import BoundingSphere from './BoundingSphere.js';
import Cartesian2 from './Cartesian2.js';
import Cartesian3 from './Cartesian3.js';
import Check from './Check.js';
import defaultValue from './defaultValue.js';
import defined from './defined.js';
import defineProperties from './defineProperties.js';
import DeveloperError from './DeveloperError.js';
import IndexDatatype from './IndexDatatype.js';
import Intersections2D from './Intersections2D.js';
import CesiumMath from './Math.js';
import OrientedBoundingBox from './OrientedBoundingBox.js';
import QuantizedMeshTerrainData from './QuantizedMeshTerrainData.js';
import Rectangle from './Rectangle.js';
import TaskProcessor from './TaskProcessor.js';
import TerrainEncoding from './TerrainEncoding.js';
import TerrainMesh from './TerrainMesh.js';
/**
* Terrain data for a single tile from a Google Earth Enterprise server.
*
* @alias GoogleEarthEnterpriseTerrainData
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {ArrayBuffer} options.buffer The buffer containing terrain data.
* @param {Number} options.negativeAltitudeExponentBias Multiplier for negative terrain heights that are encoded as very small positive values.
* @param {Number} options.negativeElevationThreshold Threshold for negative values
* @param {Number} [options.childTileMask=15] A bit mask indicating which of this tile's four children exist.
* If a child's bit is set, geometry will be requested for that tile as well when it
* is needed. If the bit is cleared, the child tile is not requested and geometry is
* instead upsampled from the parent. The bit values are as follows:
*
* Bit Position | Bit Value | Child Tile |
* 0 | 1 | Southwest |
* 1 | 2 | Southeast |
* 2 | 4 | Northeast |
* 3 | 8 | Northwest |
*
* @param {Boolean} [options.createdByUpsampling=false] True if this instance was created by upsampling another instance;
* otherwise, false.
* @param {Credit[]} [options.credits] Array of credits for this tile.
*
*
* @example
* var buffer = ...
* var childTileMask = ...
* var terrainData = new Cesium.GoogleEarthEnterpriseTerrainData({
* buffer : heightBuffer,
* childTileMask : childTileMask
* });
*
* @see TerrainData
* @see HeightTerrainData
* @see QuantizedMeshTerrainData
*/
function GoogleEarthEnterpriseTerrainData(options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('options.buffer', options.buffer);
Check.typeOf.number('options.negativeAltitudeExponentBias', options.negativeAltitudeExponentBias);
Check.typeOf.number('options.negativeElevationThreshold', options.negativeElevationThreshold);
//>>includeEnd('debug');
this._buffer = options.buffer;
this._credits = options.credits;
this._negativeAltitudeExponentBias = options.negativeAltitudeExponentBias;
this._negativeElevationThreshold = options.negativeElevationThreshold;
// Convert from google layout to layout of other providers
// 3 2 -> 2 3
// 0 1 -> 0 1
var googleChildTileMask = defaultValue(options.childTileMask, 15);
var childTileMask = googleChildTileMask & 3; // Bottom row is identical
childTileMask |= (googleChildTileMask & 4) ? 8 : 0; // NE
childTileMask |= (googleChildTileMask & 8) ? 4 : 0; // NW
this._childTileMask = childTileMask;
this._createdByUpsampling = defaultValue(options.createdByUpsampling, false);
this._skirtHeight = undefined;
this._bufferType = this._buffer.constructor;
this._mesh = undefined;
this._minimumHeight = undefined;
this._maximumHeight = undefined;
this._vertexCountWithoutSkirts = undefined;
this._skirtIndex = undefined;
}
defineProperties(GoogleEarthEnterpriseTerrainData.prototype, {
/**
* An array of credits for this tile
* @memberof GoogleEarthEnterpriseTerrainData.prototype
* @type {Credit[]}
*/
credits : {
get : function() {
return this._credits;
}
},
/**
* The water mask included in this terrain data, if any. A water mask is a rectangular
* Uint8Array or image where a value of 255 indicates water and a value of 0 indicates land.
