import when from '../ThirdParty/when.js'; import BoundingSphere from './BoundingSphere.js'; import Cartesian3 from './Cartesian3.js'; import defaultValue from './defaultValue.js'; import defined from './defined.js'; import defineProperties from './defineProperties.js'; import DeveloperError from './DeveloperError.js'; import GeographicProjection from './GeographicProjection.js'; import HeightmapEncoding from './HeightmapEncoding.js'; import HeightmapTessellator from './HeightmapTessellator.js'; import CesiumMath from './Math.js'; import OrientedBoundingBox from './OrientedBoundingBox.js'; import Rectangle from './Rectangle.js'; import TaskProcessor from './TaskProcessor.js'; import TerrainEncoding from './TerrainEncoding.js'; import TerrainMesh from './TerrainMesh.js'; import TerrainProvider from './TerrainProvider.js'; /** * Terrain data for a single tile where the terrain data is represented as a heightmap. A heightmap * is a rectangular array of heights in row-major order from north to south and west to east. * * @alias HeightmapTerrainData * @constructor * * @param {Object} options Object with the following properties: * @param {TypedArray} options.buffer The buffer containing height data. * @param {Number} options.width The width (longitude direction) of the heightmap, in samples. * @param {Number} options.height The height (latitude direction) of the heightmap, in samples. * @param {Number} [options.childTileMask=15] A bit mask indicating which of this tile's four children exist. * If a child's bit is set, geometry will be requested for that tile as well when it * is needed. If the bit is cleared, the child tile is not requested and geometry is * instead upsampled from the parent. The bit values are as follows: * * * * * * *
Bit PositionBit ValueChild Tile
01Southwest
12Southeast
24Northwest
38Northeast
* @param {Uint8Array} [options.waterMask] The water mask included in this terrain data, if any. A water mask is a square * Uint8Array or image where a value of 255 indicates water and a value of 0 indicates land. * Values in between 0 and 255 are allowed as well to smoothly blend between land and water. * @param {Object} [options.structure] An object describing the structure of the height data. * @param {Number} [options.structure.heightScale=1.0] The factor by which to multiply height samples in order to obtain * the height above the heightOffset, in meters. The heightOffset is added to the resulting * height after multiplying by the scale. * @param {Number} [options.structure.heightOffset=0.0] The offset to add to the scaled height to obtain the final * height in meters. The offset is added after the height sample is multiplied by the * heightScale. * @param {Number} [options.structure.elementsPerHeight=1] The number of elements in the buffer that make up a single height * sample. This is usually 1, indicating that each element is a separate height sample. If * it is greater than 1, that number of elements together form the height sample, which is * computed according to the structure.elementMultiplier and structure.isBigEndian properties. * @param {Number} [options.structure.stride=1] The number of elements to skip to get from the first element of * one height to the first element of the next height. * @param {Number} [options.structure.elementMultiplier=256.0] The multiplier used to compute the height value when the * stride property is greater than 1. For example, if the stride is 4 and the strideMultiplier * is 256, the height is computed as follows: * `height = buffer[index] + buffer[index + 1] * 256 + buffer[index + 2] * 256 * 256 + buffer[index + 3] * 256 * 256 * 256` * This is assuming that the isBigEndian property is false. If it is true, the order of the * elements is reversed. * @param {Boolean} [options.structure.isBigEndian=false] Indicates endianness of the elements in the buffer when the * stride property is greater than 1. If this property is false, the first element is the * low-order element. If it is true, the first element is the high-order element. * @param {Number} [options.structure.lowestEncodedHeight] The lowest value that can be stored in the height buffer. Any heights that are lower * than this value after encoding with the `heightScale` and `heightOffset` are clamped to this value. For example, if the height * buffer is a `Uint16Array`, this value should be 0 because a `Uint16Array` cannot store negative numbers. If this parameter is * not specified, no minimum value is enforced. * @param {Number} [options.structure.highestEncodedHeight] The highest value that can be stored in the height buffer. Any heights that are higher * than this value after encoding with the `heightScale` and `heightOffset` are clamped to this value. For example, if the height * buffer is a `Uint16Array`, this value should be `256 * 256 - 1` or 65535 because a `Uint16Array` cannot store numbers larger * than 65535. If this parameter is not specified, no maximum value is enforced. * @param {HeightmapEncoding} [options.encoding=HeightmapEncoding.NONE] The encoding that is used on the buffer. * @param {Boolean} [options.createdByUpsampling=false] True if this instance was created by upsampling another instance; * otherwise, false. * * * @example * var buffer = ... * var heightBuffer = new Uint16Array(buffer, 0, that._heightmapWidth * that._heightmapWidth); * var childTileMask = new Uint8Array(buffer, heightBuffer.byteLength, 1)[0]; * var waterMask = new Uint8Array(buffer, heightBuffer.byteLength + 1, buffer.byteLength - heightBuffer.byteLength - 1); * var terrainData = new Cesium.HeightmapTerrainData({ * buffer : heightBuffer, * width : 65, * height : 65, * childTileMask : childTileMask, * waterMask : waterMask * }); * * @see TerrainData * @see QuantizedMeshTerrainData */ function HeightmapTerrainData(options) { //>>includeStart('debug', pragmas.debug); if (!defined(options) || !defined(options.buffer)) { throw new DeveloperError('options.buffer is required.'); } if (!defined(options.width)) { throw new DeveloperError('options.width is required.'); } if (!defined(options.height)) { throw new DeveloperError('options.height is required.'); } //>>includeEnd('debug'); this._buffer = options.buffer; this._width = options.width; this._height = options.height; this._childTileMask = defaultValue(options.childTileMask, 15); this._encoding = defaultValue(options.encoding, HeightmapEncoding.NONE); var defaultStructure = HeightmapTessellator.DEFAULT_STRUCTURE; var structure = options.structure; if (!defined(structure)) { structure = defaultStructure; } else if (structure !== defaultStructure) { structure.heightScale = defaultValue(structure.heightScale, defaultStructure.heightScale); structure.heightOffset = defaultValue(structure.heightOffset, defaultStructure.heightOffset); structure.elementsPerHeight = defaultValue(structure.elementsPerHeight, defaultStructure.elementsPerHeight); structure.stride = defaultValue(structure.stride, defaultStructure.stride); structure.elementMultiplier = defaultValue(structure.elementMultiplier, defaultStructure.elementMultiplier); structure.isBigEndian = defaultValue(structure.isBigEndian, defaultStructure.isBigEndian); } this._structure = structure; this._createdByUpsampling = defaultValue(options.createdByUpsampling, false); this._waterMask = options.waterMask; this._skirtHeight = undefined; this._bufferType = (this._encoding === HeightmapEncoding.LERC) ? Float32Array : this._buffer.constructor; this._mesh = undefined; } defineProperties(HeightmapTerrainData.prototype, { /** * An array of credits for this tile. * @memberof HeightmapTerrainData.prototype * @type {Credit[]} */ credits : { get : function() { return undefined; } }, /** * The water mask included in this terrain data, if any. A water mask is a square * Uint8Array or image where a value of 255 indicates water and a value of 0 indicates land. * Values in between 0 and 255 are allowed as well to smoothly blend between land and water. * @memberof HeightmapTerrainData.prototype * @type {Uint8Array|Image|Canvas} */ waterMask : { get : function() { return this._waterMask; } }, childTileMask : { get : function() { return this._childTileMask; } } }); var taskProcessor = new TaskProcessor('createVerticesFromHeightmap'); /** * Creates a {@link TerrainMesh} from this terrain data. * * @private * * @param {TilingScheme} tilingScheme The tiling scheme to which this tile belongs. * @param {Number} x The X coordinate of the tile for which to create the terrain data. * @param {Number} y The Y coordinate of the tile for which to create the terrain data. * @param {Number} level The level of the tile for which to create the terrain data. * @param {Number} [exaggeration=1.0] The scale used to exaggerate the terrain. * @returns {Promise.