import BoundingSphere from './BoundingSphere.js'; import Cartesian2 from './Cartesian2.js'; import Cartesian3 from './Cartesian3.js'; import Cartographic from './Cartographic.js'; import Check from './Check.js'; import defaultValue from './defaultValue.js'; import defined from './defined.js'; import DeveloperError from './DeveloperError.js'; import Ellipsoid from './Ellipsoid.js'; import EllipsoidTangentPlane from './EllipsoidTangentPlane.js'; import Intersect from './Intersect.js'; import Interval from './Interval.js'; import CesiumMath from './Math.js'; import Matrix3 from './Matrix3.js'; import Plane from './Plane.js'; import Rectangle from './Rectangle.js'; /** * Creates an instance of an OrientedBoundingBox. * An OrientedBoundingBox of some object is a closed and convex cuboid. It can provide a tighter bounding volume than {@link BoundingSphere} or {@link AxisAlignedBoundingBox} in many cases. * @alias OrientedBoundingBox * @constructor * * @param {Cartesian3} [center=Cartesian3.ZERO] The center of the box. * @param {Matrix3} [halfAxes=Matrix3.ZERO] The three orthogonal half-axes of the bounding box. * Equivalently, the transformation matrix, to rotate and scale a 0x0x0 * cube centered at the origin. * * * @example * // Create an OrientedBoundingBox using a transformation matrix, a position where the box will be translated, and a scale. * var center = new Cesium.Cartesian3(1.0, 0.0, 0.0); * var halfAxes = Cesium.Matrix3.fromScale(new Cesium.Cartesian3(1.0, 3.0, 2.0), new Cesium.Matrix3()); * * var obb = new Cesium.OrientedBoundingBox(center, halfAxes); * * @see BoundingSphere * @see BoundingRectangle */ function OrientedBoundingBox(center, halfAxes) { /** * The center of the box. * @type {Cartesian3} * @default {@link Cartesian3.ZERO} */ this.center = Cartesian3.clone(defaultValue(center, Cartesian3.ZERO)); /** * The transformation matrix, to rotate the box to the right position. * @type {Matrix3} * @default {@link Matrix3.ZERO} */ this.halfAxes = Matrix3.clone(defaultValue(halfAxes, Matrix3.ZERO)); } /** * The number of elements used to pack the object into an array. * @type {Number} */ OrientedBoundingBox.packedLength = Cartesian3.packedLength + Matrix3.packedLength; /** * Stores the provided instance into the provided array. * * @param {OrientedBoundingBox} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ OrientedBoundingBox.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object('value', value); Check.defined('array', array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); Cartesian3.pack(value.center, array, startingIndex); Matrix3.pack(value.halfAxes, array, startingIndex + Cartesian3.packedLength); return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {OrientedBoundingBox} [result] The object into which to store the result. * @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided. */ OrientedBoundingBox.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.defined('array', array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); if (!defined(result)) { result = new OrientedBoundingBox(); } Cartesian3.unpack(array, startingIndex, result.center); Matrix3.unpack(array, startingIndex + Cartesian3.packedLength, result.halfAxes); return result; }; var scratchCartesian1 = new Cartesian3(); var scratchCartesian2 = new Cartesian3(); var scratchCartesian3 = new Cartesian3(); var scratchCartesian4 = new Cartesian3(); var scratchCartesian5 = new Cartesian3(); var scratchCartesian6 = new Cartesian3(); var scratchCovarianceResult = new Matrix3(); var scratchEigenResult = { unitary : new Matrix3(), diagonal : new Matrix3() }; /** * Computes an instance of an OrientedBoundingBox of the given positions. * This is an implementation of Stefan Gottschalk's Collision Queries using Oriented Bounding Boxes solution (PHD thesis). * Reference: http://gamma.cs.unc.edu/users/gottschalk/main.pdf * * @param {Cartesian3[]} [positions] List of {@link Cartesian3} points that the bounding box will enclose. * @param {OrientedBoundingBox} [result] The object onto which to store the result. * @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided. * * @example * // Compute an object oriented bounding box enclosing two points. * var box = Cesium.OrientedBoundingBox.fromPoints([new Cesium.Cartesian3(2, 0, 0), new Cesium.Cartesian3(-2, 0, 0)]); */ OrientedBoundingBox.fromPoints = function(positions, result) { if (!defined(result)) { result = new OrientedBoundingBox(); } if (!defined(positions) || positions.length === 0) { result.halfAxes = Matrix3.ZERO; result.center = Cartesian3.ZERO; return result; } var i; var length = positions.length; var meanPoint = Cartesian3.clone(positions[0], scratchCartesian1); for (i = 1; i < length; i++) { Cartesian3.add(meanPoint, positions[i], meanPoint); } var invLength = 1.0 / length; Cartesian3.multiplyByScalar(meanPoint, invLength, meanPoint); var exx = 0.0; var exy = 0.0; var exz = 0.0; var eyy = 0.0; var eyz = 0.0; var ezz = 0.0; var p; for (i = 0; i < length; i++) { p = Cartesian3.subtract(positions[i], meanPoint, scratchCartesian2); exx += p.x * p.x; exy += p.x * p.y; exz += p.x * p.z; eyy += p.y * p.y; eyz += p.y * p.z; ezz += p.z * p.z; } exx *= invLength; exy *= invLength; exz *= invLength; eyy *= invLength; eyz *= invLength; ezz *= invLength; var covarianceMatrix = scratchCovarianceResult; covarianceMatrix[0] = exx; covarianceMatrix[1] = exy; covarianceMatrix[2] = exz; covarianceMatrix[3] = exy; covarianceMatrix[4] = eyy; covarianceMatrix[5] = eyz; covarianceMatrix[6] = exz; covarianceMatrix[7] = eyz; covarianceMatrix[8] = ezz; var eigenDecomposition = Matrix3.computeEigenDecomposition(covarianceMatrix, scratchEigenResult); var rotation = Matrix3.clone(eigenDecomposition.unitary, result.halfAxes); var v1 = Matrix3.getColumn(rotation, 0, scratchCartesian4); var v2 = Matrix3.getColumn(rotation, 1, scratchCartesian5); var v3 = Matrix3.getColumn(rotation, 2, scratchCartesian6); var u1 = -Number.MAX_VALUE; var u2 = -Number.MAX_VALUE; var u3 = -Number.MAX_VALUE; var l1 = Number.MAX_VALUE; var l2 = Number.MAX_VALUE; var l3 = Number.MAX_VALUE; for (i = 0; i < length; i++) { p = positions[i]; u1 = Math.max(Cartesian3.dot(v1, p), u1); u2 = Math.max(Cartesian3.dot(v2, p), u2); u3 = Math.max(Cartesian3.dot(v3, p), u3); l1 = Math.min(Cartesian3.dot(v1, p), l1); l2 = Math.min(Cartesian3.dot(v2, p), l2); l3 = Math.min(Cartesian3.dot(v3, p), l3); } v1 = Cartesian3.multiplyByScalar(v1, 0.5 * (l1 + u1), v1); v2 = Cartesian3.multiplyByScalar(v2, 0.5 * (l2 + u2), v2); v3 = Cartesian3.multiplyByScalar(v3, 0.5 * (l3 + u3), v3); var center = Cartesian3.add(v1, v2, result.center); Cartesian3.add(center, v3, center); var scale = scratchCartesian3; scale.x = u1 - l1; scale.y = u2 - l2; scale.z = u3 - l3; Cartesian3.multiplyByScalar(scale, 0.5, scale); Matrix3.multiplyByScale(result.halfAxes, scale, result.halfAxes); return result; }; var scratchOffset = new Cartesian3(); var scratchScale = new Cartesian3(); function fromTangentPlaneExtents(tangentPlane, minimumX, maximumX, minimumY, maximumY, minimumZ, maximumZ, result) { //>>includeStart('debug', pragmas.debug); if (!defined(minimumX) || !defined(maximumX) || !defined(minimumY) || !defined(maximumY) || !defined(minimumZ) || !defined(maximumZ)) { throw new DeveloperError('all extents (minimum/maximum X/Y/Z) are required.'); } //>>includeEnd('debug'); if (!defined(result)) { result = new OrientedBoundingBox(); } var halfAxes = result.halfAxes; Matrix3.setColumn(halfAxes, 0, tangentPlane.xAxis, halfAxes); Matrix3.setColumn(halfAxes, 1, tangentPlane.yAxis, halfAxes); Matrix3.setColumn(halfAxes, 2, tangentPlane.zAxis, halfAxes); var centerOffset = scratchOffset; centerOffset.x = (minimumX + maximumX) / 2.0; centerOffset.y = (minimumY + maximumY) / 2.0; centerOffset.z = (minimumZ + maximumZ) / 2.0; var scale = scratchScale; scale.x = (maximumX - minimumX) / 2.0; scale.y = (maximumY - minimumY) / 2.0; scale.z = (maximumZ - minimumZ) / 2.0; var center = result.center; centerOffset = Matrix3.multiplyByVector(halfAxes, centerOffset, centerOffset); Cartesian3.add(tangentPlane.origin, centerOffset, center); Matrix3.multiplyByScale(halfAxes, scale, halfAxes); return result; } var scratchRectangleCenterCartographic = new Cartographic(); var scratchRectangleCenter = new Cartesian3(); var perimeterCartographicScratch = [new Cartographic(), new Cartographic(), new Cartographic(), new Cartographic(), new Cartographic(), new Cartographic(), new Cartographic(), new Cartographic()]; var perimeterCartesianScratch = [new Cartesian3(), new Cartesian3(), new Cartesian3(), new Cartesian3(), new Cartesian3(), new Cartesian3(), new Cartesian3(), new Cartesian3()]; var perimeterProjectedScratch = [new Cartesian2(), new Cartesian2(), new Cartesian2(), new Cartesian2(), new Cartesian2(), new Cartesian2(), new Cartesian2(), new Cartesian2()]; /** * Computes an OrientedBoundingBox that bounds a {@link Rectangle} on the surface of an {@link Ellipsoid}. * There are no guarantees about the orientation of the bounding box. * * @param {Rectangle} rectangle The cartographic rectangle on the surface of the ellipsoid. * @param {Number} [minimumHeight=0.0] The minimum height (elevation) within the tile. * @param {Number} [maximumHeight=0.0] The maximum height (elevation) within the tile. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rectangle is defined. * @param {OrientedBoundingBox} [result] The object onto which to store the result. * @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if none was provided. * * @exception {DeveloperError} rectangle.width must be between 0 and pi. * @exception {DeveloperError} rectangle.height must be between 0 and pi. * @exception {DeveloperError} ellipsoid must be an ellipsoid of revolution (radii.x == radii.y) */ OrientedBoundingBox.fromRectangle = function(rectangle, minimumHeight, maximumHeight, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); if (!defined(rectangle)) { throw new DeveloperError('rectangle is required'); } if (rectangle.width < 0.0 || rectangle.width > CesiumMath.TWO_PI) { throw new DeveloperError('Rectangle width must be between 0 and 2*pi'); } if (rectangle.height < 0.0 || rectangle.height > CesiumMath.PI) { throw new DeveloperError('Rectangle height must be between 0 and pi'); } if (defined(ellipsoid) && !CesiumMath.equalsEpsilon(ellipsoid.radii.x, ellipsoid.radii.y, CesiumMath.EPSILON15)) { throw new DeveloperError('Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y)'); } //>>includeEnd('debug'); minimumHeight = defaultValue(minimumHeight, 0.0); maximumHeight = defaultValue(maximumHeight, 0.0); ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84); // The bounding box will be aligned with the tangent plane at the center of the rectangle. var tangentPointCartographic = Rectangle.center(rectangle, scratchRectangleCenterCartographic); var tangentPoint = ellipsoid.cartographicToCartesian(tangentPointCartographic, scratchRectangleCenter); var tangentPlane = new EllipsoidTangentPlane(tangentPoint, ellipsoid); var plane = tangentPlane.plane; // Corner arrangement: // N/+y // [0] [1] [2] // W/-x [7] [3] E/+x // [6] [5] [4] // S/-y // "C" refers to the central lat/long, which by default aligns with the tangent point (above). // If the rectangle spans the equator, CW and CE are instead aligned with the equator. var perimeterNW = perimeterCartographicScratch[0]; var perimeterNC = perimeterCartographicScratch[1]; var perimeterNE = perimeterCartographicScratch[2]; var perimeterCE = perimeterCartographicScratch[3]; var perimeterSE = perimeterCartographicScratch[4]; var perimeterSC = perimeterCartographicScratch[5]; var perimeterSW = perimeterCartographicScratch[6]; var perimeterCW = perimeterCartographicScratch[7]; var lonCenter = tangentPointCartographic.longitude; var latCenter = (rectangle.south < 0.0 && rectangle.north > 0.0) ? 