidInner = Ellipsoid.fromCartesian3(innerRadii);
- if (vertexFormat.st || vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
- for (i = 0; i < vertexCount; i++) {
- ellipsoid = (isInner[i]) ? ellipsoidInner : ellipsoidOuter;
- var position = Cartesian3.fromArray(positions, i * 3, scratchPosition);
- var normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
- if (negateNormal[i]) {
- Cartesian3.negate(normal, normal);
- }
- if (vertexFormat.st) {
- var normalST = Cartesian2.negate(normal, scratchNormalST);
- st[stIndex++] = (Math.atan2(normalST.y, normalST.x) / CesiumMath.TWO_PI) + 0.5;
- st[stIndex++] = (Math.asin(normal.z) / Math.PI) + 0.5;
- }
- if (vertexFormat.normal) {
- normals[normalIndex++] = normal.x;
- normals[normalIndex++] = normal.y;
- normals[normalIndex++] = normal.z;
- }
- if (vertexFormat.tangent || vertexFormat.bitangent) {
- var tangent = scratchTangent;
- // Use UNIT_X for the poles
- var tangetOffset = 0;
- var unit;
- if (isInner[i]) {
- tangetOffset = vertexCountHalf;
- }
- if ((!isTopOpen && (i >= tangetOffset && i < (tangetOffset + numThetas * 2)))) {
- unit = Cartesian3.UNIT_X;
- } else {
- unit = Cartesian3.UNIT_Z;
- }
- Cartesian3.cross(unit, normal, tangent);
- Cartesian3.normalize(tangent, tangent);
- if (vertexFormat.tangent) {
- tangents[tangentIndex++] = tangent.x;
- tangents[tangentIndex++] = tangent.y;
- tangents[tangentIndex++] = tangent.z;
- }
- if (vertexFormat.bitangent) {
- var bitangent = Cartesian3.cross(normal, tangent, scratchBitangent);
- Cartesian3.normalize(bitangent, bitangent);
- bitangents[bitangentIndex++] = bitangent.x;
- bitangents[bitangentIndex++] = bitangent.y;
- bitangents[bitangentIndex++] = bitangent.z;
- }
- }
- }
- if (vertexFormat.st) {
- attributes.st = new GeometryAttribute({
- componentDatatype : ComponentDatatype.FLOAT,
- componentsPerAttribute : 2,
- values : st
- });
- }
- if (vertexFormat.normal) {
- attributes.normal = new GeometryAttribute({
- componentDatatype : ComponentDatatype.FLOAT,
- componentsPerAttribute : 3,
- values : normals
- });
- }
- if (vertexFormat.tangent) {
- attributes.tangent = new GeometryAttribute({
- componentDatatype : ComponentDatatype.FLOAT,
- componentsPerAttribute : 3,
- values : tangents
- });
- }
- if (vertexFormat.bitangent) {
- attributes.bitangent = new GeometryAttribute({
- componentDatatype : ComponentDatatype.FLOAT,
- componentsPerAttribute : 3,
- values : bitangents
- });
- }
- }
- if (defined(ellipsoidGeometry._offsetAttribute)) {
- var length = positions.length;
- var applyOffset = new Uint8Array(length / 3);
- var offsetValue = ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.NONE ? 0 : 1;
- arrayFill(applyOffset, offsetValue);
- attributes.applyOffset = new GeometryAttribute({
- componentDatatype : ComponentDatatype.UNSIGNED_BYTE,
- componentsPerAttribute : 1,
- values : applyOffset
- });
- }
- return new Geometry({
- attributes : attributes,
- indices : indices,
- primitiveType : PrimitiveType.TRIANGLES,
- boundingSphere : BoundingSphere.fromEllipsoid(ellipsoidOuter),
- offsetAttribute : ellipsoidGeometry._offsetAttribute
- });
- };
- var unitEllipsoidGeometry;
- /**
- * Returns the geometric representation of a unit ellipsoid, including its vertices, indices, and a bounding sphere.
- * @returns {Geometry} The computed vertices and indices.
- *
- * @private
- */
- EllipsoidGeometry.getUnitEllipsoid = function() {
- if (!defined(unitEllipsoidGeometry)) {
- unitEllipsoidGeometry = EllipsoidGeometry.createGeometry((new EllipsoidGeometry({
- radii : new Cartesian3(1.0, 1.0, 1.0),
- vertexFormat : VertexFormat.POSITION_ONLY
- })));
- }
- return unitEllipsoidGeometry;
- };
- export default EllipsoidGeometry;
|