|undefined} A promise for the terrain mesh, or undefined if too many * asynchronous mesh creations are already in progress and the operation should * be retried later. */ HeightmapTerrainData.prototype.createMesh = function(tilingScheme, x, y, level, exaggeration) { //>>includeStart('debug', pragmas.debug); if (!defined(tilingScheme)) { throw new DeveloperError('tilingScheme is required.'); } if (!defined(x)) { throw new DeveloperError('x is required.'); } if (!defined(y)) { throw new DeveloperError('y is required.'); } if (!defined(level)) { throw new DeveloperError('level is required.'); } //>>includeEnd('debug'); var ellipsoid = tilingScheme.ellipsoid; var nativeRectangle = tilingScheme.tileXYToNativeRectangle(x, y, level); var rectangle = tilingScheme.tileXYToRectangle(x, y, level); exaggeration = defaultValue(exaggeration, 1.0); // Compute the center of the tile for RTC rendering. var center = ellipsoid.cartographicToCartesian(Rectangle.center(rectangle)); var structure = this._structure; var levelZeroMaxError = TerrainProvider.getEstimatedLevelZeroGeometricErrorForAHeightmap(ellipsoid, this._width, tilingScheme.getNumberOfXTilesAtLevel(0)); var thisLevelMaxError = levelZeroMaxError / (1 << level); this._skirtHeight = Math.min(thisLevelMaxError * 4.0, 1000.0); var verticesPromise = taskProcessor.scheduleTask({ heightmap : this._buffer, structure : structure, includeWebMercatorT : true, width : this._width, height : this._height, nativeRectangle : nativeRectangle, rectangle : rectangle, relativeToCenter : center, ellipsoid : ellipsoid, skirtHeight : this._skirtHeight, isGeographic : tilingScheme.projection instanceof GeographicProjection, exaggeration : exaggeration, encoding : this._encoding }); if (!defined(verticesPromise)) { // Postponed return undefined; } var that = this; return when(verticesPromise, function(result) { // Clone complex result objects because the transfer from the web worker // has stripped them down to JSON-style objects. that._mesh = new TerrainMesh( center, new Float32Array(result.vertices), TerrainProvider.getRegularGridIndices(result.gridWidth, result.gridHeight), result.minimumHeight, result.maximumHeight, BoundingSphere.clone(result.boundingSphere3D), Cartesian3.clone(result.occludeePointInScaledSpace), result.numberOfAttributes, OrientedBoundingBox.clone(result.orientedBoundingBox), TerrainEncoding.clone(result.encoding), exaggeration, result.westIndicesSouthToNorth, result.southIndicesEastToWest, result.eastIndicesNorthToSouth, result.northIndicesWestToEast); // Free memory received from server after mesh is created. that._buffer = undefined; return that._mesh; }); }; /** * @private */ HeightmapTerrainData.prototype._createMeshSync = function(tilingScheme, x, y, level, exaggeration) { //>>includeStart('debug', pragmas.debug); if (!defined(tilingScheme)) { throw new DeveloperError('tilingScheme is required.'); } if (!defined(x)) { throw new DeveloperError('x is required.'); } if (!defined(y)) { throw new DeveloperError('y is required.'); } if (!defined(level)) { throw new DeveloperError('level is required.'); } //>>includeEnd('debug'); var ellipsoid = tilingScheme.ellipsoid; var nativeRectangle = tilingScheme.tileXYToNativeRectangle(x, y, level); var rectangle = tilingScheme.tileXYToRectangle(x, y, level); exaggeration = defaultValue(exaggeration, 1.0); // Compute the center of the tile for RTC rendering. var center = ellipsoid.cartographicToCartesian(Rectangle.center(rectangle)); var structure = this._structure; var levelZeroMaxError = TerrainProvider.getEstimatedLevelZeroGeometricErrorForAHeightmap(ellipsoid, this._width, tilingScheme.getNumberOfXTilesAtLevel(0)); var thisLevelMaxError = levelZeroMaxError / (1 << level); this._skirtHeight = Math.min(thisLevelMaxError * 4.0, 1000.0); var result = HeightmapTessellator.computeVertices({ heightmap : this._buffer, structure : structure, includeWebMercatorT : true, width : this._width, height : this._height, nativeRectangle : nativeRectangle, rectangle : rectangle, relativeToCenter : center, ellipsoid : ellipsoid, skirtHeight : this._skirtHeight, isGeographic : tilingScheme.projection instanceof GeographicProjection, exaggeration : exaggeration }); // Free memory received from server after mesh