import ArcType from './ArcType.js'; import arrayRemoveDuplicates from './arrayRemoveDuplicates.js'; import BoundingSphere from './BoundingSphere.js'; import Cartesian3 from './Cartesian3.js'; import Color from './Color.js'; import ComponentDatatype from './ComponentDatatype.js'; import defaultValue from './defaultValue.js'; import defined from './defined.js'; import DeveloperError from './DeveloperError.js'; import Ellipsoid from './Ellipsoid.js'; import Geometry from './Geometry.js'; import GeometryAttribute from './GeometryAttribute.js'; import GeometryAttributes from './GeometryAttributes.js'; import GeometryType from './GeometryType.js'; import IndexDatatype from './IndexDatatype.js'; import CesiumMath from './Math.js'; import PolylinePipeline from './PolylinePipeline.js'; import PrimitiveType from './PrimitiveType.js'; import VertexFormat from './VertexFormat.js'; var scratchInterpolateColorsArray = []; function interpolateColors(p0, p1, color0, color1, numPoints) { var colors = scratchInterpolateColorsArray; colors.length = numPoints; var i; var r0 = color0.red; var g0 = color0.green; var b0 = color0.blue; var a0 = color0.alpha; var r1 = color1.red; var g1 = color1.green; var b1 = color1.blue; var a1 = color1.alpha; if (Color.equals(color0, color1)) { for (i = 0; i < numPoints; i++) { colors[i] = Color.clone(color0); } return colors; } var redPerVertex = (r1 - r0) / numPoints; var greenPerVertex = (g1 - g0) / numPoints; var bluePerVertex = (b1 - b0) / numPoints; var alphaPerVertex = (a1 - a0) / numPoints; for (i = 0; i < numPoints; i++) { colors[i] = new Color(r0 + i * redPerVertex, g0 + i * greenPerVertex, b0 + i * bluePerVertex, a0 + i * alphaPerVertex); } return colors; } /** * A description of a polyline modeled as a line strip; the first two positions define a line segment, * and each additional position defines a line segment from the previous position. The polyline is capable of * displaying with a material. * * @alias PolylineGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of {@link Cartesian3} defining the positions in the polyline as a line strip. * @param {Number} [options.width=1.0] The width in pixels. * @param {Color[]} [options.colors] An Array of {@link Color} defining the per vertex or per segment colors. * @param {Boolean} [options.colorsPerVertex=false] A boolean that determines whether the colors will be flat across each segment of the line or interpolated across the vertices. * @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polyline segments must follow. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude if options.arcType is not ArcType.NONE. Determines the number of positions in the buffer. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * * @exception {DeveloperError} At least two positions are required. * @exception {DeveloperError} width must be greater than or equal to one. * @exception {DeveloperError} colors has an invalid length. * * @see PolylineGeometry#createGeometry * * @demo {@link https://sandcastle.cesium.com/index.html?src=Polyline.html|Cesium Sandcastle Polyline Demo} * * @example * // A polyline with two connected line segments * var polyline = new Cesium.PolylineGeometry({ * positions : Cesium.Cartesian3.fromDegreesArray([ * 0.0, 0.0, * 5.0, 0.0, * 5.0, 5.0 * ]), * width : 10.0 * }); * var geometry = Cesium.PolylineGeometry.createGeometry(polyline); */ function PolylineGeometry(options) { options = defaultValue(options, defaultValue.EMPTY_OBJECT); var positions = options.positions; var colors = options.colors; var width = defaultValue(options.width, 1.0); var colorsPerVertex = defaultValue(options.colorsPerVertex, false); //>>includeStart('debug', pragmas.debug); if ((!defined(positions)) || (positions.length < 2)) { throw new DeveloperError('At least two positions are required.'); } if (typeof width !== 'number') { throw new DeveloperError('width must be a number'); } if (defined(colors) && ((colorsPerVertex && colors.length < positions.length) || (!colorsPerVertex && colors.length < positions.length - 1))) { throw new DeveloperError('colors has an invalid length.'); } //>>includeEnd('debug'); this._positions = positions; this._colors = colors; this._width = width; this._colorsPerVertex = colorsPerVertex; this._vertexFormat = VertexFormat.clone(defaultValue(options.vertexFormat, VertexFormat.DEFAULT)); this._arcType = defaultValue(options.arcType, ArcType.GEODESIC); this._granularity = defaultValue(options.granularity, CesiumMath.RADIANS_PER_DEGREE); this._ellipsoid = Ellipsoid.clone(defaultValue(options.ellipsoid, Ellipsoid.WGS84)); this._workerName = 'createPolylineGeometry'; var numComponents = 1 + positions.length * Cartesian3.packedLength; numComponents += defined(colors) ? 1 + colors.length * Color.packedLength : 1; /** * The number of elements used to pack the object into an array. * @type {Number} */ this.packedLength = numComponents + Ellipsoid.packedLength + VertexFormat.packedLength + 4; } /** * Stores the provided instance into the provided array. * * @param {PolylineGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ PolylineGeometry.