0.0 : tangentPointCartographic.latitude; perimeterSW.latitude = perimeterSC.latitude = perimeterSE.latitude = rectangle.south; perimeterCW.latitude = perimeterCE.latitude = latCenter; perimeterNW.latitude = perimeterNC.latitude = perimeterNE.latitude = rectangle.north; perimeterSW.longitude = perimeterCW.longitude = perimeterNW.longitude = rectangle.west; perimeterSC.longitude = perimeterNC.longitude = lonCenter; perimeterSE.longitude = perimeterCE.longitude = perimeterNE.longitude = rectangle.east; // Compute XY extents using the rectangle at maximum height perimeterNE.height = perimeterNC.height = perimeterNW.height = perimeterCW.height = perimeterSW.height = perimeterSC.height = perimeterSE.height = perimeterCE.height = maximumHeight; ellipsoid.cartographicArrayToCartesianArray(perimeterCartographicScratch, perimeterCartesianScratch); tangentPlane.projectPointsToNearestOnPlane(perimeterCartesianScratch, perimeterProjectedScratch); // See the `perimeterXX` definitions above for what these are var minX = Math.min(perimeterProjectedScratch[6].x, perimeterProjectedScratch[7].x, perimeterProjectedScratch[0].x); var maxX = Math.max(perimeterProjectedScratch[2].x, perimeterProjectedScratch[3].x, perimeterProjectedScratch[4].x); var minY = Math.min(perimeterProjectedScratch[4].y, perimeterProjectedScratch[5].y, perimeterProjectedScratch[6].y); var maxY = Math.max(perimeterProjectedScratch[0].y, perimeterProjectedScratch[1].y, perimeterProjectedScratch[2].y); // Compute minimum Z using the rectangle at minimum height perimeterNE.height = perimeterNW.height = perimeterSE.height = perimeterSW.height = minimumHeight; ellipsoid.cartographicArrayToCartesianArray(perimeterCartographicScratch, perimeterCartesianScratch); var minZ = Math.min(Plane.getPointDistance(plane, perimeterCartesianScratch[0]), Plane.getPointDistance(plane, perimeterCartesianScratch[2]), Plane.getPointDistance(plane, perimeterCartesianScratch[4]), Plane.getPointDistance(plane, perimeterCartesianScratch[6])); var maxZ = maximumHeight; // Since the tangent plane touches the surface at height = 0, this is okay return fromTangentPlaneExtents(tangentPlane, minX, maxX, minY, maxY, minZ, maxZ, result); }; /** * Duplicates a OrientedBoundingBox instance. * * @param {OrientedBoundingBox} box The bounding box to duplicate. * @param {OrientedBoundingBox} [result] The object onto which to store the result. * @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if none was provided. (Returns undefined if box is undefined) */ OrientedBoundingBox.clone = function(box, result) { if (!defined(box)) { return undefined; } if (!defined(result)) { return new OrientedBoundingBox(box.center, box.halfAxes); } Cartesian3.clone(box.center, result.center); Matrix3.clone(box.halfAxes, result.halfAxes); return result; }; /** * Determines which side of a plane the oriented bounding box is located. * * @param {OrientedBoundingBox} box The oriented bounding box to test. * @param {Plane} plane The plane to test against. * @returns {Intersect} {@link Intersect.INSIDE} if the entire box is on the side of the plane * the normal is pointing, {@link Intersect.OUTSIDE} if the entire box is * on the opposite side, and {@link Intersect.INTERSECTING} if the box * intersects the plane. */ OrientedBoundingBox.intersectPlane = function(box, plane) { //>>includeStart('debug', pragmas.debug); if (!defined(box)) { throw new DeveloperError('box is required.'); } if (!defined(plane)) { throw new DeveloperError('plane is required.'); } //>>includeEnd('debug'); var center = box.center; var normal = plane.normal; var halfAxes = box.halfAxes; var normalX = normal.x, normalY = normal.y, normalZ = normal.z; // plane is used as if it is its normal; the first three components are assumed to be normalized var radEffective = Math.abs(normalX * halfAxes[Matrix3.COLUMN0ROW0] + normalY * halfAxes[Matrix3.COLUMN0ROW1] + normalZ * halfAxes[Matrix3.COLUMN0ROW2]) + Math.abs(normalX * halfAxes[Matrix3.COLUMN1ROW0] + normalY * halfAxes[Matrix3.COLUMN1ROW1] + normalZ * halfAxes[Matrix3.COLUMN1ROW2]) + Math.abs(normalX * halfAxes[Matrix3.COLUMN2ROW0] + normalY * halfAxes[Matrix3.COLUMN2ROW1] + normalZ * halfAxes[Matrix3.COLUMN2ROW2]); var distanceToPlane = Cartesian3.dot(normal, center) + plane.distance; if (distanceToPlane <= -radEffective) { // The entire box is on the negative side of the plane normal return Intersect.OUTSIDE; } else if (distanceToPlane >= radEffective) { // The entire box is on the positive side of the plane normal return Intersect.INSIDE; } return Intersect.INTERSECTING; }; var scratchCartesianU = new Cartesian3(); var scratchCartesianV = new Cartesian3(); var scratchCartesianW = new Cartesian3(); var scratchPPrime = new Cartesian3(); /** * Computes the estimated distance squared from the closest point on a bounding box to a point. * * @param {OrientedBoundingBox} box The box. * @param {Cartesian3} cartesian The point * @returns {Number} The estimated distance squared from the bounding sphere to the point. * * @example * // Sort bounding boxes from back to front * boxes.sort(function(a, b) { * return Cesium.OrientedBoundingBox.distanceSquaredTo(b, camera.positionWC) - Cesium.OrientedBoundingBox.distanceSquaredTo(a, camera.positionWC); * }); */ OrientedBoundingBox.distanceSquaredTo = function(box, cartesian) { // See Geometric Tools for Computer Graphics 10.4.2 //>>includeStart('debug', pragmas.debug); if (!defined(box)) { throw new DeveloperError('box is required.'); } if (!defined(cartesian)) { throw new DeveloperError('cartesian is required.'); } //>>includeEnd('debug'); var offset = Cartesian3.subtract(cartesian, box.center, scratchOffset); var halfAxes = box.halfAxes; var u = Matrix3.getColumn(halfAxes, 0, scratchCartesianU); var v = Matrix3.getColumn(halfAxes, 1, scratchCartesianV); var w = Matrix3.getColumn(halfAxes, 2, scratchCartesianW); var uHalf = Cartesian3.magnitude(u); var vHalf = Cartesian3.magnitude(v); var wHalf = Cartesian3.magnitude(w); Cartesian3.normalize(u, u); Cartesian3.normalize(v, v); Cartesian3.normalize(w, w); var pPrime = scratchPPrime; pPrime.x = Cartesian3.dot(offset, u); pPrime.y = Cartesian3.dot(offset, v); pPrime.z = Cartesian3.dot(offset, w); var distanceSquared = 0.0; var d; if (pPrime.x < -uHalf) { d = pPrime.x + uHalf; distanceSquared += d * d; } else if (pPrime.x > uHalf) { d = pPrime.x - uHalf; distanceSquared += d * d; } if (pPrime.y < -vHalf) { d = pPrime.y + vHalf; distanceSquared += d * d; } else if (pPrime.y > vHalf) { d = pPrime.y - vHalf; distanceSquared += d * d; } if (pPrime.z < -wHalf) { d = pPrime.z + wHalf; distanceSquared += d * d; } else if (pPrime.z > wHalf) { d = pPrime.z - wHalf; distanceSquared += d * d; } return distanceSquared; }; var scratchCorner = new Cartesian3(); var scratchToCenter = new Cartesian3(); /** * The distances calculated by the vector from the center of the bounding box to position projected onto direction. *
