import arrayRemoveDuplicates from './arrayRemoveDuplicates.js'; import BoundingRectangle from './BoundingRectangle.js'; import BoundingSphere from './BoundingSphere.js'; import Cartesian2 from './Cartesian2.js'; import Cartesian3 from './Cartesian3.js'; import ComponentDatatype from './ComponentDatatype.js'; import CornerType from './CornerType.js'; import defaultValue from './defaultValue.js'; import defined from './defined.js'; import DeveloperError from './DeveloperError.js'; import Ellipsoid from './Ellipsoid.js'; import Geometry from './Geometry.js'; import GeometryAttribute from './GeometryAttribute.js'; import GeometryAttributes from './GeometryAttributes.js'; import GeometryPipeline from './GeometryPipeline.js'; import IndexDatatype from './IndexDatatype.js'; import CesiumMath from './Math.js'; import oneTimeWarning from './oneTimeWarning.js'; import PolygonPipeline from './PolygonPipeline.js'; import PolylineVolumeGeometryLibrary from './PolylineVolumeGeometryLibrary.js'; import PrimitiveType from './PrimitiveType.js'; import VertexFormat from './VertexFormat.js'; import WindingOrder from './WindingOrder.js'; function computeAttributes(combinedPositions, shape, boundingRectangle, vertexFormat) { var attributes = new GeometryAttributes(); if (vertexFormat.position) { attributes.position = new GeometryAttribute({ componentDatatype : ComponentDatatype.DOUBLE, componentsPerAttribute : 3, values : combinedPositions }); } var shapeLength = shape.length; var vertexCount = combinedPositions.length / 3; var length = (vertexCount - shapeLength * 2) / (shapeLength * 2); var firstEndIndices = PolygonPipeline.triangulate(shape); var indicesCount = (length - 1) * (shapeLength) * 6 + firstEndIndices.length * 2; var indices = IndexDatatype.createTypedArray(vertexCount, indicesCount); var i, j; var ll, ul, ur, lr; var offset = shapeLength * 2; var index = 0; for (i = 0; i < length - 1; i++) { for (j = 0; j < shapeLength - 1; j++) { ll = j * 2 + i * shapeLength * 2; lr = ll + offset; ul = ll + 1; ur = ul + offset; indices[index++] = ul; indices[index++] = ll; indices[index++] = ur; indices[index++] = ur; indices[index++] = ll; indices[index++] = lr; } ll = shapeLength * 2 - 2 + i * shapeLength * 2; ul = ll + 1; ur = ul + offset; lr = ll + offset; indices[index++] = ul; indices[index++] = ll; indices[index++] = ur; indices[index++] = ur; indices[index++] = ll; indices[index++] = lr; } if (vertexFormat.st || vertexFormat.tangent || vertexFormat.bitangent) { // st required for tangent/bitangent calculation var st = new Float32Array(vertexCount * 2); var lengthSt = 1 / (length - 1); var heightSt = 1 / (boundingRectangle.height); var heightOffset = boundingRectangle.height / 2; var s, t; var stindex = 0; for (i = 0; i < length; i++) { s = i * lengthSt; t = heightSt * (shape[0].y + heightOffset); st[stindex++] = s; st[stindex++] = t; for (j = 1; j < shapeLength; j++) { t = heightSt * (shape[j].y + heightOffset); st[stindex++] = s; st[stindex++] = t; st[stindex++] = s; st[stindex++] = t; } t = heightSt * (shape[0].y + heightOffset); st[stindex++] = s; st[stindex++] = t; } for (j = 0; j < shapeLength; j++) { s = 0; t = heightSt * (shape[j].y + heightOffset); st[stindex++] = s; st[stindex++] = t; } for (j = 0; j < shapeLength; j++) { s = (length - 1) * lengthSt; t = heightSt * (shape[j].y + heightOffset); st[stindex++] = s; st[stindex++] = t; } attributes.st = new GeometryAttribute({ componentDatatype : ComponentDatatype.FLOAT, componentsPerAttribute : 2, values : new Float32Array(st) }); } var endOffset = vertexCount - shapeLength * 2; for (i = 0; i < firstEndIndices.length; i += 3) { var v0 = firstEndIndices[i] + endOffset; var v1 = firstEndIndices[i + 1] + endOffset; var v2 = firstEndIndices[i + 2] + endOffset; indices[index++] = v0; indices[index++] = v1; indices[index++] = v2; indices[index++] = v2 + shapeLength; indices[index++] = v1 + shapeLength; indices[index++] = v0 + shapeLength; } var geometry = new Geometry({ attributes : attributes, indices : indices, boundingSphere : BoundingSphere.fromVertices(combinedPositions), primitiveType : PrimitiveType.TRIANGLES }); if (vertexFormat.normal) { geometry = GeometryPipeline.computeNormal(geometry); } if (vertexFormat.tangent || vertexFormat.bitangent) { try { geometry = GeometryPipeline.computeTangentAndBitangent(geometry); } catch (e) { oneTimeWarning('polyline-volume-tangent-bitangent', 'Unable to compute tangents and bitangents for polyline volume geometry'); //TODO https://github.com/AnalyticalGraphicsInc/cesium/issues/3609 } if (!vertexFormat.tangent) { geometry.attributes.tangent = undefined; } if (!vertexFormat.bitangent) { geometry.attributes.bitangent = undefined; } if (!vertexFormat.st) { geometry.attributes.st = undefined; } } return geometry; } /** * A description of a polyline with a volume (a 2D shape extruded along a polyline). * * @alias PolylineVolumeGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.polylinePositions An array of {@link Cartesain3} positions that define the center of the polyline volume. * @param {Cartesian2[]} options.shapePositions An array of {@link Cartesian2} positions that define the shape to be extruded along the polyline * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners. * * @see PolylineVolumeGeometry#createGeometry * * @demo {@link https://sandcastle.cesium.com/index.html?src=Polyline%20Volume.html|Cesium Sandcastle Polyline Volume Demo} * * @example * function computeCircle(radius) { * var positions = []; * for (var i = 0; i < 360; i++) { * var radians = Cesium.Math.toRadians(i); * positions.push(new Cesium.Cartesian2(radius * Math.cos(radians), radius * Math.sin(radians))); * } * return positions; * } * * var volume = new