import Cartesian2 from './Cartesian2.js'; import Cartesian3 from './Cartesian3.js'; import Cartesian4 from './Cartesian4.js'; import Cartographic from './Cartographic.js'; import CornerType from './CornerType.js'; import EllipsoidTangentPlane from './EllipsoidTangentPlane.js'; import CesiumMath from './Math.js'; import Matrix3 from './Matrix3.js'; import Matrix4 from './Matrix4.js'; import PolylinePipeline from './PolylinePipeline.js'; import Quaternion from './Quaternion.js'; import Transforms from './Transforms.js'; var scratch2Array = [new Cartesian3(), new Cartesian3()]; var scratchCartesian1 = new Cartesian3(); var scratchCartesian2 = new Cartesian3(); var scratchCartesian3 = new Cartesian3(); var scratchCartesian4 = new Cartesian3(); var scratchCartesian5 = new Cartesian3(); var scratchCartesian6 = new Cartesian3(); var scratchCartesian7 = new Cartesian3(); var scratchCartesian8 = new Cartesian3(); var scratchCartesian9 = new Cartesian3(); var scratch1 = new Cartesian3(); var scratch2 = new Cartesian3(); /** * @private */ var PolylineVolumeGeometryLibrary = {}; var cartographic = new Cartographic(); function scaleToSurface(positions, ellipsoid) { var heights = new Array(positions.length); for (var i = 0; i < positions.length; i++) { var pos = positions[i]; cartographic = ellipsoid.cartesianToCartographic(pos, cartographic); heights[i] = cartographic.height; positions[i] = ellipsoid.scaleToGeodeticSurface(pos, pos); } return heights; } function subdivideHeights(points, h0, h1, granularity) { var p0 = points[0]; var p1 = points[1]; var angleBetween = Cartesian3.angleBetween(p0, p1); var numPoints = Math.ceil(angleBetween / granularity); var heights = new Array(numPoints); var i; if (h0 === h1) { for (i = 0; i < numPoints; i++) { heights[i] = h0; } heights.push(h1); return heights; } var dHeight = h1 - h0; var heightPerVertex = dHeight / (numPoints); for (i = 1; i < numPoints; i++) { var h = h0 + i * heightPerVertex; heights[i] = h; } heights[0] = h0; heights.push(h1); return heights; } var nextScratch = new Cartesian3(); var prevScratch = new Cartesian3(); function computeRotationAngle(start, end, position, ellipsoid) { var tangentPlane = new EllipsoidTangentPlane(position, ellipsoid); var next = tangentPlane.projectPointOntoPlane(Cartesian3.add(position, start, nextScratch), nextScratch); var prev = tangentPlane.projectPointOntoPlane(Cartesian3.add(position, end, prevScratch), prevScratch); var angle = Cartesian2.angleBetween(next, prev); return (prev.x * next.y - prev.y * next.x >= 0.0) ? -angle : angle; } var negativeX = new Cartesian3(-1, 0, 0); var transform = new Matrix4(); var translation = new Matrix4(); var rotationZ = new Matrix3(); var scaleMatrix = Matrix3.IDENTITY.clone(); var westScratch = new Cartesian3(); var finalPosScratch = new Cartesian4(); var heightCartesian = new Cartesian3(); function addPosition(center, left, shape, finalPositions, ellipsoid, height, xScalar, repeat) { var west = westScratch; var finalPosition = finalPosScratch; transform = Transforms.eastNorthUpToFixedFrame(center, ellipsoid, transform); west = Matrix4.multiplyByPointAsVector(transform, negativeX, west); west = Cartesian3.normalize(west, west); var angle = computeRotationAngle(west, left, center, ellipsoid); rotationZ = Matrix3.fromRotationZ(angle, rotationZ); heightCartesian.z = height; transform = Matrix4.multiplyTransformation(transform, Matrix4.fromRotationTranslation(rotationZ, heightCartesian, translation), transform); var scale = scaleMatrix; scale[0] = xScalar; for (var j = 0; j < repeat; j++) { for (var i = 0; i < shape.length; i += 3) { finalPosition = Cartesian3.fromArray(shape, i, finalPosition); finalPosition = Matrix3.multiplyByVector(scale, finalPosition, finalPosition); finalPosition = Matrix4.multiplyByPoint(transform, finalPosition, finalPosition); finalPositions.push(finalPosition.x, finalPosition.y, finalPosition.z); } } return finalPositions; } var centerScratch = new