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); if (!defined(value)) { throw new DeveloperError('value is required'); } if (!defined(array)) { throw new DeveloperError('array is required'); } //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); var i; var positions = value._positions; var length = positions.length; array[startingIndex++] = length; for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) { Cartesian3.pack(positions[i], array, startingIndex); } var colors = value._colors; length = defined(colors) ? colors.length : 0.0; array[startingIndex++] = length; for (i = 0; i < length; ++i, startingIndex += Color.packedLength) { Color.pack(colors[i], array, startingIndex); } Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Ellipsoid.packedLength; VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.packedLength; array[startingIndex++] = value._width; array[startingIndex++] = value._colorsPerVertex ? 1.0 : 0.0; array[startingIndex++] = value._arcType; array[startingIndex] = value._granularity; return array; }; var scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE); var scratchVertexFormat = new VertexFormat(); var scratchOptions = { positions : undefined, colors : undefined, ellipsoid : scratchEllipsoid, vertexFormat : scratchVertexFormat, width : undefined, colorsPerVertex : undefined, arcType : undefined, granularity : undefined }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {PolylineGeometry} [result] The object into which to store the result. * @returns {PolylineGeometry} The modified result parameter or a new PolylineGeometry instance if one was not provided. */ PolylineGeometry.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); if (!defined(array)) { throw new DeveloperError('array is required'); } //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); var i; var length = array[startingIndex++]; var positions = new Array(length); for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) { positions[i] = Cartesian3.unpack(array, startingIndex); } length = array[startingIndex++]; var colors = length > 0 ? new Array(length) : undefined; for (i = 0; i < length; ++i, startingIndex += Color.packedLength) { colors[i] = Color.unpack(array, startingIndex); } var ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid); startingIndex += Ellipsoid.packedLength; var vertexFormat = VertexFormat.unpack(array, startingIndex, scratchVertexFormat); startingIndex += VertexFormat.packedLength; var width = array[startingIndex++]; var colorsPerVertex = array[startingIndex++] === 1.0; var arcType = array[startingIndex++]; var granularity = array[startingIndex]; if (!defined(result)) { scratchOptions.positions = positions; scratchOptions.colors = colors; scratchOptions.width = width; scratchOptions.colorsPerVertex = colorsPerVertex; scratchOptions.arcType = arcType; scratchOptions.granularity = granularity; return new PolylineGeometry(scratchOptions); } result._positions = positions; result._colors = colors; result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid); result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat); result._width = width; result._colorsPerVertex = colorsPerVertex; result._arcType = arcType; result._granularity = granularity; return result; }; var scratchCartesian3 = new Cartesian3(); var scratchPosition = new Cartesian3(); var scratchPrevPosition = new Cartesian3(); var scratchNextPosition = new Cartesian3(); /** * Computes the geometric representation of a polyline, including its vertices, indices, and a bounding sphere. * * @param {PolylineGeometry} polylineGeometry A description of the polyline. * @returns {Geometry|undefined} The computed vertices and indices. */ PolylineGeometry.createGeometry = function(polylineGeometry) { var width = polylineGeometry._width; var vertexFormat = polylineGeometry._vertexFormat; var colors = polylineGeometry._colors; var colorsPerVertex = polylineGeometry._colorsPerVertex; var arcType = polylineGeometry._arcType; var granularity = polylineGeometry._granularity; var ellipsoid = polylineGeometry._ellipsoid; var i; var j; var k; var positions = arrayRemoveDuplicates(polylineGeometry._positions, Cartesian3.equalsEpsilon); var positionsLength = positions.length; // A width of a pixel or less is not a valid geometry, but in order to support external data // that may have errors we treat this as an empty geometry. if (positionsLength < 2 || width <= 0.0) { return undefined; } if (arcType === ArcType.GEODESIC || arcType === ArcType.RHUMB) { var subdivisionSize; var numberOfPointsFunction; if (arcType === ArcType.GEODESIC) { subdivisionSize = CesiumMath.chordLength(granularity, ellipsoid.maximumRadius); numberOfPointsFunction = PolylinePipeline.numberOfPoints; } else { subdivisionSize = granularity; numberOfPointsFunction = PolylinePipeline.numberOfPointsRhumbLine; } var heights = PolylinePipeline.extractHeights(positions, ellipsoid); if (defined(colors)) { var colorLength = 1; for (i = 0; i < positionsLength - 1; ++i) { colorLength += numberOfPointsFunction(positions[i], positions[i + 