import Cartesian3 from './Cartesian3.js'; import Check from './Check.js'; import defined from './defined.js'; import DeveloperError from './DeveloperError.js'; import freezeObject from './freezeObject.js'; import CesiumMath from './Math.js'; import Matrix4 from './Matrix4.js'; /** * A plane in Hessian Normal Form defined by *
* ax + by + cz + d = 0 ** where (a, b, c) is the plane's
normal
, d is the signed
* distance
to the plane, and (x, y, z) is any point on
* the plane.
*
* @alias Plane
* @constructor
*
* @param {Cartesian3} normal The plane's normal (normalized).
* @param {Number} distance The shortest distance from the origin to the plane. The sign of
* distance
determines which side of the plane the origin
* is on. If distance
is positive, the origin is in the half-space
* in the direction of the normal; if negative, the origin is in the half-space
* opposite to the normal; if zero, the plane passes through the origin.
*
* @example
* // The plane x=0
* var plane = new Cesium.Plane(Cesium.Cartesian3.UNIT_X, 0.0);
*
* @exception {DeveloperError} Normal must be normalized
*/
function Plane(normal, distance) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('normal', normal);
if (!CesiumMath.equalsEpsilon(Cartesian3.magnitude(normal), 1.0, CesiumMath.EPSILON6)) {
throw new DeveloperError('normal must be normalized.');
}
Check.typeOf.number('distance', distance);
//>>includeEnd('debug');
/**
* The plane's normal.
*
* @type {Cartesian3}
*/
this.normal = Cartesian3.clone(normal);
/**
* The shortest distance from the origin to the plane. The sign of
* distance
determines which side of the plane the origin
* is on. If distance
is positive, the origin is in the half-space
* in the direction of the normal; if negative, the origin is in the half-space
* opposite to the normal; if zero, the plane passes through the origin.
*
* @type {Number}
*/
this.distance = distance;
}
/**
* Creates a plane from a normal and a point on the plane.
*
* @param {Cartesian3} point The point on the plane.
* @param {Cartesian3} normal The plane's normal (normalized).
* @param {Plane} [result] The object onto which to store the result.
* @returns {Plane} A new plane instance or the modified result parameter.
*
* @example
* var point = Cesium.Cartesian3.fromDegrees(-72.0, 40.0);
* var normal = ellipsoid.geodeticSurfaceNormal(point);
* var tangentPlane = Cesium.Plane.fromPointNormal(point, normal);
*
* @exception {DeveloperError} Normal must be normalized
*/
Plane.fromPointNormal = function(point, normal, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('point', point);
Check.typeOf.object('normal', normal);
if (!CesiumMath.equalsEpsilon(Cartesian3.magnitude(normal), 1.0, CesiumMath.EPSILON6)) {
throw new DeveloperError('normal must be normalized.');
}
//>>includeEnd('debug');
var distance = -Cartesian3.dot(normal, point);
if (!defined(result)) {
return new Plane(normal, distance);
}
Cartesian3.clone(normal, result.normal);
result.distance = distance;
return result;
};
var scratchNormal = new Cartesian3();
/**
* Creates a plane from the general equation
*
* @param {Cartesian4} coefficients The plane's normal (normalized).
* @param {Plane} [result] The object onto which to store the result.
* @returns {Plane} A new plane instance or the modified result parameter.
*
* @exception {DeveloperError} Normal must be normalized
*/
Plane.fromCartesian4 = function(coefficients, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('coefficients', coefficients);
//>>includeEnd('debug');
var normal = Cartesian3.fromCartesian4(coefficients, scratchNormal);
var distance = coefficients.w;
//>>includeStart('debug', pragmas.debug);
if (!CesiumMath.equalsEpsilon(Cartesian3.magnitude(normal), 1.0, CesiumMath.EPSILON6)) {
throw new DeveloperError('normal must be normalized.');
}
//>>includeEnd('debug');
if (!defined(result)) {
return new Plane(normal, distance);
}
Cartesian3.clone(normal, result.normal);
result.distance = distance;
return result;
};
/**
* Computes the signed shortest distance of a point to a plane.