Cartesian3(); function addPositions(centers, left, shape, finalPositions, ellipsoid, heights, xScalar) { for (var i = 0; i < centers.length; i += 3) { var center = Cartesian3.fromArray(centers, i, centerScratch); finalPositions = addPosition(center, left, shape, finalPositions, ellipsoid, heights[i / 3], xScalar, 1); } return finalPositions; } function convertShapeTo3DDuplicate(shape2D, boundingRectangle) { //orientate 2D shape to XZ plane center at (0, 0, 0), duplicate points var length = shape2D.length; var shape = new Array(length * 6); var index = 0; var xOffset = boundingRectangle.x + boundingRectangle.width / 2; var yOffset = boundingRectangle.y + boundingRectangle.height / 2; var point = shape2D[0]; shape[index++] = point.x - xOffset; shape[index++] = 0.0; shape[index++] = point.y - yOffset; for (var i = 1; i < length; i++) { point = shape2D[i]; var x = point.x - xOffset; var z = point.y - yOffset; shape[index++] = x; shape[index++] = 0.0; shape[index++] = z; shape[index++] = x; shape[index++] = 0.0; shape[index++] = z; } point = shape2D[0]; shape[index++] = point.x - xOffset; shape[index++] = 0.0; shape[index++] = point.y - yOffset; return shape; } function convertShapeTo3D(shape2D, boundingRectangle) { //orientate 2D shape to XZ plane center at (0, 0, 0) var length = shape2D.length; var shape = new Array(length * 3); var index = 0; var xOffset = boundingRectangle.x + boundingRectangle.width / 2; var yOffset = boundingRectangle.y + boundingRectangle.height / 2; for (var i = 0; i < length; i++) { shape[index++] = shape2D[i].x - xOffset; shape[index++] = 0; shape[index++] = shape2D[i].y - yOffset; } return shape; } var quaterion = new Quaternion(); var startPointScratch = new Cartesian3(); var rotMatrix = new Matrix3(); function computeRoundCorner(pivot, startPoint, endPoint, cornerType, leftIsOutside, ellipsoid, finalPositions, shape, height, duplicatePoints) { var angle = Cartesian3.angleBetween(Cartesian3.subtract(startPoint, pivot, scratch1), Cartesian3.subtract(endPoint, pivot, scratch2)); var granularity = (cornerType === CornerType.BEVELED) ? 0 : Math.ceil(angle / CesiumMath.toRadians(5)); var m; if (leftIsOutside) { m = Matrix3.fromQuaternion(Quaternion.fromAxisAngle(Cartesian3.negate(pivot, scratch1), angle / (granularity + 1), quaterion), rotMatrix); } else { m = Matrix3.fromQuaternion(Quaternion.fromAxisAngle(pivot, angle / (granularity + 1), quaterion), rotMatrix); } var left; var surfacePoint; startPoint = Cartesian3.clone(startPoint, startPointScratch); if (granularity > 0) { var repeat = duplicatePoints ? 2 : 1; for (var i = 0; i < granularity; i++) { startPoint = Matrix3.multiplyByVector(m, startPoint, startPoint); left = Cartesian3.subtract(startPoint, pivot, scratch1); left = Cartesian3.normalize(left, left); if (!leftIsOutside) { left = Cartesian3.negate(left, left); } surfacePoint = ellipsoid.scaleToGeodeticSurface(startPoint, scratch2); finalPositions = addPosition(surfacePoint, left, shape, finalPositions, ellipsoid, height, 1, repeat); } } else { left = Cartesian3.subtract(startPoint, pivot, scratch1); left = Cartesian3.normalize(left, left); if (!leftIsOutside) { left = Cartesian3.negate(left, left); } surfacePoint = ellipsoid.scaleToGeodeticSurface(startPoint, scratch2); finalPositions = addPosition(surfacePoint, left, shape, finalPositions, ellipsoid, height, 1, 1); endPoint = Cartesian3.clone(endPoint, startPointScratch); left = Cartesian3.subtract(endPoint, pivot, scratch1); left = Cartesian3.normalize(left, left); if (!leftIsOutside) { left = Cartesian3.negate(left, left); } surfacePoint = ellipsoid.scaleToGeodeticSurface(endPoint, scratch2); finalPositions = addPosition(surfacePoint, left, shape, finalPositions, ellipsoid, height, 1, 1); } return finalPositions; } PolylineVolumeGeometryLibrary.removeDuplicatesFromShape = function(shapePositions) { var length = shapePositions.length; var cleanedPositions = []; for (var i0 = length - 1, i1 = 0; i1 < length; i0 = i1++) { var