1], subdivisionSize); } var newColors = new Array(colorLength); var newColorIndex = 0; for (i = 0; i < positionsLength - 1; ++i) { var p0 = positions[i]; var p1 = positions[i + 1]; var c0 = colors[i]; var numColors = numberOfPointsFunction(p0, p1, subdivisionSize); if (colorsPerVertex && i < colorLength) { var c1 = colors[i + 1]; var interpolatedColors = interpolateColors(p0, p1, c0, c1, numColors); var interpolatedColorsLength = interpolatedColors.length; for (j = 0; j < interpolatedColorsLength; ++j) { newColors[newColorIndex++] = interpolatedColors[j]; } } else { for (j = 0; j < numColors; ++j) { newColors[newColorIndex++] = Color.clone(c0); } } } newColors[newColorIndex] = Color.clone(colors[colors.length - 1]); colors = newColors; scratchInterpolateColorsArray.length = 0; } if (arcType === ArcType.GEODESIC) { positions = PolylinePipeline.generateCartesianArc({ positions: positions, minDistance: subdivisionSize, ellipsoid: ellipsoid, height: heights }); } else { positions = PolylinePipeline.generateCartesianRhumbArc({ positions: positions, granularity: subdivisionSize, ellipsoid: ellipsoid, height: heights }); } } positionsLength = positions.length; var size = positionsLength * 4.0 - 4.0; var finalPositions = new Float64Array(size * 3); var prevPositions = new Float64Array(size * 3); var nextPositions = new Float64Array(size * 3); var expandAndWidth = new Float32Array(size * 2); var st = vertexFormat.st ? new Float32Array(size * 2) : undefined; var finalColors = defined(colors) ? new Uint8Array(size * 4) : undefined; var positionIndex = 0; var expandAndWidthIndex = 0; var stIndex = 0; var colorIndex = 0; var position; for (j = 0; j < positionsLength; ++j) { if (j === 0) { position = scratchCartesian3; Cartesian3.subtract(positions[0], positions[1], position); Cartesian3.add(positions[0], position, position); } else { position = positions[j - 1]; } Cartesian3.clone(position, scratchPrevPosition); Cartesian3.clone(positions[j], scratchPosition); if (j === positionsLength - 1) { position = scratchCartesian3; Cartesian3.subtract(positions[positionsLength - 1], positions[positionsLength - 2], position); Cartesian3.add(positions[positionsLength - 1], position, position); } else { position = positions[j + 1]; } Cartesian3.clone(position, scratchNextPosition); var color0, color1; if (defined(finalColors)) { if (j !== 0 && !colorsPerVertex) { color0 = colors[j - 1]; } else { color0 = colors[j]; } if (j !== positionsLength - 1) { color1 = colors[j]; } } var startK = j === 0 ? 2 : 0; var endK = j === positionsLength - 1 ? 2 : 4; for (k = startK; k < endK; ++k) { Cartesian3.pack(scratchPosition, finalPositions, positionIndex); Cartesian3.pack(scratchPrevPosition, prevPositions, positionIndex); Cartesian3.pack(scratchNextPosition, nextPositions, positionIndex); positionIndex += 3; var direction = (k - 2 < 0) ? -1.0 : 1.0; expandAndWidth[expandAndWidthIndex++] = 2 * (k % 2) - 1; // expand direction expandAndWidth[expandAndWidthIndex++] = direction * width; if (vertexFormat.st) { st[stIndex++] = j / (positionsLength - 1); st[stIndex++] = Math.max(expandAndWidth[expandAndWidthIndex - 2], 0.0); } if (defined(finalColors)) { var color = (k < 2) ? color0 : color1; finalColors[colorIndex++] = Color.floatToByte(color.red); finalColors[colorIndex++] = Color.floatToByte(color.green); finalColors[colorIndex++] = Color.floatToByte(color.blue); finalColors[colorIndex++] = Color.floatToByte(color.alpha); } } } var attributes = new GeometryAttributes(); attributes.position = new GeometryAttribute({ componentDatatype : ComponentDatatype.DOUBLE, componentsPerAttribute : 3, values : finalPositions }); attributes.prevPosition = new GeometryAttribute({ componentDatatype : ComponentDatatype.DOUBLE, componentsPerAttribute : 3, values : prevPositions }); attributes.nextPosition = new GeometryAttribute({ componentDatatype : ComponentDatatype.DOUBLE, componentsPerAttribute : 3, values : nextPositions }); attributes.expandAndWidth = new GeometryAttribute({ componentDatatype : ComponentDatatype.FLOAT, componentsPerAttribute : 2, values : expandAndWidth }); if (vertexFormat.st) { attributes.st = new GeometryAttribute({ componentDatatype : ComponentDatatype.FLOAT, componentsPerAttribute : 2, values : st }); } if (defined(finalColors)) { attributes.color = new GeometryAttribute({ componentDatatype : ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute : 4, values : finalColors, normalize : true }); } var indices = IndexDatatype.createTypedArray(size, positionsLength * 6 - 6); var index = 0; var indicesIndex = 0; var length = positionsLength - 1.0; for (j = 0; j < length; ++j) { indices[indicesIndex++] = index; indices[indicesIndex++] = index + 2; indices[indicesIndex++] = index + 1; indices[indicesIndex++] = index + 1; indices[indicesIndex++] = index + 2; indices[indicesIndex++] = index + 3; index += 4; } return new Geometry({ attributes : attributes, indices : indices, primitiveType : PrimitiveType.TRIANGLES, boundingSphere : BoundingSphere.fromPoints(positions), geometryType : GeometryType.POLYLINES }); }; export default PolylineGeometry;