import BoundingSphere from './BoundingSphere.js'; import Cartesian3 from './Cartesian3.js'; import Check from './Check.js'; import defaultValue from './defaultValue.js'; import defined from './defined.js'; import defineProperties from './defineProperties.js'; import Rectangle from './Rectangle.js'; /** * Determine whether or not other objects are visible or hidden behind the visible horizon defined by * an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the * origin of the coordinate system. This class uses the algorithm described in the * {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post. * * @alias EllipsoidalOccluder * * @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder. * @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not * specified, {@link EllipsoidalOccluder#cameraPosition} must be called before * testing visibility. * * @constructor * * @example * // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9. * var cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0); * var occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * var occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition); * * @private */ function EllipsoidalOccluder(ellipsoid, cameraPosition) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object('ellipsoid', ellipsoid); //>>includeEnd('debug'); this._ellipsoid = ellipsoid; this._cameraPosition = new Cartesian3(); this._cameraPositionInScaledSpace = new Cartesian3(); this._distanceToLimbInScaledSpaceSquared = 0.0; // cameraPosition fills in the above values if (defined(cameraPosition)) { this.cameraPosition = cameraPosition; } } defineProperties(EllipsoidalOccluder.prototype, { /** * Gets the occluding ellipsoid. * @memberof EllipsoidalOccluder.prototype * @type {Ellipsoid} */ ellipsoid : { get: function() { return this._ellipsoid; } }, /** * Gets or sets the position of the camera. * @memberof EllipsoidalOccluder.prototype * @type {Cartesian3} */ cameraPosition : { get : function() { return this._cameraPosition; }, set : function(cameraPosition) { // See https://cesium.com/blog/2013/04/25/Horizon-culling/ var ellipsoid = this._ellipsoid; var cv = ellipsoid.transformPositionToScaledSpace(cameraPosition, this._cameraPositionInScaledSpace); var vhMagnitudeSquared = Cartesian3.magnitudeSquared(cv) - 1.0; Cartesian3.clone(cameraPosition, this._cameraPosition); this._cameraPositionInScaledSpace = cv; this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared; } } }); var scratchCartesian = new Cartesian3(); /** * Determines whether or not a point, the occludee, is hidden from view by the occluder. * * @param {Cartesian3} occludee The point to test for visibility. * @returns {Boolean} true if the occludee is visible; otherwise false. * * @example * var cameraPosition = new Cesium.Cartesian3(0, 0, 2.5); * var ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * var occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition); * var point = new Cesium.Cartesian3(0, -3, -3); * occluder.isPointVisible(point); //returns true */ EllipsoidalOccluder.prototype.isPointVisible = function(occludee) { var ellipsoid = this._ellipsoid; var occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace(occludee, scratchCartesian); return this.isScaledSpacePointVisible(occludeeScaledSpacePosition); }; /** * Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the * occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid * into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}. * * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space. * @returns {Boolean} true if the occludee is visible; otherwise false. * * @example * var cameraPosition = new Cesium.Cartesian3(0, 0, 2.5); * var ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * var occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition); * var point = new Cesium.Cartesian3(0, -3, -3); * var scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point); * occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true */ EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function(occludeeScaledSpacePosition) { // See https://cesium.com/blog/2013/04/25/Horizon-culling/ var cv = this._cameraPositionInScaledSpace; var vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared; var vt = Cartesian3.subtract(occludeeScaledSpacePosition, cv, scratchCartesian); var vtDotVc = -Cartesian3.dot(vt, cv); // If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and // in this case, set the culling plane to be on V. var isOccluded = vhMagnitudeSquared < 0 ? vtDotVc > 0 : (vtDotVc > vhMagnitudeSquared && vtDotVc * vtDotVc / Cartesian3.magnitudeSquared(vt) > vhMagnitudeSquared); return !isOccluded; }; /** * Computes a point that can be used for horizon culling from a list of positions. If the point is below * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point * is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function(directionToPoint, positions, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object('directionToPoint', directionToPoint); Check.defined('positions', positions); //>>includeEnd('debug'); if (!defined(result)) { result = new Cartesian3(); } var ellipsoid = this._ellipsoid; var scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint); var resultMagnitude = 0.0; for (var i = 0, len = positions.length; i < len; ++i) { var position = positions[i]; var candidateMagnitude = computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint); resultMagnitude = Math.max(resultMagnitude, candidateMagnitude); } return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result); }; var positionScratch = new Cartesian3(); /** * Computes a point that can be used for horizon culling from a list of positions. If the point is below * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point * is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {Number} [stride=3] * @param {Cartesian3} [center=Cartesian3.ZERO] * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices = function(directionToPoint, vertices, stride, center, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object('directionToPoint', directionToPoint); Check.defined('vertices', vertices); Check.typeOf.number('stride', stride); //>>includeEnd('debug'); if (!defined(result)) { result = new Cartesian3(); } center = defaultValue(center, Cartesian3.ZERO); var ellipsoid = this._ellipsoid; var scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint); var resultMagnitude = 0.0; for (var i = 0, len = vertices.length; i < len; i += stride) { positionScratch.x = vertices[i] + center.x; positionScratch.y = vertices[i + 1] + center.y; positionScratch.z = vertices[i + 2] + center.z; var candidateMagnitude = computeMagnitude(ellipsoid, positionScratch, scaledSpaceDirectionToPoint); resultMagnitude = Math.max(resultMagnitude, candidateMagnitude); } return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result); }; var subsampleScratch = []; /** * Computes a point that can be used for horizon culling of a rectangle. If the point is below * the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well. * The returned point is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point. * @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from * the ellipsoid used by this instance for occlusion testing. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle = function(rectangle, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object('rectangle', rectangle); //>>includeEnd('debug'); var positions = Rectangle.subsample(rectangle, ellipsoid, 0.0, subsampleScratch); var bs = BoundingSphere.fromPoints(positions); // If the bounding sphere center is too close to the center of the occluder, it doesn't make // sense to try to horizon cull it. if (Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) { return undefined; } return this.computeHorizonCullingPoint(bs.center, positions, result); }; var scaledSpaceScratch = new Cartesian3(); var directionScratch = new Cartesian3(); function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) { var scaledSpacePosition = ellipsoid.transformPositionToScaledSpace(position, scaledSpaceScratch); var magnitudeSquared = Cartesian3.magnitudeSquared(scaledSpacePosition); var magnitude = Math.sqrt(magnitudeSquared); var direction = Cartesian3.divideByScalar(scaledSpacePosition, magnitude, directionScratch); // For the purpose of this computation, points below the ellipsoid are consider to be on it instead. magnitudeSquared = Math.max(1.0, magnitudeSquared); magnitude = Math.max(1.0, magnitude); var cosAlpha = Cartesian3.dot(direction, scaledSpaceDirectionToPoint); var sinAlpha = Cartesian3.magnitude(Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction)); var cosBeta = 1.0 / magnitude; var sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta; return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta); } function magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result) { // The horizon culling point is undefined if there were no positions from which to compute it, // the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity. if (resultMagnitude <= 0.0 || resultMagnitude === 1.0 / 0.0 || resultMagnitude !== resultMagnitude) { return undefined; } return Cartesian3.multiplyByScalar(scaledSpaceDirectionToPoint, resultMagnitude, result); } var directionToPointScratch = new Cartesian3(); function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) { if (Cartesian3.equals(directionToPoint, Cartesian3.ZERO)) { return directionToPoint; } ellipsoid.transformPositionToScaledSpace(directionToPoint, directionToPointScratch); return Cartesian3.normalize(directionToPointScratch, directionToPointScratch); } export default EllipsoidalOccluder;