* The sign of the distance determines which side of the plane the point
* is on. If the distance is positive, the point is in the half-space
* in the direction of the normal; if negative, the point is in the half-space
* opposite to the normal; if zero, the plane passes through the point.
*
* @param {Plane} plane The plane.
* @param {Cartesian3} point The point.
* @returns {Number} The signed shortest distance of the point to the plane.
*/
Plane.getPointDistance = function(plane, point) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('plane', plane);
Check.typeOf.object('point', point);
//>>includeEnd('debug');
return Cartesian3.dot(plane.normal, point) + plane.distance;
};
var scratchCartesian = new Cartesian3();
/**
* Projects a point onto the plane.
* @param {Plane} plane The plane to project the point onto
* @param {Cartesian3} point The point to project onto the plane
* @param {Cartesian3} [result] The result point. If undefined, a new Cartesian3 will be created.
* @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
*/
Plane.projectPointOntoPlane = function(plane, point, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('plane', plane);
Check.typeOf.object('point', point);
//>>includeEnd('debug');
if (!defined(result)) {
result = new Cartesian3();
}
// projectedPoint = point - (normal.point + scale) * normal
var pointDistance = Plane.getPointDistance(plane, point);
var scaledNormal = Cartesian3.multiplyByScalar(plane.normal, pointDistance, scratchCartesian);
return Cartesian3.subtract(point, scaledNormal, result);
};
var scratchPosition = new Cartesian3();
/**
* Transforms the plane by the given transformation matrix.
*
* @param {Plane} plane The plane.
* @param {Matrix4} transform The transformation matrix.
* @param {Plane} [result] The object into which to store the result.
* @returns {Plane} The plane transformed by the given transformation matrix.
*/
Plane.transform = function(plane, transform, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('plane', plane);
Check.typeOf.object('transform', transform);
//>>includeEnd('debug');
Matrix4.multiplyByPointAsVector(transform, plane.normal, scratchNormal);
Cartesian3.normalize(scratchNormal, scratchNormal);
Cartesian3.multiplyByScalar(plane.normal, -plane.distance, scratchPosition);
Matrix4.multiplyByPoint(transform, scratchPosition, scratchPosition);
return Plane.fromPointNormal(scratchPosition, scratchNormal, result);
};
/**
* Duplicates a Plane instance.
*
* @param {Plane} plane The plane to duplicate.
* @param {Plane} [result] The object onto which to store the result.
* @returns {Plane} The modified result parameter or a new Plane instance if one was not provided.
*/
Plane.clone = function(plane, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('plane', plane);
//>>includeEnd('debug');
if (!defined(result)) {
return new Plane(plane.normal, plane.distance);
}
Cartesian3.clone(plane.normal, result.normal);
result.distance = plane.distance;
return result;
};
/**
* Compares the provided Planes by normal and distance and returns
* true
if they are equal, false
otherwise.
*
* @param {Plane} left The first plane.
* @param {Plane} right The second plane.
* @returns {Boolean} true
if left and right are equal, false
otherwise.
*/
Plane.equals = function(left, right) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('left', left);
Check.typeOf.object('right', right);
//>>includeEnd('debug');
return (left.distance === right.distance) && Cartesian3.equals(left.normal, right.normal);
};
/**
* A constant initialized to the XY plane passing through the origin, with normal in positive Z.
*
* @type {Plane}
* @constant
*/
Plane.ORIGIN_XY_PLANE = freezeObject(new Plane(Cartesian3.UNIT_Z, 0.0));
/**
* A constant initialized to the YZ plane passing through the origin, with normal in positive X.
*
* @type {Plane}
* @constant
*/
Plane.ORIGIN_YZ_PLANE = freezeObject(new Plane(Cartesian3.UNIT_X, 0.0));
/**
* A constant initialized to the ZX plane passing through the origin, with normal in positive Y.
*
* @type {Plane}
* @constant
*/
Plane.ORIGIN_ZX_PLANE = freezeObject(new Plane(Cartesian3.UNIT_Y, 0.0));
export default Plane;