is created. this._buffer = undefined; var arrayWidth = this._width; var arrayHeight = this._height; if (this._skirtHeight > 0.0) { arrayWidth += 2; arrayHeight += 2; } // No need to clone here (as we do in the async version) because the result // is not coming from a web worker. return new TerrainMesh( center, result.vertices, TerrainProvider.getRegularGridIndices(arrayWidth, arrayHeight), result.minimumHeight, result.maximumHeight, result.boundingSphere3D, result.occludeePointInScaledSpace, result.encoding.getStride(), result.orientedBoundingBox, result.encoding, exaggeration, result.westIndicesSouthToNorth, result.southIndicesEastToWest, result.eastIndicesNorthToSouth, result.northIndicesWestToEast); }; /** * Computes the terrain height at a specified longitude and latitude. * * @param {Rectangle} rectangle The rectangle covered by this terrain data. * @param {Number} longitude The longitude in radians. * @param {Number} latitude The latitude in radians. * @returns {Number} The terrain height at the specified position. If the position * is outside the rectangle, this method will extrapolate the height, which is likely to be wildly * incorrect for positions far outside the rectangle. */ HeightmapTerrainData.prototype.interpolateHeight = function(rectangle, longitude, latitude) { var width = this._width; var height = this._height; var structure = this._structure; var stride = structure.stride; var elementsPerHeight = structure.elementsPerHeight; var elementMultiplier = structure.elementMultiplier; var isBigEndian = structure.isBigEndian; var heightOffset = structure.heightOffset; var heightScale = structure.heightScale; var heightSample; if (defined(this._mesh)) { var buffer = this._mesh.vertices; var encoding = this._mesh.encoding; var skirtHeight = this._skirtHeight; var exaggeration = this._mesh.exaggeration; heightSample = interpolateMeshHeight(buffer, encoding, heightOffset, heightScale, skirtHeight, rectangle, width, height, longitude, latitude, exaggeration); } else { heightSample = interpolateHeight(this._buffer, elementsPerHeight, elementMultiplier, stride, isBigEndian, rectangle, width, height, longitude, latitude); heightSample = heightSample * heightScale + heightOffset; } return heightSample; }; /** * Upsamples this terrain data for use by a descendant tile. The resulting instance will contain a subset of the * height samples in this instance, interpolated if necessary. * * @param {TilingScheme} tilingScheme The tiling scheme of this terrain data. * @param {Number} thisX The X coordinate of this tile in the tiling scheme. * @param {Number} thisY The Y coordinate of this tile in the tiling scheme. * @param {Number} thisLevel The level of this tile in the tiling scheme. * @param {Number} descendantX The X coordinate within the tiling scheme of the descendant tile for which we are upsampling. * @param {Number} descendantY The Y coordinate within the tiling scheme of the descendant tile for which we are upsampling. * @param {Number} descendantLevel The level within the tiling scheme of the descendant tile for which we are upsampling. * @returns {Promise.|undefined} A promise for upsampled heightmap terrain data for the descendant tile, * or undefined if too many asynchronous upsample operations are in progress and the request has been * deferred. */ HeightmapTerrainData.prototype.upsample = function(tilingScheme, thisX, thisY, thisLevel, descendantX, descendantY, descendantLevel) { //>>includeStart('debug', pragmas.debug); if (!defined(tilingScheme)) { throw new DeveloperError('tilingScheme is required.'); } if (!defined(thisX)) { throw new DeveloperError('thisX is required.'); } if (!defined(thisY)) { throw new DeveloperError('thisY is required.'); } if (!defined(thisLevel)) { throw new DeveloperError('thisLevel is required.'); } if (!defined(descendantX)) { throw new DeveloperError('descendantX is required.'); } if (!defined(descendantY)) { throw new DeveloperError('descendantY is required.'); } if (!defined(descendantLevel)) { throw new DeveloperError('descendantLevel is required.'); } var levelDifference = descendantLevel - thisLevel; if (levelDifference > 1) { throw new DeveloperError('Upsampling through more than one level at a time is not currently supported.'); } //>>includeEnd('debug'); var meshData = this._mesh; if (!defined(meshData)) { return