import ArcType from './ArcType.js'; import arrayRemoveDuplicates from './arrayRemoveDuplicates.js'; import Cartesian2 from './Cartesian2.js'; import Cartesian3 from './Cartesian3.js'; import Cartographic from './Cartographic.js'; import ComponentDatatype from './ComponentDatatype.js'; import defaultValue from './defaultValue.js'; import defined from './defined.js'; import Ellipsoid from './Ellipsoid.js'; import EllipsoidRhumbLine from './EllipsoidRhumbLine.js'; import Geometry from './Geometry.js'; import GeometryAttribute from './GeometryAttribute.js'; import GeometryAttributes from './GeometryAttributes.js'; import GeometryPipeline from './GeometryPipeline.js'; import IndexDatatype from './IndexDatatype.js'; import CesiumMath from './Math.js'; import Matrix3 from './Matrix3.js'; import PolygonPipeline from './PolygonPipeline.js'; import PrimitiveType from './PrimitiveType.js'; import Quaternion from './Quaternion.js'; import Queue from './Queue.js'; import WindingOrder from './WindingOrder.js'; /** * @private */ var PolygonGeometryLibrary = {}; PolygonGeometryLibrary.computeHierarchyPackedLength = function(polygonHierarchy) { var numComponents = 0; var stack = [polygonHierarchy]; while (stack.length > 0) { var hierarchy = stack.pop(); if (!defined(hierarchy)) { continue; } numComponents += 2; var positions = hierarchy.positions; var holes = hierarchy.holes; if (defined(positions)) { numComponents += positions.length * Cartesian3.packedLength; } if (defined(holes)) { var length = holes.length; for (var i = 0; i < length; ++i) { stack.push(holes[i]); } } } return numComponents; }; PolygonGeometryLibrary.packPolygonHierarchy = function(polygonHierarchy, array, startingIndex) { var stack = [polygonHierarchy]; while (stack.length > 0) { var hierarchy = stack.pop(); if (!defined(hierarchy)) { continue; } var positions = hierarchy.positions; var holes = hierarchy.holes; array[startingIndex++] = defined(positions) ? positions.length : 0; array[startingIndex++] = defined(holes) ? holes.length : 0; if (defined(positions)) { var positionsLength = positions.length; for (var i = 0; i < positionsLength; ++i, startingIndex += 3) { Cartesian3.pack(positions[i], array, startingIndex); } } if (defined(holes)) { var holesLength = holes.length; for (var j = 0; j < holesLength; ++j) { stack.push(holes[j]); } } } return startingIndex; }; PolygonGeometryLibrary.unpackPolygonHierarchy = function(array, startingIndex) { var positionsLength = array[startingIndex++]; var holesLength = array[startingIndex++]; var positions = new Array(positionsLength); var holes = holesLength > 0 ? new Array(holesLength) : undefined; for (var i = 0; i < positionsLength; ++i, startingIndex += Cartesian3.packedLength) { positions[i] = Cartesian3.unpack(array, startingIndex); } for (var j = 0; j < holesLength; ++j) { holes[j] = PolygonGeometryLibrary.unpackPolygonHierarchy(array, startingIndex); startingIndex = holes[j].startingIndex; delete holes[j].startingIndex; } return { positions : positions, holes : holes, startingIndex : startingIndex }; }; var distanceScratch = new Cartesian3(); function getPointAtDistance(p0, p1, distance, length) { Cartesian3.subtract(p1, p0, distanceScratch); Cartesian3.multiplyByScalar(distanceScratch, distance / length, distanceScratch); Cartesian3.add(p0, distanceScratch, distanceScratch); return [distanceScratch.x, distanceScratch.y, distanceScratch.z]; } PolygonGeometryLibrary.subdivideLineCount = function(p0, p1, minDistance) { var distance = Cartesian3.distance(p0, p1); var n = distance / minDistance; var countDivide = Math.max(0, Math.ceil(CesiumMath.log2(n))); return Math.pow(2, countDivide); }; var scratchCartographic0 = new Cartographic(); var scratchCartographic1 = new Cartographic(); var scratchCartographic2 = new Cartographic(); var scratchCartesian0 = new Cartesian3(); PolygonGeometryLibrary.subdivideRhumbLineCount = function(ellipsoid, p0, p1, minDistance) { var c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); var c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); var rhumb = new EllipsoidRhumbLine(c0, c1, ellipsoid); var n = rhumb.surfaceDistance / minDistance; var