* Values in between 0 and 255 are allowed as well to smoothly blend between land and water.
* @memberof GoogleEarthEnterpriseTerrainData.prototype
* @type {Uint8Array|Image|Canvas}
*/
waterMask : {
get : function() {
return undefined;
}
}
});
var taskProcessor = new TaskProcessor('createVerticesFromGoogleEarthEnterpriseBuffer');
var nativeRectangleScratch = new Rectangle();
var rectangleScratch = new Rectangle();
/**
* Creates a {@link TerrainMesh} from this terrain data.
*
* @private
*
* @param {TilingScheme} tilingScheme The tiling scheme to which this tile belongs.
* @param {Number} x The X coordinate of the tile for which to create the terrain data.
* @param {Number} y The Y coordinate of the tile for which to create the terrain data.
* @param {Number} level The level of the tile for which to create the terrain data.
* @param {Number} [exaggeration=1.0] The scale used to exaggerate the terrain.
* @returns {Promise.|undefined} A promise for the terrain mesh, or undefined if too many
* asynchronous mesh creations are already in progress and the operation should
* be retried later.
*/
GoogleEarthEnterpriseTerrainData.prototype.createMesh = function(tilingScheme, x, y, level, exaggeration) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('tilingScheme', tilingScheme);
Check.typeOf.number('x', x);
Check.typeOf.number('y', y);
Check.typeOf.number('level', level);
//>>includeEnd('debug');
var ellipsoid = tilingScheme.ellipsoid;
tilingScheme.tileXYToNativeRectangle(x, y, level, nativeRectangleScratch);
tilingScheme.tileXYToRectangle(x, y, level, rectangleScratch);
exaggeration = defaultValue(exaggeration, 1.0);
// Compute the center of the tile for RTC rendering.
var center = ellipsoid.cartographicToCartesian(Rectangle.center(rectangleScratch));
var levelZeroMaxError = 40075.16; // From Google's Doc
var thisLevelMaxError = levelZeroMaxError / (1 << level);
this._skirtHeight = Math.min(thisLevelMaxError * 8.0, 1000.0);
var verticesPromise = taskProcessor.scheduleTask({
buffer : this._buffer,
nativeRectangle : nativeRectangleScratch,
rectangle : rectangleScratch,
relativeToCenter : center,
ellipsoid : ellipsoid,
skirtHeight : this._skirtHeight,
exaggeration : exaggeration,
includeWebMercatorT : true,
negativeAltitudeExponentBias: this._negativeAltitudeExponentBias,
negativeElevationThreshold: this._negativeElevationThreshold
});
if (!defined(verticesPromise)) {
// Postponed
return undefined;
}
var that = this;
return verticesPromise
.then(function(result) {
// Clone complex result objects because the transfer from the web worker
// has stripped them down to JSON-style objects.
that._mesh = new TerrainMesh(
center,
new Float32Array(result.vertices),
new Uint16Array(result.indices),
result.minimumHeight,
result.maximumHeight,
BoundingSphere.clone(result.boundingSphere3D),
Cartesian3.clone(result.occludeePointInScaledSpace),
result.numberOfAttributes,
OrientedBoundingBox.clone(result.orientedBoundingBox),
TerrainEncoding.clone(result.encoding),
exaggeration,
result.westIndicesSouthToNorth,
result.southIndicesEastToWest,
result.eastIndicesNorthToSouth,
result.northIndicesWestToEast);
that._vertexCountWithoutSkirts = result.vertexCountWithoutSkirts;
that._skirtIndex = result.skirtIndex;
that._minimumHeight = result.minimumHeight;
that._maximumHeight = result.maximumHeight;
// Free memory received from server after mesh is created.
that._buffer = undefined;
return that._mesh;
});
};
/**
* Computes the terrain height at a specified longitude and latitude.