undefined; } var width = this._width; var height = this._height; var structure = this._structure; var skirtHeight = this._skirtHeight; var stride = structure.stride; var heights = new this._bufferType(width * height * stride); var buffer = meshData.vertices; var encoding = meshData.encoding; // PERFORMANCE_IDEA: don't recompute these rectangles - the caller already knows them. var sourceRectangle = tilingScheme.tileXYToRectangle(thisX, thisY, thisLevel); var destinationRectangle = tilingScheme.tileXYToRectangle(descendantX, descendantY, descendantLevel); var heightOffset = structure.heightOffset; var heightScale = structure.heightScale; var exaggeration = meshData.exaggeration; var elementsPerHeight = structure.elementsPerHeight; var elementMultiplier = structure.elementMultiplier; var isBigEndian = structure.isBigEndian; var divisor = Math.pow(elementMultiplier, elementsPerHeight - 1); for (var j = 0; j < height; ++j) { var latitude = CesiumMath.lerp(destinationRectangle.north, destinationRectangle.south, j / (height - 1)); for (var i = 0; i < width; ++i) { var longitude = CesiumMath.lerp(destinationRectangle.west, destinationRectangle.east, i / (width - 1)); var heightSample = interpolateMeshHeight(buffer, encoding, heightOffset, heightScale, skirtHeight, sourceRectangle, width, height, longitude, latitude, exaggeration); // Use conditionals here instead of Math.min and Math.max so that an undefined // lowestEncodedHeight or highestEncodedHeight has no effect. heightSample = heightSample < structure.lowestEncodedHeight ? structure.lowestEncodedHeight : heightSample; heightSample = heightSample > structure.highestEncodedHeight ? structure.highestEncodedHeight : heightSample; setHeight(heights, elementsPerHeight, elementMultiplier, divisor, stride, isBigEndian, j * width + i, heightSample); } } return new HeightmapTerrainData({ buffer : heights, width : width, height : height, childTileMask : 0, structure : this._structure, createdByUpsampling : true }); }; /** * Determines if a given child tile is available, based on the * {@link HeightmapTerrainData.childTileMask}. The given child tile coordinates are assumed * to be one of the four children of this tile. If non-child tile coordinates are * given, the availability of the southeast child tile is returned. * * @param {Number} thisX The tile X coordinate of this (the parent) tile. * @param {Number} thisY The tile Y coordinate of this (the parent) tile. * @param {Number} childX The tile X coordinate of the child tile to check for availability. * @param {Number} childY The tile Y coordinate of the child tile to check for availability. * @returns {Boolean} True if the child tile is available; otherwise, false. */ HeightmapTerrainData.prototype.isChildAvailable = function(thisX, thisY, childX, childY) { //>>includeStart('debug', pragmas.debug); if (!defined(thisX)) { throw new DeveloperError('thisX is required.'); } if (!defined(thisY)) { throw new DeveloperError('thisY is required.'); } if (!defined(childX)) { throw new DeveloperError('childX is required.'); } if (!defined(childY)) { throw new DeveloperError('childY is required.'); } //>>includeEnd('debug'); var bitNumber = 2; // northwest child if (childX !== thisX * 2) { ++bitNumber; // east child } if (childY !== thisY * 2) { bitNumber -= 2; // south child } return (this._childTileMask & (1 << bitNumber)) !== 0; }; /** * Gets a value indicating whether or not this terrain data was created by upsampling lower resolution * terrain data. If this value is false, the data was obtained from some other source, such * as by downloading it from a remote server. This method should return true for instances * returned from a call to {@link HeightmapTerrainData#upsample}. * * @returns {Boolean} True if this instance was created by upsampling; otherwise, false. */ HeightmapTerrainData.prototype.wasCreatedByUpsampling = function() { return this._createdByUpsampling; }; function interpolateHeight(sourceHeights, elementsPerHeight, elementMultiplier, stride, isBigEndian, sourceRectangle, width, height, longitude, latitude) { var fromWest = (longitude - sourceRectangle.west) * (width - 1) / (sourceRectangle.east - sourceRectangle.west); var fromSouth = (latitude - sourceRectangle.south) * (height - 1) / (sourceRectangle.north - sourceRectangle.south); var westInteger = fromWest | 0; var eastInteger = westInteger + 1; if (eastInteger >= width) { eastInteger = width - 1; westInteger = width - 2; } var southInteger = fromSouth | 0; var northInteger = southInteger + 1; if (northInteger >= height) { northInteger = height - 1; southInteger = height - 2; } var dx = fromWest - westInteger; var dy = fromSouth - southInteger; southInteger = height - 1 - southInteger; northInteger = height - 1 - northInteger; var southwestHeight = getHeight(sourceHeights, elementsPerHeight, elementMultiplier, stride, isBigEndian, southInteger * width + westInteger); var southeastHeight = getHeight(sourceHeights, elementsPerHeight, elementMultiplier, stride, isBigEndian, southInteger * width + eastInteger); var northwestHeight = getHeight(sourceHeights, elementsPerHeight, elementMultiplier, stride, isBigEndian, northInteger * width + westInteger); var northeastHeight = getHeight(sourceHeights, elementsPerHeight, elementMultiplier, stride, isBigEndian, northInteger * width + eastInteger); return triangleInterpolateHeight(dx, dy, southwestHeight, southeastHeight, northwestHeight, northeastHeight); } function interpolateMeshHeight(buffer, encoding, heightOffset, heightScale, skirtHeight, sourceRectangle, width, height, longitude, latitude, exaggeration) { // returns a height encoded according to the structure's heightScale and heightOffset. var fromWest = (longitude - sourceRectangle.west) * (width - 1) / (sourceRectangle.east - sourceRectangle.west); var fromSouth = (latitude - sourceRectangle.south) * (height - 1) / (sourceRectangle.north - sourceRectangle.south); if (skirtHeight > 0) { fromWest += 1.0; fromSouth += 1.0; width += 2; height += 2; } var widthEdge = (skirtHeight > 0) ? width - 1 : width; var westInteger = fromWest | 0; var eastInteger = westInteger + 1; if (eastInteger >= widthEdge) { eastInteger = width - 1; westInteger = width - 2; } var heightEdge = (skirtHeight > 0) ? height - 1 : height; var southInteger = fromSouth | 0; var northInteger = southInteger + 1; if (northInteger >= heightEdge) { northInteger = height - 1; southInteger = height - 2; } var dx = fromWest - westInteger; var dy = fromSouth - southInteger; southInteger = height - 1 - southInteger; northInteger = height - 1 - northInteger; var southwestHeight = (encoding.decodeHeight(buffer, southInteger * width + westInteger) / exaggeration - heightOffset) / heightScale; var southeastHeight = (encoding.decodeHeight(buffer, southInteger * width + eastInteger) / exaggeration - heightOffset) / heightScale; var northwestHeight = (encoding.decodeHeight(buffer, northInteger * width + westInteger) / exaggeration - heightOffset) / heightScale; var northeastHeight = (encoding.decodeHeight(buffer, northInteger * width + eastInteger) / exaggeration - heightOffset) / heightScale; return triangleInterpolateHeight(dx, dy, southwestHeight, southeastHeight, northwestHeight, northeastHeight); } function triangleInterpolateHeight(dX, dY, southwestHeight, southeastHeight, northwestHeight, northeastHeight) { // The HeightmapTessellator bisects the quad from southwest to northeast. if (dY < dX) { // Lower right triangle return southwestHeight + (dX * (southeastHeight - southwestHeight)) + (dY * (northeastHeight - southeastHeight)); } // Upper left triangle return southwestHeight + (dX * (northeastHeight - northwestHeight)) + (dY * (northwestHeight - southwestHeight)); } function getHeight(heights, elementsPerHeight, elementMultiplier, stride, isBigEndian, index) { index *= stride; var height = 0; var i; if (isBigEndian) { for (i = 0; i < elementsPerHeight; ++i) { height = (height * elementMultiplier) + heights[index + i]; } } else { for (i = elementsPerHeight - 1; i >= 0; --i) { height = (height * elementMultiplier) + heights[index + i]; } } return height; } function setHeight(heights, elementsPerHeight, elementMultiplier, divisor, stride, isBigEndian, index, height) { index *= stride; var i; if (isBigEndian) { for (i = 0; i < elementsPerHeight - 1; ++i) { heights[index + i] = (height / divisor) | 0; height -= heights[index + i] * divisor; divisor /= elementMultiplier; } } else { for (i = elementsPerHeight - 1; i > 0; --i) { heights[index + i] = (height / divisor) | 0; height -= heights[index + i] * divisor; divisor /= elementMultiplier; } } heights[index + i] = height; } export default HeightmapTerrainData;