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the * closest and farthest planes from position that intersect the bounding box. * * @param {OrientedBoundingBox} box The bounding box to calculate the distance to. * @param {Cartesian3} position The position to calculate the distance from. * @param {Cartesian3} direction The direction from position. * @param {Interval} [result] A Interval to store the nearest and farthest distances. * @returns {Interval} The nearest and farthest distances on the bounding box from position in direction. */ OrientedBoundingBox.computePlaneDistances = function(box, position, direction, result) { //>>includeStart('debug', pragmas.debug); if (!defined(box)) { throw new DeveloperError('box is required.'); } if (!defined(position)) { throw new DeveloperError('position is required.'); } if (!defined(direction)) { throw new DeveloperError('direction is required.'); } //>>includeEnd('debug'); if (!defined(result)) { result = new Interval(); } var minDist = Number.POSITIVE_INFINITY; var maxDist = Number.NEGATIVE_INFINITY; var center = box.center; var halfAxes = box.halfAxes; var u = Matrix3.getColumn(halfAxes, 0, scratchCartesianU); var v = Matrix3.getColumn(halfAxes, 1, scratchCartesianV); var w = Matrix3.getColumn(halfAxes, 2, scratchCartesianW); // project first corner var corner = Cartesian3.add(u, v, scratchCorner); Cartesian3.add(corner, w, corner); Cartesian3.add(corner, center, corner); var toCenter = Cartesian3.subtract(corner, position, scratchToCenter); var mag = Cartesian3.dot(direction, toCenter); minDist = Math.min(mag, minDist); maxDist = Math.max(mag, maxDist); // project second corner Cartesian3.add(center, u, corner); Cartesian3.add(corner, v, corner); Cartesian3.subtract(corner, w, corner); Cartesian3.subtract(corner, position, toCenter); mag = Cartesian3.dot(direction, toCenter); minDist = Math.min(mag, minDist); maxDist = Math.max(mag, maxDist); // project third corner Cartesian3.add(center, u, corner); Cartesian3.subtract(corner, v, corner); Cartesian3.add(corner, w, corner); Cartesian3.subtract(corner, position, toCenter); mag = Cartesian3.dot(direction, toCenter); minDist = Math.min(mag, minDist); maxDist = Math.max(mag, maxDist); // project fourth corner Cartesian3.add(center, u, corner); Cartesian3.subtract(corner, v, corner); Cartesian3.subtract(corner, w, corner); Cartesian3.subtract(corner, position, toCenter); mag = Cartesian3.dot(direction, toCenter); minDist = Math.min(mag, minDist); maxDist = Math.max(mag, maxDist); // project fifth corner Cartesian3.subtract(center, u, corner); Cartesian3.add(corner, v, corner); Cartesian3.add(corner, w, corner); Cartesian3.subtract(corner, position, toCenter); mag = Cartesian3.dot(direction, toCenter); minDist = Math.min(mag, minDist); maxDist = Math.max(mag, maxDist); // project sixth corner Cartesian3.subtract(center, u, corner); Cartesian3.add(corner, v, corner); Cartesian3.subtract(corner, w, corner); Cartesian3.subtract(corner, position, toCenter); mag = Cartesian3.dot(direction, toCenter); minDist = Math.min(mag, minDist); maxDist = Math.max(mag, maxDist); // project seventh corner Cartesian3.subtract(center, u, corner); Cartesian3.subtract(corner, v, corner); Cartesian3.add(corner, w, corner); Cartesian3.subtract(corner, position, toCenter); mag = Cartesian3.dot(direction, toCenter); minDist = Math.min(mag, minDist); maxDist = Math.max(mag, maxDist); // project eighth corner Cartesian3.subtract(center, u, corner); Cartesian3.subtract(corner, v, corner); Cartesian3.subtract(corner, w, corner); Cartesian3.subtract(corner, position, toCenter); mag = Cartesian3.dot(direction, toCenter); minDist = Math.min(mag, minDist); maxDist = Math.max(mag, maxDist); result.start = minDist; result.stop = maxDist; return result; }; var scratchBoundingSphere = new BoundingSphere(); /** * Determines whether or not a bounding box is hidden from view by the occluder. * * @param {OrientedBoundingBox} box The bounding box surrounding the occludee object. * @param {Occluder} occluder The occluder. * @returns {Boolean} true if the box is not visible; otherwise false. */ OrientedBoundingBox.isOccluded = function(box, occluder) { //>>includeStart('debug', pragmas.debug); if (!defined(box)) { throw new DeveloperError('box is required.'); } if (!defined(occluder)) { throw new DeveloperError('occluder is required.'); } //>>includeEnd('debug'); var sphere = BoundingSphere.fromOrientedBoundingBox(box, scratchBoundingSphere); return !occluder.isBoundingSphereVisible(sphere); }; /** * Determines which side of a plane the oriented bounding box is located. * * @param {Plane} plane The plane to test against. * @returns {Intersect} {@link Intersect.INSIDE} if the entire box is on the side of the plane * the normal is pointing, {@link Intersect.OUTSIDE} if the entire box is * on the opposite side, and {@link Intersect.INTERSECTING} if the box * intersects the plane. */ OrientedBoundingBox.prototype.intersectPlane = function(plane) { return OrientedBoundingBox.intersectPlane(this, plane); }; /** * Computes the estimated distance squared from the closest point on a bounding box to a point. * * @param {Cartesian3} cartesian The point * @returns {Number} The estimated distance squared from the bounding sphere to the point. * * @example * // Sort bounding boxes from back to front * boxes.sort(function(a, b) { * return b.distanceSquaredTo(camera.positionWC) - a.distanceSquaredTo(camera.positionWC); * }); */ OrientedBoundingBox.prototype.distanceSquaredTo = function(cartesian) { return OrientedBoundingBox.distanceSquaredTo(this, cartesian); }; /** * The distances calculated by the vector from the center of the bounding box to position projected onto direction. *
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the * closest and farthest planes from position that intersect the bounding box. * * @param {Cartesian3} position The position to calculate the distance from. * @param {Cartesian3} direction The direction from position. * @param {Interval} [result] A Interval to store the nearest and farthest distances. * @returns {Interval} The nearest and farthest distances on the bounding box from position in direction. */ OrientedBoundingBox.prototype.computePlaneDistances = function(position, direction, result) { return OrientedBoundingBox.computePlaneDistances(this, position, direction, result); }; /** * Determines whether or not a bounding box is hidden from view by the occluder. * * @param {Occluder} occluder The occluder. * @returns {Boolean} true if the sphere is not visible; otherwise false. */ OrientedBoundingBox.prototype.isOccluded = function(occluder) { return OrientedBoundingBox.isOccluded(this, occluder); }; /** * Compares the provided OrientedBoundingBox componentwise and returns * true if they are equal, false otherwise. * * @param {OrientedBoundingBox} left The first OrientedBoundingBox. * @param {OrientedBoundingBox} right The second OrientedBoundingBox. * @returns {Boolean} true if left and right are equal, false otherwise. */ OrientedBoundingBox.equals = function(left, right) { return (left === right) || ((defined(left)) && (defined(right)) && Cartesian3.equals(left.center, right.center) && Matrix3.equals(left.halfAxes, right.halfAxes)); }; /** * Duplicates this OrientedBoundingBox instance. * * @param {OrientedBoundingBox} [result] The object onto which to store the result. * @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided. */ OrientedBoundingBox.prototype.clone = function(result) { return OrientedBoundingBox.clone(this, result); }; /** * Compares this OrientedBoundingBox against the provided OrientedBoundingBox componentwise and returns * true if they are equal, false otherwise. * * @param {OrientedBoundingBox} [right] The right hand side OrientedBoundingBox. * @returns {Boolean} true if they are equal, false otherwise. */ OrientedBoundingBox.prototype.equals = function(right) { return OrientedBoundingBox.equals(this, right); }; export default OrientedBoundingBox;