*
* @param {Rectangle} rectangle The rectangle covered by this terrain data.
* @param {Number} longitude The longitude in radians.
* @param {Number} latitude The latitude in radians.
* @returns {Number} The terrain height at the specified position. If the position
* is outside the rectangle, this method will extrapolate the height, which is likely to be wildly
* incorrect for positions far outside the rectangle.
*/
GoogleEarthEnterpriseTerrainData.prototype.interpolateHeight = function(rectangle, longitude, latitude) {
var u = CesiumMath.clamp((longitude - rectangle.west) / rectangle.width, 0.0, 1.0);
var v = CesiumMath.clamp((latitude - rectangle.south) / rectangle.height, 0.0, 1.0);
if (!defined(this._mesh)) {
return interpolateHeight(this, u, v, rectangle);
}
return interpolateMeshHeight(this, u, v);
};
var upsampleTaskProcessor = new TaskProcessor('upsampleQuantizedTerrainMesh');
/**
* Upsamples this terrain data for use by a descendant tile. The resulting instance will contain a subset of the
* height samples in this instance, interpolated if necessary.
*
* @param {TilingScheme} tilingScheme The tiling scheme of this terrain data.
* @param {Number} thisX The X coordinate of this tile in the tiling scheme.
* @param {Number} thisY The Y coordinate of this tile in the tiling scheme.
* @param {Number} thisLevel The level of this tile in the tiling scheme.
* @param {Number} descendantX The X coordinate within the tiling scheme of the descendant tile for which we are upsampling.
* @param {Number} descendantY The Y coordinate within the tiling scheme of the descendant tile for which we are upsampling.
* @param {Number} descendantLevel The level within the tiling scheme of the descendant tile for which we are upsampling.
* @returns {Promise.|undefined} A promise for upsampled heightmap terrain data for the descendant tile,
* or undefined if too many asynchronous upsample operations are in progress and the request has been
* deferred.
*/
GoogleEarthEnterpriseTerrainData.prototype.upsample = function(tilingScheme, thisX, thisY, thisLevel, descendantX, descendantY, descendantLevel) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('tilingScheme', tilingScheme);
Check.typeOf.number('thisX', thisX);
Check.typeOf.number('thisY', thisY);
Check.typeOf.number('thisLevel', thisLevel);
Check.typeOf.number('descendantX', descendantX);
Check.typeOf.number('descendantY', descendantY);
Check.typeOf.number('descendantLevel', descendantLevel);
var levelDifference = descendantLevel - thisLevel;
if (levelDifference > 1) {
throw new DeveloperError('Upsampling through more than one level at a time is not currently supported.');
}
//>>includeEnd('debug');
var mesh = this._mesh;
if (!defined(this._mesh)) {
return undefined;
}
var isEastChild = thisX * 2 !== descendantX;
var isNorthChild = thisY * 2 === descendantY;
var ellipsoid = tilingScheme.ellipsoid;
var childRectangle = tilingScheme.tileXYToRectangle(descendantX, descendantY, descendantLevel);
var upsamplePromise = upsampleTaskProcessor.scheduleTask({
vertices : mesh.vertices,
vertexCountWithoutSkirts : this._vertexCountWithoutSkirts,
indices : mesh.indices,
skirtIndex : this._skirtIndex,
encoding : mesh.encoding,
minimumHeight : this._minimumHeight,
maximumHeight : this._maximumHeight,
isEastChild : isEastChild,
isNorthChild : isNorthChild,
childRectangle : childRectangle,
ellipsoid : ellipsoid,
exaggeration : mesh.exaggeration
});
if (!defined(upsamplePromise)) {
// Postponed
return undefined;
}
var that = this;
return upsamplePromise
.then(function(result) {
var quantizedVertices = new Uint16Array(result.vertices);
var indicesTypedArray = IndexDatatype.createTypedArray(quantizedVertices.length / 3, result.indices);
var skirtHeight = that._skirtHeight;