v0 = shapePositions[i0]; var v1 = shapePositions[i1]; if (!Cartesian2.equals(v0, v1)) { cleanedPositions.push(v1); // Shallow copy! } } return cleanedPositions; }; PolylineVolumeGeometryLibrary.angleIsGreaterThanPi = function(forward, backward, position, ellipsoid) { var tangentPlane = new EllipsoidTangentPlane(position, ellipsoid); var next = tangentPlane.projectPointOntoPlane(Cartesian3.add(position, forward, nextScratch), nextScratch); var prev = tangentPlane.projectPointOntoPlane(Cartesian3.add(position, backward, prevScratch), prevScratch); return ((prev.x * next.y) - (prev.y * next.x)) >= 0.0; }; var scratchForwardProjection = new Cartesian3(); var scratchBackwardProjection = new Cartesian3(); PolylineVolumeGeometryLibrary.computePositions = function(positions, shape2D, boundingRectangle, geometry, duplicatePoints) { var ellipsoid = geometry._ellipsoid; var heights = scaleToSurface(positions, ellipsoid); var granularity = geometry._granularity; var cornerType = geometry._cornerType; var shapeForSides = duplicatePoints ? convertShapeTo3DDuplicate(shape2D, boundingRectangle) : convertShapeTo3D(shape2D, boundingRectangle); var shapeForEnds = duplicatePoints ? convertShapeTo3D(shape2D, boundingRectangle) : undefined; var heightOffset = boundingRectangle.height / 2; var width = boundingRectangle.width / 2; var length = positions.length; var finalPositions = []; var ends = duplicatePoints ? [] : undefined; var forward = scratchCartesian1; var backward = scratchCartesian2; var cornerDirection = scratchCartesian3; var surfaceNormal = scratchCartesian4; var pivot = scratchCartesian5; var start = scratchCartesian6; var end = scratchCartesian7; var left = scratchCartesian8; var previousPosition = scratchCartesian9; var position = positions[0]; var nextPosition = positions[1]; surfaceNormal = ellipsoid.geodeticSurfaceNormal(position, surfaceNormal); forward = Cartesian3.subtract(nextPosition, position, forward); forward = Cartesian3.normalize(forward, forward); left = Cartesian3.cross(surfaceNormal, forward, left); left = Cartesian3.normalize(left, left); var h0 = heights[0]; var h1 = heights[1]; if (duplicatePoints) { ends = addPosition(position, left, shapeForEnds, ends, ellipsoid, h0 + heightOffset, 1, 1); } previousPosition = Cartesian3.clone(position, previousPosition); position = nextPosition; backward = Cartesian3.negate(forward, backward); var subdividedHeights; var subdividedPositions; for (var i = 1; i < length - 1; i++) { var repeat = duplicatePoints ? 2 : 1; nextPosition = positions[i + 1]; forward = Cartesian3.subtract(nextPosition, position, forward); forward = Cartesian3.normalize(forward, forward); cornerDirection = Cartesian3.add(forward, backward, cornerDirection); cornerDirection = Cartesian3.normalize(cornerDirection, cornerDirection); surfaceNormal = ellipsoid.geodeticSurfaceNormal(position, surfaceNormal); var forwardProjection = Cartesian3.multiplyByScalar(surfaceNormal, Cartesian3.dot(forward, surfaceNormal), scratchForwardProjection); Cartesian3.subtract(forward, forwardProjection, forwardProjection); Cartesian3.normalize(forwardProjection, forwardProjection); var backwardProjection = Cartesian3.multiplyByScalar(surfaceNormal, Cartesian3.dot(backward, surfaceNormal), scratchBackwardProjection); Cartesian3.subtract(backward, backwardProjection, backwardProjection); Cartesian3.normalize(backwardProjection, backwardProjection); var doCorner = !CesiumMath.equalsEpsilon(Math.abs(Cartesian3.dot(forwardProjection, backwardProjection)), 1.0, CesiumMath.EPSILON7); if (doCorner) { cornerDirection = Cartesian3.cross(cornerDirection, surfaceNormal, cornerDirection); cornerDirection = Cartesian3.cross(surfaceNormal, cornerDirection, cornerDirection); cornerDirection = Cartesian3.normalize(cornerDirection, cornerDirection); var scalar = 1 / Math.max(0.25, (Cartesian3.magnitude(Cartesian3.cross(cornerDirection, backward, scratch1)))); var leftIsOutside = PolylineVolumeGeometryLibrary.angleIsGreaterThanPi(forward, backward, position, ellipsoid); if (leftIsOutside) { pivot = Cartesian3.add(position, Cartesian3.multiplyByScalar(cornerDirection, scalar * width, cornerDirection), pivot); start = Cartesian3.add(pivot, Cartesian3.multiplyByScalar(left, width, start), start); scratch2Array[0] = Cartesian3.clone(previousPosition, scratch2Array[0]); scratch2Array[1] = Cartesian3.clone(start, scratch2Array[1]); subdividedHeights = subdivideHeights(scratch2Array, h0 + heightOffset, h1 + heightOffset, granularity); subdividedPositions = PolylinePipeline.generateArc({ positions: scratch2Array, granularity: granularity, ellipsoid: ellipsoid }); finalPositions = addPositions(subdividedPositions, left, shapeForSides, finalPositions, ellipsoid, subdividedHeights, 1); left = Cartesian3.cross(surfaceNormal, forward, left); left = Cartesian3.normalize(left, left); end = Cartesian3.add(pivot, Cartesian3.multiplyByScalar(left, width, end), end); if (cornerType === CornerType.ROUNDED || cornerType === CornerType.BEVELED) { computeRoundCorner(pivot, start, end, cornerType, leftIsOutside, ellipsoid, finalPositions, shapeForSides, h1 + heightOffset, duplicatePoints); } else { cornerDirection = Cartesian3.negate(cornerDirection, cornerDirection); finalPositions = addPosition(position, cornerDirection, shapeForSides, finalPositions, ellipsoid, h1 + heightOffset, scalar, repeat); } previousPosition = Cartesian3.clone(end, previousPosition); } else { pivot = Cartesian3.add(position, Cartesian3.multiplyByScalar(cornerDirection, scalar * width, cornerDirection), pivot); start = Cartesian3.add(pivot, Cartesian3.multiplyByScalar(left, -width, start), start); scratch2Array[0] = Cartesian3.clone(previousPosition, scratch2Array[0]); scratch2Array[1] = Cartesian3.clone(start, scratch2Array[1]); subdividedHeights = subdivideHeights(scratch2Array, h0 + heightOffset, h1 + heightOffset, granularity); subdividedPositions = PolylinePipeline.generateArc({ positions: scratch2Array, granularity: granularity, ellipsoid: ellipsoid }); finalPositions = addPositions(subdividedPositions, left, shapeForSides, finalPositions, ellipsoid, subdividedHeights, 1); left = Cartesian3.cross(surfaceNormal, forward, left); left = Cartesian3.normalize(left, left); end = Cartesian3.add(pivot, Cartesian3.multiplyByScalar(left, -width, end), end); if (cornerType === CornerType.ROUNDED || cornerType === CornerType.BEVELED) { computeRoundCorner(pivot, start, end, cornerType, leftIsOutside, ellipsoid, finalPositions, shapeForSides, h1 + heightOffset, duplicatePoints); } else { finalPositions = addPosition(position, cornerDirection, shapeForSides, finalPositions, ellipsoid, h1 + heightOffset, scalar, repeat); } previousPosition = Cartesian3.clone(end, previousPosition); } backward = Cartesian3.negate(forward, backward); } else { finalPositions = addPosition(previousPosition, left, shapeForSides, finalPositions, ellipsoid, h0 + heightOffset, 1, 1); previousPosition = position; } h0 = h1; h1 = heights[i + 1]; position = nextPosition; } scratch2Array[0] = Cartesian3.clone(previousPosition, scratch2Array[0]); scratch2Array[1] = Cartesian3.clone(position, scratch2Array[1]); subdividedHeights = subdivideHeights(scratch2Array, h0 + heightOffset, h1 + heightOffset, granularity); subdividedPositions = PolylinePipeline.generateArc({ positions: scratch2Array, granularity: granularity, ellipsoid: ellipsoid }); finalPositions = addPositions(subdividedPositions, left, shapeForSides, finalPositions, ellipsoid, subdividedHeights, 1); if (duplicatePoints) { ends = addPosition(position, left, shapeForEnds, ends, ellipsoid, h1 + heightOffset, 1, 1); } length = finalPositions.length; var posLength = duplicatePoints ? length + ends.length : length; var combinedPositions = new Float64Array(posLength); combinedPositions.set(finalPositions); if (duplicatePoints) { combinedPositions.set(ends, length); } return combinedPositions; }; export default PolylineVolumeGeometryLibrary;