countDivide = Math.max(0, Math.ceil(CesiumMath.log2(n))); return Math.pow(2, countDivide); }; PolygonGeometryLibrary.subdivideLine = function(p0, p1, minDistance, result) { var numVertices = PolygonGeometryLibrary.subdivideLineCount(p0, p1, minDistance); var length = Cartesian3.distance(p0, p1); var distanceBetweenVertices = length / numVertices; if (!defined(result)) { result = []; } var positions = result; positions.length = numVertices * 3; var index = 0; for ( var i = 0; i < numVertices; i++) { var p = getPointAtDistance(p0, p1, i * distanceBetweenVertices, length); positions[index++] = p[0]; positions[index++] = p[1]; positions[index++] = p[2]; } return positions; }; PolygonGeometryLibrary.subdivideRhumbLine = function(ellipsoid, p0, p1, minDistance, result) { var c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); var c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); var rhumb = new EllipsoidRhumbLine(c0, c1, ellipsoid); var n = rhumb.surfaceDistance / minDistance; var countDivide = Math.max(0, Math.ceil(CesiumMath.log2(n))); var numVertices = Math.pow(2, countDivide); var distanceBetweenVertices = rhumb.surfaceDistance / numVertices; if (!defined(result)) { result = []; } var positions = result; positions.length = numVertices * 3; var index = 0; for ( var i = 0; i < numVertices; i++) { var c = rhumb.interpolateUsingSurfaceDistance(i * distanceBetweenVertices, scratchCartographic2); var p = ellipsoid.cartographicToCartesian(c, scratchCartesian0); positions[index++] = p.x; positions[index++] = p.y; positions[index++] = p.z; } return positions; }; var scaleToGeodeticHeightN1 = new Cartesian3(); var scaleToGeodeticHeightN2 = new Cartesian3(); var scaleToGeodeticHeightP1 = new Cartesian3(); var scaleToGeodeticHeightP2 = new Cartesian3(); PolygonGeometryLibrary.scaleToGeodeticHeightExtruded = function(geometry, maxHeight, minHeight, ellipsoid, perPositionHeight) { ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84); var n1 = scaleToGeodeticHeightN1; var n2 = scaleToGeodeticHeightN2; var p = scaleToGeodeticHeightP1; var p2 = scaleToGeodeticHeightP2; if (defined(geometry) && defined(geometry.attributes) && defined(geometry.attributes.position)) { var positions = geometry.attributes.position.values; var length = positions.length / 2; for ( var i = 0; i < length; i += 3) { Cartesian3.fromArray(positions, i, p); ellipsoid.geodeticSurfaceNormal(p, n1); p2 = ellipsoid.scaleToGeodeticSurface(p, p2); n2 = Cartesian3.multiplyByScalar(n1, minHeight, n2); n2 = Cartesian3.add(p2, n2, n2); positions[i + length] = n2.x; positions[i + 1 + length] = n2.y; positions[i + 2 + length] = n2.z; if (perPositionHeight) { p2 = Cartesian3.clone(p, p2); } n2 = Cartesian3.multiplyByScalar(n1, maxHeight, n2); n2 = Cartesian3.add(p2, n2, n2); positions[i] = n2.x; positions[i + 1] = n2.y; positions[i + 2] = n2.z; } } return geometry; }; PolygonGeometryLibrary.polygonOutlinesFromHierarchy = function(polygonHierarchy, scaleToEllipsoidSurface, ellipsoid) { // create from a polygon hierarchy // Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf var polygons = []; var queue = new Queue(); queue.enqueue(polygonHierarchy); var i; var j; var length; while (queue.length !== 0) { var outerNode = queue.dequeue(); var outerRing = outerNode.positions; if (scaleToEllipsoidSurface) { length = outerRing.length; for (i = 0; i < length; i++) { ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]); } } outerRing = arrayRemoveDuplicates(outerRing, Cartesian3.equalsEpsilon, true); if (outerRing.length < 3) { continue; } var numChildren = outerNode.holes ? outerNode.holes.length : 0; // The outer polygon contains inner polygons for (i = 0; i < numChildren; i++) { var hole = outerNode.holes[i]; var holePositions = hole.positions; if (scaleToEllipsoidSurface) { length = holePositions.length; for (j = 0; j < length; ++j) { ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]); } } holePositions = arrayRemoveDuplicates(holePositions, Cartesian3.equalsEpsilon, true); if (holePositions.length < 3) { continue; } polygons.push(holePositions); var numGrandchildren = 0; if (defined(hole.holes)) { numGrandchildren = hole.holes.length; } for (j = 0; j < numGrandchildren; j++) { queue.enqueue(hole.holes[j]); } } polygons.push(outerRing); } return polygons; }; PolygonGeometryLibrary.polygonsFromHierarchy = function(polygonHierarchy, projectPointsTo2D, scaleToEllipsoidSurface, ellipsoid) { // create from a polygon hierarchy // Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf var hierarchy = []; var polygons = []; var queue = new Queue(); queue.enqueue(polygonHierarchy); while (queue.length !