// Use QuantizedMeshTerrainData since we have what we need already parsed
return new QuantizedMeshTerrainData({
quantizedVertices : quantizedVertices,
indices : indicesTypedArray,
minimumHeight : result.minimumHeight,
maximumHeight : result.maximumHeight,
boundingSphere : BoundingSphere.clone(result.boundingSphere),
orientedBoundingBox : OrientedBoundingBox.clone(result.orientedBoundingBox),
horizonOcclusionPoint : Cartesian3.clone(result.horizonOcclusionPoint),
westIndices : result.westIndices,
southIndices : result.southIndices,
eastIndices : result.eastIndices,
northIndices : result.northIndices,
westSkirtHeight : skirtHeight,
southSkirtHeight : skirtHeight,
eastSkirtHeight : skirtHeight,
northSkirtHeight : skirtHeight,
childTileMask : 0,
createdByUpsampling : true,
credits : that._credits
});
});
};
/**
* Determines if a given child tile is available, based on the
* {@link HeightmapTerrainData.childTileMask}. The given child tile coordinates are assumed
* to be one of the four children of this tile. If non-child tile coordinates are
* given, the availability of the southeast child tile is returned.
*
* @param {Number} thisX The tile X coordinate of this (the parent) tile.
* @param {Number} thisY The tile Y coordinate of this (the parent) tile.
* @param {Number} childX The tile X coordinate of the child tile to check for availability.
* @param {Number} childY The tile Y coordinate of the child tile to check for availability.
* @returns {Boolean} True if the child tile is available; otherwise, false.
*/
GoogleEarthEnterpriseTerrainData.prototype.isChildAvailable = function(thisX, thisY, childX, childY) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number('thisX', thisX);
Check.typeOf.number('thisY', thisY);
Check.typeOf.number('childX', childX);
Check.typeOf.number('childY', childY);
//>>includeEnd('debug');
var bitNumber = 2; // northwest child
if (childX !== thisX * 2) {
++bitNumber; // east child
}
if (childY !== thisY * 2) {
bitNumber -= 2; // south child
}
return (this._childTileMask & (1 << bitNumber)) !== 0;
};
/**
* Gets a value indicating whether or not this terrain data was created by upsampling lower resolution
* terrain data. If this value is false, the data was obtained from some other source, such
* as by downloading it from a remote server. This method should return true for instances
* returned from a call to {@link HeightmapTerrainData#upsample}.
*
* @returns {Boolean} True if this instance was created by upsampling; otherwise, false.
*/
GoogleEarthEnterpriseTerrainData.prototype.wasCreatedByUpsampling = function() {
return this._createdByUpsampling;
};
var texCoordScratch0 = new Cartesian2();
var texCoordScratch1 = new Cartesian2();
var texCoordScratch2 = new Cartesian2();
var barycentricCoordinateScratch = new Cartesian3();
function interpolateMeshHeight(terrainData, u, v) {
var mesh = terrainData._mesh;
var vertices = mesh.vertices;
var encoding = mesh.encoding;
var indices = mesh.indices;
for (var i = 0, len = indices.length; i < len; i += 3) {
var i0 = indices[i];
var i1 = indices[i + 1];
var i2 = indices[i + 2];
var uv0 = encoding.decodeTextureCoordinates(vertices, i0, texCoordScratch0);
var uv1 = encoding.decodeTextureCoordinates(vertices, i1, texCoordScratch1);
var uv2 = encoding.decodeTextureCoordinates(vertices, i2, texCoordScratch2);
var barycentric = Intersections2D.computeBarycentricCoordinates(u, v, uv0.x, uv0.y, uv1.x, uv1.y, uv2.x, uv2.y, barycentricCoordinateScratch);
if (barycentric.x >= -1e-15 && barycentric.y >= -1e-15 && barycentric.z >= -1e-15) {
var h0 = encoding.decodeHeight(vertices, i0);
var h1 = encoding.decodeHeight(vertices, i1);
var h2 = encoding.decodeHeight(vertices, i2);
return barycentric.x * h0 + barycentric.y * h1 + barycentric.z * h2;
}
}
// Position does not lie in any triangle in this mesh.