Cesium.PolylineVolumeGeometry({ * vertexFormat : Cesium.VertexFormat.POSITION_ONLY, * polylinePositions : Cesium.Cartesian3.fromDegreesArray([ * -72.0, 40.0, * -70.0, 35.0 * ]), * shapePositions : computeCircle(100000.0) * }); */ function PolylineVolumeGeometry(options) { options = defaultValue(options, defaultValue.EMPTY_OBJECT); var positions = options.polylinePositions; var shape = options.shapePositions; //>>includeStart('debug', pragmas.debug); if (!defined(positions)) { throw new DeveloperError('options.polylinePositions is required.'); } if (!defined(shape)) { throw new DeveloperError('options.shapePositions is required.'); } //>>includeEnd('debug'); this._positions = positions; this._shape = shape; this._ellipsoid = Ellipsoid.clone(defaultValue(options.ellipsoid, Ellipsoid.WGS84)); this._cornerType = defaultValue(options.cornerType, CornerType.ROUNDED); this._vertexFormat = VertexFormat.clone(defaultValue(options.vertexFormat, VertexFormat.DEFAULT)); this._granularity = defaultValue(options.granularity, CesiumMath.RADIANS_PER_DEGREE); this._workerName = 'createPolylineVolumeGeometry'; var numComponents = 1 + positions.length * Cartesian3.packedLength; numComponents += 1 + shape.length * Cartesian2.packedLength; /** * The number of elements used to pack the object into an array. * @type {Number} */ this.packedLength = numComponents + Ellipsoid.packedLength + VertexFormat.packedLength + 2; } /** * Stores the provided instance into the provided array. * * @param {PolylineVolumeGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ PolylineVolumeGeometry.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); if (!defined(value)) { throw new DeveloperError('value is required'); } if (!defined(array)) { throw new DeveloperError('array is required'); } //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); var i; var positions = value._positions; var length = positions.length; array[startingIndex++] = length; for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) { Cartesian3.pack(positions[i], array, startingIndex); } var shape = value._shape; length = shape.length; array[startingIndex++] = length; for (i = 0; i < length; ++i, startingIndex += Cartesian2.packedLength) { Cartesian2.pack(shape[i], array, startingIndex); } Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Ellipsoid.packedLength; VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.packedLength; array[startingIndex++] = value._cornerType; array[startingIndex] = value._granularity; return array; }; var scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE); var scratchVertexFormat = new VertexFormat(); var scratchOptions = { polylinePositions : undefined, shapePositions : undefined, ellipsoid : scratchEllipsoid, vertexFormat : scratchVertexFormat, cornerType : undefined, granularity : undefined }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {PolylineVolumeGeometry} [result] The object into which to store the result. * @returns {PolylineVolumeGeometry} The modified result parameter or a new PolylineVolumeGeometry instance if one was not provided. */ PolylineVolumeGeometry.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); if (!defined(array)) { throw new DeveloperError('array is required'); } //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); var i; var length = array[startingIndex++]; var positions = new Array(length); for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) { positions[i] = Cartesian3.unpack(array, startingIndex); } length = array[startingIndex++]; var shape = new Array(length); for (i = 0; i < length; ++i, startingIndex += Cartesian2.packedLength) { shape[i] = Cartesian2.unpack(array, startingIndex); } var ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid); startingIndex += Ellipsoid.packedLength; var vertexFormat = VertexFormat.unpack(array, startingIndex, scratchVertexFormat); startingIndex += VertexFormat.packedLength; var cornerType = array[startingIndex++]; var granularity = array[startingIndex]; if (!defined(result)) { scratchOptions.polylinePositions = positions; scratchOptions.shapePositions = shape; scratchOptions.cornerType = cornerType; scratchOptions.granularity = granularity; return new PolylineVolumeGeometry(scratchOptions); } result._positions = positions; result._shape = shape; result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid); result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat); result._cornerType = cornerType; result._granularity = granularity; return result; }; var brScratch = new BoundingRectangle(); /** * Computes the geometric representation of a polyline with a volume, including its vertices, indices, and a bounding sphere. * * @param {PolylineVolumeGeometry} polylineVolumeGeometry A description of the polyline volume. * @returns {Geometry|undefined} The computed vertices and indices. */ PolylineVolumeGeometry.createGeometry = function(polylineVolumeGeometry) { var positions = polylineVolumeGeometry._positions; var cleanPositions = arrayRemoveDuplicates(positions, Cartesian3.equalsEpsilon); var shape2D = polylineVolumeGeometry._shape; shape2D = PolylineVolumeGeometryLibrary.removeDuplicatesFromShape(shape2D); if (cleanPositions.length < 2 || shape2D.length < 3) { return undefined; } if (PolygonPipeline.computeWindingOrder2D(shape2D) === WindingOrder.CLOCKWISE) { shape2D.reverse(); } var boundingRectangle = BoundingRectangle.fromPoints(shape2D, brScratch); var computedPositions = PolylineVolumeGeometryLibrary.computePositions(cleanPositions, shape2D, boundingRectangle, polylineVolumeGeometry, true); return computeAttributes(computedPositions, shape2D, boundingRectangle, polylineVolumeGeometry._vertexFormat); }; export default PolylineVolumeGeometry;