== 0) { var outerNode = queue.dequeue(); var outerRing = outerNode.positions; var holes = outerNode.holes; var i; var length; if (scaleToEllipsoidSurface) { length = outerRing.length; for (i = 0; i < length; i++) { ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]); } } outerRing = arrayRemoveDuplicates(outerRing, Cartesian3.equalsEpsilon, true); if (outerRing.length < 3) { continue; } var positions2D = projectPointsTo2D(outerRing); if (!defined(positions2D)) { continue; } var holeIndices = []; var originalWindingOrder = PolygonPipeline.computeWindingOrder2D(positions2D); if (originalWindingOrder === WindingOrder.CLOCKWISE) { positions2D.reverse(); outerRing = outerRing.slice().reverse(); } var positions = outerRing.slice(); var numChildren = defined(holes) ? holes.length : 0; var polygonHoles = []; var j; for (i = 0; i < numChildren; i++) { var hole = holes[i]; var holePositions = hole.positions; if (scaleToEllipsoidSurface) { length = holePositions.length; for (j = 0; j < length; ++j) { ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]); } } holePositions = arrayRemoveDuplicates(holePositions, Cartesian3.equalsEpsilon, true); if (holePositions.length < 3) { continue; } var holePositions2D = projectPointsTo2D(holePositions); if (!defined(holePositions2D)) { continue; } originalWindingOrder = PolygonPipeline.computeWindingOrder2D(holePositions2D); if (originalWindingOrder === WindingOrder.CLOCKWISE) { holePositions2D.reverse(); holePositions = holePositions.slice().reverse(); } polygonHoles.push(holePositions); holeIndices.push(positions.length); positions = positions.concat(holePositions); positions2D = positions2D.concat(holePositions2D); var numGrandchildren = 0; if (defined(hole.holes)) { numGrandchildren = hole.holes.length; } for (j = 0; j < numGrandchildren; j++) { queue.enqueue(hole.holes[j]); } } hierarchy.push({ outerRing : outerRing, holes : polygonHoles }); polygons.push({ positions : positions, positions2D : positions2D, holes : holeIndices }); } return { hierarchy : hierarchy, polygons : polygons }; }; var computeBoundingRectangleCartesian2 = new Cartesian2(); var computeBoundingRectangleCartesian3 = new Cartesian3(); var computeBoundingRectangleQuaternion = new Quaternion(); var computeBoundingRectangleMatrix3 = new Matrix3(); PolygonGeometryLibrary.computeBoundingRectangle = function (planeNormal, projectPointTo2D, positions, angle, result) { var rotation = Quaternion.fromAxisAngle(planeNormal, angle, computeBoundingRectangleQuaternion); var textureMatrix = Matrix3.fromQuaternion(rotation, computeBoundingRectangleMatrix3); var minX = Number.POSITIVE_INFINITY; var maxX = Number.NEGATIVE_INFINITY; var minY = Number.POSITIVE_INFINITY; var maxY = Number.NEGATIVE_INFINITY; var length = positions.length; for ( var i = 0; i < length; ++i) { var p = Cartesian3.clone(positions[i], computeBoundingRectangleCartesian3); Matrix3.multiplyByVector(textureMatrix, p, p); var st = projectPointTo2D(p, computeBoundingRectangleCartesian2); if (defined(st)) { minX = Math.min(minX, st.x); maxX = Math.max(maxX, st.x); minY = Math.min(minY, st.y); maxY = Math.max(maxY, st.y); } } result.x = minX; result.y = minY; result.width = maxX - minX; result.height = maxY - minY; return result; }; PolygonGeometryLibrary.createGeometryFromPositions = function(ellipsoid, polygon, granularity, perPositionHeight, vertexFormat, arcType) { var indices = PolygonPipeline.triangulate(polygon.positions2D, polygon.holes); /* If polygon is completely unrenderable, just use the first three vertices */ if (indices.length < 3) { indices = [0, 1, 2]; } var positions = polygon.positions; if (perPositionHeight) { var