return undefined;
}
var sizeOfUint16 = Uint16Array.BYTES_PER_ELEMENT;
var sizeOfUint32 = Uint32Array.BYTES_PER_ELEMENT;
var sizeOfInt32 = Int32Array.BYTES_PER_ELEMENT;
var sizeOfFloat = Float32Array.BYTES_PER_ELEMENT;
var sizeOfDouble = Float64Array.BYTES_PER_ELEMENT;
function interpolateHeight(terrainData, u, v, rectangle) {
var buffer = terrainData._buffer;
var quad = 0; // SW
var uStart = 0.0;
var vStart = 0.0;
if (v > 0.5) { // Upper row
if (u > 0.5) { // NE
quad = 2;
uStart = 0.5;
} else { // NW
quad = 3;
}
vStart = 0.5;
} else if (u > 0.5) { // SE
quad = 1;
uStart = 0.5;
}
var dv = new DataView(buffer);
var offset = 0;
for (var q = 0; q < quad; ++q) {
offset += dv.getUint32(offset, true);
offset += sizeOfUint32;
}
offset += sizeOfUint32; // Skip length of quad
offset += 2 * sizeOfDouble; // Skip origin
// Read sizes
var xSize = CesiumMath.toRadians(dv.getFloat64(offset, true) * 180.0);
offset += sizeOfDouble;
var ySize = CesiumMath.toRadians(dv.getFloat64(offset, true) * 180.0);
offset += sizeOfDouble;
// Samples per quad
var xScale = rectangle.width / xSize / 2;
var yScale = rectangle.height / ySize / 2;
// Number of points
var numPoints = dv.getInt32(offset, true);
offset += sizeOfInt32;
// Number of faces
var numIndices = dv.getInt32(offset, true) * 3;
offset += sizeOfInt32;
offset += sizeOfInt32; // Skip Level
var uBuffer = new Array(numPoints);
var vBuffer = new Array(numPoints);
var heights = new Array(numPoints);
var i;
for (i = 0; i < numPoints; ++i) {
uBuffer[i] = uStart + (dv.getUint8(offset++) * xScale);
vBuffer[i] = vStart + (dv.getUint8(offset++) * yScale);
// Height is stored in units of (1/EarthRadius) or (1/6371010.0)
heights[i] = (dv.getFloat32(offset, true) * 6371010.0);
offset += sizeOfFloat;
}
var indices = new Array(numIndices);
for (i = 0; i < numIndices; ++i) {
indices[i] = dv.getUint16(offset, true);
offset += sizeOfUint16;
}
for (i = 0; i < numIndices; i += 3) {
var i0 = indices[i];
var i1 = indices[i + 1];
var i2 = indices[i + 2];
var u0 = uBuffer[i0];
var u1 = uBuffer[i1];
var u2 = uBuffer[i2];
var v0 = vBuffer[i0];
var v1 = vBuffer[i1];
var v2 = vBuffer[i2];
var barycentric = Intersections2D.computeBarycentricCoordinates(u, v, u0, v0, u1, v1, u2, v2, barycentricCoordinateScratch);
if (barycentric.x >= -1e-15 && barycentric.y >= -1e-15 && barycentric.z >= -1e-15) {
return barycentric.x * heights[i0] +
barycentric.y * heights[i1] +
barycentric.z * heights[i2];
}
}
// Position does not lie in any triangle in this mesh.
return undefined;
}
export default GoogleEarthEnterpriseTerrainData;