length = positions.length; var flattenedPositions = new Array(length * 3); var index = 0; for ( var i = 0; i < length; i++) { var p = positions[i]; flattenedPositions[index++] = p.x; flattenedPositions[index++] = p.y; flattenedPositions[index++] = p.z; } var geometry = new Geometry({ attributes : { position : new GeometryAttribute({ componentDatatype : ComponentDatatype.DOUBLE, componentsPerAttribute : 3, values : flattenedPositions }) }, indices : indices, primitiveType : PrimitiveType.TRIANGLES }); if (vertexFormat.normal) { return GeometryPipeline.computeNormal(geometry); } return geometry; } if (arcType === ArcType.GEODESIC) { return PolygonPipeline.computeSubdivision(ellipsoid, positions, indices, granularity); } else if (arcType === ArcType.RHUMB) { return PolygonPipeline.computeRhumbLineSubdivision(ellipsoid, positions, indices, granularity); } }; var computeWallIndicesSubdivided = []; var p1Scratch = new Cartesian3(); var p2Scratch = new Cartesian3(); PolygonGeometryLibrary.computeWallGeometry = function(positions, ellipsoid, granularity, perPositionHeight, arcType) { var edgePositions; var topEdgeLength; var i; var p1; var p2; var length = positions.length; var index = 0; if (!perPositionHeight) { var minDistance = CesiumMath.chordLength(granularity, ellipsoid.maximumRadius); var numVertices = 0; if (arcType === ArcType.GEODESIC) { for (i = 0; i < length; i++) { numVertices += PolygonGeometryLibrary.subdivideLineCount(positions[i], positions[(i + 1) % length], minDistance); } } else if (arcType === ArcType.RHUMB) { for (i = 0; i < length; i++) { numVertices += PolygonGeometryLibrary.subdivideRhumbLineCount(ellipsoid, positions[i], positions[(i + 1) % length], minDistance); } } topEdgeLength = (numVertices + length) * 3; edgePositions = new Array(topEdgeLength * 2); for (i = 0; i < length; i++) { p1 = positions[i]; p2 = positions[(i + 1) % length]; var tempPositions; if (arcType === ArcType.GEODESIC) { tempPositions = PolygonGeometryLibrary.subdivideLine(p1, p2, minDistance, computeWallIndicesSubdivided); } else if (arcType === ArcType.RHUMB) { tempPositions = PolygonGeometryLibrary.subdivideRhumbLine(ellipsoid, p1, p2, minDistance, computeWallIndicesSubdivided); } var tempPositionsLength = tempPositions.length; for (var j = 0; j < tempPositionsLength; ++j, ++index) { edgePositions[index] = tempPositions[j]; edgePositions[index + topEdgeLength] = tempPositions[j]; } edgePositions[index] = p2.x; edgePositions[index + topEdgeLength] = p2.x; ++index; edgePositions[index] = p2.y; edgePositions[index + topEdgeLength] = p2.y; ++index; edgePositions[index] = p2.z; edgePositions[index + topEdgeLength] = p2.z; ++index; } } else { topEdgeLength = length * 3 * 2; edgePositions = new Array(topEdgeLength * 2); for (i = 0; i < length; i++) { p1 = positions[i]; p2 = positions[(i + 1) % length]; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.x; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.y; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.z; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.x; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.y; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.z; ++index; } } length = edgePositions.length; var indices = IndexDatatype.createTypedArray(length / 3, length - positions.length * 6); var edgeIndex = 0; length /= 6; for (i = 0; i < length; i++) { var UL = i; var UR = UL + 1; var LL = UL + length; var LR = LL + 1; p1 = Cartesian3.fromArray(edgePositions, UL * 3, p1Scratch); p2 = Cartesian3.fromArray(edgePositions, UR * 3, p2Scratch); if (Cartesian3.equalsEpsilon(p1, p2, CesiumMath.EPSILON10, CesiumMath.EPSILON10)) { //skip corner continue; } indices[edgeIndex++] = UL; indices[edgeIndex++] = LL; indices[edgeIndex++] = UR; indices[edgeIndex++] = UR; indices[edgeIndex++] = LL; indices[edgeIndex++] = LR; } return new Geometry({ attributes : new GeometryAttributes({ position : new GeometryAttribute({ componentDatatype : ComponentDatatype.DOUBLE, componentsPerAttribute : 3, values : edgePositions }) }), indices : indices, primitiveType : PrimitiveType.TRIANGLES }); }; export default PolygonGeometryLibrary;